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Abstract

In this thesis we present a speed optimization for Kyber on the recently
developed open-source RISC-V architecture. Kyber is a key-encapsulation
mechanism based on module-LWE and it is currently competing in round 2
of the NIST competition. Our speed optimization focuses on the Number
Theoretic Transform (NTT) and its inverse (INTT) for round 1 and round
2 of Kyber, functions that are important for performing fast polynomial
multiplication. We also optimize the Montgomery and Barrett reductions
inside the NTT and INTT in Kyber. The large number of registers in RISC-
V allow us to merge up to 4 levels of the NTT and INTT and load 16
polynomial coefficients at a time, significantly reducing the number of loads
and stores and implicitly the cycle count. For round 2 we also use instruction
interleaving as optimization technique, improving the speed even more. For
round 1 of Kyber we obtain an NTT of 27390 cycles and an INTT of 25669
cycles. For round 2 of Kyber our NTT is 14348 cycles and the INTT is
13742 cycles. Our results are around 70–80 % faster than the reference
implementation of Kyber on RISC-V, although it should be noted that the
reference implementation was not optimized for speed in any way.
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1. Introduction

1.1 Context

Current cryptographic applications combine both symmetric cryptography
and asymmetric cryptography in order to preserve security goals like confi-
dentiality, integrity and availability. For two parties A and B that want to
encrypt messages to each other, confidentiality means that only A and B can
decrypt the messages. Integrity implies that no third party (adversary/at-
tacker) can alter the messages and availability means that no one can prevent
the communication between A and B. We will focus on the first two security
goals as cryptography by itself cannot guarantee availability.

In general, symmetric cryptography is used to encrypt and decrypt mes-
sages between two parties using a shared secret key. Another shared secret
key is usually used to compute the Message Authentication Code (MAC)
which is a unique information per message that ensures its integrity. The
most used algorithm for symmetric encryption is the Advanced Encryption
Standard (AES) [18]. If an adversary learns the secret keys, confidentiality
and integrity are broken (i.e. he can encrypt/decrypt any message, mod-
ify it and compute the correct MAC). Intuitively, a way of preventing the
adversary from learning the secret keys is to make sure that the keys are
exchanged on a secure channel and that they are updated often. In this
way we would reduce the chances of the attacker to guess the keys. The
previously-mentioned objectives are implemented nowadays through asym-
metric (or public key) cryptography. It consists of algorithms that derive
a secret key shared between two parties (e.g. Diffie-Hellman (DH) [16], El-
liptic Curve DH), algorithms that encrypt a key previously chosen by the
initiating party (e.g. RSA [34]) and signing algorithms that provide integrity
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1.2. MOTIVATION D.O.C Greconici

(e.g. RSA, Elliptic Curve Digital Signature Algorithm (ECDSA)). The idea
is to use asymmetric cryptography to establish the shared key and then use
that key to symmetrically encrypt and authenticate messages. In public-key
cryptography each party has a pair of keys: a private (secret) key and a
public key. One uses someone’s public key to encrypt messages to them and
the secret key to decrypt messages he receives. In key-exchange algorithms,
two parties send their public key to each other and each of them combines
his own secret key with the received public key and derive the shared key. In
order to sign a message one uses his secret key and everyone else can verify
the signature validity by using the corresponding public key.

1.2 Motivation

Most of the public-key cryptography used today is based on the hardness
of solving the discrete-logarithm problem (DLP) and factoring integers. In
1994 Peter Shor published a paper showing how to solve the DLP and factor
integers in polynomial time using quantum algorithms [36]. This type of al-
gorithms run on quantum computers, machines based on quantum mechanics
that could solve problems that a classical compute cannot. While classical
computers work with bits which take the values 0 or 1, quantum computers
are based on qbits which can take the values 0, 1 or both of them in the
same time. This thesis will not discuss in any way the working principles of
a quantum computer. For those looking for an introduction into the topic,
please look at [29].

Big companies and research institutes are already researching the topic of
creating a quantum computer for quite some time. In fact, this year Google
developed a quantum computer that solves in a fraction of time a very specific
problem (not cryptographic related) which would not be feasible on the most
advanced classical computers nowadays [3]. It is fair to assume that with the
amount of research going on in the area of quantum computers, there are
high chances they become a reality within a few decades. This implies that
the earlier introduced algorithm for factoring ans solving DLPs by Shor is ap-
plicable, breaking all public key cryptography that we use today. In response
to this threat, the National Institute of Standards and Technology (NIST)
started a competition in 2016 to encourage researchers to propose asymmet-
ric cryptographic schemes that would be resistant to quantum computers1.
This category of asymmetric schemes is also known as post-quantum cryp-

1https://csrc.nist.gov/News/2016/Public-Key-Post-Quantum-Cryptographic-

Algorithms
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D.O.C Greconici 1.2. MOTIVATION

tography and together with the symmetric cryptography used with larger
keys (e.g. AES, hashing algorithms) are assumed to be secure against quan-
tum computers. Initially, 69 candidates qualified for round 1 of the NIST
competition, and since January 2019, 26 candidates are competing in round
2. The post-quantum schemes that are currently in the NIST competition2

are either key encapsulation mechanisms (KEMs) or signatures and they can
be classified into the following categories3:

� Hash-based cryptography comprises of hash-based signatures that
rely only on certain properties of the underlying hash functions like
second-preimage resistance. In round 2 of the NIST competition there
are only 2 hash-based signatures: SPHINCS+4 and Picnic5. To be
noted that Picnic is not only based on hash functions, but it requires
a zero-knowledge proof system based on hash functions and block ci-
phers. However out of these 5 categories, it fits best in the hash-based
cryptography.

� Code-based cryptography is based on the hardness of decoding a
codeword with random errors. In the NIST competition there are cur-
rently 7 code-based schemes, all of them KEMs. For example, one of
them is Classic McEliece6 which is a representative scheme in the field
as it is based on the first code-based scheme which uses Goppa codes
(McEliece from 1978 [27]).

� Multivariate cryptography is based on the hardness of solving sys-
tems of quadratic equations in many variables. In the NIST compe-
tition there are currently 4 multivariate-based schemes, all of them
signature schemes (e.g. MQDSS7).

� Isogeny-based cryptography is based on the hardness of finding
isogenies (mappings) between elliptic curves over finite fields. There
is only one KEM scheme currently in the NIST competition, namely
SIKE8.

� Lattice-based cryptography includes KEMs and signature schemes
based on NTRU [21] and on the Learning With Errors (LWE) problem

2https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-

submissions
3https://pqc-wiki.fau.edu/
4https://sphincs.org/
5https://microsoft.github.io/Picnic/
6https://classic.mceliece.org/
7http://mqdss.org/
8https://sike.org
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1.2. MOTIVATION D.O.C Greconici

[32]. The security of these systems is reduced from the hardness of the
lattice problems such as finding the shortest vector in a lattice (SVP
problem). In the NIST competition there are currently 12 lattice-based
schemes, 9 KEMs (e.g. Kyber9, NewHope10, and NTRU Prime11) and
3 signature schemes (Dilithium 12, FALCON13, and qTESLA14).

In this thesis we will focus on Kyber, a module-LWE-based key-encapsulation
mechanism (see the definitions in Section 2.3) that is currently in round
2 of the NIST post-quantum competition. Because performance is one of
the important criteria for NIST, we aim to optimize both rounds of this
scheme for speed on the RISC-V architecture. Kyber [12] and NewHope [1]
are the only two key-encapsulation schemes in the NIST competition that
use in their definition the so called NTT – Number Theoretic Transform
(defined in Section 2.2) to compute fast polynomial multiplication. Our speed
optimization techniques will target the NTT implementation and its inverse
operation (INTT) as they are the second most time consuming functions
in Kyber after Keccak [4, Section 2.1]. We chose RISC-V 15 because it is
a promising new open source instruction set architecture which attracted a
community of more than 325 members that are actively developing it. It
started as a university project at University of California, Berkeley, and now
big players such as Google, NVIDIA and NXP are investing in it.

Thesis Structure. In the following lines we will give the outline for the
rest of the thesis. The second chapter introduces the notation and theoretical
aspects the reader needs to know in order to understand how Kyber works.
In the third chapter we discuss efficient implementations for Kyber, more
specifically how to efficiently compute polynomial multiplication using fast
Fourier transform algorithms (the NTT). Chapter 5 presents our RISC-V
speed optimization techniques for Kyber. In Chapter 6 we illustrate the
results we obtained. Finally, Chapter 7 captures our conclusion.

9https://pq-crystals.org/kyber/index.shtml
10https://newhopecrypto.org/
11https://ntruprime.cr.yp.to/
12https://pq-crystals.org/dilithium/index.shtml
13https://falcon-sign.info/
14https://qtesla.org/
15https://riscv.org/risc-v-foundation/
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2. Preliminaries

This chapter contains the theoretical background the reader needs to have
in order to understand the basic concepts of Kyber. The notation and defi-
nitions used in this thesis are also covered here.

2.1 Notation and Definitions

The Set of Integers Modulo q. In the next three paragraphs we stick
to the notation given in the Kyber specifications document [4, Section 1.1].
We denote by Z the set of integer numbers. For a prime number q, we refer
to Z±q as the set of integers modulo q (mod q) within the range [−q/2, q/2)
and to Z+

q the set of integers modulo q within the range [0, q). When the
representation does not matter, we simply write this set as Zq.

Byte Array Concatenation. We denote by a||b the concatenation of two
byte arrays a and b.

Sampling. Given the relationship x← S we say that x is chosen uniformly
at random from the set S. If S is replaced by a probabilistic distribution
D, we say that x is sampled according to D. We denote by x ← D(y) a
deterministic sampling from the distribution D with the seed y. This means
that for the same input y, the output x will always get the same value, which
is uniformly distributed over D.

Centered Binomial Distribution. For a positive integer η, we define
the centered binomial distribution CBD = βη as: sample (a1, ...aη, b1...bη)←
{0, 1}2η and output

∑η
i=1(ai − bi) [4].

5



2.2. THE NUMBER THEORETIC TRANSFORM D.O.C Greconici

Vectors. Vectors are represented with small bold letters (i.e. v) and by
default they are interpreted as column vectors. The matrices are denoted by
capital bold letters (i.e. A). By AT and vT we mean the transpose of A and
v. We denote by v[i] the i’th element of the vector v and with A[i][j] the
element form the i’th row and j’th column of the matrix A.

For two vectors of the same length we define the inner product as 〈a,b〉 =∑
i aibi, which is is also equivalent with the product aT · b. Following the

same logic, for a matrix A and a vector b, 〈A,b〉 = AT · b.

Polynomials. A polynomial p of degree n 6= 0 is defined as p =
∑n

i=0 piX
i =

p0 +p1X+ ...+pnX
n. It can also be represented by a n-dimensional vector v

where v[i] = pi. We denote by Z[X] the set of polynomials with coefficients
in Z.

A special collection of polynomials is represented by the ring Rq = Zq[X]/
(Xn + 1) which consists of all polynomials with degree less than n, and with
coefficients integers modulo q. Reductions of polynomials to Rq follow the
rule Xn ≡ −1 (mod Xn + 1). In this thesis we assume that n is a power of
two (i.e. n = 2m,m > 0) and q ≡ 1 (mod 2n).

In general, when multiplying polynomials of degree n, the result can have a
maximum degree of 2n. However, in this thesis polynomial multiplication is
done in Rq and we assume that the result is automatically reduced to Rq. An
explanation for this assumption will be given in the definition of the Number
Theoretic Transform.

2.2 The Number Theoretic Transform

The Number Theoretic Transform (NTT) is based on the Discrete Fourier
Transform (DFT) and it can be used to compute fast polynomial multiplica-
tion in Rq. Unlike the DFT which operates on complex numbers, the NTT
is applied on integers in Zq.

As explained in [9], an n-degree polynomial in Rq can be represented either
by its n coefficients, or by n values resulting from evaluating the polynomial
at the points ω0

n, ω
1
n...ω

n−1
n . Here, ωn is a primitive n’th root of unity meaning

that ωnn = 1 mod q and for 1 ≤ k < n, ωkn 6= 1 mod q. In order for the
primitive n’th roots of unity to exist, n must divide q−1. A forward NTT can
be seen as a mapping from the coefficient representation of a polynomial to
the values obtained by evaluating the polynomial at the powers of the n’th

6 CHAPTER 2. PRELIMINARIES
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primitive root of unity. The reverse mapping is done through the inverse
NTT (here denoted INTT) and is also called interpolation.

For a polynomial g ∈ Rq, g =
∑n−1

i=0 giX
i, the n’th root of unity ω and the

2n’th root of unity ψ =
√
ω we define the NTT and INTT as:

ĝ = NTT (g) =
n−1∑
i=0

ĝiX
i, with ĝi =

n−1∑
j=0

ψjgjω
ij; and

g = INTT (ĝ) =
n−1∑
i=0

giX
i, with gi = n−1ψ−i

n−1∑
j=0

ĝjω
−ij.

With the above-mentioned definitions, the product between two polynomials
a, b ∈ Rq can be computed efficiently as: a · b = INTT(NTT(a) ◦ NTT(b)),
where ◦ represents the coefficient-wise product (also known as convolution).

Usually the definition of the NTT and INTT does not contain the multi-
plication by the factors ψ and ψ−1. However, with this modification we are
able to directly compute polynomial multiplication with coefficients in Zq[X],
modulo Xn + 1. This technique is called negative wrapped convolution and
as a consequence of using it, we need to ensure that the 2n’th root of unity
ψ exists. Therefore 2n must divide q − 1.

In this thesis, the values that are in the NTT domain will be marked with a
hat (i.e. Â). When we transform a vector or a matrix of polynomials to/from
the NTT domain, we apply the NTT/INTT operation to each individual
element of the vector/matrix. The number of NTT/INTT operations will be
equal to the dimension of the vector/matrix.

An important property of NTT and INTT is that they are linear, so in other
words (I)NTT(a)+(I)NTT(b) = (I)NTT(a+b). When we want to multiply
a polynomial matrix A ∈ Rk×k

q with a polynomial vector v ∈ Rk
q , we end up

with sums of polynomial products. Naturally, we would apply the rule a · b
=INTT(NTT(a) ◦ NTT(b)) for each polynomial multiplication and then add
them up to compute the result vector. However, due to the linear property
of the INTT, we can first add the coefficient-wise products and apply the
INTT only at the end. In this way, instead of computing k2 INTT’s, we only
compute k which is the dimension of the result vector.

CHAPTER 2. PRELIMINARIES 7
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2.3 Cryptographic Background

For all the following definitions in this section we kept their initial descrip-
tion from their references. However, according to [2] the secret s (or the
coefficients of the secret s) does not have to be chosen uniformly at random,
but the problems remains hard if s is chosen from the same distribution as
the error e (or the coefficients of error e). In Kyber the secret is chosen from
the same distribution as the error.

2.3.1 Learning With Errors

The Learning With Errors (LWE) problem was introduced by Regev in [32]
and it falls under lattice-based cryptography asymptotically. This is because
its security is proven to be as hard as the worst-case lattice problems. The
LWE problem can be seen as solving a linear system in Zq to which an un-
known vector of small errors is added. Without the errors, the system could
easily be solved by Gausian Elimination, but the existence of the unknown
errors makes it hard to solve. The LWE-based cryptographic systems usually
require a key size of n2 as the key consists of n vector samples a1, a2...an ∈ Znq
[33]. More formally, the LWE is defined as follows:

Definition 1. For a secret vector s and a vector a both chosen uniformly
at random from Znq , and for an error e ∈ Zq sampled from a distribution D,
the following problems are defined:

Search LWE. Given m samples of the form (a, 〈a, s〉+e) ∈ Znq ×Zq, recover
the secret vector s.

Decisional LWE. Given m samples of the form (a, b) ∈ Znq × Zq, decide if
all samples are of form (a, 〈a, s〉+ e) or if they are sampled from the uniform
distribution over Znq × Zq.

2.3.2 Ring-LWE

The ring-LWE problem was introduced in [25] and it is similar to the LWE
problem, but now the vectors in Znq are replaced by polynomials in Rq with
degree less than n. For cryptographic systems this means that the key size is
of order n instead of n2, as now the n vectors are sampled from Rq rather than
from Znq . Another advantage over LWE is that for certain parameter choices
fast Fourier-based algorithms can be applied to compute the multiplication
in Rq.

8 CHAPTER 2. PRELIMINARIES
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The idea behind ring-LWE is to give some structure to the LWE system by
sampling only one vector a1 = (x1, x2...xn) ∈ Znq [33]. The rest of n − 1
vectors would be obtained by the rule ai = (xi, ..., xn,−x1, ...,−xi−1), there-
fore only the first vector a1 is needed to represent the structure. This new
representation can be converted to the ring Rq. The security of ring-LWE is
proven to be as hard as the worst-case ideal lattice problems asymptotically
[25]. The definition of ring-LWE is given as follows:

Definition 2. For a fixed secret ring element s and the ring element a, both
with coefficients chosen uniformly at random from Zq, and for an error e ∈ Rq

with its coefficients sampled from a distribution D, the following problems
are defined:

Search Ring-LWE. Given m samples of the form (a, a · s + e) ∈ Rq × Rq,
recover the secret s.

Decisional Ring-LWE. Given m samples of the form (a, b) ∈ Rq × Rq,
decide if all samples are of form (a, a · s + e) or if they are sampled from the
uniform distribution over Rq ×Rq.

2.3.3 Module-LWE

Module-LWE was introduced in [24]. It is very similar to ring-LWE, but
instead of sampling one polynomial in Rk, we now sample a vector of k
polynomials in Rk. We call this vector a module, and we say that k is the
rank of the module. If we fix k to 1, the problem becomes ring-LWE and if
we choose k = n. The hardness of module-LWE is compared with the the
hardness of solving module lattices problems. For module-LWE, the following
definition is given:

Definition 3. For a secret module element s ∈ Rk
q and the module element

a ∈ Rk
q , with the coefficients of each polynomial in Rq chosen uniformly at

random from Zq, and for an error e ∈ Rq with its coefficients sampled from
a distribution D, the following problems are defined:

Search Module-LWE. Given m samples of the form (a, a · s+e) ∈ Rk
q×Rq,

recover the secret s.

Decisional Module-LWE. Given m samples of the form (a, b) ∈ Rk
q ×Rq,

decide if all samples are of form (a, a · s + e) or if they are sampled from the
uniform distribution over Rk

q ×Rq.

CHAPTER 2. PRELIMINARIES 9
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2.4 Public Key Encryption Scheme.

A Public Key Encryption scheme (PKE) consists of three probabilistic algo-
rithms (KeyGen, Enc, Dec) and a message space M [12].

1. KeyGen() (Key Generation) is an algorithm that outputs a key pair
(pk, sk) where pk is the public key and sk is the corresponding private
key.

2. Enc(pk) (Encryption) is a probabilistic algorithm that takes a public
key pk and a message m ∈M and produces a ciphertext c.

3. Dec(sk, c) (Decryption) is a deterministic algorithm that takes as in-
put a secret key sk and a ciphertext c and return a message m ∈ M ,
or in case of rejection, the symbol ⊥.

2.5 Key Encapsulation Mechanisms.

A Key Encapsulation Mechanism (KEM) consists of three algorithms (Key-
Gen, Encaps, Decaps) and a key space K [12].

1. KeyGen() (Key Generation) is a probabilistic algorithm that outputs
a key pair (pk, sk) where pk is the public key and sk is the correspond-
ing private key.

2. Encaps(pk) (Encapsulation) is a probabilistic algorithm that takes a
public key and outputs a ciphertext c and a key k ∈ K.

3. Decaps(sk, c) (Decapsulation)is a deterministic algorithm that takes
as input a secret key sk and a ciphertext c and return a key k ∈ K, or
in case of rejection, the symbol ⊥.

10 CHAPTER 2. PRELIMINARIES



3. Kyber

3.1 Round 1

Kyber [12, 4] is a key encapsulation mechanism based on the hardness of solv-
ing the Module-LWE problem. This implies that the arithmetic operations
are performed over the polynomial ring Rq. For efficiency reasons, Kyber
uses the NTT to perform polynomial multiplications. With this in mind, the
modulus q, and the parameter n are fixed to q = 7681 and n = 256 such
that the primitive n’th and 2n’th roots of unity exist (the required condition
for the NTT to exist). The resulting ring is R7681 = Z7681[X]/(X256 + 1)
and the inverse of n modulo q is 7651. With these parameters defined, the
256’th primitive root of unity is fixed to ω = 3844 and its inverse modulo q
is ω−1 = 6584. Accordingly, the 512’th primitive root of unity is ψ = 62 and
its inverse is ψ−1 = 1115 mod q. Depending on the desired security level,
Kyber comes in three versions: Kyber-512 comparable with the security of
AES-128, Kyber-768 comparable with the security of AES-192 and Kyber-
1024 comparable with the security of AES-256. The security level is defined
by the parameter k which represents the module rank (from Module-LWE),
and it can take the values 2, 3 and 4. By default, k is set to 3.

The next two sections will describe a simplified version of the Kyber scheme.
For more details, please have a look at [4, Ch 1.2,Ch1.3]. In the Algorithms
1-6 the pseudo-random function (PRF) is instantiated with SHAKE-256, the
extendable output function (XOF) with SHAKE-128 and the hash functions
H and G with SHA3-256, respectively with SHA3-512. These functions be-
long to the FIPS-202 standard [17]. PRF and XOF take as input a random
value and a nonce. The latter is implemented as a counter starting from
0, but for simplicity it is omitted in the algorithm descriptions. The Ky-

11



3.1. ROUND 1 D.O.C Greconici

ber KEM is build up in two stages. The first step is to construct a public
key encryption scheme resistant against a passive attacker, namely an IND-
CPA-secure scheme (Indistinguishable under Chosen Plaintext Attack). The
second step is to make Kyber resistant to an active attacker by applying a
slightly modified version of the Fujisaki-Okamoto (FO) transform [19] and
obtain a key encapsulation mechanism which is IND-CCA2-secure (Indistin-
guishable under Adaptive Chosen Ciphertext Attack). More details about
IND-CPA and IND-CCA2 can be found in [8].

3.1.1 IND-CPA Scheme

CPA Key Generation. The CPA Key Generation of Kyber is illustrated
in Algorithm 1 and it produces as output a pair consisting of a public key
and a secret key. The secret key s is a vector of k polynomials in Rq, each
coefficient being deterministically sampled from the CBD distribution. The
vector is transformed and stored in the NTT domain, becoming ŝ.

The public key is the pair (t, ρ) where t = As + e is a vector of k polyno-
mials and ρ is the public seed from which the matrix A is generated. The
public information A is a k × k matrix of polynomials in Rq. Since A is
only used in the NTT form, the designers of Kyber have chosen to save k2

transformations and sample it directly in the NTT domain from a uniformly
random distribution. This is possible because the NTT maps uniformly ran-
dom coefficients to uniformly random coefficients [4]. As a consequence, the
NTT explicitly appears in the scheme to clarify when a transformation is
needed.

Algorithm 1: CPA.KeyGen()

Output: Public key pk := (t, ρ)
Output: Secret key: sk := ŝ

1 ρ, σ ← {0, 1}256 × {0, 1}256

2 Â ∈ Rk×k
q ← U(XOF (ρ))

3 s ∈ Rk
q ← CBD(PRF (σ))

4 e ∈ Rk
q ← CBD(PRF (σ))

5 ŝ := NTT(s)

6 t := NTT−1(Â ◦ ŝ) + e
7 sk := ŝ
8 pk := (Compress(t), ρ)
9 return (pk, sk)

12 CHAPTER 3. KYBER
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Another design decision in Kyber was to compress the t part of the public key
by dropping some least significant bits without affecting the correctness of
the scheme. This is done through the function Compress (line 8, Algorithm
1).

Because in this thesis we focus on reducing the cost of the NTT and INTT, we
want to compute how many times these transformations are used in Kyber.
As they are already part of the scheme, it feels natural to count them while
describing each algorithm. Therefore, in Algorithm 1, line 5 we have k NTT
transformations as the vector s contains k polynomials. At line 6, ŝ and Â
are already in the NTT domain, so no NTT operation is needed. As for the
INTT, it is applied on a product resulting in a vector of k polynomials, thus
we have k INTT operations.

CPA Encryption. The key encryption algorithm is described in Algo-
rithm 2. This function takes as input a public key, the message to be en-
crypted and a random coin. The message to be encrypted has a fixed size of
256 bits and it can be represented as a polynomial in Rq with coefficients in
{0, 1} (i.e., each bit is represented by a coefficient).

Algorithm 2: CPA.Encrypt(pk,m,µ)

Input : Public key pk := (tρ)
Input : Message m ∈ Rq

Input : Random coins µ ∈ {0, 1}256
Output: Ciphertext c := (u, v),

1 ρ← {0, 1}256
2 t := Decompress(t)

3 Â ∈ Rk×k
q ← U(XOF (ρ))

4 r ∈ Rk
q ← CBD(PRF (µ))

5 e1 ∈ Rk
q ← CBD(PRF (µ))

6 e2 ∈ Rq ← CBD(PRF (µ))
7 r̂ := NTT(r)

8 u := NTT−1(ÂT ◦ r̂) + e1

9 m := dq/2c ·m
10 v := NTT−1(NTT(t)T ◦ r̂) + e2 +m
11 return (Compress(u), Compress(v))

After t is decompressed, the public information is generated from a uniform
distribution using the seed ρ. To be noted that Â will be the same as the one
in the key generation phase because it is generated from the same seed. In
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lines 4, 5 and 6 the ephemeral secret key r ∈ Rk
q together with the errors e1 ∈

Rk
q and e2 ∈ Rq are deterministically generated from CBD using the input

seed µ. In line 9 an error tolerance is created by mapping the coefficients
of the message from 0 to 0 and from 1 to dq/2c, where dxc represents the
closest integer to x, ties being rounded up. In this context, this operation is
identified with the LWE error correction. The output ciphertext is of form
(u, v) where u and v are defined in line 8 and 10.

For Algorithm 2 we have k NTT transformations at line 7 as the vector r
contains k polynomials. Another k NTT transformations are needed at line
10 for the vector t. In total, 2k NTT’s are used for this algorithm. As for
the INTT we have k transformations at line 8, and 1 at line 10, resulting in
k + 1 INTT’s.

CPA Decryption. Algorithm 3 illustrates the decryption. The Decom-
press() function restores the initial size of the ciphertext values u and v. The
message is recovered from the equation m = v − sT · u. For decryption cor-
rectness we refer to [12, Ch. 3]. In line 4, each coefficient of m is decrypted
to 0 if its value is closer to 0 or to 1 if its value is closer to dq/2c.

Algorithm 3: CPA.Decrypt(sk,c)

Input : Secret key: sk := ŝ
Input : Ciphertext c := (u, v)
Output: Message m ∈ Rq

1 u := Decompress(u)
2 v := Decompress(v)
3 m := v −NTT−1(̂sT ◦NTT(u))
4 return d2/qc ·m

In Algorithm 3, as u is a vector of k polynomials, there are k NTT operations
needed to transform u into the NTT domain. The secret ŝ is already saved
in the NTT domain, so no operation is needed. The result of (̂sT ◦ u) is one
polynomial, therefore only 1 INTT operation is needed.

3.1.2 IND-CCA2 Scheme

Before explaining the IND-CCA2 scheme illustrated in Algorithm 4, 5 and
6, we will give an intuition on why this step is needed. For simplicity we
will call Alice the one that encrypts/encapsulates a message and Bob the
one that decrypts/decapsulates it. In the previous setting it is assumed that
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Alice samples the errors e1, e2 and the ephemeral secret key r from CBD.
However, an attacker can cheat and sample these values in such a way that
he could learn something about the secret key [10, 22, 7, 31]. That is why
in the IND-CCA2 step Alice is forced to deterministically derive the values
e1, e2 and r from the hash of the message to be encapsulated and the hash
of the public key of Bob. After decrypting the ciphertext, Bob can generate
the same values e1, e2 and r. With this information he will re-encapsulate
the message he obtained and verify that the ciphertext that he received was
fairly generated by Alice.

CCA KeyGeneration. In Algorithm 4, the public key pk and the pre-
secret key sk′ are obtained by calling CPA.KeyGen(). The output of this
function will be the public key pk and the secret key sk, which is the con-
catenation of the following values: sk′, the public key pk, the hash of the
public key H(pk) and a random 256-bit value z. The hash of the public key
will be used in the decapsulation step and it is appended to the secret key
so that it is not recomputed every time.

Algorithm 4: CCA.KeyGen()

Output: Public key pk := (t, ρ)
Output: Secret key: sk := (sk′||pk||H(pk)||z)

1 z ← {0, 1}256
2 (pk, sk′) := CPA.KeyGen()
3 sk = (sk′||pk||H(pk)||z)
4 return (pk, sk)

CCA Key Encapsulation. Algorithm 5 ensures that Alice and Bob can
deterministically generate the same ciphertext, given the message m and
some shared randomness µ. The first step is to generate the random message
m and then derive the seed µ, together with a temporary key K̄ by hashing
the hash of the message to be encrypted and the hash of the public key. The
ciphertext c is obtained by applying CPA.KeyEncaps(pk,m,µ), ensuring that
Alice will deterministically derive the values e1, e2 and r from the seed µ .

The shared key K that will be used for symmetric encryption between Alice
and Bob is obtained by hashing the temporary key K̄ together with the hash
of the ciphertext c.

CCA Key Decapsulation . The CCA decapsulation mechanism is pre-
sented in Algorithm 6. First, Bob decrypts the ciphertext into the message
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Algorithm 5: CCA.Encapsulation(pk)

Input : Public key pk := (tρ)
Output: Ciphertext c := (u, v),
Output: Shared key K ∈ {0, 1}256

1 m← {0, 1}256
2 m := H(m)
3 (K̄, µ) := G(m||H(pk))
4 c := CPA.Encrypt(pk,m, µ)
5 K := H(K̄||H(c))
6 return (c,K)

m′ using the CPA decryption function. Having m′ and knowing the hash of
his public key, Bob can derive the temporary key K̄ ′ and the shared seed µ′.
He will now re-encrypt the message m′ using the CPA.KeyEnc function and
the seed µ′. If the ciphertext that Bob computed matches the ciphertext that
he received from Alice, he will accept the encapsulation and he will compute
the shared key K as the hash of the temporary key K̄ ′ and the hash of the
ciphertext c. Otherwise, he will compute a random key K using the random
value z as shown in line 7.

Algorithm 6: CCA.Decapsulation(sk,c)

Input : Secret key: sk := (sk′||pk||h||z)
Input : Ciphertext c
Output: Shared key k ∈ {0, 1}256

1 m′ := CPA.Deccrypt(sk′, c)
2 (K̄ ′, µ′) := G(m′, h)
3 c′ := CPA.Encrypt(pk,m′, µ′)
4 if c = c′ then
5 return K := H(K̄ ′||H(c))
6 else
7 return K := H(z||H(c))
8 end
9 return K

3.2 Round 2

While working on this thesis, a new version of Kyber was released as D’Anvers
pointed out that the security proof of Kyber stands only if the public key is
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not compressed 1. Therefore, in the second round the public key is preserved
in its natural length, but this time it is represented and transmitted in the
NTT domain. To compensate for not compressing the public key, besides
other changes [5, p2], the prime modulus q was updated from 7681 to 3329
resulting into the ring R3329 = Z3329[X]/(X256 + 1).

As a consequence of choosing this q, there are no 2n’th primitive roots of unity
for n = 256. However, [26] shows that we can still compute the NTT with
this configuration. In round 1, the NTT was represented by 256 coefficients
that could be seen each as polynomials of degree 0. With the parameters
from round 2, the NTT will be interpreted as 128 coefficients, each being a
polynomial of degree 1. Therefore, for a polynomial f ∈ Rq the new definition
of the NTT in Kyber round 2 is [5]:

NTT (f) = f̂ = (f̂0 + f̂1X, f̂2 + f̂3X, ...f̂254 + f̂255X),

where

f̂2i =
127∑
j=0

f2jζ
(2br7(i)+1)j

f̂2i+1 =
127∑
j=0

f2j+1ζ
(2br7(i)+1)j

Here, the 256’th primitive root of unity is ζ = 17 and br7(x) reverses the
7-bit representation of x. As coefficients are now polynomials of degree 1,
the coefficient-wise operation ◦ will be redefined as multiplication of degree
1 polynomials modulo X2 − ζ2br7(i)+1.

1https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/

documents/round-1/official-comments/CRYSTALS-KYBER-official-comment.pdf
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4. Efficient NTT in Kyber

4.1 NTT Implementations

The most expensive functions used in Kyber are the ones based on the Kec-
cak permutation [11] (SHA3-256, SHA3-512, SHAKE-128, SHAKE-256) and
the ones involved in polynomial multiplication (NTT, INTT)[4, Section 2.1].
This thesis will focus on optimizing the forward NTT and the inverse NTT
for both round 1 and round 2 of Kyber. In this section we will ignore the
2n′th primitive root of unity ψ and the multiplication with n−1 from the
definition of the NTT and INTT given in Section 2.2 as it is irrelevant at
this point.

This paragraph is based on the Chapter 3 of the book ”Inside the FFT Black
Box: Serial and Parallel Fast Fourier Transform Algorithms” by E. Chu and
A. George [14]. Efficient FFT and NTT implementations are based on the
divide-and-conquer method and have a complexity of O(n log n), where n is
the size of the input vector. The idea is to split the input vector of size n
into two halves of size n/2, solve each part individually and then combine
them into the result. By choosing n = 2k, we can recursively apply this
strategy log n times until we reach vectors of size one. Computing the NTT
over individual halves requires the existence of the primitive n/2’th root of
unity. For a vector of size n, we will explicitly refer to the primitive n’t root
of unity as ωn. A property of the NTT when n = 2k is that the n/2’th root
of unity exists and is ωn

2
= ω2

n. Based on the way the vectors are split in
two halves, we can differentiate two algorithms (known in the literature as
butterflies):

� The Cooley-Tukey (CT) butterfly [15]. Also referred to as deci-
mation in time, the CT algorithm splits the size-n input into one vector
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that contains the even-indexed values and another one that contains
the odd-indexed values. After applying the NTT on both halves, let
us denote by Y the vector obtained from the even indexes and with Z
the vector obtained from the odd indexes. The full-size NTT vector X
is obtained as follows: the first half of the resulting vector is computed
as X[i] = Y [i] +ωinZ[i] and the second half as X[i+ n

2
] = Y [i]−ωinZ[i],

with i from 0 to n/2 − 1. These two relations form the CT butterfly
which is depicted in Figure 4.1 .

Z[i]

Y [i]

X[i+ n
2
] = Y [i]− ωinZ[i]

X[i] = Y [i] + ωinZ[i]

Figure 4.1: The Cooley-Tukey Butterfly.

� The Gentleman-Sande (GS) butterfly [20]. Also referred to as
decimation in frequency, the GS algorithm splits the size-n input into
one vector that contains the first n/2 values and another one that
contains the last n/2 values. After applying the NTT on both halves, let
us denote by Y the vector obtained from the first n/2 left indexes and
with Z the vector obtained from the last n/2 right indexes. The final
result X, is obtained as follows: the even indexes of the resulting vector
are updated as X[2i] = Y [i] + Z[i] and the second half as X[2i+ 1] =
(Y [i]−Z[i])ωin, with i from 0 to n/2−1. The CT butterfly is illustrated
in Figure 4.2.

Z[i]

Y [i]

X[2i+ 1] = (Y [i]− Z[i])ωin

X[2i] = Y [i] + Z[i]

Figure 4.2: The Gentleman-Sande Butterfly.

In order to compute the NTT of a vector, the above-mentioned techniques are
applied recursively until reaching vectors of degree one, for which NTT (v) =
v. This process can be graphically illustrated in a binary tree of height log n.
The root of the graph represents the n-size input vector. Each parent of
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Figure 4.3: Cooley-Tukey NTT, n = 16

the graphs is obtained by combining its children according to either the CT
butterfly or GS butterfly and using the powers of the right primitive root
of unity corresponding to the size of the parent. The powers of the roots of
unity are generally known in the literature as twiddle factors.

CT NTT example. For a better understanding on how to compute the
NTT using the divide-and-conquer method, we will take a small example
using a 16-coefficient polynomial as input. The binary tree in Figure 4.3
illustrates how a recursive NTT algorithm splits a vector of size 16 according
to the Coley-Tukey butterfly. We say that all parent nodes (the leaves being
excluded) that are situated at distance ` from the root, belong to level `.
Considering that the root is on level 0, the graph consists of log 16 = 4
levels. Each level can be seen as rearranging the input values into smaller
vectors according to the CT butterfly. Therefore, we will represent the values
from the initial vector by their indexes so that we see how they propagate
through the tree. The root of the tree contains the indexes of the initial
vector (from 0 to 15). For each parent, the left child (red nodes) consists
of the even-indexed values of the parent and the right child (green nodes)
contains the odd-indexed values of the parent.

After splitting the input, we will start computing the NTT bottom-up ac-
cording to the CT butterfly defined above (X[i] = Y [i] + ωikZ[i] , X[i+ k

2
] =

Y [i]− ωikZ[i]), where X is the parent node of size k, Y is the left child and
Z is the right child, both of size k/2. For the tree in discussion the leaves
contain the indexes of the input vector, but in reality the butterflies will be
applied on the actual values represented by these indexes. A parent of size k
is computed with k/2 butterflies. However, the total number of butterflies in
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a level is always n/2, where n is the size of the initial input vector. In order
to reconstruct a vector from level `, we use ω n

2`
= ω2`

n as the primitive root of

unity. Therefore, for reconstructing level 0, we use ω16, for level 1 ω8 = ω2
16,

for level 2 ω4 = ω4
16 and for level 3 ω2 = ω8

16.

Iterative NTT. In practice, these algorithms are transformed into their
iterative version in order to eliminate the cost of log n recursive function
calls. We take as example the same tree from Figure 4.3 so that we can
derive rules to iteratively compute the n/2 butterflies for each level. Instead
of processing multiple smaller vectors per level, we will now work with single
size-n vectors, the leaves being represented by the initial vector. Let us
denote the vector representing level ` with lev`.

In order to compute a level, the graph shows which indexes to combine
from the previous level and at which indexes to store the results from each
butterfly. For example, if we want to compute the values corresponding to
the first node (0, 4, 8, 12) of level 2 using the children (0, 8) and (4, 12)
we obtain: lev2[0] = lev3[0] + lev3[4]ω0

4 , lev2[8] = lev3[0] − lev3[4]ω1
4 and

lev2[4] = lev3[8] + lev3[12]ω0
4 , lev2[12] = lev3[8]− lev3[12]ω1

4.

When computing a specific level `, we can observe that the two input values
of each butterfly are situated at the same distance of 2` from each other.
For instance, the input values of the butterflies composing level 3 are (0, 8),
(4, 12)...(7, 17), with a distance of 8 = 23. Hence, we only need to know
the values from the red nodes and we can obtain the corresponding green
nodes values by adding 2`. Furthermore, we can group the butterflies by
the twiddle factor they use. In other words, for ωi we group all the values
from the position i in the red nodes. If we order these values, we will obtain
groups of consecutive numbers: for level 3 we get (0, 1, 2, 3, 4, 5, 6, 7), for
level 2 (0, 1, 2, 3) and (8, 9, 10, 11), for level 1 (0, 1), (4 ,5), (8, 9) and (12,
13), and for level 0 (0), (2), (4), (6), (8), (10), (12) and (14). There are 2`

consecutive numbers in a group and the distance between the first number
in a group and the first from the next one is 2`+1.

The GS NTT can be represented in the same manner as the CT NTT, but
in this case the red nodes will contain the first half values of the parent (the
left indexes) and the green nodes will contain the second half values of the
parent (the right indexes). This time we will count the levels bottom-up,
such that the parents of the leaves will be on level 0 and the root on level
log n− 1. We will look again only at the red nodes values, as the green ones
are obtained by adding 2`. Moreover, we can still group the butterflies by
the twiddle factor they use. With the new level definition, the groups size is
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2logn−`−1. The groups do not contain consecutive values this time, the gap
between elements being 2`+1. The distance between the first number in a
group and the first value from the next one is 1.

We will not explicitly describe the corresponding INTT algorithms as the
only difference from the NTT algorithms is that the twiddle factors contain
negative powers instead of positive ones.

As Kyber uses the negative wrapped convolution defined in Section 2.2, we
have to take again into consideration the 2n′th primitive root of unity ψ
and the multiplication with n−1 from the definition of Kyber’s INTT. As
a consequence, the only aspects that are changing in the above-described
examples are the twiddle factors that now also take into account the second
root of unity and the multiplication with the inverse of n at the end of the
INTT.

4.2 Kyber Choices for the NTT

In order to save memory, Kyber computes the iterative (I)NTT’s in-place,
meaning that no auxiliary vectors are required to store intermediate results.
As a consequence, both algorithms described above will produce the output
in so-called ”bit-reversed” order. For example, for a vector a = (a0=00b,
a1=01b, a2=10b, a3=11b) with indexes on 2 bits, the bit-reversed order of a is a’
= (a0=00b, a2=10b, a1=01b, a3=11b), where b indicates the binary representation
of the index. This would typically imply the existence of an extra function
that transforms a bit-reversed ordered vector into the normal ordered vector.

Another common optimization used in Kyber is to precompute and store
the twiddle factors in memory. This is done in such a way that they can be
fetched in the right order by the algorithms. Because of the negative wrapped
convolution (defined in Section 2.2), the twiddle factors are a product be-
tween powers of ψ and powers of ω. Roy et al. [35] showed how to merge
powers of ψ with powers of ω in a forward Cooley-Tukey NTT that accepts
input in normal order and produces output in bit-reversed order. Similarly,
Pöppelmann et al. [30] showed how to merge the powers of ψ−1 with the
powers of ω−1 in an inverse Gentleman-Sande INTT that accepts input in
bit-reversed order and produces the output in normal order. By using these
two techniques, Kyber eliminates the need for additional transformations of
the bit-reversed order into normal order. The following code listings are
taken from the reference implementation of Kyber1. The CT forward NTT

1https://github.com/pq-crystals/kyber
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used in Kyber round 1 is illustrated in Listing 4.2.1, the CT butterfly being
described between the lines 11–17. The GS inverse NTT used in Kyber round
1 can be seen in Listing 4.2.2 with its specific butterfly between lines 11–19.
Lines 24–25 of the GS algorithm reproduce the multiplication of the result
with n−1ψ−i, the powers of ψ being fetched in bit-reversed order.

1 void ntt(uint16_t *p){

2 int level, start, j, k;

3 uint16_t zeta, t;

4

5 k = 1;

6 for(level = 7; level >= 0; level--){

7 for(start = 0; start < KYBER_N; start = j + (1<<level)){

8 zeta = zetas[k++];

9 for(j = start; j < start + (1<<level); ++j){

10

11 t = montgomery_reduce((uint32_t)zeta * p[j + (1<<level)]);

12 p[j + (1<<level)] = barrett_reduce(p[j] + 4*q - t);

13

14 if(level & 1) // odd level

15 p[j] = p[j] + t; // Omit reduction (be lazy)

16 else

17 p[j] = barrett_reduce(p[j] + t);

18

19 }

20 }

21 }

22 }

Listing 4.2.1: CT NTT (Kyber round 1)
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1 void invntt(uint16_t * p){

2 int start, j, jTwiddle, level;

3 uint16_t temp, W;

4 uint32_t t;

5

6 for(level=0;level<8;level++){

7 for(start = 0; start < (1<<level);start++){

8 jTwiddle = 0;

9 for(j=start;j<KYBER_N-1;j+=2*(1<<level)){

10 W = omegas_inv_bitrev_montgomery[jTwiddle++];

11 temp = p[j];

12

13 if(level & 1) // odd level

14 p[j] = barrett_reduce((temp + p[j + (1<<level)]));

15 else

16 p[j] = (temp + p[j + (1<<level)]); // Omit reduction (be lazy)

17

18 t = (W * ((uint32_t)temp + 4*q - p[j + (1<<level)]));

19 p[j + (1<<level)] = montgomery_reduce(t);

20 }

21 }

22 }

23

24 for(j = 0; j < KYBER_N; j++)

25 p[j] = montgomery_reduce((p[j] * psis_inv_montgomery[j]));

26 }

Listing 4.2.2: GS INTT (Kyber round 1)

Because of the change in the definition of the NTT in round 2 (see Section
3.2), the code for the CT NTT and the GS INTT is also slightly different. As
the vectors in Kyber are of size n = 256, the NTT’s should have 8 = log(256)
levels which is the case for round 1. However in round 2 the new NTT
definition requires only 7 levels. Aside from this adjustment, all the values
in round 2 are represented as 16-bit signed integers instead of using 16-bit
unsigned integers like in round 1. Round 2’s butterflies are slightly modified
as well. More precisely, they differ in the way Barrett and Montgomery
reductions (both explained in the next sections) are applied. The C reference
code of the CT NTT from Kyber round 2 is illustrated in Listing 4.2.3 with
the CT butterfly between lines 13–15 and the C reference code of GS INTT
can be seen in Listing 4.2.4 with the GS butterfly between lines 12–15. Also,

24 CHAPTER 4. EFFICIENT NTT IN KYBER



D.O.C Greconici 4.2. KYBER CHOICES FOR THE NTT

at the end of the CT NTT a Barrett reduction is applied to each coefficient
(see lines 17–18).

1 void ntt(int16_t r[256]) {

2 unsigned int len, start, j, k;

3 int16_t t, zeta;

4

5 k = 1;

6 for(len = 128; len >= 2; len >>= 1) {

7 for(start = 0; start < 256; start = j + len) {

8 zeta = zetas[k++];

9 for(j = start; j < start + len; ++j) {

10 t = montgomery_reduce((int32_t)zeta*r[j + len]);

11 r[j + len] = r[j] - t;

12 r[j] = r[j] + t;

13 }

14 }

15 }

16

17 for(j=0;j<KYBER_N;j++)

18 r[j] = barrett_reduce(r[j]);

19

20 }

Listing 4.2.3: CT NTT (Kyber round 2)

CHAPTER 4. EFFICIENT NTT IN KYBER 25



4.3. MODULAR REDUCTIONS D.O.C Greconici

1 void invntt(int16_t r[256]) {

2 unsigned int start, len, j, k;

3 int16_t t, zeta;

4

5 k = 0;

6 for(len = 2; len <= 128; len <<= 1) {

7 for(start = 0; start < 256; start = j + len) {

8 zeta = zetas_inv[k++];

9 for(j = start; j < start + len; ++j) {

10 t = r[j];

11 r[j] = barrett_reduce(t + r[j + len]);

12 r[j + len] = t - r[j + len];

13 r[j + len] = montgomery_reduce((int32_t)zeta*r[j + len]);

14 }

15 }

16 }

17

18 for(j = 0; j < 256; ++j)

19 r[j] =montgomery_reduce((int32_t)r[j] * zetas_inv[127]);

20 }

Listing 4.2.4: GS INTT (Kyber round 2)

4.3 Modular Reductions

Because we are working with polynomials in Rq, all coefficients have to be
reduced modulo q. As efficient modular reduction algorithms, Kyber uses
Montgomery reduction [28] after multiplications and Barrett reduction [6]
after additions and subtractions.

4.3.1 Montgomery Reduction

Montgomery reduction [28] is an algorithm used in fast multiplication mod-
ulo q of integers in Montgomery domain. We can transform an integer a into
Montgomery domain (representation) by multiplying it with a factor R (to
be defined later), followed by a reduction modulo q. When multiplying two
numbers aR and bR in Montgomery domain we obtain abR2 mod q which is
not anymore in the domain. In order to convert the result back to the Mont-
gomery representation we would multiply it with R−1 mod q and then we
would still need to reduce it modulo q. By using the Montgomery reduction
instead, we will get the same outcome, but more efficiently. To get numbers

26 CHAPTER 4. EFFICIENT NTT IN KYBER



D.O.C Greconici 4.3. MODULAR REDUCTIONS

from Montgomery domain into the normal representation, we would apply
again the Montgomery reduction.

For a modulus q and an integer R = 2k, with gcd(q, R) = 1 and with q′ =
−q−1 mod R, the Montgomery reduction of a consists of the following steps
[23].

� Compute u = a · q′ mod R,

� Compute a · R−1 mod q as (a + uq) � k, where � represents right
shifting.

1 uint16_t montgomery_reduce(uint32_t a){

2 uint32_t u;

3

4 u = (a * qinv);

5 u &= ((1<<rlog)-1);

6 u *= q;

7 a = a + u;

8 return a >> rlog;

9 }

Listing 4.3.5: Unsigned Montgomery Reduction (Kyber round 1)

The trade-off in multiplying integers modulo q in Montgomery representation
is that for each multiplication we first need to transform the numbers into
the Montgomery domain, which is costly. As all multiplications inside the
NTT involve a constant (a twiddle factor), Kyber can avoid this trade-off
by precomputing and storing these values in Montgomery domain. When
multiplied with a value outside the domain (a butterfly entry), the result
will be of form abR, but not congruent modulo q. Because of the factor R,
we can apply Montgomery reduction over the product and obtain the desired
product ab mod q.
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1 int16_t montgomery_reduce(int32_t a) {

2 int32_t t;

3 int16_t u;

4

5 u = (int16_t)(a * qinv);

6 t = (int32_t)u * q;

7 t = a - t;

8 t >>= 16;

9 return (int16_t)t;

10 }

Listing 4.3.6: Signed Montgomery Reduction (Kyber round 2)

Round 1 of Kyber uses a variant of Montgomery reduction applied on un-
signed numbers. This reduction is used in the Listing 4.2.1 at line 11 and
in the Listing 4.2.2 at lines 19 and 25. For this round the prime q is 7681
and k is 18. Hence R = 218 and q′ = −7681−1 mod 218 ≡ 7679. Kyber’s
C reference implementation of the unsigned Montgomery reduction can be
viewed in Listing 4.3.5. In the listed code q′ is identified as ”qinv” and k
as ”rlog”. For this round the input is needs to be a positive integer in the
interval {0, ..., 2281446912} and the output will be a positive integer in the
interval {0, ..., 213 − 1}.

Round 2 of Kyber uses a signed version of the algorithm listed in Listing
4.3.6. For this round the prime q is 3329, k is 16 and R = 216. For the signed
algorithm we compute q′ as q′ = q−1 mod R so q′ = 3329−1 mod 218 ≡
7679. Again, in the code q′ is identified as ”qinv”. For round 2 the input
needs to be an integer in the interval {−215q, ..., 215q − 1} and the output
will be an integer in the interval {−q + 1, ..., q − 1}.

4.3.2 Barrett Reduction

Barrett reduction [6] is a well-known algorithm that efficiently computes a
mod q. An intuitive way of achieving this reduction would be to first divide
a by q and then subtract the floor of the result from a. However, as divisions
are expensive, Barrett’s idea is to approximate 1/q by m/2k and replace the
division with a right shift (i.e. a/n = a ·m/2k = (a ·m)� k). The first step
in computing Barrett reductions is to choose a k and set m to be the closest
integer less or equal to 2k/q.

Round 1 of Kyber uses a variant of Barrett reduction applied on 16-bit un-
signed integers. The C reference code of this algorithm is illustrated in
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Listing 4.3.7. By choosing k=16, the algorithm is simplified to the formula
r = a− (a� 13) · q and it outputs an integer modulo 7681 between 0 and a
number on 14 bits, namely 11768 [12].

Round 2 of Kyber uses a variant of Barrett reduction applied on 16-bit signed
integers. The corresponding C reference code can be seen in Listing 4.3.8.
This time the value of k is 26, and the computation of m (variable v in the
code) is approximated to the closes integer up instead of down. The function
outputs an integer modulo 3329 between 0 and 3329.

1 uint16_t barrett_reduce(uint16_t a){

2 uint32_t u;

3

4 u = a >> 13;

5 u *= q;

6 a -= u;

7 return a;

8 }

Listing 4.3.7: Unsigned Barrett Reduction (Kyber round 1)

1 int16_t barrett_reduce(int16_t a) {

2 int32_t t;

3 const int32_t v = (1U << 26) / q + 1;

4

5 t = v * a;

6 t >>= 26;

7 t *= q;

8 return (int16_t)(a - t);

9 }

Listing 4.3.8: Signed Barrett Reduction (Kyber round 2)

Lazy Reduction. An additional optimization for round-1 Kyber is to apply
Barrett reduction after the additions every second level instead of applying
it every time. This is called lazy reduction. It is possible because the initial
input is at most 14 bits and there is at most 1 bit of carry after each addition.
So, after two addition the output can be of maximum 16 bits which fits in
the 16-bit variables.
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5. Kyber on RISC-V

5.1 RISC-V ISA

RISC-V is a relatively new open source instruction set architecture (ISA)
having its origin at the University of California, Berkley. As the name sug-
gests, it is based on RISC (Reduced Instruction Set Computer), meaning
that it consists of a small number of simple instructions that can be put
together to construct more complex behavior.

The RISC-V user-level (unprivileged) ISA includes a base integer instruction
set that must be present in any implementation and some other optional in-
struction sets. At the moment of writing, the base integer ISA has two frozen
versions: RV32I (for 32-bit machines) and RV64I (for 64-bit machines). Be-
sides these, there are another two ISA’s that have a draft status: RV128I for
a 128-bit machine and RV32E a 32-bit version designed for micro-controllers.
The standard extensions to the basic ISA are comprised of the integer multi-
plication and division ISA (denoted by M), the atomic ISA (denoted by A),
the single-precision floating point ISA (denoted by F), the double-precision
ISA (denoted by D) and the compressed instructions ISA. In this thesis we
are using the RV32I ISA with the multiplication and division extension. The
following lines will give an overview of the chosen instruction sets, based on
the RISC-V instruction set manual, version 2.2 [38].

Registers. The RV32I ISA consists of 32 integer general purpose registers
x0–x31, each having a fixed size of one word (32 bits). Depending on their
purpose, these registers have specific names. For example, x1 stores the
return address ra, x2 the stack pointer sp, x4 the thread pointer tp and x3
the global pointer gp. The register x0 is also called zero because it always
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contains the value 0. Any write to this register is ignored. The function
arguments are stored in the registers x10–x17, also known as a0–a7, and for
the return values the registers a0 and a1 are reused. The temporary registers
t0–t6 correspond to x5–x7 and x28–x31, and the rest of the registers x8–
x9, x18–x27 are used as programmer variables s0–s11.

Calling Conventions. One of the RISC-V’s calling conventions is to pass
the first eight integer and pointer arguments of a function into the registers
a0–a7 and if more arguments are needed, they are pushed on the stack.
Similarly, the return value(s) of a function will be put in the registers a0 and
a1. The caller (the calling function) needs to save the values of the registers
a0–a7, t0–t7 and ra before calling a new function, otherwise their values
will be lost. The calee (the function being called) can freely use the registers
a0–a7, t0–t7 and ra. If the registers s0–s12, tp, sp and gp are needed,
the callee has to save their current values, and restore them at the end of its
execution.

Instructions. RV32I has a reduced instruction set divided into several
categories. The arithmetic and logical instructions are add(i), sub, xor(i),
or(i) and and(i). In general, the letter i from some instructions indicates an
operation with an immediate. In RISC-V, the immediate can be represented
on maximum 12 bits that are signed-extended to 32 bits before performing an
operation. Because of this size restriction, there are two additional arithmetic
instructions (lui and auipc) that help constructing up to 32-bit constants.
To be noted that there is no subtraction with an immediate, as it can be
translated into an addition with a negative immediate. The move instruction
that is common in other assembly languages is replaced here with an addition
with zero(i.e. mov rd,rs becomes add rd,rs,zero or addi rd,rs,0). Lastly, the
bit-wise negation of a register r (i.e. not r) becomes xori r,-1.

Another type of instructions are loads and stores. The instructions belonging
here are: lb/sb (load/store byte), lh/sh (load/store half-word) and lw/sw
(load/store word). We can also choose to load an unsigned half-word (lhu)
or an unsigned byte (lbu). Store and load instructions take as arguments one
register keeping the value to be stored/loaded, another register containing
the base address and an immediate representing the offset of the address.
The only way of specifying the offset in a store/load instruction is through
an immediate and it cannot be pre-computed and saved into a register.

The shift instructions comprises of logical left/right shifts (sll(i),srl(i)) and
arithmetical shifts (sra(i)). RISC-V does not have any rotation instructions.
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Branching is done through the conditional jump instructions beq, bne,
blt(u), bge(u). Each of these instructions compares the value of its first
two operands (two registers) and if the condition is true it jumps to the ad-
dress pointed by the third operand which is relative to the program counter.
There are also two unconditional jump instructions: jal and jalr. The first
one jumps to the destination address relative to the program counter and the
second one to an absolute address given by a register.

The M extension covers multiplications, divisions and remainders. As mul-
tiplication of two 32-bit integers can result into a 64-bit integer, RISC-V
requires two steps (instructions) to compute the complete result. One of
them computes the lower 32 bits of the result (mul) and the other computes
the upper 32-bits of the result. For a signed/unsigned multiplication the sec-
ond used instruction is mulhsu, for a signed multiplication it is mulh and
for an unsigned it is mulhu. Division is signed or unsigned (div(u)) and
the signed/unsigned reminder can be obtained by rem(u).

5.2 NTT Optimization on RISC-V

The focus of this thesis is to make the NTT and INTT faster by optimizing
them at the assembly level on a RISC-V architecture. In other words, we
aim to reduce the number of cycles these functions take. Common platform-
independent practices for optimizing code for speed are to unroll loops, re-
duce memory access (loads and stores) and reduce the function calls and
conditional statements. In addition, there are also platform-dependent opti-
mization choices to be made based on the specific instruction set, the number
of available registers, instruction latency, cache memory etc. In the RISC-V
architecture there are 32 general-purpose registers from which only 29 are
safe to rewrite (i.e., we cannot change the stack pointer as we will lose the
position to the top of the stack). Compared to other architectures RISC-V
has a significant number of usable registers (e.g. ARMv7E-M instruction set
has only 14 usable registers [13, Section 2.3]). In consequence, we are able
to both save constant values in registers such that we do not have to load
them every time and to reduce memory access by loading multiple values at
a time (see Appendix A for the registers map). More specific details will be
given in the rest of this chapter. In general optimizing cryptography requires
more attention than optimizing generic software as we need to be careful to
not leak secret information via side channels. One of the most common side
channel attacks that can be prevented from software are timing attacks. As
Kyber does not use secret-dependent branches or lookup tables, this type of
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attacks are not feasible. As a consequence no special optimization techniques
are required for the NTT and INTT. For a complete overview of Kyber and
side channel attacks please have a look at [4, Section 4.5.2].

We start our optimization with the smallest blocks in the NTT/INTT (Bar-
rett and Montgomery reductions) and then we build the butterflies on top of
them. Finally, we optimize the full NTT/INTT. For a more readable code
we use assembly macros to define the basic routines inside the NTT/INTT
(for Montgomery reduction, Barrett reduction and the butterflies). Some-
times we need auxiliary registers to compute the block inside a macro. As
it is not known which registers will be free when invoking a macro, we add
the auxiliary registers to the arguments of the macro (the ones starting with
\temp in the assembly listings) and decide later (at the ”calling” time) which
registers are free. In the reference C code, the 256-coefficient polynomials are
represented by vectors of 256 values of 16 bits each, either unsigned (round 1)
or signed (round 2). As the registers of RISC-V are on 32 bits and the values
we are processing are on 16 bits, one could think it is efficient to load and
store two values at a time into one register. However, the RV32I is designed
to operate on 32-bit values and there are no instructions that facilitate pro-
cessing the 16 upper/lower bits in parallel. Consequently, there is no gain in
loading two values at a time as in the end we would need to process them
one by one anyway. Besides, we would need to manually unpack them into
two 32-bit registers, compute everything individually and repack them. The
unpacking and packing introduce new instructions for extracting the lower
and upper halves via bit-masking. Therefore, the most efficient way is to
load and store 16 bits at a time which we do by using the instructions lh,
lhu and sh.

5.2.1 Modular Reductions.

Listing 5.2.9 and Listing 5.2.10 illustrate our RISC-V assembly optimization
for the unsigned version of the Barrett and Montgomery reductions in round
1, respectively for the signed version in round 2. For all presented macros the
first argument represents the value to be reduced and it will also contain the
result. The rest of the arguments are either the constants needed in these
reductions or the auxiliary registers.

We would ideally pass all constants by value in the instructions that support
an immediate operand. Considering that an immediate value in RISC-V is
represented as 12 bits signed, the maximum positive value that a constant
can take is 2047. Some constants from the Montgomery and Barrett reduc-
tions are bigger than this maximum value and thus they cannot be used as
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operands. Because RISC-V has a sufficient number of usable registers we
permanently store the constants bigger than 2047 in registers during the en-
tire execution of one NTT/INTT. In this way we avoid loading them every
time we call a reduction macro.

All the multiplications inside the reductions are dealing with 16-bit numbers,
therefore we would only need the mul instruction to compute the lowest 32
bits. If the result has to be only 16 bits long, we need to truncate it and
for the signed representation to also sign-extend it. In general our assembly
implementation for the reductions follows intuitively from the corresponding
C reference code (see section 4.2). In the reference code for round 1 all 16-bit
unsigned multiplications inside the reductions result into a 32-bit integer, so
no further operations are needed.

For the Barrett reduction in round 2, both multiplications are stored into
a 32-bit signed variable and by only using the mul instruction we already
obtain the correct result with no further processing. The right shift from the
reference implementation is translated into an arithmetic right shift in the
assembly (i.e. it maintains the sign of the number). This is valid for all right
shifts that we are performing on signed integers.

According to the reference code of round 2, the result of the first multipli-
cation in the Montgomery reduction must be a 16-bit signed number. What
we would typically do is to use the mul instruction to get the first 32 bits
of the result, discard the most significant 16 bits, then bring the result back
to the original position and sign extend it to 32-bits. We would do this by
shifting the result 16 bits to the left and then using a 16-bit arithmetic right
shift. In the end this multiplication would take 3 instructions. However, we
can optimize it such that we eliminate the shift operations. The first step
is to shift the values of q and qinv with 16 bits to the left and store these
values in registers so that we only compute these operations once (for the
registers map please have a look in Appendix A). We will name these values
q 2=q�16 and qinv 2=qinv�16. In this way the lowest 16 bits of these
constants will be 0 and the highest 16 bits will contain the actual value. The
first multiplication will now compute a·qinv 2 which gives the same result as
before, but positioned in the upper half of the result register instead of in
the lower half. The advantage is that the result is now automatically trun-
cated to 16 bits and the sign bit of the result coincide with the sign bit of
the register, so no sign-extension needed. The next step is to multiply this
outcome with the value of q 2. Because both 32-bit operands have the least
significant 16 bits equal to 0, the first 32 bits of the result will also be 0.
In conclusion we are interested in the highest 32 bits of the result which we
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obtain by using the instruction mulh. No further steps are required as in
the reference code this result is a signed integer on 32 bits, the same as the
output of the mulh instruction.

1 .macro montgomery a,qinv,q,

2 temp0,temp1,mont_const

3

4 mul \temp0,\a,\qinv

5 and \temp0,\temp0,\mont_const

6 mul \temp1,\temp0,\q

7 add \a,\a,\temp1

8 srli \a,\a,18

9 .endm

10

11

12

13 .macro barrett a,q,

14 temp0,temp1

15

16 srli \temp0,\a,13

17 mul \temp1,\temp0,\q

18 sub \a,\a,\temp1

19 .endm

Listing 5.2.9: Unsigned Mont-
gomery and Barrett (round 1)

1 .macro montgomery_2 a,qinv_2,

2 q_2,temp0,temp1

3

4 #qinv_2 is qinv<<16

5 #q_2 is q<<16

6 mul \temp0,\a,\qinv_2

7 mulh \temp1,\temp0,\q_2

8 sub \a,\a,\temp1

9 srai \a,\a,16

10 .endm

11

12 .macro barrett_2 a,q,

13 const,temp0,temp1

14

15 mul \temp0,\const,\a

16 srai \temp0,\temp0,26

17 mul \temp1,\temp0,\q

18 sub \a,\a,\temp1

19 .endm

Listing 5.2.10: Signed Mont-
gomery and Barrett (round 2)

5.2.2 Butterflies.

Listing 5.2.11 and Listing 5.2.12 list our RISC-V approach for the butter-
flies in round 1 and round 2, respectively. The first two arguments of the
butterflies represent the two input values to be processed and the third one
is the corresponding twiddle factor. Because we are calling the Barrett and
Montgomery reductions inside the butterflies, we also need the constants
these macros use and auxiliary registers. Therefore the rest of the butterfly
arguments lie in this category.

The fist macro of each listing refers to the CT butterfly and the second macro
of each listing refers to the GS butterfly (we call it in the code butterfly inv
as it belongs to the INTT). For round 1 we remove the conditional statement
used for the lazy reduction in both CT and GS butterflies by splitting each
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of them into one that is applied in odd levels (odd butterfly) and one that is
applied in even levels (even butterfly). For the CT butterfly we apply Barrett
reduction after computing the right term when the level is even, whereas for
the GS butterfly we apply a Barrett reduction after computing the left term
when the level is odd. For round 2 there is no lazy reduction so there is only
one version of butterfly for the forward NTT and one version for the INTT.

1 .macro butterfly_even left,right,zeta,q4,qinv,q,temp0,temp1,

2 t,mont_const

3

4 mul \t,\zeta,\right

5 montgomery \t,\qinv,\q,\temp0,\temp1,\mont_const

6 add \right,\left,\q4

7 sub \right,\right,\t

8 add \left,\left,\t

9 barrett \right,\q,\temp0,\temp1

10 #Even level only

11 barrett \left,\q,\temp0,\temp1

12 .endm

13

14

15

16 .macro butterfly_inv_odd left,right,omega,q4,qinv,q,temp0,

17 temp1,temp2,mont_const

18

19 add \temp2,\left,x0

20 add \left,\left,\right

21 #Odd level only!

22 barrett \left,\q,\temp0,\temp1

23 add \temp2,\temp2,\q4

24 sub \temp2,\temp2,\right

25 mul \right,\omega,\temp2

26 montgomery \right,\qinv,\q,\temp0,\temp1,\mont_const

27 .endm

Listing 5.2.11: Butterflies Round 1
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1 .macro butterfly2 left,right,zeta,qinv_2,q_2,temp0,temp1,temp2

2 mul \temp0,\zeta,\right

3 montgomery_2 \temp0,\qinv_2,\q_2,\temp2,\temp1

4 sub \right,\left,\temp0

5 add \left,\left,\temp0

6 .endm

7

8

9

10 .macro butterfly2_inv left,right,zeta,qinv_2,q,bar_const,temp0,

11 temp1,temp2,q_2

12

13 add \temp0,\left,x0

14 add \left,\left,\right

15 barrett_2 \left,\q,\bar_const,\temp1,\temp2

16 sub \temp0,\temp0,\right

17 mul \right,\temp0,\zeta

18 montgomery_2 \right,\qinv_2,\q_2,\temp0,\temp1

19 .endm

Listing 5.2.12: Butterflies Round 2

5.2.3 NTT and INTT.

Once we have optimized the reductions and the butterflies, we integrate them
into the NTT/INTT. The first step we take is to unroll the outer layer of the
NTT/INTT. More specifically we obtain one NTT/INTT loop for each level
(8 levels for round 1 and 7 levels for round 2). For round 1 we use the odd
butterflies in the odd levels and the even butterflies in the even levels. At
this point we aim to reduce the number of load and store instructions. We
know that for each level, after we select two matching entries to compute a
butterfly, we put the result back in the same spots. What we can do instead of
storing the result back is to look at the next consecutive level at the same two
positions and see for each of them which is the other corresponding butterfly
component. We can see that these two new positions form a butterfly in
the previous level. For example, if we want to merge level 7 and 6 for our
256-coefficient NTT we can see that position 0 matches position 128 in level
7. In level 6, 0 matches 64 and 128 matches 192, but 64 and 192 are also a
pair in level 7. Therefore, we could merge two levels by iterating 64 times
(256/4) over the input and loading 4 values at a time. We would compute 4
butterflies (2 per level) and afterwards store the 4 results.
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Following this logic and given the large number of registers in RISC-V, we
are able to merge a maximum of 4 consecutive levels and load 16 values at a
time, computing 32 butterflies (8 per level) before storing the 16 results. For
the NTT we merge levels 7–4 and 3–0 for round 1 and 7–4 and 3–1 for round
2. Similarly, for the INTT we merge levels 0–3 and 4–7 for round 1 and levels
1–3 and 4–7 for round 2. Table 5.2.3 illustrates how we are choosing the first
16 values to be loaded when merging the NTT levels 7 (top row of the table)
to 4 (bottom row of the table). Each sequence of red numbers in the table
is matched with the succeeding sequence of blue numbers. We can see that
the distance between two consecutive loaded values is 16. As the load and
store instructions use a base address and an offset we only need to know
the address of the first value to be loaded and use the values in the table as
offsets to load all 16 butterflies values. In order to cover all 256 values of the
NTT we iterate over the first 16 elements of the input vector which we use
as base addresses.

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240
0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

Table 5.1: Index matching for merging NTT levels 7–4

After each level, the distance between two butterfly entries halves, therefore
from level 3 to 0 these distances are 8, 4, 2 and 1. This means that in order
to merge levels 3–0 (or 3–1) we will first load the values from the positions 0
to 15. We iterate through the input vector with the step 16 to get the base
addresses and we load the butterflies values using the offsets 0 to 15. For
round 2 we do not compute level 0, so we are computing only 24 butterflies
between loading and storing the 16 values.

For the INTT we merge the levels in the same way as for the NTT. The
difference is that now the levels start from 0 to 7 (or 1 to 7), meaning that
we first compute levels 0–3 (or 1–3) and then levels 4–7. Table 5.2.3 shows
how we choose the first 16 indices for merging levels 1–3 in round 2. For the
NTT we do the same, but instead we interpret the same table bottom-up.

After computing all levels in the INTT in round 1 and round 2, a multipli-
cation by n−1ψ−i (see the definition of INTT in section 2.2 and the reference
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 5.2: Index matching for merging INTT round 2, levels 1–3

code in section 4.2) followed by a Montgomery reduction is performed for
each coefficient of the resulting vector. This implies that 256 values are
loaded, processed and then stored back. We eliminate these additional loads
and stores by integrating these operations into the merged block for levels
4–7. More specifically, we compute the multiplication and then the Mont-
gomery reduction after computing level 7 (the last one) of the INTT and
before storing the results. Similarly, we integrate the Barrett reductions that
are applied at the end of the NTT round 2 for each coefficient. We integrate
it in the merged block for levels 3–1 after computing the butterflies of level
1. We again eliminate 256 load and 256 store instructions.

What is left to discuss is how we integrate the twiddle factors. We use the
same pre-computed twiddle vectors as in the reference code. Because we do
not have registers left to store these values beforehand, we load them each
time we need them. Thus for levels 3 and 7 we load 1 twiddle and compute
8 butterflies with it, for levels 2 and 6 we load 2 twiddles and computer 4
butterflies with each. In levels 1 and 5 we load 4 twiddles and compute 2
butterflies with each and in levels 0 and 4 we load 8 twiddles and compute 1
butterfly with each. For the NTT in both rounds and for the INTT in round
2, levels 4–7 require in total 15 different twiddle factors. The same levels in
round 1 INTT use in total 8 different twiddle factors: 1 of them in level 7, 2
in level 6, 4 in level 5 and all of them in level 4. For the levels 4–7 these values
are loaded in consecutive order from the input vector. This is not the case for
levels 0(1) to 3 which makes it difficult to load the correct twiddles as we do
not have enough free registers to compute the right position. As a solution,
we rearrange the twiddle factors in a new vector for each NTT/INTT such
that we can fetch them one after another without any computations in the
assembly code. We use a Python script to generate the new twiddle factors
from the input vector. In total, levels 0–3 use 240 twiddles and levels 1–3
use 128 twiddles, thus these are also the sizes of the generated vectors.

5.2.4 Instruction Interleaving Round 2

In the simulator where we test out code (see Chapter 6) we observed that
not all instructions have the same latency. After several tests we concluded
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that most of the instructions that we are using have a latency of 1 cycle, with
some exceptions: the instructions sra(i), sll(i) have a latency of 2 cycles and
the instructions mul, mulh, lh(u), lw, sh, sw have a latency of 3 cycles.
As a reminder, latency is the time (cycles) we need to wait for an instruction
such that the result is ready to use. If we do not need the result earlier than
their latency, these instructions will count as 1 cycle.

As during the work on this thesis Kyber has been updated to round 2, we
are focusing more on the latest version for which we also take into account
the instructions latency. The optimization technique that we use in this
case is to interleave instructions such that while we wait for a result we can
use other instructions that do not depend on that result. For example if
we use a 3-cycle latency instruction followed by a result-dependent 1-cycle
instruction, the total cycle count will be 4 (3+1). If instead we add 2 1-cycle
result-independent instructions after, the total cycle count will be 3 (1+1+1).

Our approach for the NTT and INTT in round 2 is to interleave multiple
butterflies, Barrett reductions and Montgomery reductions. In principle if
we want to interleave more macros, we take the first instruction from each
and put them one after another, then we do the same for the rest of the
instructions. Because the largest latency we encounter is 3, we obtain the
highest optimization level by interleaving at least 3 macros. In this way
we reduce the cycle count of the highest latency instruction from 3 to 1.
A downside in merging multiple macros is that it requires more auxiliary
registers. Even though we are already using most of the registers, we can
still find sufficient free registers at the time of calling our merged macros.

For both NTT and INTT, for each level, we merge the butterflies that use
the same twiddle factor. We can do this by using few extra auxiliary registers
as we have all the values we need already stored in registers: the butterflies
values, the twiddle factor and the reductions constants. When grouping the
butterflies by the twiddle factor we can merge 2, 4 or 8 butterflies.

In the NTT we do not have any Barrett reductions inside the butterflies,
but we compute 16 Barrett reductions at the end of level 0. We manage to
reduce the cycle count of all instructions in the Barrett reductions to 1, by
interleaving 4 of them and applying the merged macros 4 times. We cannot
interleave the Montgomery reductions because we do not have registers left
for this purpose.

In the INTT however, both Montgomery and Barrett reductions are per-
formed at the end of computing the left and the right result of the butterflies.
Therefore we can remove the reductions from the butterflies and apply all
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the reductions at the end of the level. As there are 16 values in total and half
of them need a Barrett reduction and the others a Montgomery reduction,
we are merging 4 Barrett reductions and 4 Montgomery reductions and we
apply each of them 2 times. By doing this we again reduce all instructions
cycle count from the reductions to 1. For the multiplication followed by a
Montgomery reduction at the end of level 7, we first compute all multiplica-
tions, and then all reductions. If we compute the multiplications one after
another we do not use their result immediately, therefore we reduce all multi-
plications from 3 cycles to 1. For the Montgomery reductions we call 4 times
4 interleaved Montgomery macros. A single Montgomery reductions takes 8
cycles when the result is not immediately used, and 9 cycles if the result is
immediately used. Thus 4 independent Montgomery reductions use 32/36
cycles, while 4 interleaved Montgomery reductions use 16 cycles. Similarly
4 Barrett independent reductions will take 36 (4·9) cycles and 4 interleaved
Barrett reductions will take 16 cycles.

Moreover, when we load and store the 16 butterflies values together we au-
tomatically use the interleaving technique. This is because we are applying
these 16 operations one after another and in this way we do not use their
result immediately. Thus, their cycle count will be 1 instead of 3.
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6. Results

Testing Environment. Before presenting our results, we mention that we
integrate our code into the pqriscv 1 framework and we use it as a starting
point for compilation and testing. This is a work-in-progress repository which
currently aims to integrate and benchmark multiple post-quantum schemes
implementations on RISC-V. We start our optimization from the reference
code of Kyber2 and we use the Keccak included with pqriscv. Although the
Keccak permutation has recently been optimized for the RISC-V architecture
in [37] and it is faster than the permutation we currently use, the overall speed
of the optimized Keccak is slower compared to the version we currently use.
This is because the optimized permutation requires changing the rest of the
Keccak implementation to perform bit interleaving which results into more
computations.

We run our code on a 32-bit RISC-V CPU simulator taken from PQVexRiscV 3.
This repository is a test-platform created specifically for the pqriscv project
and it is based on VexRiscv 4. The latter is a public 32-bit RISC-V CPU
implementation written in SpinalHDL5.

Speed. We compile our code using the riscv64-unknown-elf-gcc com-
mand from the RISC-V GNU toolchain6 with the following compiling options:
-O3 -fno-common. These options are taken from the Makefile of the pqriscv
project. For measuring the speed we use the get cycles() function before

1https://github.com/mupq/pqriscv
2https://github.com/pq-crystals/kyber/tree/master/ref
3https://github.com/mupq/pqriscv-vexriscv
4https://github.com/SpinalHDL/VexRiscv
5https://spinalhdl.github.io/SpinalDoc-RTD/
6https://github.com/riscv/riscv-gnu-toolchain
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and after the section of code we want to measure. We then compute the
difference between the second and the first measurement and we obtain the
cycle count. The speed results for our optimized assembly NTT and INTT
for round 1 and 2 can be seen in Table 6.1. As there is no other implemen-
tation of the NTT and INTT of Kyber on RISC-V (as far as we know) to
compare our results with, we also include in this table the cycle count of the
corresponding reference code7. Although the reference code is not meant to
be fast, we want to know where to place our results (e.g., if our code turns
out to be slower than the reference implementation, then we clearly do some-
thing wrong). We can see in the table that our optimized version of the NTT
and INTT for both round 1 and 2 is (70–83 %) faster than the corresponding
reference code, which is a significant improvement.

The performance of Kyber with our optimized assembly integrated can be
seen in Table 6.2 and Table 6.3. These tables show the cycle count for key
generation, key encapsulation and key decapsulation for round 1 and 2. As
it can be seen in the table, Keccak takes between 63–76 percent of the total
cycle count of each block, which is more than half of the scheme.

Round NTT optim INTT optim NTT ref INTT ref
1 27 390 (-71.7%) 25 669 (-70%) 96 719 82 632
2 14 348 (-72.3%) 13 742 (-82.4%) 51 832 78 067

Table 6.1: NTT and INTT cycle count for round 1 and 2

7https://github.com/pq-crystals/kyber
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Implementation Measurement Key Gen Encaps Decaps

Kyber512

Total
cycles

1 504 433 2 005 396 1 954 806

Keccak
cycles

1 130 444 1 486 761 1 261 821

Keccak
%

75.14 71.14 64.55

Kyber768

Total
cycles

2 494 852 3 091 996 3 005 500

Keccak
cycles

1 886 168 2 305 120 1 986 925

Keccak
%

75.6 74.55 66.11

Kyber1024

Total
cycles

3 914 528 4 645 965 4 560 553

Keccak
cycles

2 993 751 3 505 874 3 125 235

Keccak
%

76.48 75.46 68.53

Table 6.2: Kyber round 1 cycle count
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Implementation Measurement Key Gen Encaps Decaps

Kyber512

Total
cycles

1 218 557 1 592 689 1 515 876

Keccak
cycles

885 012 1 180 015 954 931

Keccak
%

72.63 74.09 63.0

Kyber768

Total
cycles

2 288 109 2 771 517 2 653 584

Keccak
cycles

1 701 782 2 090 040 1 771 623

Keccak
%

74.38 75.41 66.76

Kyber1024

Total
cycles

3 686 344 4 280 420 4 123 722

Keccak
cycles

2 779 870 3 261 683 2 849 933

Keccak
%

75.41 76.2 69.11

Table 6.3: Kyber round 2 cycle count
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Stack Usage. We report the stack size for Kyber in bytes in Table 6.4. To
measure the stack size we use the stack.c file from the mupq8 project. The
stack is measured by filling it with canaries (a fixed value) before a function
call and after counting how many bytes are overwritten. The stack size of
the NTT of round 1 is 60 bytes (we push 13 registers in the beginning of
the function =⇒ 13 · 4B = 52B ). The stack size of the round 2 NTT and
round 1 and 2 INTT is 64 bytes (we push 14 registers in the beginning of the
function =⇒ 14 · 4B = 56B). There are still 8 bytes from the stack for each
function that remain unexplained, which are the return address (4 bytes) and
the base pointer (another 4 bytes).

Implemen-
tation

Round 1 Round 2
KeyGen Encaps Decaps KeyGen Encaps Decaps

Kyber512 6 648 9 304 10 120 6 632 9 288 10 072
Kyber768 10 744 13 912 15 080 10 728 13 896 15 032
Kyber1024 15 864 19 544 21 064 15 848 19 528 21 144

Table 6.4: Kyber stack size (in bytes) round 1 and 2

Code Size. The code size of the NTT, INTT and the whole Kyber scheme
are shown in Table 6.5. In order to get the total code size of Kyber, we com-
pile individually all files in Kyber with the -o option in order to generate
object files. Then, we add all object files into an archive with the com-
mand riscv64-unknown-elf-ar -crs. We measure the overall size by us-
ing the command riscv64-unknown-elf-size -t on the previously-created
archive. The code size of Keccak is 7678 bytes (this number includes the files
fips202.c and keccakf1600.c from pqriscv).

Round NTT INTT Full Kyber
1 3 680 3 468 62 718
2 2 160 3 328 59 974

Table 6.5: Kyber code size (in bytes) round 1 and 2

Comparison. As far as we know there is no other software optimization
of the NTT and INTT of Kyber on a RISC-V architecture. This makes it
impossible to compare our results with others obtained on the same architec-
ture. Regarding other architectures, simply taking our results and comparing

8https://github.com/mupq/mupq/tree/e41de1a97e51394ee15db80380b2659bb109b552/

crypto_kem
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them with the cycle counts from a different architecture is meaningless. For
example, completing 1 cycle can take different amount of time for different
architectures (frequency of the clock). Also, two architectures with different
number of registers, different instruction latency and even different instruc-
tions in general can result into two distinct optimization techniques for the
same functionality. All these make it hard to compare the performance of
the same functionality on different architectures.

However, if the reader is interested in other speed optimization of Kyber on
different architectures, one example is [13, Section 2.3], which targets the
Arm Cortex-M4 architecture. For round 1 their Arm Cortex-M4 optimized
NTT is 9452 cycles and the INTT is 10373 cycles. For round 2 their NTT
takes 7725 cycles and the INTT 9347 cycles. What is common for the im-
plementations of both architectures (Arm Cortex-M4 and RISC-V) is that
Keccak takes more than half of the total cycles of Kyber (even with an opti-
mized version for Arm Cortex-M4). As a general remark, we can also observe
that compared to both Arm Cortex-M4 implementation and to the reference
code, in our optimization of round 2 the INTT is faster than the NTT. This is
due to our interleaved implementation in which we remove the Montgomery
and Barrett reductions from the butterflies and merge multiple of them only
after computing 8 butterflies (see Section 5.2.4). For the stack size, we can
see that ours is way bigger than the one in the Arm Cortex-M4 implemen-
tation, but we do not optimize anything there, while they do decrease the
stack usage [13, Section 4].
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7. Conclusion

In this thesis we have optimized round 1 and round 2 of Kyber for speed
on the RISC-V architecture. We have focused on the NTT and INTT to-
gether with the Montgomery and Barrett reductions inside these functions.
As RISC-V has a large number of reusable registers (29), our optimization
approach was to merge up to 4 levels of the NTT and INTT and significantly
reduce the store and load instructions and implicitly the overall cycle count.
In this way, we could load 16 polynomial coefficients at a time and compute
8 butterflies per level, meaning that for 4 merged levels we computed 32
butterflies before storing back the results, and for 3 merged levels, we com-
puted 24 butterflies before storing the values back. With this optimization,
for round 1, instead of using 2048 (8 levels · 256 coefficients) load and 2048
store instructions, we only used 512 (2 · 256) of each. In the same way, for
round 2, instead of using 1792 (7 levels · 256 coefficients) load and 1792 store
instructions, we only used 512 (2 · 256) of each. Moreover, for the INTT of
both rounds and for the NTT of round 2 we saved another 256 store and 256
load instructions. We did this by computing the multiplication by n−1ψ−i

at the end of the INTTs and the Barrett reductions at the end of the NTT
within the last merged block of the INTT, respectively NTT. In addition,
we optimized the Barrett and Montgomery reductions for round 1 and 2 and
integrated them inside the NTT and INTT. Lastly, for round 2 we took into
account the instructions latency, and we significantly reduced the total cycle
count by interleaving multiple of them.

With the presented techniques, we obtained for round 1 an NTT of 27390
cycles and an INTT of 25669 cycles. For round 2 we obtained an NTT of
14348 cycles and an INTT of 13742 cycles. As there is no other software im-
plementation of the NTT and INTT of Kyber on RISC-V, we have compared
our speed optimization results with the results from the reference implemen-
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tation, even though the latter is not optimized in any ways. However, our
NTT and INTT cycle count is around 70 – 80 % faster for both rounds of
Kyber, which is at least way better than the reference implementation.

As in this thesis we have put more effort in the round 2 of Kyber, it would
be interesting to see in a future work how much we can still optimize round 1
by using the interleaving technique. Another aspect that is worth improving
is the performance of Keccak. We have seen that Keccak takes more than
60% of each Kyber block (key generation, encapsulation and decapsulation)
for both rounds. A direction in improving Keccak would be to fully optimize
it in RISC-V assembly and see if we can make it faster.
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Algorithm Specifications And Supporting Documentation. Submission
to the NIST post-quantum project, 9:11, 2017. https://pq-crystals.

org/kyber.

[5] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky,
J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehlé. CRYSTALS-Kyber
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module-lattice-based KEM. In 2018 IEEE European Symposium on Se-
curity and Privacy (EuroS&P), pages 353–367. IEEE, 2018.

[13] L. Botros, M. J. Kannwischer, and P. Schwabe. Memory-Efficient High-
Speed Implementation of Kyber on Cortex-M4. In J. Buchmann, A. Ni-
taj, and T. Rachidi, editors, Progress in Cryptology – AFRICACRYPT
2019, pages 209–228, Cham, 2019. Springer International Publishing.

[14] E. Chu and A. George. Inside the FFT BLACK BOX: Serial and Parallel
Fast Fourier Transform Algorithms. CRC Press, 2000.

[15] J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation
of complex Fourier series. Mathematics of computation, 19(90):297–301,
1965.

[16] W. Diffie and M. Hellman. New directions in cryptography. IEEE trans-
actions on Information Theory, 22(6):644–654, 1976.

REFERENCES 51

https://eprint.iacr.org/2019/075
https://pdfs.semanticscholar.org/6c84/f11da1d7831fd78226892078b5d1c7304fd4.pdf
https://pdfs.semanticscholar.org/6c84/f11da1d7831fd78226892078b5d1c7304fd4.pdf
https://eprint.iacr.org/2017/1214
https://eprint.iacr.org/2017/1214
https://keccak.team/files/Keccak-reference-3.0.pdf
https://keccak.team/files/Keccak-reference-3.0.pdf


REFERENCES D.O.C Greconici

[17] M. J. Dworkin. Permutation-based Hash and Extendable-Output Func-
tions, 2105. http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.

202.pdf.

[18] P. FIPS. 197: Advanced encryption standard (AES). National Institute
of Standards and Technology, 26, 2001. https://nvlpubs.nist.gov/

nistpubs/FIPS/NIST.FIPS.197.pdf.

[19] E. Fujisaki and T. Okamoto. Secure Integration of Asymmetric and
Symmetric Encryption Schemes. In M. Wiener, editor, Advances in
Cryptology — CRYPTO’ 99, pages 537–554, Berlin, Heidelberg, 1999.
Springer Berlin Heidelberg.

[20] W. M. Gentleman and G. Sande. Fast Fourier Transforms: for fun and
profit. In Proceedings of the November 7-10, 1966, fall joint computer
conference, pages 563–578. ACM, 1966.

[21] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public
key cryptosystem. In J. P. Buhler, editor, Algorithmic Number Theory,
pages 267–288, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[22] S. R. Jintai Ding, Scott Fluhrer. Complete Attack on RLWE Key Ex-
change with reused keys, without Signal Leakage. Cryptology ePrint
Archive, Report 2017/1185, 2017. https://eprint.iacr.org/2017/

1185.

[23] J. Katz, A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone. Hand-
book of applied cryptography. CRC press, 1996.
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A. Register Map for All Opti-
mized NTTs
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RISC -V
Register

NTT r1 INTT r1 NTT r2 INTT r2

a0 *input *input *input *input
a1 *twiddles *twiddles *twiddles *twiddles
a2 kyber Q kyber Q kyber Q�16 kyber Q
a3 kyber Q�2 kyber Q�2 Qinv�16 Qinv�16
a4 Qinv Qinv *new twiddles Barrett const
a5 *new twiddles *psis inv montg Barrett const *new twiddles
a6 value14 *new twiddles loop loop
a7 value15 value15 omega omega
t0 butterfly temp butterfly temp butterfly temp butterfly temp
t1 butterfly temp butterfly temp butterfly temp butterfly temp
t2 butterfly temp butterfly temp butterfly temp butterfly temp
t3 value16 value16 value13 value13
t4 omega omega value14 value14
t5 value13 value13 value15 value15
t6 loop loop value16 value16
s0 value1 value1 value1 value1
s1 value2 value2 value2 value2
s2 value3 value3 value3 value3
s3 value4 value4 value4 value4
s4 value5 value5 value5 value5
s5 value6 value6 value6 value6
s6 value7 value7 value7 value7
s7 value8 value8 value8 value8
s8 value9 value9 value9 value9
s9 value10 value10 value10 value10
s10 value11 value11 value11 value11
s11 value12 value12 value12 value12
ra Montg const Montg const kyber Q zeta inv[127]
gp - value14 butter merge kyber Q�16

Table A.1: Register Usage for NTT and INTT round 1 and 2
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B. How to Reproduce the Re-
sults

INSTALLATION

1. Make sure that you install the RISC-V GNU toolchain. Follow the
steps from the following link:

https://github.com/riscv/riscv-gnu-toolchain

2. Make sure your current jdk is 1.8 (java -version). It does not work
with newer versions of jdk. If your jdk version is newer, run the
following commands:

sudo apt-get install openjdk-8-jre

sudo update-alternatives –config java

Choose java 8 from the list generated in the last command.

3. Install SBT from: https://www.scala-sbt.org/

For Ubuntu or Debian-based distribution, you can run the following
commands:

echo "deb https://dl.bintray.com/sbt/debian /" | sudo tee -a

/etc/

apt/sources.list.d/sbt.list

curl -sL "https://keyserver.ubuntu.com/pks/lookup?op=get&search=
0x2EE0EA64E40A89B84B2DF73499E82A75642AC823” | sudo apt-key
add

sudo apt-get update
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sudo apt-get install sbt

4. Install Verilator from: https://www.veripool.org/wiki/verilator

5. Clone the thesis project:

git clone https://github.com/denigreco/Kyber RISC V Thesis.git

6. Clone the pqriscv-vexriscv repository:

clone https://github.com/mupq/pqriscv-vexriscv.git

HOW TO REPRODUCE THE RESULTS

First, go to the folder where the thesis project is cloned and compile all levels
of Kyber using the following commands:

./build everything.py -s pqvexriscvsim kyber512

./build everything.py -s pqvexriscvsim kyber768

./build everything.py -s pqvexriscvsim kyber1024

All the binaries are generated in the bin folder.

In order to reproduce the results you need to go to the folder where vexriscv
is cloned and run the binaries one by one following the next instructions.

To get the results we are using the following template command where
crypto kem kyber512 kyber512r1 speed.bin is the name of the binary
(generated previously) we are executing:

sbt "runMain mupq.PQVexRiscvSim --init

../pqriscv/bin/crypto kem kyber512 kyber512r1 speed.bin"

Replace kyber512 with kyber768 or kyber1024 to get the results specific
to the other security levels of Kyber.

Replace r1 with r2 to get the results from round 2, and with ref1 or ref2
to get the results from the reference code of round 1 and 2. Each test has to
be run individually.

The current command produces the speed results indicated by the last word
in it: speed.

To compute how much Keccak takes in each block (key generation, encapsu-
lation and decapsulation), replace the speed word with hashing.

To get the code size of Kyber round 1 and 2, go to the the thesis folder and
then:

cd crypto kem/code size/round1
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sh code size.sh

cd ../round2

sh code size.sh
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