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Abstract

In this thesis, the problem of question answering using conversational context is
explored for the Conversational Assistance Track of the Text REtrieval Conference.
The goal of the task in this track is to provide an answer to a query by retrieving re-
sponses from a large set of short text passages and ranking these according to their
computed relevance to the query. The state-of-the-art NLP model BERT [1] is com-
pared to the baseline ranker BM25 [2]. It is researched how including conversational
context in the input influences the predictive power of these models. Multiple meth-
ods for dealing with the input restrictions of the BERT model are compared; clipping,
summarization and, rank and score fusion. This was evaluated on two datasets of
a different nature; a dataset containing artificially generated conversational sessions
and one containing handcrafted, more human-like sessions. The results show that
BERT outperforms BM25 in all experiments, regardless if or how much context is
taken into account. Adding conversational context to the input however does not
increase predictive power in both models. Nonetheless, the context processing meth-
ods can still be compared; the fusion methods perform best. Additionally, it does not
matter for the experiments in this works whether the data is constructed artificially
or in a more realistic manner.
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Chapter 1

Introduction
1.1 Conversational assistance

Conversational assistance is a relatively new research area that is expanding together
with the increasing use of smart speakers and speech assistants such as Google As-
sistant, Amazon Echo and Apple HomePod. These assistants are equipped with
technologies that are able to simulate human conversation. In technologically ad-
vanced societies, it is common to encounter such artificial conversation partners, as
the underlying technologies have existed in various forms for some time since as
early as 1966, when the pioneering chatbot ELIZA was created in the MIT AI Labo-
ratory [3]. ELIZA was one of the first programs thought to have a chance of passing
the Turing Test [4]. Users could communicate with ELIZA through written text, and
scripts and predetermined rules were used to formulate responses.

Modern-day assistants surpass this basic form of communication. They are equipped
with state-of-the art hardware and natural language processing techniques in order
to provide the user with a realistic conversational experience. A survey on the usage
of smart speakers has shown that many people interact with these systems; 26% of
internet users in the US and 22,4% in the UK own a smart speaker1. However, on-
line reviews and public opinion reports show that the performance of such systems
can still be considerably improved2. For well-defined actions, the assistants seem
to perform well. When tasks become more complex, their performance declines. In
order for these assistants to outgrow their current ’nice to have’ status and become
must haves, they have to become less awkward to interact with and demonstrate
advantages over established information retrieval techniques.

In the digital age, searching for information is mainly conducted in a non-verbal and
non-conversational manner. Google is currently the most used search engine world-
wide3 and it is tasked with processing 40.000 queries per second4. It has become
so popular that the verb ’Google’ was added to the Oxford English Dictionary in
20065. Googling has become the state of the art in online information finding. In its
most basic form, googling can be described as follows: a user tries to satisfy their
need for information by submitting a single query to the search engine. The user is
then presented with a set of search results from which they can choose. Satisfying
a search query with a single answer instead of a set, which is the goal in conversa-
tional search, is considerably more difficult. If the user is no longe able to select the
best result, they must be provided with highly relevant search results.

1www.emarketer.com/content/global-smart-speaker-users-2019 (Last accessed: 2/5/2019)
2www.marketwatch.com/story/heres-how-smart-speakers-need-to-get-smarter-2018-09-20

(Last accessed: 4/5/2019)
3http://gs.statcounter.com/search-engine-market-share (Last accessed: 16/6/2019)
4www.internetlivestats.com/google-search-statistics (Last accessed: 16/6/2019)
5www.fool.com/investing/dividends-income/2006/07/05/to-google-or-not-to-google.aspx

(Last accessed: 16/6/2019)
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The task of providing a single relevant search result is only one in a large set of
important challenges associated with building a realistic and sophisticated conver-
sational assistant. The Alexa Prize6, an academic competition launched by Amazon
to further research in conversational assistance, indicates that other challenges in-
clude; natural language understanding, context modeling, dialog management, response
generation and knowledge acquisition.

1.2 Task definition

This study was conducted in the context of the Conversational Assistance Track
(CAsT)7 of the Text REtrieval Conference (TREC)8. This is the opening year of the
track, which was established to promote research on conversational search. This
type of search is a form of human/computer interaction where a user can ask a de-
vice a question in verbal or written form, and the device is able to provide a relevant
response in the form of a sentence. The main goal of this interaction is to satisfy the
user’s informational need. As is the case with human conversation, a discourse with
a conversational assistant is often expressed through multiple conversation turns.
The goal of the task is to produce a proper response to a query, given the previous
conversation turns as context. In this case, the production of a proper response in-
volves retrieving responses from a large set of short text passages (1-3 sentences in
length) and ranking these according to their computed relevance to the query. In
summary: the task is text passage retrieval and re-ranking for question answering,
given conversational context. This research focuses on only a subsection of the track,
which is further explained in Section 1.4.

1.3 Background and related work

In this section, the theoretical framework on which this research is based is intro-
duced. The research area in focus is question answering. The task at hand extends
this domain with the addition of multiple conversation turns as context for a ques-
tion.

1.3.1 Early work in question answering

At around the same time that ELIZA was built, other question answering programs,
such as Baseball [5], emerged as well. These systems mainly focused on question an-
swering, whereas ELIZA was built to provide a convincing simulation of a human
conversation. Baseball was able to answer questions about the past year’s baseball
season in the United States. These early systems worked fairly well, primarily due
to the existence of a source database handcrafted by experts on the systems’ respec-
tive topics. Often, a rule-based system was used to retrieve information from these
databases, and the information was formatted using scripts.

6www.developer.amazon.com/alexaprize (Last accessed: 4/5/2019)
7www.treccast.ai (Last accessed: 5/8/2019)
8trec.nist.gov (Last accessed: 13/7/2019)
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In the 1990s, question answering was identified as a problem that could be ap-
proached with information retrieval techniques. In 1999, the first question answer-
ing track was established at TREC [6]. At that time, most participants used a multi-
step strategy to approach the question answering problem, and each step constituted
its own separate research domain. The following three steps were most common:

1. Question classification: identify what type of question the input is, for example
a ’who’ question or a ’what’ question.

2. Candidate retrieval: use basic text retrieval algorithms to find documents that
might be relevant to the input.

3. Answer retrieval: filter answers that do not match the question type identified
in step 1 and select the most relevant answers from the candidates found in
step 2.

A similar version of this general multistep approach is still used today. An example
is the architecture that Ji et al. [7] proposed to deal with the short text conversation
problem. The task in this problem is for a machine to return a reasonable response
to a short message provided by a human. Their setup also consists of multiple steps:
first, they use basic linear matching models based on, for example, term frequency-
inverse document frequency (TF-IDF) similarity, to retrieve a candidate document set.
In the second step, they add more features to each candidate and use a linear rank-
ing function to evaluate the entire set.
A lot can be gained in this second part: while it is relatively simple to find candidates
that are in some way connected to the initial query, it is difficult to determine which
are most relevant. In order to do so, the relation between the possible output candi-
dates and the input queries must be understood on a deep linguistic level. The focus
of research in this area has shifted from the above mentioned rule-based approaches
to machine learning methods.

1.3.2 Machine learning in NLP

The focus of this study is on the task of evaluating and ranking candidate passages
using machine learning methods. The relevant models are introduced after first dis-
cussing their precursors.

Recurrent neural networks

Textual data has the property that the shape and order of all data points carry mean-
ing, such data is best processed sequentially. Recurrent neural networks (RNNs) [8]
were introduced in 1990, and their structure aligns perfectly with the sequential na-
ture of textual data. RRNs are called recurrent because they execute the same task for
every item in a sequence, with the output of each task being dependent on the out-
put of previous calculations. This type of network has the ability to hold information
of these previous calculations in memory whilst processing new information. For a
long time, RNNs were the most popular architecture for a wide variety of language
processing tasks.
One specific type of network, called a long short-term memory network (LSTM) [9],
outperforms the original RNN framework on many such tasks. This network is able
to ’remember’ information for longer periods and learn long-term dependencies.
Tan et al. [10] have addressed the problem of answer selection using bi-directional
LSTMs. They built embeddings of all questions and answers using these models and
compared them based on the cosine similarity of the word vectors.
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Attention mechanisms

Recurrent neural networks were later enriched with mechanisms such as neural at-
tention. The main aim of adding attention to these models is to restrict the focus of
the computation to the information that is needed for the task at hand. For example,
when processing a query and answer, the attention mechanism has access to all the
information about previously processed input. The mechanism calculates the atten-
tion for each word in relation to other words in the input, denoting the relevancy to
that word.

FIGURE 1.1: Neural attention weight matrix
example in a sentence translation task

A visual example of attention in a
model processing textual data is de-
picted in Figure 1.1. This figure shows
the attention weight matrix in a sen-
tence translation task; the lighter the
cell, the higher the attention activa-
tion9.

Shen et al. [11] have proposed the
Knowledge-Aware Attentive Bidirec-
tional Long Short-Term Memory unit
(KABLSTM) that adopts external in-
formation from knowledge graphs to
enrich the representations of ques-
tion and answer pairs. Furthermore,
a knowledge-aware attention mecha-
nism is presented to attend to interre-
lations between each segment of ques-
tion and answer pair. Wang et al. [12]
put forward an RNN that computes at-
tention before calculating the hidden
sentence representation, whereas previous attention based RNNs added attention
after. They demonstrate that this form of adding attention which they call inner
attention outperforms the older strategy, called outer attention. Wu et al. [13] have
proposed a topic-aware attentive RNN in which representations of a message and the
response are enhanced by the information on the topic at hand. The attention mech-
anism uses the topic information to refine the representations of the message and the
response. Yang et al. [14] have proposed an attention-based neural matching model
for ranking short answer text. This model learns weighted representations of ques-
tion and answer pairs using attention based similarity matrices.

In 2017, a new technique introduced a new standard to the state of the art in neu-
ral NLP. In their paper ’Attention is all you need’, Vaswani et al. [15] proposed a
network architecture, the Transformer, that is solely based on attention mechanisms.
Recent studies have attempted to improve upon this attention-based network. For
example, Zhou et al. [16] proposed extending the attention mechanism in two ways:
by constructing representations of text using only stacked self-attention, and by try-
ing to extract the truly matched segment pairs with attention across the context and
response. Self-attention is a specific form of attention where a sequence attends to

9http://www.wildml.com/2016/01/attention-and-memory-in-deep-learning-and-nlp/ (Last ac-
cessed: 4/8/2019)
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itself, the goal is to learn the internal structure and the dependencies between the el-
ements. Using textual data, this could give a deeper understanding of the grammat-
ical structure of a sentence and the intra word-level dependencies. They integrated
the two methods into one neural network to achieve state-of-the-art results.

BERT

One year after the introduction of the Transformer architecture, another significant
breakthrough in performance was made by the natural language representation model
BERT, which stands for Bidirectional Encoder Representations from Transformers.
Devlin et al. [1] created this model, which was designed to pre-train word repre-
sentations in a bidirectional manner, and is based on the Transformer architecture.
With these pre-trained representations, state-of-the-art results were achieved in a
wide range of tasks by fine-tuning the model using only one additional layer. BERT
builds on clever solutions regarding transfer learning in NLP, such as ELMO [17]
and the openAI Transformer [18]. Noguira et al. [19] used BERT as a passage re-
ranker and achieved state-of-the-art-results for the MS MARCO passage re-ranking
task10 and on the TREC-CAR11 dataset from 2017.

1.3.3 Utilizing conversational context in question answering

A conversation can be seen as an extended question answering session. In order to
formulate a proper response to the last query of a session, the preceding utterances
can be taken into account. Lowe et al. [20] simply concatenate the context utterances
and add them to the input. This adds a large amount of additional information,
but also a lot of noise. Not all conversational context is relevant for retrieving the
right answer, and sometimes the context is not needed at all. Two recent works
have addressed this issue by attempting to select the right context instead of using
all of it. Zhang et al. [21] have proposed a deep utterance aggregation approach to
obtain a representation of the relevant context. This approach weighs the previous
utterances in the context to reduce noise. Yan et al. [22] have proposed a contextual
query reformulation framework that utilizes rank fusion.

1.4 Research approach

In the question answering domain, BERT is currently topping the leaderboard in
natural language challenges such as the MS MARCO passage re-ranking task10 and
the question answering challenge featuring multi-hop questions12. This thesis inves-
tigates whether BERT can also be utilized for a re-ranking task using conversational
context.

In a recent study by Padigela et al. [23], the successes and failures of using BERT
as a passage re-ranker in regular question answering are investigated. The authors
compared BERT’s performance to that of BM25. They showed that BERT performs
well on the MS MARCO passage re-ranking task but conclude that despite this good
performance, the encoding of the query context for longer queries can be improved.
Having a good encoding of the query context is even more relevant in passage re-
ranking for conversational data because of the size of the input, which can be much

10www.msmarco.org/leaders.aspx (Last accessed: 5/8/2019)
11trec-car.cs.unh.edu (Last accessed: 27/7/2019)
12hotpotqa.github.io/ (Last accessed: 23/7/2019)
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larger than in regular question answering. In addition, due to input restrictions in
deep learning toolkits, the BERT model is also physically restricted to an input size
of 512 tokens. Thus, it is necessary to find a way to fit in all of the context so that it
meets the BERT input restrictions in the best way possible.

To investigate the workings of BERT in a conversational passage re-ranking task,
a study similar to that of Padigela et al. was conducted for this thesis. In this study,
BM25 is also used for baseline comparison, as it is an efficient, intuitive and sim-
plistic ranking function. The predictive power of both BM25 and BERT and their
ability to re-rank candidate passages to obtain the best answer passage to a query is
examined. The study’s main research question is formulated as follows:

RQ1 - How does BERT perform in a conversational re-ranking task in compar-
ison with the baseline ranker BM25?

The following sub-questions are also identified:

RQ1.1 - To what extent does predictive power change when adding conversa-
tional context to the input?

RQ1.2 - How can BERT’s input restrictions (512 tokens) be dealt with when
using conversational data?

The first dataset consists of artificially generated query sessions, and the second con-
tains more realistic query sessions based on human conversation (see Chapter 2 for
further detail). It is hypothesized that artificially generated data lacks crucial con-
nections between the utterances that are probably present in more realistic conver-
sational data. Therefore, an additional sub-question is addressed to further validate
our results:

RQ2 - Does the value of context differ across an artificially generated conver-
sational dataset and a more realistic conversational dataset?

1.5 Structure of the report

This report features six chapters. As could be read above, Chapter 1 introduces
the problem domain of conversational assistance, the relevant literature and back-
ground information associated with methods in this field and the research questions.
Both Chapter 2 and 3 give the reader an overview of all technical background infor-
mation that is needed to understand the experiments conducted in this research.
Chapter 2 describes the two datasets that are used, and provides examples of ses-
sions from both datasets. Chapter 3 explains the inner workings of all techniques
used in the experiments. Chapter 4 gives an in depth description of how the experi-
ments were established, and also provides technical implementation details. Chap-
ter 5 presents the results that were achieved in the experiments, and an interpretation
of these results. Chapter 6 describes the results in in light of the research problem,
the shortcomings of this work, and gives suggestions for future work. Chapter 7 con-
cludes this thesis by reflecting on the research process, methods and results. Lastly,
the research questions are answered.
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Chapter 2

Data
This chapter describes the data used for the experiments. As part of the track, which
was explained in Section 1.2, conversational data was provided to use for training
and development. There are very few conversational datasets available, and so it
is also a goal of the track to create a reusable benchmark dataset for research in the
conversational domain. The data provided by the track consists of multiple data
sources. This study used the MS MARCO conversational session data, as it contains
a large number of artificial query sessions that also have relevance labels. The sec-
ond dataset that was used is a small set of realistic query sessions based on human
conversation, hand-labeled by the track organizers. The limitations of both datasets
are discussed in Chapter 6.

2.1 MS MARCO - Bing Informational Sessions

On the 23rd of April 2019, Microsoft released a conversational search dataset1. The
dataset consists of 45, 040, 730 artificially created query sessions. These sessions were
generated using embedding techniques and a clustering algorithm to collect and re-
assemble the 1, 010, 916 already existing MS MARCO queries. An example of a syn-
thetic query session is provided in Figure 2.1:

Figure 2.1. Example of a generated query session

Title: marco-gen-dev-40
Queries:

– What is the australian flag?

– What is the population of australia?

– What hemisphere is north australia?

– How big is sydney australia?

– Is australia a country?

This dataset does not contain any relevance labels; it only contains query sessions.
However, because the sessions are a cluster of single queries that have a relevance
label, the labels can be obtained by utilizing the regular MS MARCO passage re-
ranking dataset. The sessions dataset was merged with this dataset to obtain query
identifiers and the relevance labels. Sessions with fewer than five queries were dis-
carded to ensure that there was sufficient context to work with. One thousand of
these synthetic sessions were randomly selected to use as the test set.

1http://www.msmarco.org/dataset.aspx (Last accessed: 5/8/2019)
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2.2 TREC CAsT sessions

The organizers of CAsT released a small dataset, which contains 80 conversational
sessions. The track organizers hand-labeled the queries of 13 sessions with answer
passages from three passage sets: the MS MARCO collection, the Washington Post
Corpus2 and the TREC CAR paragraph collection3. Each query in the sessions has
labels for 20 answer passages, which can be either 2, 1 or 0. These labels denote very
relevant, relevant and not relevant. To be able to answer RQ2, this dataset was used
as a comparison to the MS MARCO dataset. An example of a session is provided in
Figure 2.2:

Figure 2.2 Example of a manually created dialogue

Title: US Judicial history
Description: Judicial history in the US including key court cases and what
they established.
Queries:

– What are the most important US Supreme Court cases?

– Was it unanimous?

– What was the implication of roe vs wade?

– What were the main arguments?

– What was the point of the brown v board of education?

2https://trec.nist.gov/data/wapost/ (Last accessed: 23/7/2019)
3trec-car.cs.unh.edu/datareleases/ (Last accessed: 23/7/2019)
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Chapter 3

Methods
This chapter explains the inner workings of BM25, BERT, extractive summarization,
rank fusion and score fusion. These are all techniques used in the experiments in
this work.

3.1 BM25

BM25, or Okapi BM25 [2], is a ranking function that is used to match documents
according to their relevance to a query. BM stands for ’Best Matching’. The foun-
dation of BM25 is the TD-IDF weighting. TF-IDF [24] is a technique that weighs a
term’s frequency (TF) in a document and its inverse document frequency (IDF). This
weighting identifies words that are most unique to a document. For example, when
using an English document corpus, the word ’the’ will occur with a high frequency
in all documents, and so its TF-IDF score will be low. The formula for this weighting
is given in Equation 3.1:

w(t, d) = t f · log
N
d f

(3.1)

In this formula, w(t, d) is the weight of document d for term t, N is the total num-
ber of documents and d f is the number of documents that contain the term t (the
document frequency). The TF-IDF weighting scheme can be extended to BM25 by
adding an additional weighting for document length. The formula for BM25 is given
in Equation 3.2:

score(D, Q) =
n

∑
i=1

IDF(qi) ·
f (qi, D) · (k1 + 1)

f (qi, D) + k1 · (1− b + b · |D|avgdl )
(3.2)

This formula can be used to calculate a BM25 score between query Q and document
D. We sum over all the keywords q1, ..., qn in the query. IDF(qi) is the inverse doc-
ument frequency weight of a term qi. f (qi, D) is the term frequency of a term qi in
the document D. |D| is the total number of words in the document D. avgdl is the
average document length of all documents. k1 and b are freely chosen parameters.
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3.2 BERT

The first part of this section focuses on the underlying architecture on which BERT is
based. Subsequently, the innovative techniques introduced by Devlin et al. [1]. are
discussed.

3.2.1 The Transformer architecture

BERT uses the Transformer architecture [15] as its underlying structure. The Trans-
former is an architecture that relies solely on the attention mechanism and removes
the need for recurrence by processing the entire input string at once instead of in a
word-by-word fashion.

FIGURE 3.1: Simplified Transformer
architecture, based on a figure from

the original paper [15]

The architecture of the Transformer is
shown in Figure 3.1. This representa-
tion is simplified, as only a basic un-
derstanding of the Transformer is nec-
essary to understand its role in BERT’s
architecture.

As can be seen, the data traverses the
network as follows: the input and out-
put tokens are converted to vectors us-
ing learned embeddings. Because all
tokens are processed simultaneously,
positional information is lost. This is-
sue is solved by adding vectors that
carry information regarding the rela-
tive or absolute position of the tokens.
These vectors are called positional en-
codings.

The model consists of an encoder-decoder structure. Both the encoder and the de-
coder consist of N stacked Feed-Forward and Multi-Head Attention layers.
The inputs to the encoder first proceed through the Multi-Head Attention layer,
which consists of self-attention layers that examine the other words in the input
sentence while encoding one specific word. The encoded input then moves to the
Feed-Forward layer.
The decoder consists of the same elements. However, between the Feed-Forward
and the Multi-Head Attention layer, an additional attention layer has been inserted
to focus on the most relevant parts of the input sentence.

The Transformer architecture is designed to perform machine translation experi-
ments. However, the authors have shown that it generalizes to other natural lan-
guage processing tasks as well. The activations in the output can be used for tasks
such as speech recognition, summarization, question answering, language under-
standing, and many more.
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3.2.2 The BERT architecture

BERT utilizes only the encoder from the Transformer architecture, as the goal of the
network is to generate representations. These representations are trained bidirec-
tionally, which means that for the encoding of each word, the words to the right and
left of it in the input sequence are evaluated. The training of a BERT model is simi-
lar to the traditional training of word embedding models. In this traditional setting,
training often has a specific goal that has to be determined beforehand. For exam-
ple, many models try to predict the next word in a certain sequence, which limits
the usage of these models to that specific task. The authors of BERT have devised
sub-tasks that help make BERT a more generally applicable model, these tasks are
described below.

Task 1: Masked language model (Masked LM)
During training, 15% of the tokens are selected at random and replaced by a [MASK]
token. The model then attempts to predict the original token, taking the other tokens
in the input into consideration.

Task 2: Next sentence prediction
During training, pairs of sentences are fed to the model as input, and the task is to
predict whether the second sentence is a logical successor to the first sentence. Half
of the training samples are subsequent pairs, and the other half are randomly joined
sentences from the corpus. An example of an input for the Next Sentence Prediction
task is presented in Figure 3.2.

FIGURE 3.2: BERT input representation [1]

A [CLS] token is added to the beginning of the first sentence and a [SEP] token is
added to the end of each sentence. Furthermore, a segment embedding vector is
added to indicate which tokens belong to first sentence and which to the second
sentence. Finally, a positional embedding vector is added to capture the positional
information of the sequence words.
With these tasks, BERT becomes less prone to overfitting and is better equipped to
handle errors and previously unseen word combinations.

The authors report the performance of two differently sized BERT models,
BERTBASE and BERTLARGE. The size refers to the number of Transformer blocks that
the model uses. BERTBASE has 12 blocks and a total number of 110 million param-
eters. BERTLARGE has 24 blocks and a total number of 340 million parameters. The
authors pre-trained these models on the tasks mentioned above using the BooksCor-
pus [25] (800 million words) and English Wikipedia (2500 million words).
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3.2.3 Fine-tuning

After explaining the model and the pre-training, the authors demonstrate that, through
fine-tuning, BERT can be applied to various different tasks in the natural language
processing domain. The fine-tuning involves adding an additional layer on top of
the pre-trained BERT model. The authors show an improvement of state-of-the-art-
performance in seven of the eleven NLP tasks that they describe.

3.3 Context processing

BERT can take a maximum of 512 input tokens. If information from the context of
a query needs to be taken into account, the input size will increase together with
the number of conversation turns. In order to capture all the important information
from the input conversation, five different methods for fitting inputs that exceed the
maximum amount of tokens are considered here. The subsections hereafter elabo-
rate on these methods.

3.3.1 Clipping

Clipping was used as the first method and baseline. In this method, the context was
simply concatenated with the query to be answered and if the result was larger than
the input size, the context was clipped to fit the 512 tokens.

3.3.2 Extraction-based summarization

Extraction-based summarization is a technique in which important words from a doc-
ument are extracted and combined to produce a summary. The extraction can be
based on any metric, but for this study, the TF-IDF score, explained in section 3.1,
was used. Similarly to the clipping method, the context was concatenated with its
respective query. When this resulted in an input size that was too large, a number
of important words were extracted from the context based on their TF-IDF scores so
that the context would fit within the input restrictions.

3.3.3 Rank and score fusion

Rank and score fusion methods are techniques in which multiple sets of scores or
rankings are combined into one. If the computation is based on rankings alone, it
is called rank fusion. If the computation involves the fusion of scores on which a
ranking can be based, it is called score fusion. Instead of transforming the context to
fit the input restrictions and performing one run of the model, multiple runs were
performed with the query and each of the conversation turns as input. The fusion
can be done in many different ways. Three different methods are discussed below.

The first two methods to be discussed are basic score fusion operations, namely
average score fusion and maximum score fusion. In this process, multiple sets of
scores are obtained and combined by taking either the average of the maximum of
the scores. After the scores have been fused, a ranking can be determined. Table 3.1
contains an example with the calculations for three documents (D1, D2 and D3) and
three different sets of scores (S1, S2, S3).
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S1 S2 S3 AVG AVG rank MAX MAX rank
D1 0.3 0.5 0.9 0.567 1 0.9 1
D2 0.4 0.6 0.5 0.5 2 0.6 3
D3 0.7 0.2 0.1 0.33 3 0.7 2

TABLE 3.1: Examples of average score fusion (AVG) and maximum
score fusion (MAX)

The third method, which was introduced by Cormack et al. [26], is called Reciprocal
Rank Fusion (RRF). This is a simple method that sorts the documents according to
the formula given in Equation 3.3:

RRFscore(d ∈ D) = ∑
r∈R

1
k + r(d)

(3.3)

D is a set of documents and R a set of rankings. k is a freely chosen parameter
for which the authors propose to use 60, they based this number on the results of
pilot experiments that indicated that k = 60 was near-optimal. Table 3.2 presents
an example with the calculations for three documents (D1, D2 and D3) and three
different sets of rankings (R1, R2, R3).

R1 R2 R3 RRF R1 RRF R2 RRF R3 RRF RRF rank

D1 3 1 2 1
60+3 = 0.159 1

60+1 = 0.164 1
60+2 = 0.162 0.485 2

D2 2 3 3 1
60+2 = 0.162 1

60+3 = 0.159 1
60+3 = 0.159 0.48 3

D3 1 2 1 1
60+1 = 0.164 1

60+2 = 0.162 1
60+1 = 0.164 0.49 1

TABLE 3.2: Examples of reciprocal rank fusion (RRF)
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Chapter 4

Experimental setup
This chapter outlines the experimental setup for the comparison of BERT and BM25.
The main goal is to compare the techniques when they are applied to solve the prob-
lem of passage re-ranking, including experiments using the conversational context.
First, the experiments carried out for both of the datasets are described. Thereafter,
the implementation details and evaluation metrics are specified.

4.1 Experiments on the MS MARCO dataset

Calculating the BERT activations for a query and answer pair is a costly and time-
intensive process. In an ideal situation without restrictions, BERT could be used to
evaluate all the possible passages for each input query and its context. This was
however not feasible given the available time and means. Therefore, a two-step pro-
cess similar to the standard approach mentioned in Section 1.3.1 was employed.

For each session in the test set, one fixed query was selected as the query to be an-
swered. Based on this fixed query, candidate passages were retrieved using BM25.
The amount of candidate passages to be retrieved per query was chosen by eval-
uating the number of passages retrieved with a positive label and the number of
passages retrieved in total. It is a trade-off between test size and computation time
required for running the evaluation on the test data. The best trade-off was found
in retrieving 200 candidate passages for each query, and for that amount, BM25 was
able to retrieve a passage with a positive label for 582 of the 1,000 initial sessions.
Because it does not make sense to evaluate the re-ranking of passages that are irrel-
evant, the other 418 sessions were discarded.
These relevant passages were then re-ranked using both BM25 and BERT. In order
to determine the extent to which the conversational context influenced the models’
performance, this approach was repeated with inputs ranging from one conversa-
tion turn to ten conversation turns. The test set consists of sessions that contain at
least five queries.

As more conversation turns were added to the input, the limitations of BERT’s input
size had to be dealt with. This is not an issue for BM25, which is bag-of-words based.
The six experiments for re-ranking the 200 candidate passages are listed hereafter,
and the experiments that require context processing are illustrated by the processed
result of the example data presented in Figure 4.1.

• BM25: Ten runs with the respective number of conversation turns in the input.
The input for BM25 consists of n conversation turns concatenated with the
query.
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Figure 4.1. Example data for illustration of the processing methods

Context 1: Who is Elmo? Elmo is a red muppet from Sesame Street.
Context 2: Who is BERT? BERT is an NLP model.
Query: Does he know Elmo?
Candidate passage: BERT does not know Elmo.

Maximum number of input tokens allowed: 25

• BERT + clipping: Ten runs with the respective number of conversation turns
in the input. The input for BERT + clipping consists of n conversation turns
concatenated with the query and a candidate passage. Whenever this input
failed to meet the input restrictions, the context was clipped so that it fit. The
processed example input is depicted in Figure 4.2. Note that in the example,
the tokens are equal to the words. However in reality, the BERT tokenizer can
create a different representation.

Figure 4.2. Example of the clipping processing method

Input text: [CLS] who is elmo elmo is a red muppet from sesame street who
is bert bert is an nlp model does he know elmo [SEP] bert does not know
elmo [SEP]
Number of tokens in input text: 31

Input text after clipping: [CLS] who is elmo elmo is a red muppet
from sesame street who is does he know elmo [SEP] bert does not know elmo
[SEP]
Number of tokens in input text after clipping: 25

• BERT + summarization: Ten runs with the respective number of conversation
turns in the input. The input for BERT + summarization consists of n conver-
sation turns concatenated with the query and a candidate passage. Whenever
this input failed to meet the input restrictions, the context was summarized so
that it fit. The processed example input is depicted in Figure 4.3.

Figure 4.3. Example of the summarization processing method

Input text: [CLS] who is elmo elmo is a red muppet from sesame street who
is bert bert is an nlp model does he know elmo [SEP] bert does not know
elmo [SEP]
Number of tokens in input text: 31

Input text after summarization: [CLS] elmo bert sesame muppet nlp
model does he know elmo [SEP] bert does not know elmo [SEP]
Number of tokens in input text after summarization: 18

• BERT + rank fusion AVG: Ten runs with one of the conversation turns in the
input. The input for BERT + rank fusion AVG consists of one conversation
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turn concatenated with the query and a candidate passage. For each number
of conversation turns, scores were obtained from each run, from which the
average was calculated. These scores were transformed into rankings. The
processed example input for all fusion methods is depicted in Figure 4.4.

• BERT + rank fusion MAX: Ten runs with one of the conversation turns in the
input. The input for BERT + rank fusion MAX consists of one conversation
turn concatenated with the query and a candidate passage. For each number
of conversation turns, scores from each run were obtained, from which the
maximum was selected. These scores were transformed into rankings.

• BERT + rank fusion RRF: Ten runs with one of the conversation turns in the
input. The input for BERT + rank fusion RRF consists of one conversation
turn concatenated with the query and a candidate passage. For each number
of conversation turns, scores from each run were obtained, which were trans-
formed into rankings. These rankings were fused using the formula discussed
in Section 3.3.3.

Figure 4.4. Example of the rank and score fusion processing methods

Input text 1: [CLS] who is elmo elmo is a red muppet from sesame street does
he know elmo [SEP] bert does not know elmo [SEP]
Number of tokens in input text 1: 25

Input text 2: [CLS] who is bert bert is an nlp model does he know elmo [SEP]
bert does not know elmo [SEP]
Number of tokens in input text 2: 20

4.2 Experiments on the TREC CAsT dataset

The experiments for TREC CAsT were setup similarly to those conducted for MS
MARCO. However, because this is a much smaller dataset, no distinction was made
between different numbers of conversation turns. The comparison was focused on
all context or no context. Furthermore, there was no fixed query for the sessions:
every query and its context was considered in all sessions. This resulted in a set of
queries, of which some have no context and others have multiple previous conversa-
tion turns as context. Sessions that lacked a relevant passage from the MS MARCO
collection were discarded. The model that we use was fine-tuned on MS MARCO
data, so only the passages from that data were considered. This resulted in a test set
consisting of 120 queries across 12 sessions. The same experiments were conducted:
BM25, BERT + clipping, BERT + summarization, BERT + rank fusion AVG, BERT +
rank fusion MAX and BERT + rank fusion RRF, but with two runs instead of ten.

4.3 Implementation details

This section describes how the techniques explained in the previous chapter were
applied. The main coding language used is Python.
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4.3.1 BM25

The Anserini toolkit [27] was employed to obtain candidate passages with BM25
and also to calculate the BM25 performance with more context. Anserini is an open-
source information retrieval toolkit built on Lucene1. For the MS MARCO exper-
iments, the MS MARCO passage collection was first indexed in Anserini, and for
each query in the test set, 200 passages with the highest BM25 score were retrieved
as the set of passages for re-ranking. As a second step, the obtained passages were
used as the collection and indexed in Anserini. This made it possible to re-run BM25
with different inputs but with the same candidate passages for re-ranking.
For the TREC CAsT data, a small collection was indexed for each query in all ses-
sions, consisting of the 20 candidate passages that were obtained from the relevance
labels. These labels contain both positive and negative labels. For each session,
BM25 was run with and without context.

4.3.2 BERT

An attempt was first made to run some experiments using the pre-trained but not
fine-tuned version of BERTBASE. This however did not result in a better performance
than BM25. It was necessary to fine-tune BERT on the data used in this work, which
was difficult given the available hardware; fine-tuning BERT would take multiple
days on multiple tensor processing units (TPU’s). However, it was possible utilize
the work of Nogueira et al. [19] which we mentioned in Section 1.3.2. The authors
used BERT as a passage re-ranker for the MS MARCO passage re-ranking task and
achieved good results in comparison to BM25, KNRM [28] and Conv-KNRM [29].
The authors have published their code online2 along with pre-trained BERT mod-
els that are fine-tuned on the MS MARCO question and answering data. Their
BERTBASE model is used in this work.
Nogueira et al. have implemented the model in TensorFlow3. This research, how-
ever, used PyTorch4, and so it was necessary to convert the model weights from
TensorFlow to PyTorch format. The Python library Pytorch-Transformers5 provides a
script for converting TensorFlow checkpoints to PyTorch checkpoints and was used
to convert the weights. As Nogueira et al. defined their model as a fine-tuning model
for sequence classification on top of the pre-trained BERTBASE, a similar model in Py-
Torch had to be initialized before it was possible to load the now converted model
weights. Calculating the BERT activations for the MS MARCO testset (582 times 200
candidate passages) for one experiment took about 2 hours on a GTX 1060 GPU. Cal-
culating the activations for the TREC CAsT testset (120 times 20 candidate passages)
for one experiment took about 15 minutes.

4.3.3 Summarization

For summarization, whenever the input was too long, only the context was sum-
marized to avoid losing important information about the query to be answered and
the candidate answer passage. In order to identify the most important terms in the
context, a TD-IDF score had to be calculated for each term. A TD-IDF vectorizer,
1https://lucene.apache.org/ (Last accessed: 2/8/2019)
2https://github.com/nyu-dl/dl4marco-bert (Last accessed: 2/8/2019)
3https://www.tensorflow.org/ (Last accessed: 2/8/2019)
4https://pytorch.org/ (Last accessed: 2/8/2019)
5https://github.com/huggingface/pytorch-transformers (Last accessed: 5/8/2019)
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implemented in the Python package scikit learn6, was fitted on the MS MARCO pas-
sage collection. This fitted vectorizer could then be used to transform the context
and obtain the TF-IDF scores from it, from which the top n terms were selected. The
number of turns (n) was relative to the total number of words in the context; only
30% of the words were selected. This was done because in this form of summa-
rization, a bag-of-words representation of the context is obtained, and all sentence
structure is lost. Selecting only 30% of the top terms ensures that only meaningful
words are obtained. This percentage yielded the best results.

4.3.4 Rank and score fusion

Instead of concatenating the previous utterances, n separate inputs were defined for
each session as follows: previous conversation turn + query + candidate passage. n
is the number of conversation turns. The obtained ranks were then combined using
the AVG, MAX and RRF methods described in Section 3.3.3.

4.4 Evaluation metrics

The metrics that are proposed in CAsT are Precision @ 1 (P@1), Precision @ 3 (P@3),
Expected Reciprocal Rank (ERR) and mean Average Precision (mAP). The exper-
iments in this work are evaluated with P@1, P@3, Mean Reciprocal Rank (MRR)
instead of ERR and additionally the mean rank. The mean rank is a very simple
metric, which denotes the mean of the rank of all positive labels.

Because of the nature of the task in this research, the highest ranked result is the
main interest; in a conversational setting, one cannot keep giving answers until the
right one is found, there is only one opportunity to answer. mAP was not used be-
cause this metric does not necessarily provide information on the highest ranked
result and due to other weaknesses that are described by Fuhr [30] in a study on
common mistakes in IR evaluation. Fuhr also mentions shortcomings of ERR and
MRR. However, MRR was still used in this work and Section 4.4.2 describes the
reasoning behind this.

4.4.1 Precision @ k

P@k is a very simple retrieval metric that corresponds to the number of relevant
items in the first k results. This metric has some obvious flaws: firstly, it does not
take the actual position in the ranking into account. Secondly, if a query has fewer
relevant results than k, even a perfect retrieval will result in a score that is lower than
one. It is however still a useful metric for this work because as we mentioned before,
the highest rank is the main interest and this metric can provide insights for that.

6https://scikit-learn.org/ (Last accessed: 13/6/2019)
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4.4.2 Mean Reciprocal Rank

The regular Reciprocal Rank (RR) calculates the multiplicative inverse of the rank
at which the first relevant result was retrieved, for example: 1 for first place, 1

2 for
second place, 1

3 for third place etc. The MRR is the average of the reciprocal ranks
of all queries. The formula for the MRR is provided in Equation 4.1:

MRR =
1
|Q|

|Q|

∑
i=1

1
ri

(4.1)

Where Q is a set of queries and |Q| denotes the total number of queries. ri refers to
the rank of the first relevant result for the i-th query.

Fuhr [30] describes the shortcomings of this metric and ERR, which is an adapta-
tion of the MRR. For both metrics, having two relevant results at rank one and three
gives a better score than having two relevant results at rank two, which is ’strange
behavior’ according to Fuhr. Even though this might be unwanted behavior in gen-
eral, this is not the case for the task in this study, where it is useful since the focus
lies on the highest ranked result. Retrieving a relevant result at rank 100 is as equally
useless as retrieving it at rank 200. Therefore, MRR was used as an evaluation met-
ric.
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Chapter 5

Results
In the first section of this chapter, the results obtained in the experiments on both the
MS MARCO and the TREC CAsT datasets are presented. Thereafter, an interpreta-
tion of those results is described.

5.1 Results on the MS MARCO dataset

FIGURE 5.1: MS MARCO dataset results

Figure 5.1 shows the results of the experiments conducted on the test set created
from the MS MARCO artificial conversational sessions dataset.
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5.2 Results on the TREC CAsT dataset

FIGURE 5.2: TREC CAsT dataset results

Figure 5.2 shows the results of the experiments conducted on the test set created
from the TREC CAsT conversational dataset.
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5.3 Evaluation

This section elaborates on the results presented in the figures above.

5.3.1 MS MARCO

Figure 5.1 presents four plots illustrating the results using the four metrics discussed
in Section 4.4. Each line represents one experiment, and this is tracked for ten runs.
Each run was calculated with a different number of conversation turns as context in
the input.

For all experiments, the best predictive performance was achieved in this first run,
without any context having been added. Overall, BERT outperformed BM25 by a
large margin. Within the BERT context processing experiments, even though it was
not useful to add context, the performance of the different methods can still be com-
pared.

The best scores were achieved with the score and rank fusion methods and the MAX
method in particular. A possible explanation for these results is described below.
Starting with the summarization experiment; if the context is summarized in an ex-
tractive manner, all of the linguistic structure contained in the sentences is lost, while
the most important words are retained. It can be argued that summarization does
not work well because BERT is trained to make sense of grammatically correct sen-
tences. Also, the words that have the highest TF-IDF score in relation to the MS
MARCO passage collection, might not be the words that have predictive value over
the candidate passages.
As for the rank and score fusion, it is observed that the highest scores were achieved
with the MAX method. In many sessions, not all context is relevant for answering
the query. In all other experiments besides the MAX method, all possible context
utterances were incorporated even though they might be irrelevant to the candidate
passage, which could have led to lower scores. However, when the MAX method
was used to fuse the scores, only the context utterances with the highest activations
were considered. This could explain why MAX fusion performs relatively well.

5.3.2 TREC CAsT

The results for TREC CAsT are setup in a similar manner to MS MARCO and are
depicted in Figure 5.1. However, there were only two runs for these experiments,
where the context was either considered or it was not. The best predictive perfor-
mance for all experiments was achieved without adding any context. Similarly to
the MS MARCO results, BERT outperformed BM25, and it performed best when
processing the input with any fusion method.
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Chapter 6

Discussion
In this chapter, the findings described in the previous chapter are discussed in light
of the research problem. The results for the MS MARCO and the TREC CAsT datasets
are interpreted and discussed separately. Both datasets proved sub-optimal for the
experiments in this study and their drawbacks are explained. Subsequently, other
limitations of this study are discussed and future work is suggested.

6.1 MS MARCO

The results of the experiments on the MS MARCO dataset indicate that adding con-
text to the input is not useful for answering a query. This could partly be due to the
limitations of the context processing methods described in Section 5.3.1, but quality
of the dataset is also addressed as a point of discussion. The MS MARCO conver-
sational dataset consists of synthetic sessions in which the queries were clustered
together in an unsupervised manner. It can be assumed that the queries in a session
share at least one word or have a common subject. However, this does not imply
that the queries in a session and their answers are sufficiently relevant that they help
answering a similar query. The official task that was designed for this dataset might
also be an indication that the queries do not carry predictive information on answer-
ing other queries in a session, the task was described as follows: ’Given a session
with 2-n queries with one query being masked, predict the masked query’.

6.2 TREC CAsT

Before it was decided to run the experiments with the positive and negative rel-
evance labels provided by TREC CAsT, the experiments were run with passages
retrieved from the MS MARCO passage collection. Similarly to the MS MARCO
experiments, 200 passages were retrieved using BM25, and the number of positive
labels among them was determined. Of the total number of 515 positive labels across
120 queries, without adding context, 250 positive labels were retrieved. When con-
text was added to the queries, 265 positive labels were retrieved, only 15 more. This
indicates that even with a small number of retrieved passages and a baseline ranker
such as BM25, the context does not carry much information.

Eventually the final experiments were run with the positive and negative labels pro-
vided by TREC CAsT because with this approach, the full set of 120 queries spread
across 12 sessions could be utilized. This was important because the usable section
of the dataset for this work was already very small.



26 Chapter 6. Discussion

6.3 Future work

The amount of data that was used to evaluate the MS MARCO dataset was chosen
based on a trade-off between using a representative sample of the data and the time
needed to run the experiments. It can be argued that this sample was a bad repre-
sentation of the conversational data, the experiments could be repeated with more
data in order to confirm this. As for the TREC CAsT data, the size of the set can also
be an indication that the results are not representative of a realistic performance and
these experiments could be repeated for comparison once all the queries across the
80 sessions have received relevance labels.

This research was conducted in the context of the TREC conversational assistance
track, and the information that has been gathered can be used to determine the ap-
proach to be used in our submission for the challenge. Although the results seem to
indicate that it is not useful to use the context in prediction, there are other possible
modifications that can be tried that might be useful. Firstly, BERT can be fine-tuned
on conversational data instead of just question answering data, preferably on re-
alistic conversations and not artificially generated ones. It might also be useful to
fine-tune BERT using other data sources besides MS MARCO to improve the gener-
alizability of the model.

Also, the comparison between the different context processing methods indicates
that there is at least some predictive information in the context, otherwise the perfor-
mance of all methods would have been similar. However, the experiments described
in this work have been unsuccessful in separating the noise from the useful content.
Other context processing experiments could be conducted to see whether the useful
content can be isolated from the noise. For example, before adding the context to
the query to be used as input, the context can be analyzed by an NLP model to ex-
amine whether this context has any predictive information on the candidate passage.

Lastly, ever since the experiments in this work were established, other models in
the NLP domain have been released that outperform BERT on multiple NLP tasks,
two of these models are described below.
Yang et al. [31] propose a network called XLNet, which the authors describe as a gen-
eralized autoregressive pretraining method. XLNet is pre-trained using ten times the
amount of data that BERTbase uses. It also uses a batch size eight times larger for half
as many optimization steps, which allows it to process four times as many sequences
in the pre-training step. BERT and XLNet employ different approaches to create the
representations in a bidirectional way. XLNet outperforms BERT on 20 tasks such as
reading comprehension, text classification and the GLUE tasks1. However, despite
the good performance, the computational requirements of XLNet are much higher
than those of BERT. Given the time and resources needed for the experiments in this
research, using XLNet could only be feasible if there is enough time and computa-
tional power available. Liu et al. propose [32] the Multi-Task Deep Neural Network
(MT-DNN) that outperforms BERT in eight out of nine GLUE tasks1 and other NLP
benchmarks. MT-DNN extends the representation learning model proposed by Liu
et al. [33] by incorporating BERT in the architecture.
One could experiment with these models on a small sample of the dataset to see
whether they can improve predictive performance of the context.

1https://gluebenchmark.com/tasks (Last accessed: 5/8/2019)
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Chapter 7

Conclusion
In this work, experiments were conducted for the task of text passage retrieval and
re-ranking for question answering, given conversational context. Two models, BERT
and BM25 were compared, and it was researched how including conversational con-
text in the input influences the predictive power of these models. Multiple methods
for dealing with the input restrictions of BERT were evaluated. Furthermore, the
study compared experiments on two conversational datasets that were constructed
in different manners: either artificially, with clustering methods, or by hand. Four
research questions were formulated, which are answered below.

• RQ1 - How does BERT perform in a conversational re-ranking task in comparison
with the baseline ranker BM25?
BERT outperforms BM25 in all of the experiments conducted in this work, re-
gardless if or how much context is taken into account.

• RQ1.1 - To what extent does predictive power change when adding conversational
context to the input?
In the experiments presented here, adding context to the input does not in-
crease predictive power for BERT or BM25.

• RQ1.2 - How can BERT’s input restrictions (512 tokens) be dealt with when using
conversational data?
Five different methods were employed to deal with the input restrictions: clip-
ping as a baseline, summarization, maximum score fusion, average score fu-
sion and reciprocal rank fusion. The fusion methods outperform the clipping
and summarization methods.

• RQ2 - How does the value of context differ across an artificially generated conversa-
tion dataset and a more realistic conversational dataset?
In this study, adding context to the inputs from the artificially generated dataset
and the conversational dataset is equally unbeneficial.
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