
Master’s Thesis Computing Science

In Cyber Security

Online Template Attack On
ECDSA:

Extracting Keys Via The Other Side

By
N.W.A. Roelofs

Supervisor
Prof. dr. L. Batina

Second Assessor
Prof. dr. J.J.C. Daemen

Daily Supervisor
N. Samwel MSc

Radboud University Nijmegen
Institute for Computing and Information Sciences

Digital Security

August 18, 2019

Abstract

The last couple of decades side-channel analysis has proved to be an ade-
quate method to extract confidential material such as cryptographic keys in
unforeseen ways. This thesis extends that notion by compromising the se-
cret ECDSA key used while signing a message, by applying the concept of an
online template attack via its verification counterpart. Via the attack it is
possible for an adversary to reconstruct a secret scalar bit by bit where only
one power trace is needed of the target, and two templates per bit to recover.
Once the scalar is known, the secret key can be computed trivially. The
attack is feasible because there is an operation when signing which depends
on a bit value of the secret scalar, a squaring in the case of our investigated
Montgomery ladder as scalar multiplication method. From the verification
side, this operation can be imitated by an adversary with different inputs,
which allows the creation and thereafter matching of templates. In order to
prevent this attack from happening, dissimilarities between the signing and
verification part of ECDSA should be created. That is, somehow we should
make it nearly impossible for an attacker to build meaningful templates. An
effective method to achieve this goal is to make use of randomized projective
coordinates while signing. In this case it becomes nearly impossible for an
attacker to calculate intermediate values of the Montgomery ladder which
are required to create templates. As a consequence, the discussed attack
becomes unfeasible.

ii

Acknowledgments

First of all I would like to thank my supervisor Lejla Batina for setting the
scope of my thesis, providing me directions and helping me to finalize the
project. On top of that, I would like to thank her for providing me the
opportunity to participate in the Summer school on real-world crypto and
privacy in Šibenik, Croatia. Additionally I want to thank my second assessor
Joan Daemen for introducing the ideas that have been implemented in this
thesis.

Furthermore, a big shout-out to Niels Samwel for helping me with practical
implementation issues during my thesis, acting as a sparring partner and
being nice company in the side-channel lab these months!

Finally, I would like to thank my employer for giving me the opportunity to
invest in my academic schooling. I hope it will prove to be of added value
for the organization.

iii

Contents

List of Figures vi

List of Tables vii

List of Algorithms viii

Abbreviations ix

1 Introduction 1
1.1 Overview of Side Channel Attacks 2

1.1.1 SCAs And ECC . 4
1.2 Scope and Outline . 5

2 Cryptographic Background 7
2.1 Notes On Elliptic Curve Cryptography 7

2.1.1 Alternative Coordinate Systems 9
2.2 ECDSA . 9
2.3 Scalar Multiplication Algorithms 11

2.3.1 Double And Add . 11
2.3.1.1 NAF Notation 12

2.3.2 Montgomery Ladder 14
2.4 Shamir’s Trick . 15

3 Power Side-Channel Analysis 16
3.1 Background Techniques . 16

3.1.1 Simple Power Analysis 16
3.1.2 Differential Power Analysis 17
3.1.3 Template Attack . 20

3.2 Applied Techniques . 21
3.2.1 TEMPEST . 21
3.2.2 Online Template Attack 22

iv

4 Key Extraction Via TEMPEST 24
4.1 Setup . 24
4.2 Finding The Leakage . 26
4.3 Discussion Of Results . 28

5 Key Extraction Via OTA 30
5.1 Scenario . 30
5.2 Platform . 31
5.3 Spotting The Attack Vector 32
5.4 Preparing The Input . 34
5.5 Measuring . 36
5.6 Extracting Bits . 38
5.7 Countermeasures . 40
5.8 Implications . 41
5.9 Future research . 42

6 Conclusion 43

References 45

Appendices 49

A Baudline Spectrum Analysis Phone 50

B Montgommery Ladder Step 53

v

List of Figures

3.1 Schematic overview of SPA on RSA’s square and multiply al-
gorithm [30]. 17

3.2 Example result of DPA attack. 19

4.1 Overview of the TEMPEST attack setup. 26

5.1 The ChipWhisperer-Lite (CW1173) board [35]. 32
5.2 Overview of the OTA attack setup. 37
5.3 Correlation results second MSB templates. 39

A.1 Visualization of leakage phone during signing program. 51
A.2 Visualization of leakage phone during signing program without

printf statements. 52

vi

List of Tables

2.1 Symbol clarification for ECDSA related algorithms. 10

4.1 Number clarification for TEMPEST setup Figure 4.1. 26

5.1 Number clarification for OTA setup Figure 5.2. 37

vii

List of Algorithms

1 Naive PIN verification. 2

2 ECDSA signature generation. 10
3 ECDSA signature verification. 11
4 Double and add algorithm. 11
5 Compute the NAF of an integer. 13
6 Scalar multiplication with NAF. 13
7 Montgomery ladder. 14
8 Shamir’s trick. 15

9 First few statements of calculating a double of an EC point in
Jacobian coordinates. 34

10 One Montgommery ladder step in standard projective coordi-
nates [14]. 54

viii

Abbreviations

AES . Advanced Encryption Standard

CWLC ChipWhisperer-Lite Classic

DPA . Differential Power Analysis

DRAM Dynamic Random Access Memory

DSA . Digital Signature Algorithm

EC . Elliptic Curve

ECC . Elliptic Curve Cryptography

ECDH Elliptic Curve Diffie-Hellman

ECDLP Elliptic Curve Discrete Logarithm Problem

ECDSA Elliptic Curve Digital Signature Algorithm

EdDSA Edwards-curve Digital Signature Algorithm

EM . ElectroMagnetic

FFT . Fast Fourier Transform

HMAC Hash-based Message Authentication Code

LSB . Least Significant Bit

MSB . Most Significant Bit

NAF . Non-Adjacent Form

NIST . National Institute of Standards and Technology

NSA . National Security Agency

OTA . Online Template Attack

ix

SCA . Side-Channel Attack

SPA . Simple Power Analysis

TEMPEST Not an abbreviation, refers to EM emission

VM . Virtual Machine

x

Chapter 1

Introduction

Cryptology is the research field which investigates the methods on how to
achieve and compromise the confidentiality, integrity and authenticity of in-
formation. Confidentiality is all about preventing the disclosure of informa-
tion to unwanted parties, typically achieved by encrypting a piece of infor-
mation with a secret key using symmetric encryption such as the Advanced
Encryption Standard (AES) [10]. The term symmetric refers to the aspect
that both communicating parties use the same key to encrypt and decrypt
information.

The term integrity refers to the concept that it should be impossible to modify
a message as an outsider in a conversation without any party noticing, which
can be accomplished by sending a hash of the message along side the message
itself. When the the receiving party computes its own hash over the message
and it matches the hash received from the other party, it is highly likely that
the message has not been modified. In today’s practice, integrity is often
implemented with a Hash-based Message Authentication Code (HMAC) [22].

Finally, the principle of authenticity entails proving that a message indeed
originated from a certain party, which is commonly done via some signing
principle based on asymmetric cryptography. The latter one means that
different keys are used for both signing and verifying a message, often referred
to as a private and public key. Two very common examples are RSA [32] and
algorithms based on Elliptic Curve Cryptography (ECC) such as the Elliptic
Curve Digital Signature Algorithm (ECDSA) [16] and the Edwards-curve
Digital Signature Algorithm (EdDSA) [6].

1

1.1. OVERVIEW OF SIDE CHANNEL ATTACKS N.W.A. Roelofs

1.1 Overview of Side Channel Attacks

As the title of this document already suggests, the goal of this master thesis
is to investigate the security of an ECDSA implementation against a certain
type of attack in order to extract secret signing keys. Once an adversary gets
possession of a key, it can impersonate the original holder of that key, which
as a result breaks the authenticity goal described before.

The method applied in this thesis to extract secret information is called a
Side Channel Attack (SCA). With this approach we do not attack a crypto-
graphic protocol from a formal mathematical perspective but instead target
its practical implementation of it on some device. That is, we try to extract
something secret via something unforeseen, a side channel. This sounds
rather vague but can be made more clear by giving an overview of some,
not all, different types of side channels and introduce the most important
taxonomy, as has been down below.

Thanks to Kocher in 1996, the concept of SCAs went mainstream. He in-
troduced a paper [21] describing by simply measuring the execution time of
a signing algorithm he could somehow extract secret key material. To get
a more concrete idea of the concept of a SCA, we simplify the invention of
Kocher and apply it on Algorithm 1.

Algorithm 1: Naive PIN verification.

Input : pin[4]
Output: pin accepted

1 pin accepted← 0
2 if pin[0] == 4 then
3 if pin[1] == 2 then
4 if pin[2] == 4 then
5 if pin[3] == 2 then
6 pin accepted← 1
7 end

8 end

9 end

10 end
11 return pin accepted

The algorithm itself is implemented correctly in a sense that the variable
pin accepted contains the value 1 only when the PIN 4242 is provided. How-
ever, the algorithm is not time constant. Namely, when the first digit of

2 CHAPTER 1. INTRODUCTION

N.W.A. Roelofs 1.1. OVERVIEW OF SIDE CHANNEL ATTACKS

the PIN supplied is correct, the execution of the algorithm will take longer
because the second if statement will be evaluated. If an incorrect value was
supplied, this would not happen. An adversary can exploit this weakness to
extract digit by digit of the PIN when measuring the execution time. On
average, this attack method will take 54 = 625 tries to retrieve the PIN which
is only a fraction of the 10000/2 = 5000 tries a brute force approach would
take. In Section 2.3.1 we give another example which implements the timing
attack principle of Kocher but then in a more cryptographic setting.

In 1999 Kocher provided another breakthrough in the field of SCA: extract-
ing secret material via power analysis [20]. He showed that it was possible
to extract key material via simply inspecting a power consumption trace and
as an alternative by applying basic statistics on multiple power consump-
tion measurements. Both techniques will be more thoroughly introduced in
Section 3.1.

Once the power consumption was recognized as a viable side channel, it
was also exploited indirectly via the ElectroMagnetic (EM) emission of a
device [1]. After all, the amount of emission is proportional to the power
consumption used. The general term of a side channel attack exploiting EM
emission is also referred to with the term TEMPEST, from origin a code
name from the National Security Agency (NSA), and is described further in
Subsection 3.2.1.

Chari et al. brought the power consumption analysis to another level by
introducing template attacks [8]. It is the best known example of a profiled
attack, in contrast to the techniques introduced by Kocher, which are non-
profiled attacks. The term profiling refers to creating templates of a device
which captures the behavior of a device while executing a certain operation.
See Subsection 3.1.3 for more details.

Since we are giving a little overview, we do not want to leave out some sig-
nificant pointers to other SCAs before we are going to narrow our scope to
the topics relevant for this thesis. The out-of-order execution is a type of at-
tack which received a lot of media attention with Spectre [19], Meltdown [25]
and later on with RIDL [37] and Fallout [28]. It is important to distinguish
between these type of attacks and those related to power consumption intro-
duced earlier in a sense that out-of-order execution attacks focus on reading
arbitrary data from memory, which does not have to be related to cryptology
at all.

Furthermore, we want to mention the concept of fault attacks as an effective
SCA method, for which [7] serves as an example. This type of attack distin-

CHAPTER 1. INTRODUCTION 3

1.1. OVERVIEW OF SIDE CHANNEL ATTACKS N.W.A. Roelofs

guishes itself from most other SCA methods in a sense that it is an active
attack. That is, in this case the adversary actively interacts with the system
under attack in order to learn something secret, for example by making use
of lasers. In contrast, the power consumption techniques mentioned before
require an adversary to only passively measure the power consumption. As
a consequence, such a method is labeled as a passive attack. Fault attacks
however, are not limited to the usage of lasers. Changing the voltage, current
or clock speed of the processor are other examples of attack vectors.

Finally, we want to name one more famous active type of side channel at-
tack. It involves attacking Dynamic Random Access Memory (DRAM) with
Rowhammer [17] to flip bits or even read secret data in the case of RAM-
Bleed [24]. Also this type of attack does not have to be related to cryptology
in any way.

1.1.1 SCAs And ECC

By now we have introduced some very high level concepts of SCAs and
provided some pointers to further on in this thesis. Now we are going to
mention some practical SCAs which are linked to ECC specifically.

An interesting example of a SCA related to ECC would be the attack de-
scribed by Samwel et al. on breaking Ed25519 in WolfSSL [33]. However,
this actually attacks the hash function used in Ed25519 [6] and not the arith-
metic of Elliptic Curve (EC) operations itself. Nevertheless, there are some
papers available which target the scalar exponentiation in RSA which can be
expanded to the ECC scalar multiplication, such as [38].

Another example which directly does target EC arithmetic would be the
paper of Genkin et al. [11]. In there a methodology is described of extracting
an ECDSA private key because a scalar multiplication depending on a secret
value was not implemented in a time constant way. Interesting to note is
that they actually were able to only extract some scalar bits with template
techniques. However, by applying a so called lattice attack [13] afterwards,
they were able to reconstruct the whole secret scalar. The usage of lattice
attacks is rather common when attacking ECC, see for example [4].

In contrast, there is also a rather new attack which primarily targets the
scalar multiplication in ECC, that does not make use of lattice attacks,
called Online Template Attack (OTA) [3]. The technique is also thoroughly
discussed in the PhD thesis of Papachristodoulou [31]. OTA is based on the
principle of template attacks but has as a considerable benefit that only a

4 CHAPTER 1. INTRODUCTION

N.W.A. Roelofs 1.2. SCOPE AND OUTLINE

limited amount of power traces need to be taken, ideally one per bit to re-
cover. On top of that, the templates can be generated on the fly, hence the
‘online’ reference, and do not have to be computed beforehand, also referred
to as ‘offline’. OTA primarily targets Elliptic Curve Diffie-Hellman (ECDH)
because it requires that an attacker has control over the EC point used in
the multiplication. Although it can also be applied to the Elliptic Curve
Digital Signature Algorithm (ECDSA) under the assumption there is a way
to control the EC point used in the scalar multiplication. The OTA principle
will be thoroughly discussed in Subsection 3.2.2 and Chapter 5.

1.2 Scope and Outline

As mentioned before, the goal of this master thesis is to investigate the
security of an ECDSA implementation against the OTA in order to determine
the feasibility of extracting secret signing keys. We will target an 8 bit
microcontroller, which is commonly used in resource constrained devices such
as a smartcard. Before any attack is actually discussed, we will investigate
in Chapter 2 some basics of ECC and ECDSA. Thereafter, we will discuss in
detail some scalar multiplication methods because this a critical operation
which sometimes leaves a window for a SCA to extract a secret key.

In Chapter 3 we will examine different kind of SCA techniques in relation to
the power side channel. We provide some background techniques after which
we end up describing TEMPEST and OTA.

The reason we discuss TEMPEST is because the original goal of this thesis
was not to apply the OTA but to use the EM side channel to extract an
ECDSA secret key from a smartphone. However, after several months into
the thesis our attack strategy proved inadequate and therefore the topic was
dropped and the switch was made to OTA. Nevertheless, our methods and
findings of this approach are written down in Chapter 4.

Hereafter, in Chapter 5, we will finally introduce the practicalities and further
details of the OTA. It is good to realize that what is described in this chapter
is different from the standard OTA technique and as a consequence this thesis
is not a simple exercise of something already achieved before. The novelty
of this thesis involves extracting the secret key via the ECDSA verification
algorithm, a public function which does not use secret values, instead of the
signing counterpart. Additionally, not a separate device is used for building
the templates. Further details we will leave for Chapter 5.

CHAPTER 1. INTRODUCTION 5

1.2. SCOPE AND OUTLINE N.W.A. Roelofs

In the end of the thesis we will discuss some countermeasures to prevent the
attack discussed from happening in the future. Finally, in the last chapter
we give an answer to the following research question:

‘How feasible is an OTA on a 8 bit target in order to extract the signing key
via the ECDSA verification algorithm?’

6 CHAPTER 1. INTRODUCTION

Chapter 2

Cryptographic Background

This part is meant to serve as a cryptographic background to understand
what is discussed further on this thesis. First we will give an introduction
into relevant parameters when implementing ECC, without giving much at-
tention to the mathematical details. Thereafter we introduce the signature
scheme under attack after which we zoom in more deeply on how to perform
a scalar multiplication when using ECs. We finish this chapter by giving
an optimization trick to combine two single scalar multiplications to gain an
optimization in speed due to some small pre-computation step.

2.1 Notes On Elliptic Curve Cryptography

Elliptic curves where originally introduced independently in [18] and [27] as
a means to perform asymmetric cryptography. Its security is based on the
assumption that the Elliptic Curve Discrete Logarithm Problem (ECDLP)
is hard to solve. That is, having Equation (2.1), where the points P and Q
are known to an attacker, the only way for him to find a is via brute force
approaches.

Q = aP (mod p) (2.1)

Remember that there is an addition law for elliptic curves, see Equation
(2.2) for the formulas in the affine coordinate system. The value of λ in the
equation differs for an addition R = P + Q with λ = yq−yp

xq−xp
and a doubling

R = 2P with λ =
3x2

p+a

2yp
.

7

2.1. NOTES ON ELLIPTIC CURVE CRYPTOGRAPHY N.W.A. Roelofs

xr = λ2 − xp − xq yr = λ(xp − xr)− yp (2.2)

A naive implementation of the multiplication given in Equation (2.1) can be
done as a repeating loop of additions. If a would be a big number, say 256
bit long, it would roughly take 2256 addition operations to execute the mul-
tiplication which is more expensive than brute forcing the ECDLP problem.
Luckily there are some methods known which can reduce this multiplication
to a far more feasible computing time. Some well known approaches are
discussed in Section 2.3.1 and 2.3.2.

We will not discuss the concept of elliptic curves any further. For those
interested we refer to the references at the beginning of this paragraph. The
only thing we will specify for now are the six domain parameters which are
needed van implementing ECC for some application:

• p: An EC is defined over a finite field p, written as Fp. Typically p is
a large number, for example 256 bits long.

• a & b: The standard notation for an EC in (short) Weierstrass form is
y2 = x3 + ax + b. Changing the values of a and b changes the form of
the curve.

• B: The base point which serves as a generator within its subgroup.

• l: The order of B is defined as the smallest value l where lB = O, the
point at infinity. Typically l needs to be prime and as big as possible.
After all, the bigger the order, the bigger the amount of points B can
generate on the curve which makes brute force attacks less feasible.

• h: If B cannot generate all the points on the curve chosen, there are
several subgroups present. The cofactor h is defined as #E(Fp) (the
order of the curve) divided by l. Normally the cofactor should be kept
as low as possible to prevent certain types of cryptographic attacks
from happening. Often it is kept equal to 1. One of the most well
known exception would be Curve25519, which has an cofactor of 8 [5].

Typically, users do not come up with values for these domain parameters
by themselves. Instead they use a tuple with parameters provided by for
example the National Institute of Standards and Technology (NIST).

8 CHAPTER 2. CRYPTOGRAPHIC BACKGROUND

N.W.A. Roelofs 2.2. ECDSA

2.1.1 Alternative Coordinate Systems

The downside of doing addition and/or doubling operation in affine coordi-
nates is that it is requires modular inversions in the underlying Fp , which
is a costly operation in terms of speed and therefore preferably avoided. A
common method to achieve this goal is to represent an affine point P = (x, y)
in a different coordinate system, two common ones are:

• Standard projective coordinates: an affine point (x, y) is represented
as (X, Y, Z) where x = X/Z,y = Y/Z and Z 6= 0.

• Jacobian coordinates: an affine point (x, y) is represented as (X, Y, Z)
where x = X/Z2, y = Y/Z3 and Z 6= 0.

2.2 ECDSA

After introducing ECs we can now focus on the signing algorithm under
attack in this thesis. Almost twenty years ago Johnson et al. came up with
the EC variant of the Digital Signature Algorithm (DSA) [16]. It is one of
the most used signature schemes next to RSA [32] and Ed25519 [6]. It is for
example used in the Bitcoin protocol.

When implementing ECDSA one of the first steps to be taken is specifying
the domain parameters as discussed in Section 2.1. Thereafter the setup
continues by the signer who needs to select a random integer in the domain
[1, l − 1] which serves as the private key d. From d he needs to compute its
corresponding public key D = dB. Now the setup is finished and the actual
signing operation can take place. See Algorithm 2 for the signing procedure,
Algorithm 3 for the verification and Table 2.2 for the corresponding sym-
bol clarification. The algorithms are self explaining. However, we want to
emphasize on three points.

First of all, with both algorithms the message must be hashed, for example
with SHA-256. However, not the whole hash is being used: only the first
significant bits are taken and converted into an integer. To be precise, the
amount of bits to convert are equal to the bit length of l. Secondly, we
want to emphasize that every time a new signature is created, either for a
new message or another iteration of the while loop a new random k must
be used. If an attacker in some way learns the value of k, via side-channel
analysis or because of reusage of k, then the secret signing key d can be
retrieved via Equation 2.3. After all, all variables except k are publicly

CHAPTER 2. CRYPTOGRAPHIC BACKGROUND 9

2.2. ECDSA N.W.A. Roelofs

Symbol Meaning
d Private key (secret)
k Random fresh nonce (secret)
l Order of base point

(r, s) Signature pair
D Public key (D = dB)
B Base point

H(...) Hash of input
M Message

Table 2.1: Symbol clarification for ECDSA related algorithms.

available. Finally, we stress the importance of implementing the parts of
Algorithm 2 that depend on secret data happens in a time constant fashion.
Otherwise a window is created for a SCA for a timing attack.

d =
s · k − z

r
(2.3)

Algorithm 2: ECDSA signature generation.

Input : d, l, B,M
Output: (r, s)

1 z ← H(M) //convert first log2(l) bits of hash to integer

2 while true do
3 (x, y)← kB // new random k generated every time

4 r ← x mod l
5 if r == 0 then
6 continue // new k needed

7 end
8 s← k−1(z + rd)
9 if s == 0 then

10 continue // new k needed

11 end
12 break

13 end
14 return (r, s)

10 CHAPTER 2. CRYPTOGRAPHIC BACKGROUND

N.W.A. Roelofs 2.3. SCALAR MULTIPLICATION ALGORITHMS

Algorithm 3: ECDSA signature verification.

Input : l, r, s, B,D,M
Output: signature accepted

1 signature accepted← 0
2 z ← H(M) //convert first log2(l) bits of hash to integer

3 w ← s−1 mod l
4 u1 ← zw mod l
5 u2 ← rw mod l
6 (x, y)← u1B + u2D
7 if x == r mod l then
8 signature accepted← 1
9 end

10 return signature accepted

2.3 Scalar Multiplication Algorithms

2.3.1 Double And Add

As noted in Section 2.1, some tricks are needed so that elliptic curve scalar
multiplication is implemented in a time sensible way. One of the most well
known methods to achieve this goal is the ‘left-to-right double-and-add’ al-
gorithm which is given in Algorithm 4 . Indeed, there is also an ‘right-to-left
double-and-add’ algorithm, which is very similar and has the same benefits
and drawbacks as Algorithm 4 which are discussed below.

Algorithm 4: Double and add algorithm.

Input : (kn−1, kn−2, ..., k0), P
Output: Q = kP

1 Q← P
2 for i← n− 2 down to 0 do
3 Q← 2Q
4 if ki == 1 then
5 Q← Q+ P
6 end

7 end
8 return Q

Basically, starting from the second Most Significant Bit (MSB) of the scalar
k, it doubles the intermediate value Q and adds the EC point P to it when

CHAPTER 2. CRYPTOGRAPHIC BACKGROUND 11

2.3. SCALAR MULTIPLICATION ALGORITHMS N.W.A. Roelofs

the bit of the scalar equals 1. This process repeats itself for all bits of the
scalar.

To give an impression of the gain in speed, a small example. When computing
200 ·P this algorithm would require 7 doubling and 2 addition operations in
total, while computing it via repeated addition only would take 200 addition
operations. So one can now imagine when not an 8 bit value is chosen, but
a 255 bit one which is rather standard when using ECDSA.

However, this algorithm is highly insecure to use in cryptographic applica-
tions when the scalar has to be kept private. Namely, one of the first rules of
safely implementing some cryptographic primitive is to not branch on sen-
sitive material. An execution of a round in Algorithm 4 will take a longer
period of time when a bit is equal to 1 than when it would be equal to 0
because of the execution of the addition operation. As a consequence, a
side-channel is created because the code does not run in constant time, its
execution time depends on the bit values of the scalar.

2.3.1.1 NAF Notation

The double and add algorithm is still a viable option when the multiplication
is not depending on secret information. An example of such a situation would
be line 6 in Algorithm 3 where two separate scalar multiplications occur
after which their results are combined by addition. However, to gain an
optimization in speed when doing the multiplication the scalar k is typically
converted to a representation in Non-Adjacent Form (NAF). In this form an
integer can be represented by a combination of (−1, 0, 1) digits where every
two non-zero digits are separated by atleast one zero digit. For example, the
number 7 in binary form would be (0,1,1,1), that is (0 · 8 + 1 · 4 + 1 · 2 + 1 · 1)
while in NAF form it would be (1,0,0,-1), that is (1 · 8 + 0 · 4 + 0 · 2− 1 · 1).
The benefit of this representation is that on average the amount of non-zero
digits can be reduced to 1/3, where it would be on average 1/2 in binary
representation. As a consequence a reduced amount of addition operations
have to be executed. After all, line 4 of Algorithm 4 shows that an addition
only happens when a scalar bit is not equal to 0.

Algorithm 5 gives the overview of how a number can be converted to its NAF
representation after which Algorithm 6 show the adjusted double and add
algorithm. Both are taken from the book ‘Guide to Elliptic Curve Cryptog-
raphy’ [12].

12 CHAPTER 2. CRYPTOGRAPHIC BACKGROUND

N.W.A. Roelofs 2.3. SCALAR MULTIPLICATION ALGORITHMS

Algorithm 5: Compute the NAF of an integer.

Input : k
Output: NAF (k)

1 i← 0
2 while k ≥ 1 do
3 if k mod 2 == 0 then
4 ki ← 2− (k mod 4)
5 k ← k − ki
6 end
7 else
8 ki ← 0
9 end

10 k ← k/2
11 i← i+ 1

12 end
13 return (kn−1, kn−2, ..., k0)

Algorithm 6: Scalar multiplication with NAF.

Input : k, P
Output: Q = kP

1 NAF (K) =
∑n−1

i=0 ki2
i // n = amount of bits k

2 Q←∞
3 for i← l − 1 down to 0 do
4 Q← 2Q
5 if ki == 1 then
6 Q← Q+ P
7 else if ki == −1 then
8 Q← Q− P
9 end

10 end
11 return Q

CHAPTER 2. CRYPTOGRAPHIC BACKGROUND 13

2.3. SCALAR MULTIPLICATION ALGORITHMS N.W.A. Roelofs

2.3.2 Montgomery Ladder

An alternative to the double and add algorithm which is both relatively fast
and runs in constant time is the Montgomery ladder. Originally in 1987 it
was meant as an algorithm to speed up factorization using ECs [29]. After the
rise of SCAs in the late nineties it became an effective method to guarantee
a time constant execution of code. On top of that, it provides protection
against some other types of SCAs such as Simple Power Analysis (SPA), see
Algorithm 7 for the overview.

Algorithm 7: Montgomery ladder.

Input : (kn−1, kn−2, ..., k0), P
Output: Q = kP

1 R0 ← P
2 R1 ← 2P
3 for i← n− 2 down to 0 do
4 b← 1− ki
5 Rb ← R0 +R1

6 Rki ← 2Rki

7 end
8 return R0

The code in Algorithm 7 has a very regular structure: every operation gets
executed in every iteration of the loop because there are no branches present.
The code nevertheless differentiates between scalar bits by placing the result
of the addition in R0 and the doubles in R1 or the other way around, depend-
ing on the value of the bit. Because of the lack of branching it can therefore
be stated that the code runs in constant time. This, however, does not mean
it is resistant to all side-channel attacks, it is simply not vulnerable to the
timing side-channel.

Nevertheless, Algorithm 7 only gives a high-level overview of how a Mont-
gomery ladder is typically implemented into computer code. A lot of research
has been done the last couple of decades in optimizing the Montgomery lad-
der for speed and/or memory usage and improving its resistance against
side-channel analysis. One such a technique is described in the appendix of
[14] in Algorithm 4, which is used for this thesis. Later on in Chapter 5 we
will discuss a few aspects of this implementation in more detail because we
will show that it is vulnerable to an OTA.

14 CHAPTER 2. CRYPTOGRAPHIC BACKGROUND

N.W.A. Roelofs 2.4. SHAMIR’S TRICK

2.4 Shamir’s Trick

As noted before, the double and add algorithm can be a valid method to
perform scalar multiplication. It can for example be called two times to per-
form the two scalar multiplications of line 6 in Algorithm 3 while verifying an
ECDSA signature. The disadvantage however is that in such an implementa-
tion the two scalar multiplications happen independently. Shamir suggested
a method, based on work by Straus [34], to combine both multiplications to
gain an optimization in speed which received the nickname ‘Shamir’s trick’,
see Algorithm 8. The big speedup is gain by the precomputation of P + Q
which is added when both scalar bits equal 1. Note that no addition takes
place when both bits are 0, just like with the standard double and add algo-
rithm.

Algorithm 8: Shamir’s trick.

Input : (an−1, an−2, ..., a0), (bn−1, bn−2, ..., b0), P,Q
Output: R = aP + bQ

1 R← 0
2 S ← P +Q
3 for i← n− 1 down to 0 do
4 R← 2R
5 if ai == 1 AND bi == 0 then
6 R← R + P
7 else if ai == 0 AND bi == 1 then
8 R← R +Q
9 else if ai == 1 AND bi == 1 then

10 R← R + S
11 end

12 end
13 return R

CHAPTER 2. CRYPTOGRAPHIC BACKGROUND 15

Chapter 3

Power Side-Channel Analysis

In the first chapter of this thesis we gave an intuition of what a SCA is. The
goal of this chapter is to introduce some principles of SCA when the power
consumption of a device is used as the side-channel for extracting for example
key bits. The first paragraph provides a general background which serves as
a basis for the second paragraph, whose principles are actually applied in
this thesis.

3.1 Background Techniques

3.1.1 Simple Power Analysis

Whenever a processor does some computation, it consumes power. The
amount of consumption is depending on the operation performed and of-
ten on the input used for that operation. The idea of Simple Power Analysis
(SPA) [20] is to measure the power consumption of a device while it is per-
forming some operations of interest, in our case scalar multiplication. When
analyzing the power consumption we expect to see somehow ‘leakage’ of the
targeted variable, say a scalar or a key. This may sound rather abstract, but
can quite easily be visualized in a figure.

Namely, a standard example of SPA is attacking the square and multiply
algorithm of RSA used for exponentiation. It is an algorithm which is on an
abstract level very similar to Algorithm 4, but one should replace double by
squaring operations and additions by multiplications. A power consumption

16

N.W.A. Roelofs 3.1. BACKGROUND TECHNIQUES

Figure 3.1: Schematic overview of SPA on RSA’s square and multiply algo-
rithm [30]. The X-axis represents the time and the Y-axis the related power
consumption.

of the square and multiply algorithm could look like 3.1 when no counter-
measures are taken.

In Figure 3.1 it is quite straightforward to differentiate between a squaring
and a multiplication because the latter one leads to a higher power con-
sumption of the processor. Since a multiplication is only being done when
the exponentiation bit equals 1, we know the value of the bit in a certain
round of the algorithm. Similarly, a lack of a multiplication indications that
the bit equals 0. Finally, because every operation takes around the same
amount of time, it is possible to state where a round of the square and mul-
tiply algorithm starts and finishes. Since we now know how to differentiate
between a bit and where a single round of the algorithm takes place, the
whole scalar can be reconstructed bit by bit.

Depending on the quality of the trace taken, additional measurements are
needed to fully reconstruct a scalar. Traces of the same operation can simply
be combined by averaging them all.

The success of a SPA attack mainly depends on whether the execution path of
a program depends on the data being processed, as is the case in Algorithm
4. If such a dependency is not present, SPA will probably not work but
that does not mean the program is safe for a SCA, there are more advanced
techniques possible for an adversary.

3.1.2 Differential Power Analysis

One such more advanced SCA technique is called Differential Power Analysis
(DPA) [20] which makes use of statistics to exploit even small biases in the
power consumption to recover a secret value. In comparison to SPA, DPA

CHAPTER 3. POWER SIDE-CHANNEL ANALYSIS 17

3.1. BACKGROUND TECHNIQUES N.W.A. Roelofs

typically requires more traces to be taken with the same secret value, while
the input message to the encryption/signing scheme should differ but must be
known. Additionally, DPA does not analyze the power consumption among
the time axis, like SPA does, but instead analyzes how the power consumption
depends on processed data on fixed moments in time. The structure of DPA
is quite generic and is therefore explained below based on [26].

As a first step, the attacker must choose a part of the cryptographic algo-
rithm under attack which uses some data d, often either the plaintext or the
ciphertext, and is depending on the key k to retrieve.

Thereafter, power consumption measurements are taken of the device while
executing the relevant part of the algorithm. It is important that every single
trace has the same amount of samples and that they are aligned. As a result
of this step we are left with a matrix M = D×T where D stands for the total
amount of input values d and T for the amount of samples in a single trace.
Once again, the values of d should differ but the used k needs to remain the
same.

The third step consists of computing hypothetical intermediate values for
the function part selected in step one for every possible value of k for every
input chosen at the previous step. As a result this step gives a a matrix
v = D ×K. As of now, one column matches they key used while taking the
power consumption measurements in step two. The goal from here on is to
find which column that is.

Now that we know for every input d out of D the hypothetical intermediate
value for every key, a model can be used to translate this hypothetical inter-
mediate value into a hypothetical power consumption value. The model used
to calculate this value highly depends on the platform under attack. For a
software implementation typically a model is used which counts the number
of non-zero bits, which is called the Hamming weight. Its counterpart is the
Hamming distance model, which is used for hardware implementations of
some cryptographic primitive. Instead, this model counts the total number
of bits flipped between the input and the hypothetical intermediate value.
The result of of this step is once again a matrix with the dimension D ×K
which we call H.

As a final step, we compare every column hi of H to every column mj of M .
So, the hypothetical power consumption of every value of k is compared with
the recorded traces at every position. Once again, the attacker has several
options for how to make this comparison. One very common method is to
calculate the Pearson correlation coefficient which is defined in Equation 3.1

18 CHAPTER 3. POWER SIDE-CHANNEL ANALYSIS

N.W.A. Roelofs 3.1. BACKGROUND TECHNIQUES

Figure 3.2: Example result of DPA attack.

together with its application to fill the matrix R for every combination of hi
and mi. In this case, the correlation indicates the Hamming weight leakage
of operations which depend on the key while a cryptographic algorithm is
executing.

ri,j =
cov(hi,mi)

σhi
σmi

=

∑D
d=1(hd,i − h̄i) · (md,j − m̄j)√∑D
d=1 (hd,i − h̄i)

2 · (md,j − m̄j)
2

(3.1)

Almost all values in R will have a value relatively close to zero, which indi-
cates that there is no linear, when the Pearson coefficient is used, relationship
between hi and mi. The column hi which contains the highest value for the
correlation coefficient, is most likely representing the key used when taking
the power consumption measurements in step two. Usually the correct key
candidate can also be visualized by plotting ri,j against the time axis, as
demonstrated in Figure 3.2.

Figure 3.2 comes from a homework assignment where a DPA attack had to
be implemented in order to recover a key byte used in an implementation
of AES. The black background in the figure represents the correlation of

CHAPTER 3. POWER SIDE-CHANNEL ANALYSIS 19

3.1. BACKGROUND TECHNIQUES N.W.A. Roelofs

all wrong 255 key possibilities and the green shows the correct candidate.
So, visually it can also be very easy to decide on the the correct key value
after applying DPA because there is only one candidate whose correlation
coefficient stands out.

3.1.3 Template Attack

Although the two techniques above can be very effective attack strategies,
they cannot be applied to the signing algorithm of ECDSA in order to secret
scalar k, as discussed in Section 2.2. Namely, as further discussed later on
in this thesis, the ECDSA implementation under attack is (presumed to be)
constant time and does not branch based on a bit of k. So, SPA is not an
option. Furthermore, since the value for k changes for every single signing
operation, DPA is also not possible. After all, that technique requires at
least hundreds, possibly thousands, of traces with the same scalar in order
to extract its value.

However, Chari et al. introduced in 2004 the principle of a template attack
[8]. The attack utilizes the idea that it might be hard to attack a device
directly, which is required with SPA and DPA, so an indirect approach is
taken.

Concretely this means that a person should start with acquiring an identi-
cal device as it wants to attack. Thereafter he chooses some model which
describes the power consumption to build up a profile, a template. In the
most simple model, called the ’reduced model’, this entails doing a certain
operation N times while a secret bit equals zero and another N times while
it equals one. For both cases the mean is taken of all the power consumption
traces, which results in two averaged power traces. After building the two
templates, a power trace can be taken of the actual device under attack.
Now it becomes the question to which built template this power trace taken
is more similar. In the reduced model this question is answered by simply
subtracting the built templates separately from the power consumption trace
taken. The result closest to zero is suspected to represent the correct value
for the key bit. From here on this process can be repeated bit by bit to
recover the whole secret scalar.

The success degree of this attack highly depends on choosing a model which
captures the leakage adequately. Additionally, enough measurements should
be taken to build accurate templates. Furthermore, it is essential that the
device used for building templates is identical to the one actual under attack

20 CHAPTER 3. POWER SIDE-CHANNEL ANALYSIS

N.W.A. Roelofs 3.2. APPLIED TECHNIQUES

in terms of power consumption.

Note that this attack does not necessarily needs to recover bit by bit. It is
also plausible to work with for example bytes at a time. However, this has
as a downside that more different templates need to be built simultaneously
which requires more storage space.

3.2 Applied Techniques

3.2.1 TEMPEST

In some scenarios it might be unfeasible to measure the power consumption
directly. As an alternative, an electromagnetic probe can be used to capture
the EM transmitted by the device. Exploiting this side-channel is also re-
ferred to as TEMPEST. By computing the Fast Fourier Transform (FFT) of
the power trace the signal is translated to the frequency domain which makes
it possible to analyze energy densities. After establishing around which fre-
quencies a relative big amount of energy is being transmitted, which seems
to be depending on the operation of interest, signal processing techniques
can be applied to remove noise from the signal. Some standard pointers to
look for interesting emissions are the clock frequency of the device and its
harmonics. If one is successful in separating noise from the information of
interest, numerous (statistical) approaches, such as applying correlation, can
be taken to extract the secret value.

However, the main bottleneck of a TEMPEST attack is to actually separate
the noise from the signal. The problem is that every device leaks differently
and as a consequence no predefined methods exist. There are only some best
practices available in the research world that worked in a certain scenario
on some specific device. Furthermore, industry is aware of the danger of
TEMPEST and is continuously trying to reduce the radiation transmitted
by electrical components. Nevertheless, successful attack do exist, of which
some are mentioned in Chapter 4.

As a side note, it should be mentioned that the main use case of TEMPEST
attacks originally was not to extract secret key material but instead about
reconstructing the content on someone’s computer monitor. Allegedly it has
been a rather common technique used in the cold war. Some papers who go
into detail about this technique are [36] and [23].

CHAPTER 3. POWER SIDE-CHANNEL ANALYSIS 21

3.2. APPLIED TECHNIQUES N.W.A. Roelofs

3.2.2 Online Template Attack

As discussed in Section 3.1.3, template attacks require to build profiles of the
targeted device before conducting an actual attack. Therefore it is sometimes
also referred to as a profiled SCA, in contrast to a non-profiled attack like
SPA and DPA. In reality however, it can be a very cumbersome activity
to generate these templates because often hundred or even thousands of
measurements are needed per bit to recover.

This struggle of template generation is almost avoided completely by applying
the Online Template Attack (OTA) principle [3]. As the name suggests, it is
based on the idea of template attacks but distinguishes itself by interleaving
the process of template generation, template matching and the amount of
power traces needed. Namely, an adversary is only required to take one target
trace and additionally at most two additional traces per bit to recover.

All EC scalar multiplications methods perform on an abstract level a combi-
nation of double and add operations where the scalar used determines exactly
how that combination looks like. In an oversimplified case, a power trace of
the doubling on line 3 of Algorithm 4 will differ based on whether the input
of Q equals 2P or 3P . That is, in the algorithm kn−1 is equal to 1 and
after the first iteration of the loop in Algorithm 4 Q will be equal to 2P if
kn−2 = 0 and 3P if kn−2 = 1. So, by creating two templates for this doubling
operation, one hypothesis for 2P and one for 3P , and applying correlation
techniques between the target and the templates the correct key bit can be
estimated. In [3] it is written that the correlation differences between hy-
pothesizes are rather constant and equal in value, therefore it suffices to just
build one template. By applying a certain threshold the hypothesis can be
accepted or rejected.

Once a key bit has been estimated the next MSB can be attacked by creating
new templates for the doubling operation on line 3 of Algorithm 4. In our
example, assuming that kn−2 = 0, the templates generated are 4P and 5P
for kn−3. From here on the process repeats itself. Once again, when making
these templates, it is not relevant to get a power trace of the whole scalar
multiplication. In fact, only the doubling operation in the second round of
the for loop matters. Furthermore, if we want to find the value of kn−4,
assuming we already know the three MSBs, we need to take the target trace
part of the doubling operation in the iteration of processing kn−5, so the
fourth round of the loop.

One of the most significant advantages of OTA is that it only requires one

22 CHAPTER 3. POWER SIDE-CHANNEL ANALYSIS

N.W.A. Roelofs 3.2. APPLIED TECHNIQUES

target trace, to the contrary of DPA. As a consequence, algorithms whose
security is partially depending on the usage of nonces, such as ECDSA and
ECDH, come within the scope of a SCA via power consumption. Further-
more, in order for the attack to succeed, only very limited access to the target
device is needed. The only requirement is that an attacker is able to collect
a power trace. The templates can be generated on an identical but different
device, just as is the case with a standard template attack.

Since we already discussed that Algorithm 4 in itself is vulnerable to a timing
SCA, it is unnecessary to apply OTA to it. Nevertheless, it is the easiest
example to get a feeling for the attack principle. In Chapter 5 we will move
on an actual attack which is based on OTA where we will provide an in depth
explanation of all the details involved to conduct such an attack.

CHAPTER 3. POWER SIDE-CHANNEL ANALYSIS 23

Chapter 4

Key Extraction Via TEMPEST

Like mentioned in the introduction, the original goal of the thesis was to
extract a signing key used in the ECDSA scheme of the latest version of
OpenSSL: 1.1.1b via TEMPEST. Sadly, our setup did not prove to be ade-
quate, therefore the topic was dropped. The main issue was that the leakage
caused by the signing operation was probably too low and therefore could
not be distinguished from noise. As a consequence, no further analysis was
possible. Nevertheless we will describe below the the setup, and the ’results’
retrieved from it. In the end we reason why the attack did not prove to be
successful.

4.1 Setup

When conducting a SCA on an ECC implementation the scalar multiplication
is often the point of interest to learn something about the secret key. In case
of ECDSA this would refer to the multiplication between the random k and
base point B in line 3 of Algorithm 2. When it is somehow possible to retrieve
the value for k, the signing key can be retrieved via Equation 2.3.

In the recent past some papers appeared which exactly targeted the multi-
plication mentioned via the EM side-channel, such as [11] from 2016. This
paper targeted the EM radiation emitted in the lower area of the spectrum,
say < 125 kHz, because they showed that the implementation of ECDSA was
not fully time constant.

Knowing that the timing vulnerability in OpenSSL would be fixed now, the
idea was to look in the higher regions of the EM spectrum near the clock

24

N.W.A. Roelofs 4.1. SETUP

frequency of the mobile phone used. This second attack vector is commonly
used to more closely learn something about the data being processed directly,
not via a timing side-channel. Such an attack is more expensive and trou-
blesome to perform but should be feasible nevertheless because it has been
done by people from Georgia Tech [2] in 2018. However, they did not target
ECC but instead OpenSSL’s time constant blinded RSA implementation.

Then it is now time to provide details about the setup of the attack. The
phone targeted was a Sony Ericsson X10a smartphone from 2010 running
Android version 2.3.3 in airplane mode. Using Android NDK version 10e
we were able to build OpenSSL-1.1.1b with its default configuration except
with the ’no-threads’ flag added simply because Android API level 9 does
not support it. However, we did make some small tweaks in the original
OpenSSL code to simplify the SCA at first:

• The nonce k from Algorithm 2 was made constant.

• Coordinate blinding was turned off.

• Print statements for debugging purposes were added.

Thereafter a dummy program was written where the ECDSA signing was
performed on a static SHA-256 hash. This happened in a loop with a sleep
call after every iteration to identify more easily the start and ending of an
operation when analyzing the EM spectrum. The curve used was prime192v3
which is one of the many curves implemented in OpenSSL. However, the
curve used should have no effect on the side-channel analysis because the
scalar multiplication method used remains unchanged: Izu’s and Takagi’s
implementation of the Montgomery ladder [15].

The leakage from the phone was captured by the RF-R 400-1 probe which
can measure signals in the range 30MHz-3GHz within 10 centimeter of the
targeted component. It was connected to an PA 303 amplifier which increases
signal strength by 30 dB in the range DC-3GHz. Both components are from
the company Langer. The output of the amplifier was fed to the USRP
X310 transceiver via an UBX-160 daughter board from Ettus. As a final
step was the output of the transceiver fed into a computer via an gigabit
Ethernet cable. On the computer the program Baudline 1 was running,
which allows for quick visual inspection of the EM spectrum while collecting
a trace. Further post processing of a trace happened via Matlab 2.

To get a feeling for the total setup, see Figure 4.1 and Table 4.1 for the

1http://www.baudline.com
2https://nl.mathworks.com

CHAPTER 4. KEY EXTRACTION VIA TEMPEST 25

4.2. FINDING THE LEAKAGE N.W.A. Roelofs

Number Meaning
1 Sony Ericsson X10a
2 Langer RF-R 400-1 probe
3 Langer PA 303 amplifier
4 Ettus USRP X310 transceiver
5 Baudline
6 USB cable

Table 4.1: Number clarification for TEMPEST setup Figure 4.1.

number clarification. The only component not mentioned in the figure is the
USB cable. It was used to connect to phone with a secondary computer to
trigger the dummy program via SSH to start performing signing operations
and inspect the print messages generated by the phone.

Figure 4.1: Overview of the TEMPEST attack setup.

4.2 Finding The Leakage

The first step of the attack is to identify some leakage of the phone in the EM
spectrum related to the signing operation performed. We made the phone run
at a constant clock frequency of 384MHz, so this was the first frequency to

26 CHAPTER 4. KEY EXTRACTION VIA TEMPEST

N.W.A. Roelofs 4.2. FINDING THE LEAKAGE

inspect. Some leakage was identified but we first looked whether the leakage
was higher somewhere else. After inspecting a bandwith of in total 100MHz
around the first 3 harmonics of the clock frequency it indeed appeared that
the area around 384MHz was indeed the most interesting. So, we increased
the sampling rate to a maximum with Baudline with 25Msamples/second,
which allows for a bandwidth of 12.5 MHz, and exported a trace containing
one signature generation for further analysis in Matlab. An example of the
leakage identified in Baudline can be found in Appendix A Figure A.1.

With Baudline a user needs to specify a center frequency. For Figure A.1
this was put on 388.8MHz, which explains the offset of 200kHz in the figure.
Indeed, the bright line in the figure represents the clock frequency of the
phone. Note that the signing process starts at 525 ms and finishes at 125 ms
in the past, so the total time taken is 400 ms. What looks promising in this
figure that one can clearly differentiate between the program running and a
sleep.

The scalar multiplication happens via the Montgomery ladder [29], which
happens in a loop per bit of the scalar at a time. The values of the bits
might be unknown but the instructions applied on it are not. Actually, they
are identical for every loop. Therefore the next step of the SCA is to identify
repeating patterns in the trace with Matlab by applying signal processing
techniques.

There is no standard method to reduce noise in the trace and make the
repeating pattern clearly visible. It is a process of trial and error. As already
announced at the start of this chapter, this is were the research crashed. We
were not able in any way to discover a repetitive pattern in the trace. It has
no added value to now show dozens of plots of signal which look like noise,
so instead below an enumeration is given from the techniques applied. Note
that also combinations of the techniques below were applied.

Applied methods:

• Demodulation techniques:

– Frequency – Amplitude

• Different filters:

– Bandpass

– Lowpass

– Highpass

– Notch

CHAPTER 4. KEY EXTRACTION VIA TEMPEST 27

4.3. DISCUSSION OF RESULTS N.W.A. Roelofs

• Singular Spectrum Analysis (SSA), section 3.2 of [11]

Since we did not get the expected results, we decided to take more traces
with different setups. The variables that we played with were:

• Change clock frequency phone.

• Look at harmonics of the clock frequency.

• Use different probes.

• Use different phones.

• Use the LeCroy waveRunner 610Zi oscilloscope instead of the Ettus
transceiver for higher sampling rate up to 1 GH/s which allows a band-
width up to 500 MHz.

• Create C program which only performs the scalar multiplication.

To our dissatisfaction, we still did not get any results. As a final step we
modified the C program again in a way that all print statements were removed
to reduce any further unnecessary EM emancipation from the phone. The
resulting spectrogram with the same parameters used as Figure A.1 can be
found in Figure A.2 in the same appendix.

Comparing both figures from Appendix A show some significant differences.
Namely, with Figure A.2:

• The signal strength of the clock frequency (at a offset of 194 kHz) is
less intense.

• The duration of one signing operation shortened with a factor of ± 40.

• No clear leakage visible in the bandwidth around the center frequency.

Therefore we draw the conclusion that the printf statements had a significant
impact on the EM radiation leaked. So, new traces were taken again, signal
processing techniques were applied, but to no further avail. Therefore, the
research regarding extracting the signing key used for ECDSA via TEMPEST
was ceased.

4.3 Discussion Of Results

We still do think that the concept of the attack is feasible. The main prob-
lem here is how to separate the noise from the leakage of the cryptographic

28 CHAPTER 4. KEY EXTRACTION VIA TEMPEST

N.W.A. Roelofs 4.3. DISCUSSION OF RESULTS

operation. All common signal processing techniques were applied, without
success. So, to that extend the problem might lay in capturing a trace itself.

This would mean to use a different probe or a different transceiver. The
transceiver and the oscilloscope used were already worth thousands of euros,
so changing something here to gain a better signal/noise ratio would be very
costly. On the other hand, the paper [2] used a special own-made probe
which they do not make publicly available. Thus, perhaps this special probe
can capture the leakage we want. Furthermore, the paper referenced targeted
different phones which maybe leaked more significantly information than the
phones we used.

CHAPTER 4. KEY EXTRACTION VIA TEMPEST 29

Chapter 5

Key Extraction Via OTA

We now reached the point in this thesis where we will discuss the conducted
OTA attack in detail. To kick off, at first we give the scenario off the attack
and introduce the board on which the attack has been applied. Thereafter
we give a step by step overview of how to successfully achieve bit extraction
of the secret scalar used in line 3 of Algorithm 2.

5.1 Scenario

Originally OTA was introduced with the idea to get one target trace from
the device under attack and generate the templates on a different identical
device controlled by the attacker. This means that both devices use the same
ECDSA signing algorithm in order to built up the secret scalar bit by bit.

However such approaches, no matter the actual scalar multiplication algo-
rithm used, have already been attacked successfully by Papachristodoulou,
as described in her PhD thesis [31]. Although she did not target ECDSA
specifically, breaking the scalar multiplication algorithm effectively breaks
ECDSA.

For now, we will take the concept of OTA but tweak it a little. We now
assume, as is common in practice, there is only one device available, which
does both the signature generation as well as the verification of a message.
The attacker gets to record one trace of a signature generation and afterwards
only has access to the verification function of which he can also take power
consumption measurements. Since the the verification algorithm, as given
in Algorithm 3, does not use any secret material it, this doesn’t seem as

30

N.W.A. Roelofs 5.2. PLATFORM

an unsafe thing to do. After all, how can a device leak information about
something it is not actually using?

To provide some further details, the ECDSA implementation under attack
uses the Montgomery ladder from Algorithm 7 for scalar multiplication when
signing in standard projective coordinates. Its implementation comes from
[14], which has some memory and speed optimization and is meant for low-
resource and embedded devices. For the verification part, we mainly care
about line 6 of Algorithm 3, as we will show later. We will use an implemen-
tation using Shamir’s trick from Section 2.4 and additionally one applying
the sum of two NAF multiplications from Subsection 2.3.1.1. However, as
we will also show later, it doesn’t really matter which scalar multiplication
method is chosen for the verification. Both methods do their computations in
Jacobian coordinates. Note that these details mentioned are common choices
in real-world implementations.

As a final set of remarks we want to state that we use the EC ‘sec256r1’.
Note that this actually is quite irrelevant because the attack is not based on a
certain curve but instead on general EC arithmetic. However, for completion
sake, we want to mention it. Furthermore, at this point in the thesis we
assume that no further countermeasures are taken against SCA except for
the fact that the code used for signing is time constant. Finally, we emphasize
that this attack does not modify the code base for ECDSA in any way, which
further enhances the complexity of the attack.

5.2 Platform

The platform used for the OTA attack is the ChipWhisperer-Lite Classic
(CWLC) board, which is displayed in Figure 5.1.

The CWLC is from origin meant as a training board to support people in
learning the basics of side-channel analysis. As a consequence, it provides
some easy to use interfaces to conduct power consumption analysis. Actually,
the CWLC consists of two separate boards which can also physically be split
by breaking the the break-away connections. The left part in Figure 5.1
serves as the main board which serves as a middle man between a computer
connected via Micro-USB and the Xmega 128D4 8-bit processor from Atmel,
which is the actual target running at 32 MHz. It is a processor that also can
be found in real-world applications.

The standard way to communicate with the board is via a specially prepared

CHAPTER 5. KEY EXTRACTION VIA OTA 31

5.3. SPOTTING THE ATTACK VECTOR N.W.A. Roelofs

Figure 5.1: The ChipWhisperer-Lite (CW1173) board [35].

Virtual Machine1 (VM), which is based on Ubuntu 18.04, running in Vir-
tualBox2. Using this setup allows simple editing, compiling and running of
code on the Xmega target via a Jupyter notebook3.

5.3 Spotting The Attack Vector

Because we want to extract the secret scalar used in the signature generation
part and extract it via the verification algorithm, we need to find some sim-
ilarity between the algorithms. On top of that, the resembling part in the
verification needs to be controllable by the adversary.

In Appendix B the detailed Montgomery ladder step can be found, based on
[14]. This algorithm is on a high level the implementation of lines 5 and 6
of Algorithm 7. Using the algorithm in the appendix in a loop to process
every scalar bit effectively results in the full Montgomery ladder, if also the
conditional swap principle is applied. Observe that this ladder only works
with the x- and z-coordinate of EC points, the y-coordinate is recovered
separately once the complete scalar has been processed.

Before going into further details, we want to mention again that the basic
principle of OTA works with generating the templates 2P and 3P and some-
how compare those power traces with the target trace to retrieve the second
MSB. This approach will not work here however, because the coordinate sys-
tems differ in signing and verification. In the former algorithm the base point
is provided in affine coordinates, which is internally converted to standard

1https://github.com/newaetech/chipwhisperer
2https://www.virtualbox.org
3https://jupyter.org

32 CHAPTER 5. KEY EXTRACTION VIA OTA

N.W.A. Roelofs 5.3. SPOTTING THE ATTACK VECTOR

projective coordinates. Equivalently, in the verification algorithm EC points
are converted internally from affine to Jacobian. So if we want to apply the
principle of OTA by needing only one target trace and two templates per bit,
we need to find an alternative attack strategy.

When looking at the input parameters of ECDSA, given in Algorithm 2,
we realize that an adversary has little to no influence on the intermediate
computed values and the final signature. Namely, we consider the private
key, a scalar, to be secret. After all, the whole goal is to somehow find its
value. On top of that, the scenario does not allow to put in a random private
key. Furthermore, the curve parameters are also predefined and cannot be
changed. So, this leaves us only with the message to sign as controllable
input to gather one power trace. Even though this might sound as a way in,
it is actually completely useless because the message and its derived hash do
not influence the scalar multiplication in any way. In other words: trying to
achieve something by manipulating the ECDSA input parameters is a dead
end.

As mentioned before, for the verification of a signature either Shamir’s trick
or two separate NAF multiplications are common techniques to use. For now
we will focus the NAF method.

The verification function has more input parameters than the signing one
that can be influenced by the attacker, as Algorithm 3 shows. An adversary
can choose whatever it deems necessary for the signature (r, s), the message
M to compute the hash of and the public key D. By manipulating any of
these values we directly change the computations made on line 6 of Algorithm
3.

Hypothetically seen, if somehow we can ‘remove’ the scalar multiplication
u2D from that line we are left with a scalar multiplied with the base point
B, just as was the case for the signature generation part in Algorithm 2. On
top of that, in the verification algorithm the scalar u1 to multiply B with
is controlled by the adversary by manipulating either M or s. In the case
that the scalar multiplication method here was also a Montgomery ladder
this would provide us our attack window: create two templates with the lad-
der step, one with swap and one without, and do a correlation analysis of
both with the ladder step of the target trace. Thereafter the same process
is repeated for the other scalar bits with every ladder step. Effectively this
attack structure becomes then quite similar to using the signature algorithm
to generate templates. As we mentioned before however, the scalar multipli-
cation method used in signing and verifying differ, which makes this strategy
invalid.

CHAPTER 5. KEY EXTRACTION VIA OTA 33

5.4. PREPARING THE INPUT N.W.A. Roelofs

In order to find a valid attack vector we need to dig deeper into the arithmetic
performed when doing scalar multiplication in the verification. The NAF
method itself is still a combination of double and add operations but the
underlying field arithmetic consists of additions, subtractions, multiplications
and squarings. See Algorithm 9 for the first few statements of calculating
the double of an EC point in Jacobian coordinates.

Algorithm 9: First few statements of calculating a double of an EC
point in Jacobian coordinates.

Input : P
Output: Q = 2 · P

1 T1 ← Px
2 // x-coord of EC point

2 T2 ← Pz
2

3 T2 ← T2
2

4

Now we arrive at the point which provides a window for a SCA. Observe
that line 1 shows a squaring of a x-coordinate. On top of that, line 17 of
Algorithm 10 in Appendix B shows also a squaring, of a x-coordinate! In
fact, it is a squaring whose input depends on the secret scalar we want to
extract!

To clarify in Algorithm 10, the value of X2 is swapped with X1 if the scalar
bit equals zero. By computing the two possible values of X2 as input for
this squaring, swap or no swap, and providing both cases as input for the
doubling operation in Jacobian coordinates we have two templates we can
compare with the target trace. So, we can extract the scalar one bit at a time
by calculating the correlation between the power trace of a single square from
the target trace with the power trace of a single square from both templates.

5.4 Preparing The Input

Even though we now have identified our attack window, there is still the ques-
tion whether it can be exploited. There are two main problems to overcome:
compute the two possible input values for squaring X2 in the Montgomery
ladder and secondly, feed them into the Jacobian doubling operation which
contains the squaring.

The first problem can be solved by implementing our own Montgomery ladder

34 CHAPTER 5. KEY EXTRACTION VIA OTA

N.W.A. Roelofs 5.4. PREPARING THE INPUT

step function in SageMath4, a program which provides convenient functions
to perform finite field arithmetic.

The second problem is more complex to solve. The computed X2 values
represents a x-coordinate of an EC point. Inspecting line 6 of Algorithm 3
shows that 2 EC points are used: the base point and the public key. The
first one cannot be modified, but the latter one is controllable by the adver-
sary. However, he cannot input every value he wants to execute this attack.
Namely, as part of the ECDSA verification algorithm, typically before any
verification occurs, the algorithm checks whether the public key is legitimate.
That is, it checks whether the point lies on the curve, in our case ‘secp256r1’.
The problem that now occurs is that not every computed X2 necessarily is
a legitimate point on that curve. That is, if filling in X2 for x in the short
Weierstrass equation y2 = x3 + ax+ b, see Section 2.1, does not resolve in an
integer value for y, X2 and its corresponding y-coordinate do not lie on the
curve.

Papachristodoulou [31] describes that this problem can be circumvented by
applying bit flipping on the Least Significant Bit (LSB) of X2. After flipping
the bit, the new y′ coordinate is computed from x′ and again is checked
whether the alternative coordinate (x′, y′) lies on the curve. If so, we can
use this alternative EC point as the public key. Otherwise we reverse the
flipped bit and apply the same process on the second LSB. This process
continues until a legitimate EC point has been found. Based on experiments
of Papachristodoulou and ourselves, a maximum of five tries are needed to
find a EC point that lies on the curve. For notation purposes, we refer to
the valid x-coordinate found in this step as x in the rest of this chapter.

The reasoning behind flipping the LSB is that the power trace will still be
as much as possible the same as the target trace, which starts its scalar mul-
tiplication algorithm from the second MSB. It might be that the correlation
between a template and a target trace becomes somewhat lower when a bit
is flipped, in comparison when it was not flipped, but it will still be higher
than the the other wrong template.

Now we know what to input for the public key variable, we continue with
manipulating the scalar u2 from Algorithm 3. When looking at Algorithm 6,
we want that the doubling of line 4 takes as input our computed x. This can
be achieved by making sure that the MSB of u2 equals one, the other 255
bits are irrelevant. This can be achieved by some simple brute forcing with
the signature values r and s in the multiplication of line 5 of Algorithm 3

4http://www.sagemath.org

CHAPTER 5. KEY EXTRACTION VIA OTA 35

5.5. MEASURING N.W.A. Roelofs

and should take a couple of tries at the most because you have 50% chance
per attempt. Once achieved, the desired doubling occurs in the beginning
of the second loop of the algorithm. Taking a power trace of the squaring
inside this double operation gives us the wanted template. So, the message
to hash is completely irrelevant because we do not make use of the scalar
multiplication u1B.

This brings us to the only difference in setup when Shamir’s trick is used
instead of the NAF method. Because Shamir’s trick interleaves the two
scalar multiplications, we need to make sure that the MSB of u1 is zero so
that in the first round of Algorithm 8 only our chosen ‘public key’ gets added
to the intermediate result R. This in turn, serves again as a input for the
Jacobian doubling and the squaring operation we are interested in. The value
of u1 can be brute forced in a similar way as u2, but then with the message
to hash instead of the partial signature r.

As a final remark, it is good to realize that the signature verification results
will be completely bogus. This is the result of extracting intermediate val-
ues of one scalar multiplication and provide it as input to a different one.
Which on top of that, also make use of different coordinate systems. But the
takeaway here is that it does not matter at all that the results are bogus.
After all, we are only interested in the power traces of single squarings, not
in successfully verifying a signature.

5.5 Measuring

When the power consumption has to be measured, the CWLC needs to be
broken in two parts. It allows to connect the Xmega side of the board to an
oscilloscope, in our case the Waverunner 8404M-MS from Teledyne LeCroy
running at a sample rate of 25Msamples/second.

The oscilloscope itself is connected to another computer where the processing
of the power consumption signals happens. The tool used for analyzing the
signal captured by the oscilloscope is Inspector5, which we will discuss later
in more detail. For now, see Figure 5.2 for the total measurement setup and
Table 5.5 for the corresponding number clarification.

A nice feature of the CWLC is that it supports triggering, which makes it
relatively easy to localize relevant parts of the power consumption during the

5https://www.riscure.com/security-tools/inspector-sca/

36 CHAPTER 5. KEY EXTRACTION VIA OTA

N.W.A. Roelofs 5.5. MEASURING

Number Meaning
1 CWLC Xmega target
2 CWLC main board
3 Micro-USB connector
4 Measuring cable to oscilloscope
5 Wiring for triggering to oscilloscope
6 Computer running Jupyter notebook
7 Waverunner 8404M-MS oscilloscope
8 Processing power trace with Inspector

Table 5.1: Number clarification for OTA setup Figure 5.2.

Figure 5.2: Overview of the OTA attack setup.

execution of some code. In our case we put a trigger around the squaring
in the Jacobian double operation. Placing a trigger requires a small modifi-
cation in the code base, which therefore might look to be in direct violence
with the scenario described earlier. However, we do not think this is the
case because the platform under attack runs programs in a constant way
and there is no scheduler present that can interrupt its execution. So, the
squaring would always happen at a constant offset of the start of a certain
measurement and finishes after a constant amount of time. Therefore, the
triggering only serves as a method to make the processing of the power trace a
bit more convenient. The attack can also be executed without this triggering
mechanism.

CHAPTER 5. KEY EXTRACTION VIA OTA 37

5.6. EXTRACTING BITS N.W.A. Roelofs

On a different note, performing a scalar multiplication on an 8-bit processor
with a 256-bit EC is a costly process. It takes around 60 seconds, while a
standard home computer does it in a fraction of that time, in the order of
milliseconds. Additionally, the oscilloscope can capture up to a maximum
of 128M samples, which means it can measure ±5 seconds of the scalar
multiplication with a sampling rate of 25Msamples/second. After doing some
test measurements, we realized that one round of the Montgomery ladder
takes 192 milliseconds and that the squaring under investigation occurs at
an offset of 111.5 milliseconds and takes 10.8 milliseconds. As a consequence,
our setup allows us to process ±20 scalar bits used in the Montgomery ladder.
After all, ECDSA uses a new scalar for every signature created and therefore
it is useless to get a new power trace in order to extract ‘the next’ 20 bits.
Using an oscilloscope which can store more samples would solve the problem.
On top of that, an adversary might try to lower the sampling rate, however
this has not been tested.

5.6 Extracting Bits

After gathering the target trace and both templates for bit two, remember
that bit one is set to the value one by default, the analysis with Inspector
can commence. The idea is to perform correlation analysis, with Equation
3.1 from Subsection 3.1.2. Inspector automates this process by calculating
the Pearson coefficient between the template and every offset of the target
trace.

To reduce the computation time of the correlation calculation we applied
the principle of window resampling with a window size of 20 with an over-
lap factor of 0.15, which leads to the reduction of the amount of samples
with a factor 17. This means that the average is taken of every 20 sam-
ple points and gives 1 new sample, where the last 3 samples of a window
are reused in the next one. These parameters used were found empirically
and are a balance between computation time and distinctiveness between the
templates. Namely, providing a too large window leads to similar templates
and therefore the correlation analysis becomes rather meaningless.

Applying the concept of window resampling and correlation results in the
end in Figure 5.3 where (a) is for the template with bit zero and (b) with bit
one.

In both figures of Figure 5.3 the first complete ladderstep of the target trace

38 CHAPTER 5. KEY EXTRACTION VIA OTA

N.W.A. Roelofs 5.6. EXTRACTING BITS

(a)

(b)

Figure 5.3: Correlation results second MSB templates. (a) represents bit 0
and (b) bit 1. The areas marked red represent the correlation peaks of both
templates with the square of x in the target trace.

is displayed, correlated with the different templates. In the 192 milliseconds
seventeen peaks, note the one at 0 seconds, can be observed. Such a peak
indicates correlation between the template square operation and whatever
happened in the target trace at that point in time. Closer inspection of the
figure and Algorithm 10 from Appendix B indicates that every peak resembles
either a multiplication or square operation and our targeted squaring should
be the eleventh peak. And indeed, the eleventh peak occurs at an offset of
111.5 milliseconds.

The only thing that is now left to do is comparing the correlation coefficients
of both templates at the offset of 111.5 milliseconds. In the case of Figure
5.3, (a) has a coefficient of 0.88 and (b) 0.61. Therefore, the bit represented
in (a) is more likely to be correct and we assume that the second bit of the
scalar is 0. And indeed, when gathering the target trace, the most significant
byte of the secret scalar had a value of 0x97, which is in binary: 10010111.
So, our analysis is correct.

From this point onwards, everything described above can be repeated to re-
trieve the next MSBs. However, first two new possible values for x need to
be computed for the next Montgomery ladder step, taking into account the
value of the previous found bit. Thereafter the templates need to be col-
lected after which the correlation calculations can take place with Inspector.
To clarify, for the nth bit we should not take the correlation peak at 111.5
milliseconds but the one at (n− 2)192 + 111.5 milliseconds.

CHAPTER 5. KEY EXTRACTION VIA OTA 39

5.7. COUNTERMEASURES N.W.A. Roelofs

We repeated this procedure with eleven bits using the Shamir Trick method
and afterwards with an additional five bits using the NAF method for the
double scalar multiplication in the ECDSA verification method. We ex-
tracted for every bit the correct value without any error, once we established
the appropriate parameters for the window resampling, as mentioned above.

While executing these routines, we noticed that the values of the correlation
are not very constant. For example, it happened more than once that a cor-
relation value of 0.83 was the ‘winning’ candidate, while in another round
this value was of the ‘losing’ candidate. Therefore we do not feel comfort-
able in this setup to only create one template and compare it against some
threshold value as the original OTA paper suggests.

Nevertheless, even if somehow the wrong bit was selected as the correct
one, this does not have to be problem. Namely, some simple testing showed
that the correlation values of the next scalar bit templates would both be
significantly lower if the previous bit was guessed wrong. As a consequence,
these lower correlation values serve as an indication that something is not
correct.

5.7 Countermeasures

In order to prevent this attack from happening, we should make it impossible
for an adversary to learn anything about the secret scalar k. In order to do so,
we need to create somehow a dissimilarity between the scalar multiplication
while signing and those while verifying. The methods we discuss below are
based on the influential paper [9] from Coron.

The first method is called scalar randomization, see Equation 5.1.

kP ← k′P − rqP (5.1)

In Equation 5.1 k′ represents the randomized scalar equal to k + r#E(Fp)
where r is a random scalar and #E(Fp) represents the order of the curve.
Because r#E(Fp) is equal to the neutral element of the curve, effectively P
is still multiplied with k after the modular reduction.

The problem with this counter measure is that it it only works when an at-
tacker needs to capture more than one target trace in order to reconstruct k,
which is not the case with OTA. So, now the scalar simply becomes bigger in
size and therefore more bits need to be recovered. So the only complication

40 CHAPTER 5. KEY EXTRACTION VIA OTA

N.W.A. Roelofs 5.8. IMPLICATIONS

in the attack is that an oscilloscope with a bigger memory is required be-
cause the whole of k′ needs to be reconstructed with one target trace. Once
achieved, k′ can be taken modulo the order of the curve, which leaves us once
again with k.

A more effective countermeasure is the concept of randomized projective
coordinates, which is based on the idea that the projective coordinates of a
point are not unique, see Equation 5.2 where λ is a random scalar in Fp.

(X, Y, Z)← (λX, λY, λZ) (5.2)

In case of our attack, this principle should be applied to the base point used
in the scalar multiplication while signing. By multiplying the coordinates
λ amount of times, which is unknown to the attacker, it becomes nearly
impossible for him to predict the intermediate inputs x for the squaring
operation in the Montgomery ladder used in our attack. And if the adversary
can no longer create templates based on these possible input values, our
attack becomes unfeasible.

One of the main advantages of this countermeasure is that it is a very cheap
option to implement in terms of execution time. It only takes three finite field
multiplications, where as a full Montgomery ladder already takes thousands
of such operations. So, there is very little overhead.

5.8 Implications

In the attack described we used the implementation of [14] for the Mont-
gomery ladder. However, that does not mean that this is the only variant
affected. Namely, every implementation where on the signing part some
secret value dependent operation occurs, for which the input value can be
computed by an adversary, is affected. That is, as long as that similar, in
our case the squaring, operation also occurs on the verifying part where the
adversary has control over the input value.

Even though this new applicability sounds like a rather simple and powerful
attack, its reach is somewhat limited. Although it provides a new attack
vector, the countermeasures required are the same as for the standard OTA
attack. Furthermore, in prominent cryptographic libraries, such as OpenSSL,
the concept of randomized projective coordinates is enabled by default. On

CHAPTER 5. KEY EXTRACTION VIA OTA 41

5.9. FUTURE RESEARCH N.W.A. Roelofs

the other hand, it would be wishful thinking to assume that every crypto-
graphic implementation around the world currently implements this counter-
measure, so there should be opportunities left to apply this attack in a real
world setting.

5.9 Future research

Below we want to give some pointers which might serve as pointers to extend
the research conducted in this thesis.

As a first idea it might applicable to apply the attack vector discussed in this
chapter on a device and its corresponding vulnerable implementation which
is actually implemented ‘in the wild’. It would be the most convenient to
attack 8 bit platforms because of their limited processing power. This makes
it easier and cheaper to conduct a SCA because the value of the sample rate
for the oscilloscope can be limited.

A second research could focus on trying to expand the attack to different
architectures and try to identify whether the approach is still feasible. Ev-
ery architecture has its own unique characteristics and it might be that it
becomes more difficult to capture the leakage.

As a final proposal we suggest to take a broader scope to see which implemen-
tations are actually affected by this attack. This would include making an
enumeration of the cryptographic libraries employed in practice and inspect
its code base. This research can for example also target implementations
using NAF representations in the scalar multiplication while signing. This
would lead to the interesting case that an adversary needs to create three
templates to match with the actual target trace, instead of the regular two
ones.

42 CHAPTER 5. KEY EXTRACTION VIA OTA

Chapter 6

Conclusion

In the beginning of this thesis we asked ourselves the question whether an
OTA attack could be performed on an 8 bit platform in order to extract
the secret signing key when targeting the ECDSA verification algorithm.
In Chapter 5 we demonstrated that this is indeed feasible, under certain
assumptions.

We showed that extracting a secret signing key does not happen directly, but
via reconstructing the secret scalar used in the scalar multiplication with the
base point during the signature generation. To make the attack as realistic
as possible, we attacked an implementation of the Montgomery ladder, which
provides protection against standard SCA techniques.

One of the big constraints of extracting the secret scalar via the ‘verification
side’ is that somehow there must be some kind of similarity in the underlying
field arithmetic between both the signing and verifying algorithms. That is,
there must be some operation on the signing part, which is depending on
the secret scalar, which can be imitated by an adversary via the verification
algorithm by providing a certain input. In our case, the relevant operation
was a squaring in the Montgomery ladder whose input was depending on a
secret scalar bit.

Once the relevant operations have been identified and the precomputations
for the input of the squaring have been made, the actual power consumption
templates can be made. As a final step, some relatively simple postprocessing
steps allow for reconstruction of the secret scalar bit by bit.

However, to be fair, there is a relatively simple countermeasure to prevent
the OTA from happening, which is making use of randomized projective

43

N.W.A. Roelofs

coordinates. Because prominent cryptographic libraries such as OpenSSL
already have this countermeasure enabled by default, the impact of the attack
is limited. Nevertheless, this thesis shows an interesting proof of concept by
extracting a secret signing key via the verification part of an algorithm, which
has not been done before with OTA on ECDSA.

44 CHAPTER 6. CONCLUSION

References

[1] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi. The EM
side-channel(s). In International Workshop on Cryptographic Hardware
and Embedded Systems, pages 29–45. Springer, 2002.

[2] M. Alam, H. A. Khan, M. Dey, N. Sinha, R. Callan, A. Zajic, and
M. Prvulovic. One&Done: A Single-Decryption EM-Based Attack on
OpenSSL’s Constant-Time Blinded RSA. In 27th USENIX Security
Symposium Security 18, pages 585–602, 2018.

[3] L. Batina, L. Chmielewski, L. Papachristodoulou, P. Schwabe, and
M. Tunstall. Online template attacks. In EUROCRYPT. Springer, 2014.

[4] N. Benger, J. Van de Pol, N. P. Smart, and Y. Yarom. “ooh Aah...
Just a Little Bit”: A small amount of side channel can go a long way.
In International Workshop on Cryptographic Hardware and Embedded
Systems, pages 75–92. Springer, 2014.

[5] D. J. Bernstein. Curve25519: new Diffie-Hellman speed records. In
International Workshop on Public Key Cryptography, pages 207–228.
Springer, 2006.

[6] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang. High-
speed high-security signatures. Journal of Cryptographic Engineering,
2(2):77–89, 2012.

[7] R. B. Carpi, S. Picek, L. Batina, F. Menarini, D. Jakobovic, and
M. Golub. Glitch it if you can: parameter search strategies for success-
ful fault injection. In International Conference on Smart Card Research
and Advanced Applications, pages 236–252. Springer, 2013.

[8] S. Chari, J. R. Rao, and P. Rohatgi. Template attacks. In International
Workshop on Cryptographic Hardware and Embedded Systems, pages
13–28. Springer, 2002.

45

REFERENCES N.W.A. Roelofs

[9] J.-S. Coron. Resistance against differential power analysis for elliptic
curve cryptosystems. In International Workshop on Cryptographic Hard-
ware and Embedded Systems, pages 292–302. Springer, 1999.

[10] J. Daemen and V. Rijmen. AES proposal: Rijndael, 1999.

[11] D. Genkin, L. Pachmanov, I. Pipman, E. Tromer, and Y. Yarom.
ECDSA key extraction from mobile devices via nonintrusive physical
side channels. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 1626–1638. ACM, 2016.

[12] D. Hankerson, A. J. Menezes, and S. Vanstone. Guide to Elliptic Curve
Cryptography. Springer-Verlag, Berlin, Heidelberg, 2003.

[13] N. A. Howgrave-Graham and N. P. Smart. Lattice attacks on digital
signature schemes. Designs, Codes and Cryptography, 23(3):283–290,
2001.

[14] M. Hutter, M. Joye, and Y. Sierra. Memory-constrained implementa-
tions of elliptic curve cryptography in co-Z coordinate representation.
In AFRICACRYPT. Springer, 2011.

[15] T. Izu and T. Takagi. A fast parallel elliptic curve multiplication resis-
tant against side channel attacks. In International Workshop on Public
Key Cryptography, pages 280–296. Springer, 2002.

[16] D. Johnson, A. Menezes, and S. Vanstone. The elliptic curve digital
signature algorithm (ECDSA). International journal of information se-
curity, 1(1):36–63, 2001.

[17] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu. Flipping bits in memory without accessing them:
An experimental study of DRAM disturbance errors. In ACM SIGARCH
Computer Architecture News, pages 361–372. IEEE Press, 2014.

[18] N. Koblitz. Elliptic curve cryptosystems. Mathematics of computation,
48(177):203–209, 1987.

[19] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom.
Spectre Attacks: Exploiting Speculative Execution. In 40th IEEE Sym-
posium on Security and Privacy (S&P’19), 2019.

[20] P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In Annual
International Cryptology Conference, pages 388–397. Springer, 1999.

46 REFERENCES

N.W.A. Roelofs REFERENCES

[21] P. C. Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In Annual International Cryptology Con-
ference, pages 104–113. Springer, 1996.

[22] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-hashing for
message authentication, 1997.

[23] M. G. Kuhn. Compromising emanations: eavesdropping risks of com-
puter displays. PhD thesis, University of Cambridge, 2002.

[24] A. Kwong, D. Genkin, D. Gruss, and Y. Yarom. RAMBleed: Reading
Bits in Memory Without Accessing Them. In 41st IEEE Symposium on
Security and Privacy (S&P), 2020.

[25] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg. Melt-
down: Reading Kernel Memory from User Space. In 27th USENIX
Security Symposium (USENIX Security 18), 2018.

[26] S. Mangard, E. Oswald, and T. Popp. Power analysis attacks: Revealing
the secrets of smart cards. Springer Publishing Company, Incorporated,
2010.

[27] V. S. Miller. Use of elliptic curves in cryptography. In Conference on
the theory and application of cryptographic techniques, pages 417–426.
Springer, 1985.

[28] M. Minkin, D. Moghimi, M. Lipp, M. Schwarz, J. Van Bulck, D. Genkin,
D. Gruss, F. Piessens, B. Sunar, and Y. Yarom. Fallout: Reading Kernel
Writes From User Space. arXiv preprint arXiv:1905.12701, 2019.

[29] P. L. Montgomery. Speeding the Pollard and elliptic curve methods of
factorization. Mathematics of computation, 48(177):243–264, 1987.

[30] D. Oswald. ID and IP Theft with Side-Channel Attacks, Presentation,
slide 24, Ruhr-Universität Bochum, 2014.

[31] L. Papachristodoulou. Masking Curves: Side-Channel Attacks on El-
liptic Curve Cryptography and Countermeasures. PhD thesis, Radboud
University Nijmegen, 2019.

[32] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

REFERENCES 47

REFERENCES N.W.A. Roelofs

[33] N. Samwel, L. Batina, G. Bertoni, J. Daemen, and R. Susella. Breaking
Ed25519 in WolfSSL. In Cryptographers’ Track at the RSA Conference,
pages 1–20. Springer, 2018.

[34] E. G. Straus. Addition chains of vectors (problem 5125). American
Mathematical Monthly, 70(806-808):16, 1964.

[35] N. Technology. Chipwhisperer-Lite (CW1173) Basic Board. http://

store.newae.com/chipwhisperer-lite-cw1173-basic-board/.

[36] W. Van Eck. Electromagnetic radiation from video display units: An
eavesdropping risk? Computers & Security, 4(4):269–286, 1985.

[37] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida. RIDL: Rogue In-Flight Data Load.
S&P (May 2019), 2019.

[38] C. D. Walter. Sliding windows succumbs to Big Mac attack. In Inter-
national Workshop on Cryptographic Hardware and Embedded Systems,
pages 286–299. Springer, 2001.

48 REFERENCES

http://store.newae.com/chipwhisperer-lite-cw1173-basic-board/
http://store.newae.com/chipwhisperer-lite-cw1173-basic-board/

Appendices

49

Appendix A

Baudline Spectrum Analysis
Phone

50

N.W.A. Roelofs

Figure A.1: Visualization of leakage phone during signing program.

APPENDIX A. BAUDLINE SPECTRUM ANALYSIS PHONE 51

N.W.A. Roelofs

Figure A.2: Visualization of leakage phone during signing program without
printf statements.

52 APPENDIX A. BAUDLINE SPECTRUM ANALYSIS PHONE

Appendix B

Montgommery Ladder Step

53

N.W.A. Roelofs

Algorithm 10: One Montgommery ladder step in standard projective
coordinates [14]. Note that R0 and R1 from Algorithm 7 resemble with
X1 and X2 in Algorithm 10.

Input : X1, X2, Z, xD, a, 4b
Output: (X1, X2, Z)

1 R1 ← X1 ·X2

2 R3 ← Z2

3 R4 ← Z ·R3
4 R2 ← a ·R3 // a is curve parameter

5 R1 ← R1 +R2

6 X1 ← X1 +X2

7 R3 ← X1 ·R1

8 X1 ← X1 −X2

9 X1 ← X1 −X2

10 R1 ← 4b ·R4 // b is curve parameter

11 R4 ← X1
2

12 X1 ← R4 · Z
13 R3 ← R3 +R3

14 R3 ← R3 +R1

15 Z ← X2 ·R4

16 R4 ← R1 ·X2

17 R1 ← X2
2

18 R2 ← R1 +R2

19 R1 ← R1 +R1

20 X2 ← xD ·X1 // xd is x-coord EC point

21 R3 ← R3 −X2

22 X2 ← R1 ·R2

23 X2 ← X2 +X2

24 R2 ← R2 −R1

25 R1 ← R4 +R4

26 R4 ← X2 +R4

27 X2 ← R2
2

28 R1 ← X2 −R1

29 X2 ← R1 · Z
30 Z ← X1 ·R4

31 X1 ← R3 ·R4

32 return (X1, X2, Z)

54 APPENDIX B. MONTGOMMERY LADDER STEP

	List of Figures
	List of Tables
	List of Algorithms
	Abbreviations
	Introduction
	Overview of Side Channel Attacks
	SCAs And ECC

	Scope and Outline

	Cryptographic Background
	Notes On Elliptic Curve Cryptography
	Alternative Coordinate Systems

	ECDSA
	Scalar Multiplication Algorithms
	Double And Add
	NAF Notation

	Montgomery Ladder

	Shamir's Trick

	Power Side-Channel Analysis
	Background Techniques
	Simple Power Analysis
	Differential Power Analysis
	Template Attack

	Applied Techniques
	TEMPEST
	Online Template Attack

	Key Extraction Via TEMPEST
	Setup
	Finding The Leakage
	Discussion Of Results

	Key Extraction Via OTA
	Scenario
	Platform
	Spotting The Attack Vector
	Preparing The Input
	Measuring
	Extracting Bits
	Countermeasures
	Implications
	Future research

	Conclusion
	References
	Appendices
	Baudline Spectrum Analysis Phone
	Montgommery Ladder Step

