
Radboud University Nijmegen

Faculty of Science

Ensemble Learning with small
machine learning algorithms for
Network Intrusion Detection

Thesis MSc Computer Science

Author:
Laurent Floor

Supervisor:
Dr. ir. Lejla Batina

Second reader:
Dr. Martha Larson

July 2020



Acknowledgements

First of all, I would like to thank everyone at Accenture who has been in contact with me.
The willingness to exchange information, to help and advise me was always there. In
particular, I would like to thank Dimitri Vedeneev for his supervision and the interesting
conversations we had every week about the various aspects of digital security.

Secondly, I would like to thank professors Lejla Batina and Martha Larson of the
Radboud University for their supervision from university. Their willingness to give
advice and assess the result is indispensable.

1



Abstract

Networks are always vulnerable to unwanted access. Network intrusion detection aims
to detect these intruders. Machine learning is a technique that can provide scalable tools
to recognise and classify attack patterns, eventually to help deter or defeat certain types
of network intrusions. In this thesis, I investigate the possibilities to combine different
machine learning techniques. In this way, I want to compare the accuracy and improve
the impact on the detection rate for the individual attack classes.
In the research, I use network data from the KDD99 data set and the CICIDS2017 data
set. From these raw data I select features belonging to a certain attack class and train
individual models with Naive Bayes learning and Decision Trees.
I compare four different techniques to combine the individual models. As ensemble
methods, I investigate soft voting, hard voting, ANN and Decision Trees. As a result, I
found that with soft voting it is possible to increase both the accuracy and the F1 score
for the attack classes with a certain combination of individual models.
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1 Introduction

Just as the well-known sentence ’the only safe computer is a dead computer’ is true [21],
also the phrase ’only a dead network is secure’ is true. As long as a network exist, it is
vulnerable to intrusion. Therefore, the challenge this paper propose is to explore how
to detect such intrusions faster.

Reality shows that truth behind the previous statement. A research survey of Ac-
centure illustrates the impact of cybercrime on society [32]. The general message of the
survey is that the number of attacks is increasing as well as the economic costs. This
evolution of cybercrime is changing all the time, but the recent shift is in particular
visible in three areas.
In the past four years, there is an evolution of the cybercrime targets. Not only stealing
of hostage data is the goal of an attack, but also disrupting and destroying becomes
more relevant for cybercrime. If data is the target, a new range of attacks focus not
only on copying data, but also on trying to change data to undermine the trust and
integrity of the data process. Thirdly, there is an evolution going on in the techniques
used. Not only intrusions by using the weakest layer (humans) have become more ad-
vanced. Also, tactics, techniques and proceedures that normally used by nation-state
become also available to ”business” users.

Network intrusions are typically understood in the context of anomoly detection.
’An anomaly is an observation which deviates so much from others as to arouse suspi-
cion that is was generated by a different mechanism.’ [3] The detection of anomalies has
numerous practical used in varies fields. Machine Learning (ML) algorithms are suitable
techniques to distinguish between anomaly and regular behaviour. In previous works,
machine learning has been used in different ways to detect network intrusion. A good
survey that covers most of the algorithms is [3].

In this paper, I will contribute to the improvement of the network intrusion detec-
tion by machine learning. In recent papers, approaches are proposed that use ensemble
learning: combining different ML classifiers to give an anomaly detection.
An analogy may be to compare to the field of camera photo quality. You can enhance
the quality of the photograph by improve the quality of the lens or sensor. But, similar
to my approach, it is also possible several less quality cameras and combine the image.
This approach it done by some smartphone cameras.
I set out with three goals within my thesis research. I will focus on an overall higher
accuracy, reducing the number of false positives and false negatives, and preserve ex-
plainability.

The research question for this thesis can be summarized by:

Is it possible to create a detection model for network intrusion that consists
of multiple small independent machine learning models, to obtain better
accuracies and F1-score?

I try to answer this research question into the following chapters. In chapter 2 I give an
overview of the framework of a good network intrusion detection system. I will cover
in that chapter the several parts of an intrusion detection system (IDS), such as data
processing and applying the models. This chapter also contains an overview of the
previous work on this topic. In chapter 3 I give my approach to tackle the research
question. The choices for ML models and the data set that are made for this answer are

4



discussed in chapter 4 and 5 . The conducted research and the observation made, are
given in chapter 6. Finally, the conclusions of our research are given in chapter 7
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2 Literature study

Machine Learning techniques have been under developments for more than 20 years to
help identify network activity at scale that might indicate an intrusion. In this chapter
I give the information structured by a general framework for data analyses.
The basic steps to analyze data to obtain a prediction are the following:

1. Acquire a good data set, see chapter 5;

2. Process the data;

3. Apply detection model(s);

4. Give a prediction.

The last three steps will be discussed in the following three sections.

2.1 Data processing

Raw network capture data is not very useful for pure analysis. Steps need to be taken
to prepare the data in order for machine learning models to work most efficiently. Two
steps can be taken before the data can be used for the detection models.
Data transformation. The main step is to transform the values of the raw network
data to normalized numerical values. The categorical data, for example protocol types
as HTTP and SMTP, are not suitable. They must be encoded in a one-hot-encoded form.
One-hot-encoding is preferred because simple numerical representation can give one class
more impact than others due to a higher numerical value.
Data reduction. Another step that is possible, but not necessary, is the reduction of
the size of the normalized data. This is not required, because you can to feed all data
in the detection models. But for speed performance and improvement of the quality of
the detection model, we can reduce the number of features of the data.
The easiest way to achieve this is by selecting only the features you think are relevant to
the problem. For example, you feed the detection models with the important features
of a particular class
Another way to create data reduction is to apply the principal component analysis
(PCA) method[35]. This encoding method vectorizes all features to a lower number of
dimensions.
Another approach is given in [25], where the authors use correlation analyses feature
selection to reduce the dimensions of the normalized data.

2.2 Detection models

After the data processing stage, I can apply the detection models. In general, there are
two approaches to detect deviant behaviour: by asking what is normal behaviour, or by
asking what is anomalous behaviour.
Anomaly detection. The first view is the anomaly detection approach. In this case,
the detection algorithm learns specific behaviour of malicious internet connections. For
example, an internet connection outside a specific country is seen as malicious because
you don’t expect access from abroad.
Misuse detection. The second approach learns what is normal behaviour. Another
class of anomalies can be detected from matching regular working patterns for users,
and spotting any irregularities such as logins outside of working hours.

A general list of detection models is as follows:
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• Rule based models. These kinds of models defines conditions that satisfies
benign or malicious network traffic. According these rules the traffic is allowed or
blocked.

• Statistical models. These kinds of models find outliers with mathematical sta-
tistical strategies. According the distribution of benign data, the traffic of outliers
is blocked.

• Supervised Machine Learning. Supervised machine learning models learn to
classify the data to a certain class. This is done in the training phase where the
training data is given, as well the belonging classes.

• Unsupervised Machine Learning. Unsupervised machine learning models
cluster the data. Its categories data, without knowing any information about
the class labels of the data.

2.3 Prediction

There are two ways to express the outcome of a detection model [3]. One possibility is
the class label that indicates if the data instance is normal or the belonging attack type.
The other option give the prediction with probabilities for each class.
These two ways relate to each other by:

Class label = arg max
i

(p1, p2, ..., pi, ...pn) (1)

2.4 Multiple models

In this writing above, I focus on an individual model. But it is also possible to use
multiple models. Each model has its own data pipeline and an own detection algorithm
and data processing, and output. To combine these outputs in an final output, we need
an ensemble learning method. There are several methods to combine the outputs[10].
The most important ones are:

1. Hard voting. For each instance, the ensemble method determines which class
label is most common by majority voting.

2. Soft Voting. For each instance, the prediction weights are added together and
with equation 1 the class label is determined.

3. Weighted Voting. This is an extension of Soft Voting, where the addition is
weighted.

4. Machine Learning. Classification algorithms like Artificial Neural Networks and
Decision tree can be used to map the output of the models to a final prediction
by classification.

2.5 Previous work

The authors of [12] give an overview of of the different techniques of ensemble-based
learning. They discussed several examples from literature that uses a supervised learn-
ing, unsupervised learning or has a hybrid approach. A hybrid approach means that
both supervised and unsupervised techniques are combined. Besides the 14 data mining
techniques, 5 papers are discussed that made use of statistical approaches such as the
Hidden Markov Model.
To give more of a picture of what has been done and achieved in previous work, I will
discuss four papers in detail.
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In his paper [6], Borji proposed a combining classification approach with four base clas-
sifiers. The used base ML models are the Artificial Neural Network (ANN), Support
Vector Machine (SVM), k-Nearest Neighbors (k-NN) and Decision Trees. The outputs
of these classifiers are combined on three different ways: hard voting, by calculating
the Bayesian average and by computing a belief function. Using the KDD99 data set
they found that the detection rate of the combined classifiers is higher than the four
individual classifiers. In this paper is not analysed the effect on the different attack
types of the KDD99 data set.
The authors of [13] choose as base classifiers: Decision Tree, Random Forest, k-NN
and a Deep Neural Network (DNN). Tested on the NSL-KDD data set (a successor of
KDD99) they found that weighted voting is effectively improving the detection rate in
comparison of the individual attacks. The final results show that the detection rate of
the low present attack is still low.
In [24] the three base classifiers are ANN, Decision Trees and Logistic Regression. By
manual setting weights to an ensemble learning algorithm, it is determined which algo-
rithm benefits the attack/non-attack detection and the overall accuracy.
In [30] the authors create a sequential model consisting of five individual models. These
models are in order: Random Tree, Decision Tree, k-NN, ANN, and Naive Bayes. The
main goal of this paper is to reduce the false-negative rate. Using the KDD99 data
set they showed that the sequential model performs better than individual models on
accuracy and false negative rate. An extensive overview of the impact for the individual
attack classes is missing in the paper.
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3 Approach of the research

Given the general framework for a network intrusion detector as presented in the pre-
vious chapter, I will give and explain the choices I made for each step. This section
describes my approach to solving the research question. I discuss the solution on how I
will create a model that consist of different independent detection model.

My choice for the data set is discussed in chapter 5. The data sets I used were the
KDD99 and the CICIDS2017 data sets. These labelled data sets have besides benign
data traffic, respectively 4 and 7 attack types.
In the data processing step I will reduce the size of the input data. This is to done
to create small data sets. I choose to select features that are relevant for each attack
type. This selection is done following the literature. We will not use the PCA method
because this give a reduction the explainability of the model. The disadvantage of the
PCA method that it is not traceable which features are important for a decision.
In section 4, I will deep in the several machine learning models that are used in litera-
ture. There is also a reasoned choice is given for the two methods I use in the research:
Naive Bayes learning and Decision Trees.

As output for the final model, for each network instance a classification whether the
connection is normal or to which attack type it belongs will given. The key reason we
choose for this kind of output is that it is explainable. From a raised alarm, the actions
that are taken can be quite far going like in the end interrupting the network.
As method to ensemble the individual models, I will try the different approaches as
described in the previous chapter.
I will generate a model according the steps described above, a scheme that represents
the final model is given in figure 1. To obtain that model I will take the following steps:

1. I choose two or more different machine learning model, see chapter 4;

2. For each attack type, we select the important features;

3. For each ML model, we create for each attack type a detection model;

4. I reduce the number of independent models by looking at the accuracy and F1

scores of the ensemble models.

In this research there a new additions. The most important ones in comparison with
existing litereture are:

• Combine feature selection for certain attacks and multiple machine learning algo-
rithms;

• Compare different ensemble methods;

• This approach is verified on the common and old data set KDD99 and the state-
of-the art data set CICIDS2017.
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Figure 1: Schematic overview of our ensemble model.
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4 Machine Learning algorithms

I consider in this chapter several supervised and unsupervised machine learning models.
I explain the principles behind the most well-known and most used algorithms.
For this thesis, I combine a set of ML algorithms {A1, A2, ..., An}. A machine learning
algorithm is an function A : (X,W ) → (p1, ..., pm). Where X is the input data, in
our case the network data, and the probabilities of the output are given with pi, for m
classes. During the training or learning phase, the set of weights W optimized. Using
equation 1, the predicted class label c can calculated from the output of A.
This learning phase can be done in two ways, supervised or unsupervised. Supervised
learning means that the input for the training phase is data with labels; for unsupervised
are only data without labels is used.
The following paragraphs describe several models and can be seen as an extensive sum-
mary of different papers. The main papers I use for this overview are [3], [8] and [16]

4.1 Supervised methods

For the supervised learning methods, the algorithms used during the training phase are
not only the network data instances X = {x1, ..., xm}, but also the the true class c.
Supervised Learning is especially good at recognizing patterns that have occurred before.
Because it contains data that is labelled, it is also able to classify these patterns. This
means that it is less suitable for recognizing new attacks.

4.1.1 Naive Bayes

The Naive Bayes method is a probabilistic classifier [28, 34]. It is derived from Bayes’
theorem that express the probability of an event based on prior knowledge.
This famous probability equation is given by

P (c|X) =
P (X|c)P (c)

P (X)
(2)

where P (c|X) is the posterior probability, P (c) is the probability of class c, P (X|c) is the
probability of the event given a class and P (X) is the prior probability of the instance.
The ’naive’ step of this algorithm is to assume independent for each element in the data
set X. In this way the equation becomes:

P (c|X) =
P (x1|c) · (...) · P (xm|c)P (c)

P (X)
(3)

To apply Bayes theorem, take the following steps.
We need to calculate the different elements of the right hand side of equation 3. For the
Naive Bayes Algorithm, we choose to use a Gaussian approach, because it deals with
multiple categories.
This means that we calculate the likelihood of the features with

P (xi|c) =
1√

2πσ2
c

exp− (xi − µc)
2

2σ2
c

(4)

When we have calculated all parts of equation 4, we are able to map with equation 3 xi
to the class with the highest probability.
One of the advantages of the Naive Bayes Algorithm is that it execute very fast and is
able to handle big data sets.
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Figure 2: Schematic representation of an Artificial Neural Network [7].

4.1.2 Artificial Neural Networks

An Artificial Neural Network (ANN) consist of a web of connected nodes[26]. Inspired
by the human brain, this method is classifying an instance using an input layer, hidden
layers and an output layer. Each layer has several nodes, and these nodes are connected
with edges to the nodes in the layer before and after. Each edge has a weight and during
the training process the weights are updated.
Due to the number of different nodes, its creates a model that has the ability to fit very
good. The down side is that train such a model takes a lot of time.
Given the n layers, where layer i has j nodes, and the networks has weights W . The
algorithm to train a Neural Networks is as follows:
The algorithm starts by initializing the weights to small values. For instance xi, the
values of the features are the input for the nodes of the input layer. For each instance
we calculate the output o = (p1, ..., pm). Then for every training example (xi, c) the
distance between the actual class c and the output o is minimized by back propagation.
The algorithm ends when the loss function is minimized to certain degree or a time limit
is exceeded. For a schematic overview see figure 2.
More elaborated version of an ANN is covered with deep learning, see [11].

4.1.3 K-Nearest Neighbours

This classifier, shortly k-NN [18], is based on a function that measures the distance
between two samples. An example of this function is the Euclidean distance. Given an
test instance xi, the algorithm calculate the k neighbours in the train set that has the
shortest distance. By majority voting, the most apparent class of the neighbors, the
attack class is chosen.
A good example is given in figure 3 The disadvantage of k-NN is that the storage
requirements are large, because every training instance has to be stored. Also the time
for prediction is high, because it is necessary to determine all distances to the training
set before knowing which instances are the neighbors.

4.1.4 Decision trees

Decision trees consist out of three basic elements, a schematic version is visible in figure
4. First, we have the start of the tree: the root node. Secondly, there are the internal
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Figure 3: Schematic explanation of the k-NN classifier. To classify the green dot, you
need to calculate the nearest neighbors. For k = 3 the majority of the neighbors is

blue; for k = 5 the majority of the neighbors is red. Depending on the choice of k, is
classified as blue or red.[4]

nodes. Both at the root node and internal nodes, a decision is made which edge will
taken. This decision depends on the values or features of the given instance. Each edge
leads to another decision node, or finally to an end node. These end nodes is also called
leafs.
Given the training set the decision tree is build. There are different methods for con-
struction. The most famous ones are CART and IDS3 and it successors C4.5 and C5.
After building the tree, classification is possible by putting a test instance in the top of
the tree.
The big advantage of this type of classification is the possibility to give a visual repre-
sentation of the tree.

Figure 4: Schematic overview of a decision tree [9]
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Figure 5: A simple example of the a SVM in two dimensional space. The plane
distinguish between the blue and red instances [17].

4.1.5 SVM

For classification with the Support Vector Machine, hyper planes are calculated that
separates between different classes[20]. The n features of an instance is mapped into a
Rn space. The hyper plane that separates the hyper space the can be calculated by an
linear or an non-linear way. The hyper plane is calculated based on the training set. A
prediction of an instance of the test set is done by mapping it between the hyper planes.

4.2 Unsupervised methods

For the unsupervised methods, we can use only the network data during the training
phase. The algorithm determines by itself clusters.
The disadvantage of supervised learning has disappeared with unsupervised learning.
The latter method is capable of detecting anomalies that have not occurred before.
However, with unsupervised learning it is difficult to find out what kind of attack it is,
because it is only clustering and not classifying.

4.2.1 One-Class SVM

One-class SVM is an unsupervised version of the SVM algorithm. As the name sug-
gested, this algorithm only distinguish between one class. whether the data is benign,
or the network data is an attack. Researchers has already achieved good results with
the One-Class SVM. But for data analysing with our big data set the method is too
slow.
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4.2.2 K-Means

K-means is an unsupervised clustering method that is proposed in the seventies and
an old and well known algorithm[31, 38]. The principles behind k-means are easy to
understand. For the given set of instances, the number of clusters k must choose in
advance. This choice is important and can highly influence the quality of the algorithm.
The algorithm start by choosing randomly k random centroids and all instances are
assigned to the closest centroid. This initial choice of centroids is random and can
results in non representative clusters.
After the initial choice an iterative process starts where every time new centroids are
chosen for the clusters. For this centroids, new clusters are calculated by assigning the
nearest instances. The algorithm ends when no objects moves to another cluster.

4.2.3 Density based

In article [40], the authors proposed DBSCAN, an unsupervised clustering method. As
the acronym suggest, it stands for Density-Based Spatial Clustering of application with
Noise, the clustering algorithm is density based.
This algorithm decides for every instance if it is an core-point or a border-point. An
core point is when the number of instances in an neighbourhood of ε is higher than a
certain level. Below that level the instance becomes an border-point.
For each core-point and the points within ε becomes in an clusters. When some clusters
overlap, the clusters merges. For each point that is outside an cluster is seen as noise.

4.3 Selection of models

The list of above is a overview of the possible choices can made. In literature there
exist for each type a more advanced or customized algorithm that is fine tuned for a
particular problem. My choice is based on the principles behind the algorithms, and
not on an comparison in depth. That is because I try to find out if it is possible to
generate a model that exist out of not perfect classifiers, but performs even better with
weak classifiers.
The comparison of the models is neccesary and possible, because every model has it own
disadvantages and advantages. But literature is not extensive or unanimous about the
these.
For our choice we state three demands:

1. Accuracy. For the sub model I demand that it works with enough precision.

2. Speed. Because of several models are combined, I want to have not a too slow
model that impacted the final model.

3. Explainability. One big deal in machine learning and the big challenge is the
complexity of the models. Because decisions are made with great impact, it is
important that you know the reasons behind is reasonable.

Besides the pros and cons described in the sections above we use [5] and [19] to give an
indication for our demands.
The indicators and the demands for a classification model are summarized in the table 1.
From these list we choose the Naive Bayes approach and the Decision Tree Algorithm.
We found after several attempts that the unsupervised models are not suitable for our
solution. For example the One-Class SVM is more an outlier methods that that is not
able give explainability about the attack class an so not usable for this research. The
K-means algorithm gives an low accuracy percentage. Also it is difficult to map the
clusters of the unsupervised ML methods to the classes of data set. Therefor we only
use the two supervised models.
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Algorithm Complexity Time Note
SVM Medium High Difficult to perform on multiple classes
NB Low Low
DT Low Medium Perform well with large data in a short time
ANN Medium Medium
K-NN Low High Depends on choice of K, large storage re-

quirements

Table 1: Summary of the demands and the indicators for five supervised learning
algorithms. The algorithms are Suport Vector Machine (SVM), Naive Bayes (NB),
Decision Trees (DT), k-Nearest Neighbors (k-NN) and Artificial Neural Networks

(ANN)
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5 Data set exploration

For this research I will use data sets that contains network traffic data. Three important
requirements for a good data set:

• Labels. The data is labeled; such that we can verify our results;

• Comparable. The data set is used in other researches, so there is an possibility
to compare our results.

• State-of-the-art. The data set is state of the art; so it represents relevant and
real network traffic and attacks.

The last two criteria are conflicting. The most-wide used data set is KDD99 but more
that 20 years old. And more recent data sets are little used. So we decide to use the
most used data set in network anomaly detection, and take a data set that is state of
the art. Both data sets will be clarified in the next subsections.

5.1 KDD99

In 1998, Defense Advanced Research Projects Agency (DARPA) and the MIT Lincoln
Labs organised a contest to propose a data set that can be used for evaluation of network
intrusion detection. The KDD Cup 1999 (KDD99) is a subversion of the final data set
of this contest.[41]
The Lincols Labs collected nine weeks of raw TCP data from a local-area network. This
network simulated an existing network where some attacks are added. The split of this
data was five seven weeks training data and the remaining weeks test data.
The KDD-99 is a widely used data set. The vast majority uses it, more than 95%. For
the papers I read relating to ensemble learning I found no example that used another
data set. This is remarkable, because the data set is criticised on several points. This
comes up in a later paragraph. First, I will discuss the attacks and the features in the
data set.

5.1.1 Attacks

The attacks in the KDD-99 data set can be categorize in four types. These categories
are based on the work of Kendall in [15] for the DARPA data set.
The four categories are given by:

• Dos, Denial of service is a attack to disrupt resources of an network by over-
loading the computing or memory power the resource. This is done a overload of
queries that handles legitimate requests, and/or by denies access requests.

• U2R, User to root attacks contains attacks in which a user gains root access
without the legitimate privileges.

• R2U, Remote to user attacks is a class of exploits where a remote user, the
attacker, is sending packets to a machine in a network to gain local access.

• Probe attacks are scanning attacks to gather information about the network and
the recourse’s in it. This attack type is useful for planning future attacks.

In figure 6 is the distribution of the instances on the different classes. The main part of
the data is normal data.
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Figure 6: The distribution of the different class of the KDD99 data set.

5.1.2 Features

A network connection record contain information spread over 41 features. These features
are subdivided in four categories.
The first category we discuss are the basic features of a connection:

1. duration: give in seconds the length of the connection;

2. protocol type: has the possible values of ’tcp’, ’udp’ and ’icmp’;

3. service: give the network service on the destination. possible values are for
example ’https’, ’ftp’ and ’smtp’;

4. source bytes: the number of data bytes from source to destination;

5. destination bytes: the number of data bytes from destination to source;

6. flag: discrete value whether the connection is normal or an error status;

7. land: discrete value whether the connection is from the same host;

8. wrong fragment: give the number of wrong fragments

9. urgent: number of urgent packets in the connection

Now we list the content features:

10. hot: gives the number of hot indicators

11. num failesd logins: give the number of failed login attempts

12. logged in: discrete value whether connection has an successful logged in

13. num compromised: give the number of compromised conditions

14. root shell: discrete value whether an root shell is obtained

15. su attemped: discrete value whether a sudo root command is attempted

16. num root: gives the number of root accesses

17. num file creations: give number of file creation operations

18. num shells: give the number of shell prompts

19. num access files: give the number of operations on access control files

20. num outbound: give the number of outbound commands in an ftp-session
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21. is hot login: discrete value whether the login belongs to the hot list

22. is guest login: discrete value whether the login is an guest login.

The third category of features are about the traffic. It is computing for a time interval
of two seconds.

23. count: number of connections to the same host as the connection in the previous
time interval

24. serror rate: percentage of the same-host connection that return an SYN error

25. rerror rate: percentage of the same-host connection that return an REJ error

26. same server rate: percentage of the same-host connection with the same service

27. different server rate: percentage of the same-host connection with an different
service

28. server count: number of connection to the same service as the connection in the
previous time interval

29. service serror rate: percentage of the same-service connection that returns a
SYN error

30. service rerror rate: percentage of the same-service connection that returns a
REJ error

31. service different host rate percentage of the same-service connection that has
a different host

The fourth category contains features about the host. These are given for time intervals
bigger than two seconds.

32. destination host count give the number of connections having the same desti-
nation host

33. destination host service count: give the number of connection that have the
same destination host and use the same service

34. destination host same server rate percentage of the connection with the same
destination port and use the same service

35. destination host different service rate: percentage of the connection with the
same destination port and use a different service

36. destination host same source port rate: percentage of the current host that
have the same source port

37. destination host service different host rate: percentage of connection to the
same services coming from different hosts.

38. destination host serror rate: percentage of the connection that return as S0
error

39. destination host server serror rate percentage of the connection that return
as S0 error for a specific service

40. destionation host rerror rate: percentage of the connection to the current host
that have an rst error

41. destination host service rerror rate percentage of the connection with the
came host and specific service that has an RST error

42. destination host server rerror rate: percentage of the connection to the same
host and specified servic that has an rst error
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Attack Class Important Features
Dos attacks protocol type, service, flag, source bytes, destination bytes, land,

wrong fragment, urgent, number compromised, count, srv count,
serror rate, srv serror rate, rerror rate, server rerror rate, server
rate different server rate, dst host host srt count, dst host same srv
rate, dst host same src port rate, dst host srv serror rate, dst host
rerror rate, dst host srv rerror rate.

Probe attacks Flag, rerror rate, dst host srv diff host rate
r2l attacks service, Source bytes, Destination bytes, urgent, failed logins, is

guest login, dst host srv serror rate.
u2r attacks flag, source bytes, destination bytes, number root.

Table 2: Important features of the KDD99 data set according [14]

Attack Class Important Features
DOS attacks service, flag, source bytes, same server rate, dst host serv serror rate
probe attacks protocol type, source bytes, same server rate, destination host server

count, destination host same server rate, destination host different
server rate

r2l attacks duration, service, source bytes, hot, server count, different server
rate.

u2r attacks source bytes, destination bytes, hot, number file creations, destina-
tion host server count

Table 3: Important features of the KDD99 data set according [37]

5.2 Relevant features for each attack

In literature, research is done which features are relevant for the particular attacks in
the data set. In [2] the authors list mention the relevant feature classes as mentioned in
the above paragraph: Basic, Content, Traffic and Host.
In [14] the author look to more specific attribute for each attack class. This is sum-
marized in table 2. In [37] is done a similar approach, where the maximal features are
reduced to 6. These features are given in table 5

5.2.1 Criticism

The first author that criticized the KDD99 dataset was John McHugh in [23]. In his
article he focus on the DARPA data set, that is the basis for the KDD99 data set. His
critique mainly focus on the lack of statistical evidence that the dataset contains repre-
sentative data. For example, questions are raised about the distribution of the attacks
and the simplicity of the simulated network.
Subsequently, [22] contains also a depth research about the difference between the sim-
ulated and real data. For example, the KDD data set missed unusual traffic as garbage
data or malformed commands that are no attacks. This is relevant, because otherwise
benign data that has normal faults we be detected as malicious. The authors created
an advanced data set by adding some real traffic to the simulated data to solve this
mentioned problem.
A less criticized data set is proposed by [39], the NSL-KDD data set that consist of
selected instances of the complete KDD99 data set [27].This new data set is a reaction
on two important shortcomings of the KDD99 data set. This data set still suffers from
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some of the observations made by John McHugh, but is still useful for benchmark re-
search according the authors. The first shortcoming is that is tackled three-quarters of
the KDD99 data set contains redundant data that biased the outcome of the Machine
Learning algorithm. This redundant data are mainly repeated instances. An second
problem of the KDD99 data set is that many researchers used to take a selection of the
train set instead of the test set to validate the results. This results in incomparable
results between different learners and research papers.

5.3 CICDS

Since the introduction of the KDD99 data set and it criticism, there is still looked for
a new state of the art data set. Several data sets are generated and used in literature.
Nevertheless, KDD99 is still widely used. In 2017 researchers of the Canadian Institute
for Cyber Security and the University of New Brunswick published a new intrusion
detection data set [33].
The data capture the network traffic of five days: Monday till Friday. A top priority
by generating this data set was the human-like behaviour of the data set. The virtual
network consists out of a firewall, a web server, an Ubuntu server, several Windows and
Linux systems. The attacks are initiate from a Windows and an Kali environment. On
every day, except Monday, multiple attacks are launched.
In figure 7 is the distribution visible of the total data set.

5.4 Attack types

The data set contains seven main categories of attacks. In the following I will discuss
them:

1. Brute Force Attack. This kind of attacks can be used for password cracking
and discover hidden content in a web application. It is done by the principle by
trying till you find useful information.

2. Heartbleed attack. The Heartbleed attacks used an fault in the SSL and TLS
protocol. It send a (SQL) request to the server of the vulnerable party to obtain
more information than necessary.

3. Web Attack Examples of this attacks are SQL injections and Cross-Site Scripti-
ing, where the weaknesses of a web application are misused.

4. Infiltration Attack. This attack is done from the inside, using flaws in vulnerable
software. After exploit the attacker is for example able to do full port scan.

5. Botnet Attack. A botnet is a collection of (ro)bots that act independent. The
owner of the botnet can use the bots for stealing data, sending spam etc.

6. Dos Scan Attack This attacks try to make a network or an resources unavailable
by sending a lot of request to overload the system.

7. DDos Attack. A DDos attack is a special variant of the DOS attack, where the
attacks are executed using multiple systems.

5.4.1 Relevant features

The list of features of the CICIDS2017 dataset is longer than the KDD99 data set.
Therefor the overview of the features are given in the appendix.
The authors of the data set also researched which data features are the most important
to each attack class. This is given in the following table 4.
Also in [36] the authors look for the important attack types.

21



Attack Class Important Features
Brute Force Attack Init Win bytes forward, Fwd PSH Flags, SYN Flag Count,

Flow Packets/s, Subflow Fwd Bytes, Total Length of Fwd
Packets, ACK Flag Count

DoS/Heartbleed Bwd Packet Length Std, Subflow Fwd Bytes, Total Length of
Fwd Packets, Flow Duration, Fwd IAT Mean, Bwd IAT Mean,
Flow IAT Mean, Active Min, Active Mean, Flow IAT Std, Flow
IAT Min, FWD IAT Min

Web Attack Init Win F. Bytes, Subflow F. Bytes, Init Win B Bytes, Total
Len F. Packets

Infiltration Attack Subflow Fwd Bytes, Total Length of Fwd Packets, Flow Dura-
tion, Active Mean

Botnet Attack Subflow Fwd Bytes, Total Length of Fwd Packets, Fwd Packet
Length Min, Bwd Packets/s

Port Scan Attack Init Win bytes forward, Bwd Packets/s, PSH Flag Count
DDoS Attack Bwd Packet Length Std’, Average Packet Size’, Flow Duration,

Flow IAT Std

Table 4: Important features of the CICIDS2017 data set according the authors of the
data set [33]

Attack Class Important Features
Brute Force Attack Destination Port, Fwd Packet Length Std,

min seg size forward
DoS/Heartbleed Destination Port, Total Length of Bwd Packets,

Init Win bytes forward, Idle Std
Web Attack Fwd Packet Length Mean, Fwd IAT Mean,

Init Win bytes backward
Infiltration Attack Total Length of Fwd Packets, Active Std, Active Min, Idle Std
Botnet Attack Destination Port, Bwd Packet Length Mean,Bwd Packet

Length Std, min seg size forward
Port Scan Attack Bwd Packet Length Mean, PSH Flag Count,

Init Win bytes backward, act data pkt fwd,
min seg size forward

DDoS Attack Destination Port, Fwd Packet Length Max, RST Flag Count,
Active Std

Table 5: Important features of the CICIDS2017 data set according [36]
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Figure 7: The distribution of the different class of the CICIDS2017 data set.
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6 Results

6.1 Set up experiments

For this thesis, I created several algorithmic ensemble sets with Python. For every
individual model we design a data pipe line. In this pipeline the data is selected on basis
of features. There after the data is normalized to numerical values and if necessary to
an one-hot-encoded form.
By applying we use the implementation from the sci-learn package [29]. The reason we
choose for this type of implementation is that we do not need special fine tuned models,
we are satisfied with weak learners. And besides that, the manual implementation of
these algorithms can be labour-intensive.

6.2 Representation of results

The basic measurements about the correctness of a classification model focus on the well-
predicted elements. These elements are the True Positives (TP). This measurement, the
accuracy is calculated by:

Accuracy =
TP

#All elements
.

This score is not sufficient, because the behaviour of misclassified elements impacts
the usability of a model. For example, you want that the positive classified elements
represents the reality. So we can measure the precision by:

precision =
TP

TP ∪ FP
.

where FP are the False Positives.
Another measurements focus on the missing items of the prediction. This is given by:

Recall =
TP

TP ∪ FN
.

where FP are the False Negatives.
An schematic overview of the mentioned data selections is given in 8. The overview of
the results of the True positives, True Negatives, False Negatives, False Positives, can
be given in the confusion matrix. For our research it is not useful, because we compare
a lot of models whereby it is impossible to consider every confusion matrix.
Therefor we focus on the measurements of the precision and recall. Both can be com-
bined in the F1-score. This score integrate both the precision and recall by

F1 = 2 · precision · recall

precision + recall
. (5)

6.3 Results - KDD

As explained in section 3 we train in total 8 models, four models based on Naive Bayes,
for each attack class; and similar four models for the Decision Tree. The accuracy and
the individual F1-score of each model can be found in table 6.
For the individual models we can state the following observations:

1. The Naive Bayes are preferred to distinguish attack and non-attack data. They
are perform well on classifying normal data, but lack on distinguish between the
attacks.
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Figure 8: Schematic representation the data set separated in false negatives and
positive and true negatives and positives.
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F1 score
# ML Features Acc. Normal Dos Probe U2R R2U
1 Naive Bayes Probe 0,80 0,89 0,03 0 0 0
2 Naive Bayes Dos 0,80 0,89 0,03 0 0 0
3 Naive Bayes U2R 0,80 0,89 0,03 0 0 0
4 Naive Bayes R2U 0,87 0,93 0,57 0 0 0
5 Decision Tree Probe 0,91 0,96 0,89 0,56 0,02 0
6 Decision Tree Dos 0,73 0,83 0,85 0,07 0,03 0
7 Decision Tree U2R 0,74 0,82 0,87 0,07 0,09 0
8 Decision Tree R2U 0,97 0,99 0,96 0,59 0,06 0

Table 6: Individual models for the KDD99 data set. The accuracy of the whole test set
and the F1 score of the individual attacks.

F1 score
Ensemble Accuracy Normal Dos Probe U2R R2U
7,8 0.977 0.99 0.97 0.58 0.07 0
5,7,8 0.975 0.99 0.96 0.58 0.05 0.01
6, 8 0.973 0.99 0.96 0.58 0.05 0.0
5,6,8 0.973 0.99 0.96 0.58 0.04 0.01
3, 6, 8 0.97 0.99 0.95 0.58 0.05 0.01
1, 5,6,8 0.97 0.99 0.95 0.58 0.05 0.01
1, 5, 7, 8 0.97 0.99 0.95 0.58 0.08 0.01
1,2,6,7,8 0.94 0.96 0.84 0.53 0.58 0.01
3,4,6,7,8 0.943 0.97 0.85 0.53 0.36 0.01
2, 3, 6, 7, 8 0.94 0.96 0.84 0.53 0.59 0.01

Table 7: Selection of the best ensemble models with soft-voting. The accuracy of the
whole data set and the F1 score of the individual attacks.

2. The Decision Tree models performs better that the Naive Bayes to classify all
classes.

3. For both models are the low present attacks difficult to identity. For the R2U
attacks this is nearly never successful. For U2R Attack in a few cases. The probe
attack is identified only for model 5 and 8 in table 6 with a F1 score for around
0,59.

After the training we look for an optimal sub-ensemble. We look at each combination
equal to five or less for the soft-voting technique of ensemble. This are

(
8
1

)
+
(
8
2

)
+
(
8
3

)
+(

8
4

)
+
(
8
5

)
= 218 combinations. In table 7 a selection of the best ensembles for soft voting

are given. From this selection we can give the following observations:

1. In general the ensemble methods performs as good as the best individual model,
number 8. The accuracy is slightly higher.

2. The R2U attacks are still not detected, but for two ensembles the U2R are much
better detected. The cost is 0.03 accuracy and 0.1 of the F1 score in comparison
with other ensembles.

To save computation time, we calculate for only the models with length equal or
less than 5, with accuracy higher than 0,9 the results of hard voting, Neural Network
ensemble and decision tree. The selection of the results are given in table 12, 13 and 11.
We can give the following observations:
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F1 score
# ML Feat. Acc. Bot BF. DDos Dos Inf. Normal Port Web
1 DT BF. 0.642 0.03 0.72 0.35 0.65 0.76 0.74 0.55 0.14
2 DT Bot 0.686 0.02 0.78 0.59 0.59 0.76 0.77 0.55 0.17
3 DT DDos 0.524 0.01 0.76 0.22 0.64 0.76 0.65 0.55 0.01
4 DT Inf. 0.686 0.02 0.78 0.59 0.59 0.76 0.77 0.55 0.17
5 DT Port 0.685 0.02 0.73 0.36 0.81 0.76 0.78 0.59 0.11
6 DT Probe 0.642 0.02 0.72 0.35 0.65 0.76 0.74 0.69 0.14
7 DT Web 0.707 0.01 0.73 0.97 0.56 0.76 0.78 0.85 0.11
8 NB BF. 0.804 0 0 0 0 0 0.89 0 0
9 NB Bot 0.804 0 0 0 0 0 0.89 0 0
10 NB DDos 0.193 0 0 0.11 0 0 0.3 0 0
11 NB Inf. 0.193 0 0 0.11 0 0 0.3 0 0
12 NB Port 0.193 0 0 0.11 0 0 0.3 0 0
13 NB Probe 0.193 0 0 0.11 0 0 0.3 0 0
14 NB Web 0.044 0 0.01 0.01 0.02 0. 0 0.09 0.04

Table 8: Individual models for the CICDS2017 data set. The accuracy of all the test
data, and the F1 score for the individual attacks.

1. The hard voting approach give not better results, the accuracies and F1-scores are
even worse.

2. The machine learning approaches using Decision Trees and Neural Networks has
acceptable accuracies. But both the lack on the F1-scores of the individual attacks.

6.4 Results - CICDS

As explained in section 3 I train in total 14 models. Four models based on Naive Bayes,
for each attack class; and similar four models for the Decision Tree. The overall accuracy
and the individual F1-score of each model can be found in table 8.
For the individual models I can state the following observations:

1. Two models of the Naive Bayes approach are preferred to distinguish attack or
non attack data (number 8 and 9). They are perform well on classifying normal
data, but lack on distinguish between the different attacks. The other 5 models
do not perform very well.

2. The Decision Tree models performs better that the Naive Bayes to classify all
classes. The relative accuracy of all classes is quite low.

3. For both models, the low present attacks are difficult to identity. For the Web and
Botnet attacks this is nearly never done.

After the training I look for an optimal subensemble. I look at each combination equal
to five or less for the soft-voting technique of ensembling. This are

(
14
1

)
+
(
14
2

)
+
(
14
3

)
+(

14
4

)
+
(
14
5

)
= 3472 combinations. In table 9 a selection of the best ensembles for soft

voting are given. From this selection we can give the following observations:

1. In general the accuracies of the selected models are much better.

2. For four options of the selected models the Botnet attack is increasingly better
detected. But the F1 score is still between 0.29 and 0.42.

3. For two models the F1 score of the Web attacks are much higher.
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F1 score
Ensemble Acc. Bot BrF. DDos Dos Inf. Normal Port Web
3, 7, 8, 9, 14 0.937 0.29 0.77 0.99 0.68 0.69 0.96 0.91 0.48
1, 5, 7, 8, 9 0.924 0.04 0.73 0.99 0.91 0.76 0.95 0.89 0.11
4, 7, 8, 9, 14 0.924 0.06 0.8 0.92 0.77 0.69 0.95 0.91 0.72
2, 7, 8, 9, 14 0.924 0.06 0.8 0.92 0.77 0.69 0.95 0.91 0.72
2, 7, 8, 9 0.923 0.05 0.8 0.98 0.77 0.76 0.95 0.91 0.27
4, 7, 8, 9 0.923 0.05 0.8 0.98 0.77 0.76 0.95 0.91 0.27
5, 7, 8, 9, 13 0.921 0.04 0.48 0.99 0.75 0.53 0.95 0.91 0.04
5, 6, 7, 8, 9 0.922 0.04 0.73 0.99 0.91 0.76 0.95 0.9 0.11
5, 6, 8, 9, 10 0.921 0.04 0.48 0.99 0.75 0.53 0.95 0.91 0.04
5, 7, 8, 9, 11 0.921 0.04 0.48 0.99 0.75 0.53 0.95 0.91 0.04
5, 7, 8, 9, 12 0.921 0.04 0.48 0.99 0.75 0.53 0.95 0.91 0.04
3, 7, 8, 9, 10 0.911 0.42 0.5 0.99 0.68 0.53 0.95 0.59 0
3, 7, 8, 9, 11 0.911 0.42 0.5 0.99 0.68 0.53 0.95 0.59 0
3, 7, 8, 9, 13 0.911 0.42 0.5 0.99 0.68 0.53 0.95 0.59 0

Table 9: Selection of the best ensemble models with soft-voting for the CICIDS data
set. The accuracy of the whole test set and the F1 score of the individual attacks.

4. For all of the other attack types there is for the most of the selected models an
better result. Only for the Infiltration attack the result stay the same of is slightly
worse.

For the 3472 combinations with number of models equal or less than 5, there are 44 that
has an accuracy higher than 0.90. For these combinations I look at ensemble methods as
hard voting, neural networks and decision trees. From this methods I make the following
observations:

1. For the hard voting technique we found that for all 44 models has the same result.
The accuracy is 0.80 and this is mainly due to the right predicted elements for the
normal class.

2. For the Decision tree the accuracies of the 44 models are quite low. The highest
accuracy is 0.15. The classes that has a F1 score more than 0.80 are the Bruteforce
and DDOS class.

3. For the Neural Network approach, for a selected number of classes I found that
the F1 is high, see table 14 in the appendix. But for the low present attacks, the
F1 is zero.

28



7 Conclusions

In this chapter, I summarise the multiple models and data sets comparison and identify
the most effective way to detect network intrusions with a number of off the shelf-untuned
models in an ensemble. First, I will draft a conclusion about the models created, and
compare the difference between the two data sets.
In the final section, I will the subject of this thesis set in a broader context.

7.1 Ensemble learning

In the previous chapter I give some observations of the ensemble learning models. Now,
I will discuss the results for both data sets. This is quite useful, because this give also
an indication how comparable both data sets are.

7.1.1 Individual models

For both data sets, I observe the same trends if I compare the models of the Decision
Trees and Naive Bayes. The Naive Bayes models has an overall better accuracy in
comparison with the Decision Tree approaches. Its best benefit is detecting normal
behaviour. The Decision Tree models has an lower accuracy, but are much better in
classifying the different attacks.
How can I explain the results of the individual models? For the Decision Trees we see
a comparable results with literature. Also the low F1-score for low present attacks is
repeatedly visible in literature. Because these kind of attacks can be seen as just noise
instead of intrusion events.
Improvement of the individual models for Decision Trees can be done by selecting more
features, or choosing PCA as encoding mechanism. Both we did not to preserve the
possibility to give some explainable opportunities.
For Naive Bayes I found some differences with literature. For most proposals in literature
the F1-scores are more equal distributed over the different classes, in stead of one peak
for the normal class. This can have some reasons. The first reason can be the impact of
the feature selection. Another options is the influence of the simple encoding strategy
of our approach. Small experiments to enhance the results of the models show that as
well the feature selection as the encoding method has effect on the results that improves
the different F1-scores. A third option can be the implementation of the Naive Bayes,
we use the one of the build in library of sci-learn. Other papers made use of manual
implementation of the Machine Learning or another platform called WEKA that is
created for this kind of experiments.

7.1.2 Ensemble learning

Notwithstanding the low expectations of the results of the Naive Bayes models, they
still has impact on the results of the ensemble models.
For both data sets similar things happens. If we concentrate first on the soft voting
way of combining the individual models, we found several combinations that has both
a higher accuracy and better F1-scores. For a selection of these, also the F1-score of
one of the low present attacks is increasing. This last is unexpectedly because the first
though was that the previous models did not learn the low present attacks.
The soft voting is the only ensemble learning way that increases the F1-scores and the
accuracy. TBased on the data and my research, the reason is: soft voting deals better
with the subtle results of the individual models. These nuance fall away if we use for
example hard voting. Multi Layer Perceptron (MLP) or Neural Networks focus to much
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on overall accuracy and ignore the smaller parts. Therefor it is reasonable that the
F1-score for low present attacks are low.

7.2 Explainable results

In the chapters before, I stressed several times the importance of the opportunity to un-
derstand the results. After the prediction of an intrusion detection model, an important
decision is made. Often, network intrusion alerts are handled in an automated or semi
automated fashion. False positives can lead to security operations alert fatigue or in
the worst cases, incorrectly terminated network connections causing a loss of business
functionality. Therefore, not only should it be clear how certain the prediction is, but
also where it is based on, so that it is possible to verify the decision.
In order to make it possible to understand the results, I made the following decisions.
First of all, I have chosen to train different modules, each with a different selection of
features. Unfortunately there is no connection between the quality of the predictions
of a certain class and a model with features of this class. It is not that a model that
has as input the most important features of the attack technique DOS also performs
significantly better on the DOS attack.
Another choice I made to improve the explainability of the results is not to choose for
PCA encoding. By just scaling the chosen features and converting them into numbers,
as much of the raw data as possible is saved. This way I hope it will be possible to
quickly calculate which features are important and see their value without having to
decode the values.
How the latter approach will work out in practice is an interesting subject for further
research. Given my research, the following approach would be a possibility. Because I
use ensemble learning, we have to go back to the individual models. Given a prediction,
we select the model(s) that best predicted this output. For each of these individual
models we can see which features had the most influence on the prediction. This can
be done by means of back propagation and gradient calculation. In this way, both the
prediction and the causes (important features) can be shown at the same time, which
can facilitate a follow-up selection.

7.3 Broader context

A network intrusion detection as discussed in the investigation is fortunately not the only
defensive weapon against unwanted intruders. The Mitre Att&ck framework mentions
nine different ways to get initial access in a network [1]. This ranges from phishing
attacks to exploiting public applications.
The positive thing is that there are more tools to keep intruders out. The negative is
that a lot of information is not used in the discussed approach. To come back to the
analogy from the introduction, we make a 2d image with this way of ensemble learning.
From one position we look at the same data in different ways. We always take the same
data information: duration, type and other information about the connection.
An improvement of our approach that can have a significant impact is not to create a
2d but a 3d image. This means that the data must be viewed differently, not from the
same point of view. Information needs to be collected at different points in the network,
and decisions need to be made again and again. From the first access at the firewall to
actions at the endpoints.
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8 Appendix A: features CICDS

In table 10 an overview of the 79 label features are given.
The first two values give the destination port of the connection and the duration of the
connection flow. Features 3 up to 14 give information about the length of all and the
individual packets. Feature 15, 16, 37 and 38 give the number of bytes and packet per
second of the connection flow and the Forwarded and backwarded packets.
Features 17 up to 30 give numerical values of the Inter Arrival Time (IAT) of the flow,
the Forwarded and backwarded packets.
Numbers 31 upto 34 and 44 up to 51 is information about the different flags that relates
to the network connection.

Feature Feature Feature
1. Destination Port 28. Bwd IAT Std 55. AvgBwd Segment Size
2. Flow Duration 29. Bwd IAT Max 56. Fwd Header Length
3. Total Fwd Packets 30. Bwd IAT Min 57. FwdAvg Bytes/Bulk
4. Total Backward Packets 31. Fwd PSH Flags 58. FwdAvg Packets/Bulk
5. Total Length of Fwd Packets 32. Bwd PSH Flags 59. FwdAvg Bulk Rate
6. Total Length of Bwd Packets 33. Fwd URG Flags 60. BwdAvg Bytes/Bulk
7. Fwd Packet Length Max 34. Bwd URG Flags 61. BwdAvg Packets/Bulk
8. Fwd Packet Length Min 35. Fwd Header Len 62. BwdAvg Bulk Rate
9. Fwd Packet Length Mean 35. Bwd Header Length 63. SubflowFwd Packets
10. Fwd Packet Length Std 37. Fwd Packets/s 64. SubflowFwd Bytes
11. Bwd Packet Length Max 38. Bwd Packets/s 65. SubflowBwd Packets
12. Bwd Packet Length Min 39. Min Packet Length 66. SubflowBwd Bytes
13. Bwd Packet Length Mean 40. Max Packet Length 67. Init Win bytes forward
14. Bwd Packet Length Std 41. Packet Length Mean 68. Init Win bytes backward
15. Flow Bytes/s 42. Packet Length Std 69. act data pkt fwd
16. Flow Packets/s 43. Packet Length Variance 70. min seg size forward
17. Flow IAT Mean 44. FIN Flag Count 71. Active Mean
18. Flow IAT Std 45. SYN Flag Count 72. Active Std
19. Flow IAT Max 46. RST Flag Count 73. Active Max
20. Flow IAT Min 47. PSH Flag Count 74. Active Min
21. Fwd IAT Total 48. ACK Flag Count 75. Idle Mean
22. Fwd IAT Mean 49. URG Flag Count 76. Idle Std
23. Fwd IAT Std 50. CWE Flag Count 77. Idle Max
24. Fwd IAT Max 51. ECE Flag Count 78. Idle Min
25. Fwd IAT Min 52. Down/Up Ratio 79. Label
26. Bwd IAT Total 53. Average Packet Size
27. Bwd IAT Mean 54. AvgFwd Segment Size

Table 10: List of feature of the CICIDS2017 data set.
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9 Appendix B: results

F1 score
Ensemble Accuracy Normal Dos Probe U2R R2U
3, 4, 6, 7, 8 0.978 0.99 0.95 0 0 0
1, 3, 8 0.989 0.99 0.99 0 0 0
3, 7, 8 0.989 0.99 0.99 0 0 0
2, 4, 5, 6, 8 0.989 0.99 0.99 0. 0 0
4, 5, 7 0.988 0.99 0.99 0 0 0
2, 5 0.974 0.98 0.95 0 0 0
5, 7, 8 0.978 0.99 0.95 0 0 0

Table 11: Selection of the best ensemble models with an artificial neural Network for
the KDD99 dataset, the accuracy of the test set and F1 score of the individual attacks.

F1 score
Ensemble Accuracy Normal Dos Probe U2R R2U
3, 4, 5, 7, 6 0.905 0.96 0.89 0.56 0.02 0
1, 3, 5, 6, 7 0.905 0.96 0.89 0.56 0.02 0
2, 3, 5, 6, 7 0.905 0.96 0.89 0.56 0.02 0
3, 5, 6, 7 0.905 0.96 0.89 0.56 0.02 0
3,5, 6 0.905 0.96 0.89 0.56 0.02 0
2, 4, 5, 7, 6 0.905 0.96 0.89 0.56 0.02 0
5, 7 0.905 0.96 0.89 0.56 0.02 0

Table 12: Selection of the best ensemble models with decision trees for the KDD99
dataset, the accuracy of the test set and F1 score of the individual attacks.

32



F1 score
Ensemble Accuracy Normal Dos Probe U2R R2U
5,6,7,8 0.975 0.99 0.96 0.59 0.06 0
5, 6, 7 0.905 0.96 0.89 0.56 0.02 0
5, 6, 8 0.975 0.99 0.96 0.59 0.06 0
6, 5, 8 0.975 0.99 0.96 0.59 0.06 0
5, 7, 8 0.975 0.99 0.96 0.59 0.06 0
5, 8 0.975 0.99 0.96 0.59 0.06 0
5, 7 0.905 0.99 0.89 0.56 0.02 0
5, 6 0.905 0.99 0.89 0.56 0.02 0
7, 8 0.975 0.99 0.96 0.59 0.06 0
6, 8 0.975 0.99 0.96 0.59 0.06 0

Table 13: Selection of the best ensembled models with hardvoting for the KDD99
dataset, the accuracy of the test set and F1 score of the individual attacks.

F1 score
Ensemble Acc. Bot BF. DDos Dos Inf. Normal Port Web
4, 5, 6, 7, 8 0.966 0 0 0.99 0.90 0 0.98 0.92 0
0, 4, 6, 7, 8 0.961 0 0 0.99 0.9 0 0.98 0.87 0
1, 4, 6, 7, 8 0.958 0 0 0.99 0.85 0 0.98 0.91 0
3, 4, 6, 7, 8 0.958 0 0 0.99 0.85 0 0.98 0.91 0
4, 6, 7, 8 0.953 0 0 0.98 0.81 0 0.97 0.91 0
2, 4, 6, 7, 8 0.942 0 0 0.98 0.77 0 0.97 0.84 0
4, 6, 7, 8, 10 0.942 0 0 0.99 0.81 0 0.96 0.82 0
4, 6, 7, 8, 11 0.942 0 0 0.99 0.81 0 0.96 0.82 0
4, 6, 7, 8, 9 0.942 0 0 0.99 0.81 0 0.96 0.82 0
4, 6, 7, 8, 12 0.942 0 0 0.99 0.81 0 0.96 0.82 0

Table 14: Selection of the best ensembled models with an artificial neural Network for
the cICIDS2017 dataset, the accuracy of the test set and F1 score of the individual

attacks.
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