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1 Introduction

The aim of a speaker recognition algorithm is to determine whether an utterance be-
longs to a speaker that claims a certain identity. This algorithm could require a person
to utter a specific phrase or make a decision based on an arbitrary statement. The
first approach is called text-dependent recognition whereas the second one is referred as
text-independent. Despite performance achievements, this topic remains a very active
research area due to development of neural network topology and the availability of
large-scale free datasets.

Regardless of chosen approach, the standard speaker recognition process involves
three following main steps [1]. The first stage is training, aiming to determine a compact
speaker representation from given utterances with known identity. Thus, embeddings
are utilized for mapping utterances to speaker feature vectors while distances in con-
structed feature space correspond to dissimilarity between the voice characteristics of
the individuals [2]. The main goal of this step is to train a speaker recognition model
able to generalize previously unseen speakers. Further, representations produced by the
model are used as inputs for a scoring function. At the second stage, which is known
as enrollment, a pre-trained model is applied to define the speaker manifold for new
individuals. During the last evaluation step, a decision is made on the claimed identity
by comparing a scoring function to a threshold. Specifically, this function estimates a
score between compact representation of a test utterance and enrolled speaker model.
Examples for this function are cosine distance scoring or Probabilistic Linear Discrimi-
nant Analysis [3].

Most state of the art speaker recognition systems consist of an embedding extraction
front-end system followed by a separate backend that is used to compare pairs of em-
beddings [4]. More recent approaches propose an end-to-end system that jointly learns
utterance representations along with a similarity metric [1]. Although the latter allows
directly optimize similarity, it requires extra in-domain training speakers which might
be challenging for some practical applications [5].

Numerous studies have achieved remarkable gains in automatic speaker recognition
mostly due to using deep neural networks (DNN) [6]. However, the task remains chal-
lenging especially under noisy and unconstrained conditions [7]. Different neural network
(NN) topologies are proposed for speaker recognition models that tend to have deeper
and deeper architecture along with more sophisticated losses. Since DNN-based systems
are trained on a large speech corpus that is highly time-consuming and requires a sig-
nificant amount of computational resources that usually involve a GPU, the dependence
of performance on NN model capacity becomes interesting to analyze [8].

This work proposes a speaker embedding system for text-independent speaker recog-
nition based on Convolutional neural network (CNN). This thesis examines NN topology,
backends and frame-level input features. Part of the aim of this project is to investi-
gate how the number of NN parameters influences on the quality of the recognition.
The specific objective of this study is to demonstrate how bottleneck features extracted
from the embedding layer contain sufficient information to provide clustering of unseen
speakers. Besides performance metrics, this could be considered as an addition evidence
of the generalization ability of the model.

2



2 Background

Over the past years, a dominant approach for speaker recognition was Joint Factor
Analysis (JFA) applied to high-dimensional Gaussian Mixture Model (GMM) supervec-
tors originally proposed by Patrick Kenny et al.[9]. This method allows to model the
inter-speaker variability as well as compensate for channel and session variability by
defining two distinct spaces [10, 11]. The main idea behind the technique is mapping
variable-length utterances into a fixed-length vectors preserving the speaker information.

Further development of this method led to front-end factor analysis technique, termed
‘i-vector‘ where ‘i‘ stands for intermediate-size vector. In contrast to the previous
method, the proposed approach defines only a single low-dimensional total-variability
space that models speaker and channel variabilities concurrently [12]. Besides explicit
advantages of the technique, such as reducing complexity of estimating two separate
spaces, [10] showed that it is less dependent on score normalization. Moreover, Ahi-
lan Kanagasundaram et al.[13] successfully applied this powerful tool to short utter-
ances (less than 10 seconds). For the next several years, there has been an increasing
amount of research into speaker recognition based on i-vector approach that showed the
state-of-the-art performance. Much of this progress has come from employing session
compensation techniques such as Probabilistic Linear Discriminant Analysis (PLDA) [3]
after the i-vector extraction [13]. Further experiments revealed benefits utilizing linear
discriminant analysis (LDA) [14] before PLDA backend. Obtained low-dimensional rep-
resentations of feature vectors suppress irrelevant directions caused by noisy conditions
or channel distortions [15].

In the last few years, i-vectors were replaced with embeddings obtained from feed-
forward DNN with fixed-length inputs. These speaker-discriminative features are known
as ‘d-vector‘ [16, 17]. The further improvement resulted in ‘x-vector‘ estimated on
variable-length acoustic segments. Although results between i-vecors and x-vectors were
comparable on long speech segments (more than 10 seconds), the latter significantly out-
performed on short duration test condition [5, 18].

Different architectures for DNN were proposed to obtain speaker representation. For
example, a long short-term memory recurrent neural network (LSTM) with generalized
end-to-end loss was presented in [19]. In [20] CNN based on VGG architecture [21] was
employed for embedding that used a Siamese network trained with the contrastive loss.
Most state-of-the-art NN architectures utilized for speaker recognition task are based
on 1D CNN and modifications of 2D NN with skip connections. A well-known example
of the first type of architecture is the Time-Delay acoustic model (TDNN) [5]. This
network includes frame-level layers, statistics pooling that estimates mean and stan-
dard deviation over input frame features, segment-level layers and a final softmax where
outputs correspond to speaker probabilities. The most widely used 2D architecture is
ResNet [22]. In fact, recent publications have revealed that modified ResNets outper-
formed the TDNN-based systems [23, 24].

There have been several papers that experiment with modifications of the ResNet
architecture. The work [2] reported experiments with ResNet and stacked gated recur-
rent unit (GRU) layers. Wan et al. in [25] proposed a recognition deep network that
uses Thin ResNet and a dictionary-based trainable aggregation layers: NetVLAD and
NetVLAD with ghost clusters (GhostVLAD) [25, 26]. Vector of Locally Aggregated De-
scriptors (VLAD) is a pooling method that was originally proposed to obtain a compact
image representation [27]. A generalized VLAD layer (NetVLAD) was further utilized
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as a pooling layer to construct the utterance-level representation [25].

A number of studies have suggested improvements that raised the performance of the
speaker recognition model by using margin losses that encourage interclass separability
and impose a margin between classes. Recently, [28] examined speaker recognition sys-
tems trained with angular, additive margin and additive angular margin losses. In order
to encourages intraclass compactness, Joon Son Chung et al. [29] utilized a contrastive
loss that penalises the distance between negative pairs of utterances (utterances belong
to different speakers). Triplet loss was also used in [30] on a internal datasets where
Zhang et al. employed fixed dimensional spectrogram as the input to CNN.

Commonly used architecture for speaker recognition system consists of DNN-based
front-end trained to optimize the classification loss and separate backend to compare a
pair of embeddings. Most common is to use LDA projections of x-vectors followed by
PLDA scoring [5, 24]. The recently introduced end-to-end architecture combines front-
end and backed parts that learns embeddings and a similarity metric simultaneously.
Georg Heigold et al. in [1] demonstrated the efficiency of this approach over traditional
i-vector baseline on the ‘Ok Google‘ benchmark [31].

While most of state-of-the-art systems use hand-crafted front-end features, such as
filter bank coefficients or Mel-Frequency Cepstral coefficients, new works have estab-
lished that first CNNs layers can perform the role of the feature extraction. Thus,
such systems could operate on spectral representation or raw waveform data. For in-
stance, Joon Son Chung et al. in [29] applied CNN-based system to spectrograms. Raw
speech samples were used in [32] as inputs to feed-forward NN. The proponents of these
approaches compare feeding raw audio with pixels for images, which has become a stan-
dard for image recognition tasks. Experiments with SincNet architecture revealed that
engineered features smooth the speech spectrum and hamper detection of narrow-band
speaker characteristics such as pitch or formants [33].

3 Methods

3.1 Speaker recognition model architecture

This work introduces a model that describes a standard speaker recognition system. The
core architecture of the system is illustrated in Figure 1. During training stage, spectral
features are extracted from fixed-time duration segments selected from train utterances
and fed to the DNN to obtain speaker representations. In general, new speakers provide
several utterances; the final representations are obtained by averaging of vectors corre-
sponding for each speech fragment. Since most recent Speaker Recognition Challenges
provide test pairs to estimate a performance of pre-trained models, the number of ut-
terances used in this work for enrollment stage is restricted to a single speech segment.
Thus, during enrollment and testings steps, N-dimensional speaker representations are
extracted using the pre-trained model and compared using a scoring function. Decision
whether each test pair of utterances are from the same or different is made by comparing
with the threshold that corresponds to the estimated equal error rate (Section 3.9).

The speaker recognition system proposed in this study uses a four-stage pipeline.
First, frame-level acoustic features are computed from given utterances. These short-
time content is used as input to a feed-forward DNN. The fixed-length segments are
kept short (less than 4 seconds) for training to avoid overfitting. Similar to Snyder et
al. in [34], the end-to-end approach is split in two sequential stages: front-end DNN and
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Figure 1: The architecture of DNN-based system for text-independent speaker recogni-
tion.

PLDA-based backend. The architecture of the front-end system is shown in Figure 2.
The main argument for chosen architecture is that publicly available datasets do not
contain sufficient amount of in-domain speakers which is required to train end-to-end
systems. Next, the DNN is trained to optimize the classification loss on the training
set. After that, embeddings are extracted from a hidden utterance-level layer. Finally,
a separately trained PLDA-based backend is employed to evaluate the similarity score.

3.2 Pre-processing

The silence and non-speech segments removal is a crucial pre-processing step that allows
to exclude a part from data that does not carry any information about speakers. Hence,
as a result, this increases a performance of a recognition system. Speech Activity Detec-
tion (SAD) is a technique used to determine speech and non-speech intervals. Since the
energy of the non-speech interval is much lower, in a simplest way, a sufficient statistic
extracted from a short interval (up to 20 ms) could be compared with a threshold to
classify a given frame [35]. Although an accurate detection is a challenging task under
noise conditions, a simple energy-based SAD showed a good performance for DNN-based
systems [24]. Common approaches to estimate a signal energy are the short-time energy,
which represents the average sum of the squares of the samples amplitude, and the root
mean square energy (RMSE). Short-time energy statictic is used for proposed model.

Let u(t) be a speech signal and N the length of the frame. Then, short-time energy
of the frame i is defined as:

Ei =
1

N

iN∑
t=N(i−1)+1

u2(t) (1)

Let Emax represents the maximum short-time energy of the utterance. Let θ be a
threshold in decibels below zero. Then SAD denotes the frames an active if Ei lies
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Figure 2: The architecture of the front-end DNN-based system
.

Figure 3: The feature extraction pipeline
.

above the threshold θ estimated in dB:

10 log10

Ei
Emax

> θ (2)

3.3 Feature extraction

Traditionally, Mel-Frequency Cepstral Coefficients (MFCCs) have been employed as
engineered features [5, 34]. Although most research on speaker recognition task has been
carried out using MFCC, further exploration of the DNN-based models has revealed
better performance utilising log-filterbank [1, 24]. The differential and acceleration
coefficients, also known as deltas and delta-deltas, usually supplement feature vector.
For the first part of experiments, this study uses MFCC and deltas in order to construct
a frame representation, whereas for the second part log-filterbanks are used. The feature
extraction pipeline is illustrated in Figure 3 and described below.

In order to obtain MFCC, an input signal goes through the number of steps [36].
First, a utterance is split into short-time overlapping frames. The main reason for this
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Figure 4: Mel filterbank
.

is a variability of speech signals. Since the Fourier transform is able to process periodic
signals, an underlying assumption behind the framing is that signal frequencies are
stationary over a short period of time (25− 30 ms and a 10 ms shift). The periodicity
condition requires additional step such as windowing applied to each frame to reduce
ripple in the spectrum. The common choice is Hamming window that has the following
form:

w(t) = 0.54− 0.46 · cos
2πt

N − 1
(3)

where, 0 ≤ t ≤ N − 1, N is the window length.

The next step in the MFCC estimation pipeline is Short-Time Fourier Transform
(STFT) followed by the power spectrum. Let x[t], w[t] be an input signal and a window
function respectively. Then, STFT and the power spectral could be found as [37]:

STFT (τ, ω) ≡ X(τ, ω) =

∞∑
−∞

x[t]w[t− τ ]e−iωt

S(τ, ω) = |X(τ, ω)|2
(4)

There are a number of studies suggested that human perception of frequencies is
highly nonlinear [38]. In fact, human ear is more sensitive to variations in low frequency
regions. In order to address this issue, the mel scale was proposed that is linearly spaced
in low frequencies and logarithmic in high frequency regions. Mel-filterbank is illustrated
in Figure 4. Linear frequencies (Hz) could be converted to mel scale using a following
rule [39]:

fmel = 2595 · log10(1 +
flin
700

) (5)

The next step of the pipeline is to apply mel filterbanks to the power spectrum to
estimate the total energy within the certain filter band. Due to the fact that the human
ear response in nonlinear way not only to frequency but also to amplitude, the loga-
rithm is taken after filtering that results to log-filter banks, often denoted as FBank.
To decorrelate filterbank coefficients, the Discrete Cosine Transform (DCT) is applied
which resulted in MFCCs by taking the first few coefficients [40]. The outputs of each
step are shown in Figure 5.

DCT type-II is used in this pipeline that could be defined in a following way. Let M
be the number of filters in the mel filter bank, K be the number of cepstral coefficients
and Xi be the output of i-th filter. Then MFCCs could be computed as:

Ck = αk

M∑
i=1

Xi cos
πk(2i+ 1)

2M
,k = 0, 1, 2...K (6)
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where αk =
√
2

M for k = 0, αk = 2
M for k > 0.

Once MFCCs are estimated, the delta and delta-delta coefficients are computed to
preserve the dynamic information of the signal. Delta-Delta coefficients are calculated
in the same way using deltas as input. The differential coefficients are obtained as:

dt =

∑N
n=1 n(Ct+n − Ct−n)

2
∑N
n=1 n

2
(7)

where N is typically set to 2.

3.4 Robustness to environment

Previous research has established that data normalization is crucial step before training
a speaker recognition model that allows to rise classification accuracy [20]. Thus, inputs
are normalized on per utterance basis before feeding to NN. The results of normalization
applied for one of the test utterances are shown in Figure 6.

In addition to data preprocessing, batch normalization is used inside NN. It forces
activations to have zero mean and unit standard deviation across the mini-batch. As
a consequence, that leads to faster convergence to global minima at error surface [41].
This is especially a case for large mini-batch sizes. Thus, this study employs a frame-
level features normalization on a per-utterance basis and batch normalization inside the
network.

3.5 Data augmentation

In order to avoid overfitting, increase generalization ability of the model and rise ro-
bustness against channel variation, data augmentation is widely used for NN training.
This implies creating additional transformed training data. Traditionally, modifications
are applied in the time domain by adding noise, background music or reverberation [34].
The main drawback of this approach is storing augmented copies of original utterances.
This results in increasing training dataset by 50% or 100% depending on augmentation
strategy.

Recently, [42] proposed a on-the-fly augmentation method that applied directly to
the a log mel spectrogram, rather than to a raw audio input. This technique was selected
for its simplicity and effectiveness reported in [24]. Another advantage that it does not
require any noise datasets. In addition, since spectrum augmentation modifies inputs
online during training, there is no need to store addition transformed data.

This study applies two types of spectrum augmentation. First kind of deformations
is a time masking. Let τ be the number of time steps and T be a pre-defined time mask
parameter. Then, consecutive time steps [t0, t0 + t) are set to spectrogram mean where
t ∈ U(0, T ), t0 ∈ [0, τ − f). In case of a normalized input, this is the same as to set
values to zero.

The second type of spectrum augmentation used for experiments is a frequency mask-
ing. Similarly, let ν be the number of mel frequency channels and F be a pre-defined
frequency mask parameter. Then, consecutive mel frequency channels [f0, f0 + f) are
set to spectrogram mean where f ∈ U(0, F ), f0 ∈ [0, ν − f). Figure 7 shows examples
of the spectrum augmentations applied to a single log mel spectrogram.
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(a) Utterance in the time domain

(b) Spectrogram of the signal

(c) Log-filterbank of the signal

(d) MFCC

Figure 5: The feature extraction process. Example of processing of one of the test
utterances.
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(a) Normilized MFCC

(b) Normilized MFCC

Figure 6: Normalized input features.

(a) Time masking

(b) Frequency masking

Figure 7: Augmentations applied to a single log mel spectrogram.
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3.6 DNN Architecture

The architecture of all speaker recognition models that was investigated in this study is
based on CNN. Despite of the variability of layers and capacity, all systems contain same
important elements: a part that operate on a frame level, pooling, a segment-level part
which includes a fully-connected layer to compute embeddings. The main idea behind
the pooling layer is to aggregate the information over all input frames by averaging (Av-
erage Pooling) or computing mean a standard deviation (Statistics pooling). The former
approach is commonly used for CNN while the latter for TDNN. Moreover, pooling en-
courages the utterance representation become roughly invariant to small translations[43].

A DNN could be used for computing features for a second classifier, for instance,
PLDA or another DNN [44]. This could be achieved by using activations of one of
the hidden layer as new feature vectors. Although any layer could act as a bottleneck
layer, it has been demonstrated that the utterance-level representation outperforms in
comparison with frame-level embedding[1]. For every architecture, a layer after pooling
is utilized in this work as a bottleneck layer to extract speaker representations for all
models. These embeddings become inputs to a backend.

In this study, d-vector approach based on VGG architecture proposed by [21] is used
as the baseline. The convolutional layers of this model mostly have 3 × 3 filters. This
plain CCN demonstrated good generalization ability and achieved state-of-the-art re-
sults in the classification task in the ImageNet Challenge 2014.

This thesis mainly focuses on ResNet-based architecture. Thus, all speaker recogni-
tion systems use a residual learning framework that is claimed to be easier to optimize
than plain models. The main reason for that is imposing shortcut connections that
help to handle with the degradation of training accuracy issue. [22]. ResNet consists
of two types of blocks that consist of several convolutional layers supplemented by skip
connections. The choice of using a certain type depends on the a ResNet depth. In
fact, ‘building‘ blocks with two 3 × 3 convolutional layers are used for ResNet18 and
ResNet34 topologies, while ResNet50 and deeper contain co-called ‘bottleneck‘ blocks
that consists of tree layers. The structure of blocks is shown in Figure 8. The 1 × 1
layers bottleneck blocks are responsible for reducing dimensions before the expensive
3× 3 convolutions and then restoring dimensions.

3.7 Losses

The most widely used loss function utilized for a multi-class classification task is Soft-
max. Let C be a number of classes and d be a presoftmax layer dimension. Then,
Softmax is defined as follows:

Lsoftmax = − log
eW

T
y x+by∑c

j=1 e
WT

j x+bj
(8)

where x ∈ Rd, denotes the input of the sample that belongs to the y-th class. W ∈ Rd×c
and bj ∈ RC are the weight matrix and the bias term in the presoftmax layer respec-
tively [45].

Despite of fast convergence and good performance for the closed-set classification,
there are some drawbacks. This loss function does not explicitly promote inter-class sep-
arability. A number of studies have established that activations sampled from the projec-
tion layer are not discriminative enough for the open-set recognition problem [28, 46, 47].
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Figure 8: ResNet block. Left: a building block. Right: a bottleneck building block.

To handle the problem, margin-softmax losses are proposed that incorporate margins
between classes, such as the angular softmax (SphereFace) [47], CosFace [46] and Addi-
tive Angular Margin Loss (AAM-loss or ArcFace) [45]. All magrin-softmax losses learn
angularly discriminative features that minimize intra-class variance and maximize inter-
class variance. AAM-loss was selected for this study based on reported performance.

First, let the bias bj = 0 be fixed in Eq.(8). After that, the output of the last layer
WT
j x could be written as:

WT
j x =

∥∥Wj

∥∥‖x‖ cos θj (9)

where θj denotes the angle between the individual weight and the feature. If weights
Wj and embedding features x are L2-normalized, the angle could be calculated as:

θ = arccosWT
j x

After re-scaling features to make them distributed on a hypersphere with a radius s, the
AAM-loss can be defined as:

Laam−loss = − log
es(cos(θy+m))

es(cos(θy+m)) +
∑c
j=1,j 6=y e

s(cos(θj))
(10)

where m is an angular margin penalty.

3.8 Backend

Traditionally, cosine similarity scoring has been utilized for CNN-based model to com-
pare pairs of embeddings. It was shown that imposing a space between classes by training
with margin-losses led to good generalization ability. Thus, cosine distance could be a
simple choice [24] for scoring. However, resent work have report better performance
with a separately trained backend model based on PLDA. Especially it is important
when a severe domain-shift between train and test takes place [23].

This study investigates both of the proposed backends. Once the NN model is
trained, activations of the projection layer are computed for each test pair to obtain
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embeddings. For the first backend, a finale score is estimated using a simple cosine
similarity function as:

score(embspk1 , embspk2) =
embTspk1 · embspk2

||embspk1 || · ||embspk2 ||
(11)

The PLDA technique was firstly introduced for a face recognition [3]. Further, it
demonstrated effectiveness for speaker recognition tasks when it was applied to the
i-vectors. The simplest PLDA model is a linear model with Gaussian noise. Thus,
x-vector generation process could be modeled as a sum of factors:

xij = µ+ Fhi +Gwij + εij (12)

where xij denotes j-th embedding of i-th speaker; µ is a mean of the training dataset;
hi is a latent speaker factor; wij is an inter-session component, and εij is the residual
noise. This model contains a speaker-dependents part µ+ Fhi, which depends only on
identity of the individual and determines between-speaker variation [48]. The columns
of F are basis vectors for the between-individual subspace. The second part Gwij + εij
of Eq.12 is a noise component, which depends on a single utterance and determines
within-speaker variability. The columns of G are basis vectors for the within-individual
subspace.

Simple Gaussian PLDA assumes priors for model parameters to be normally dis-
tributes. Thus:

Pr(xij |hi, wij , θ) = Gx[µ+ Fhi +Gwij ,Σ]

Pr(hi) = Gh[0, I]

Pr(wij) = Gw[0, I]

(13)

where Σ is a covariance of εij ; I is the identity matrix, and G denotes the Gaussian
distribution.

During training, the PLDA model learns the parameters θ = {µ, F,G,Σ} from the
labelled embeddings xij that maximize the likelihood of observed data assuming that
same value for the latent variable hi corresponds to the same speakers. In the testing
stage, the speaker recognition log-likelihood ratio score is calculated between two hy-
pothesis: two utterances were generated from the same speaker factor hi, utterances
were generated from the different speaker factor hi.

To make learning process more efficient, embeddings extracted from the trained NN
undergo several transformations before feeding to the PLDA model. The dimensionality
of mean-normilized embeddings is reduces using LDA. To preserve an assumption re-
garding Gaussian priors for the PLDA model parameters, [49] proposed applying length
normalization. In order to convert PLDA scores into probabilities, a calibration is re-
quired. This study uses Sigmoid transformation defined by following:

S(x) =
1

1 + e−x
(14)

This transformation converts log-likelihood ratios to the unit interval as it required for
the VoxCeleb Speaker Recognition Challenge.

3.9 Evaluation

Two types of errors are associated with the speaker recognition task. The former is false
acceptance when the access is granted for an imposter, and the latter is false rejection
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Figure 9: A trade-off between False Acceptance Rate and False Rejection Rate. A cross
point is EER.

when access to a genuine speaker is denied. The frequency with which the first type of
errors occurs is called False Acceptance Rate (FAR) or False Alarm probability. It is
defined as the number of imposters accepted divided by the total number of imposter
attempts. The frequency of the former is called False Rejection Rate (FRR) or Miss
probability which is defined as a ratio between the number of rejected genuine speakers
and the total number of legitimate attempts [50].

The FAR and FRR rates change opposite way: while the discrimination threshold
rises, the FAR is decreased, but the FRR is increased. This trade-off is illustrated in
Figure 9. The threshold value for equal FAR and FRR is called the Equal Error Rate
(EER) (it is shown as a cross point between two rates in Figure 9). EER is a common
metric that is used to report speaker recognition system performance.

For real application the cost associated errors could be explicitly determined. In
order to take into consideration penalties that are specific for a particular application,
the detection cost is utilised. This cost function constitutes a weighted sum between
false rejections and false acceptance rates and is defined as follows:

Cdet = CFR · PFR · Ptarget + CFA · PFA · (1− Ptarget) (15)

where CFR, CFA are costs of false rejection and false acceptance, Ptarget is a prior target
probability. PFR and PFA are measured probabilities that depends on the acceptance
threshold. The minimum of Cdet values computed for the range of threshold levels is
the second widely used metric for speaker recognition tasks. Both of these evaluation
metrics, EER and Cmindet , are employed to report system performance.

Traditionally, The Receiver Operating Characteristic (ROC) curve is utilized to il-
lustrate the prediction performance of a binary classifier that plots the probability of
correct acceptance (1-FRR) against FPR at various decision threshold values. To com-
pare performance of speaker recognition model, it is more common to use Detection
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stat total VC1 Dev VC1 Test VC2 Dev VC2 Test
# of speakers 7 363 1 211 40 5 994 118
# of videos 172 976 21 819 677 145 569 4 911
# of utterances 1 281 762 148 642 4 874 1 092 009 36 237
avg # of utterances - 116 - 185 -
avg length of utterances - 8.2 - 7.8 -

Table 1: VoxCeleb datasets details. VC1 and VC2 denote VoxCeleb1 and VoxCeleb2
respectively.

Error Trade-off (DET) Curve which is similar to ROC curve, but is more linear due
to axis warping. Specifically, axis are non-linearly scaled to highlight the differences
between models in the critical operating region [51].

Let x = Pfa and y = 1 − Pmiss be the the horizontal axis and the vertical axis
for the ROC curve, where Pfa is the false alarm probability and Pmiss is the the miss
probability. Then, axis for DET curve could be obtained by normal deviate scaling:
x = probit(Pfa) and y = probit(Pmiss) where the probit function maps the unit interval
[0, 1] to [−∞,∞] and is defined as:

probit(p) =
√

2 erf−1(2p− 1) (16)

where erf−1 is the inverse error function.

4 Experimental setup

4.1 Datasets

The experiments are carried out on the VoxCeleb2 and VoxCeleb1 datasets [20]. Both
datasets are contain utterances extracted from YouTube videos. The audio channels of
all video have been converted to single channel with a sample rate of 16kHz. Datasets
are gender balanced and do not overlap with the identities. The training part of Vox-
Celeb2 dataset has 5994 speakers and more than 1.2M speech segments. The average
length of utterances is 8 seconds. Detailed information about datasets is presented in
Table 1.

The VoxCeleb2 train dataset was used for training front-end and back-end models
while results are reported on the VoxCeleb1 development or test set. Evaluation lists
were provided by the organizers of the VoxCeleb Speaker Recognition Challenge [29].
The VoxCeleb1-O list contains random pairs selected only from the test set with 40
different speakers. In the VoxCeleb1-E, 581 480 pairs were sampled from the entire
set with the 1251 identities. The last list, VoxCeleb1-H, consists of 552 536 pairs and
compares only speakers with the same gender and nationality which makes evaluation
much harder.

4.2 Evaluation metrics

In order to observe the performance of the proposed model, two metrics are utilized
for the experiments. These metrics were used in published papers to report results
obtained on the dataset and the same evaluation lists. The primary metric is EER.
In addition, results are reported using the minimum of the normalized detection cost
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Layer Structure Output
conv1 3× 5, 96, Stride (1,2) 96× 60× 149
mpool1 3× 3, Stride 2 96× 29× 74
conv2 3× 5, 256, Stride (1,2) 256× 29× 74
conv3 3× 3, 256 256× 29× 36
conv4 3× 3, 256 256× 29× 36
conv5 3× 3, 256 256× 29× 36
mpool5 3× 3, Stride 2 256× 14× 11
fc6 256× 2048 2048× 1× 11
apool6 - 2048× 1× 1
fc7 2048× 512 512
fc8 512×N N

Table 2: VGG-M architecture with N classes. 512-dimensional fc7 vectors is used to
obtain embeddings. Total number of parameters: 10.5K.

function (minDCF) with Ptarget = 0.01 and equal unit weights between misses and false
alarms [29].

4.3 Data preprocessing and feature extraction

Two types of engineered features were used for experiments: MFCCs and log filter-
banks. Prior to data processing, audio segments with duration less than 4 seconds were
excluded from the train dataset. For each utterance from the train and test dataset was
applied the same preprocessing pipeline. First, the same energy-based SAD, provided
by librosa library [52], filtered out non-speech intervals. The threshold in decibels was
set to 30dB.

Both types of the features were calculated with a frame shift of 10ms and frame-
length of 25ms. For the MFCC-based experiments, the features are 20-dimensional
MFCCs. 20 delta and 20 delta-delta coefficients are appended to construct 60-dimensional
feature vector. For the second part of experiments, 80 log filtersbanks were calculated
for each frame. After that, obtained features were normalized on per utterance basis to
have zero mean and unit variance.

4.4 Architecture

All proposed front-end systems are founded on DNN. For the baseline model, d-vector
approach based on VGG-M architecture proposed by [21] with the softmax loss function
is used as a front-end model, whereas backend utilizes the cosine similarity between
speaker representations. Adjusted to the input size the CNN architecture is specified in
Table 2. Good classification performance on large-scale image datasets and the ability to
generalize very deep features make a choice of the baseline architecture highly reasonable.

One of the research questions is to investigate how NN capacity influences on the
model performance. Hence, three ResNet-based NN are used to compare quality of
recognition. A residual learning framework proposed in [22] outperform plain CNN due
coping with the degradation problem for very deep models. Since training of extremely
deep model is highly time-consuming, performance metrics are estimated on ResNet18
and ResNet-34-based front-end models. To examine how number of filters influences
on model performance, two types of ResNet-34 models were trained. The first model
has the same filter size as ResNet18; the second model, ResNet-II, has two times more
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layer ResNet-18 ResNet-34-I ResNet-34-II
Structure Output Structure Output Structure Output

input - 1× 60× T - 1× 60× T - 1× 60× T
conv1 7× 7, 16, Stride1 16× 60× T 7× 7, 16, Stride1 16× 60× T 7× 7, 16, Stride1 16× 60× T

Block1

[
3× 3, 16
3× 3, 16

]
× 2 16× 60× T

[
3× 3, 16
3× 3, 16

]
× 3 16× 60× T

[
3× 3, 32
3× 3, 32

]
× 3 32× 60× T

Block2

[
3× 3, 32
3× 3, 32

]
× 2 32× 60× T/2

[
3× 3, 32
3× 3, 32

]
× 4 32× 60× T/2

[
3× 3, 64
3× 3, 64

]
× 4 64× 60× T/2

Block3

[
3× 3, 64
3× 3, 64

]
× 2 64× 60× T/4

[
3× 3, 64
3× 3, 64

]
× 6 64× 60× T/4

[
3× 3, 128
3× 3, 128

]
× 6 128× 60× T/4

Block4

[
3× 3, 128
3× 3, 128

]
× 2 128× 30× T/8

[
3× 3, 128
3× 3, 128

]
× 3 128× 30× T/8

[
3× 3, 256
3× 3, 256

]
× 3 256× 30× T/8

fc6 128× 256 256× 1× T/8 128× 256 256× 1× T/8 256× 256 256× 1× T/8
apool6 - 256× 1× 1 - 256× 1× 1 - 256× 1× 1
fc7 256× 512 512 256× 512 512 256× 512 512
fc8 512×N N 512×N N 512×N N
# params 1.8K 2.5K 7.4K

Table 3: ResNet-based architecture. N is the number of classes. 512-dimensional fc7 vectors is used to
obtain embeddings. T denotes an input length in frames. Last line is a total number of parameters to train
for each network.

filters. The ResNet-based configurations are outlined in Tables 3.

4.5 Backend

As a backend for all models, two the most common approaches are chosen. The first
method uses cosine similarity between test embeddings without any preprocessing. In
addition, same metrics are computed on centered embeddings. Similar to [53], the train-
ing mean was calculated on 500K randomly chosen utterances (≈ a half of the training
data).

The second approach employs PLDA. Same 500K utterances were used to train the
backend model. First of all, extracted embeddings are centered using same training data
mean. After that, feature vectors are projected to M-dimensional representation apply-
ing LDA. To define the optimal dimensionality, space size is set to 100%, 75% and 25%
of original size (512, 374 and 128 respectively). After length normalization, projections
are compared using PLDA scoring. Finally, the Softmax function transforms scores to
a probability range [0,1].

For the first part of experiments, the PLDA model is trained on embeddings ex-
tracted from short utterances (≈ 3 sec). Same segment size was used for training NN.
A final embedding for a single test utterance was obtained by averaging six vectors
corresponding to random cuts of an original utterance. For experiments on log mel
filterbanks features, embeddings were estimated on full-length utterances.

4.6 Training

Models are trained on short segments that are randomly sampled from original utter-
ances. To control training process and avoid overfitting, 3% of the train set is used
as a validation set. Firstly, all networks are trained using Softmax loss function that
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shows more stable convergence than margin-softmax losses [53]. After that, the last
pre-softmax layer is removed, and networks are fine-tuned with AAM-loss with s = 30
and m = 0.2 without freezing layers as it was suggested in [28].

All the work was carried out using PyTorch. Each model is trained on GeForce
GTX 1080 GPU for 7 epochs for each loss with a batch-size of 64 for VGG, ResNet18,
ResNet34-I and 32 for ResNet34-II. Stochastic gradient descent with the moment (0.9) is
employed to optimize the network. Learning rate was initially set to 10−2 and decreased
to 10−4 after three epochs. Batch normalisation is applied before ReLU activation
function.

5 Results

5.1 System evaluation on MFCCs

In these experiments, performance metrics are estimated on four CNN models and two
losses (Softmax and AAM-softmax) on the VoxCeleb-O evaluation list. Besides, four
backends are applied to compare the performance: cosine similarity, cosine similarity af-
ter centering, cosine similarity score of LDA projections, length-normalized projections
modelled by PLDA. Scores are estimated for short segments extracted from each pair
and averaged after that. The experiments show that using mean of PLDA scores gives
better results that estimate score of means of embeddings. Thus, this approach was used
for further experiments. It is worth mentioning that, after training for 7 epochs, accu-
racy on a validation set is still increasing, but convergence is much slower. Moreover,
AMM-loss converges even slowly, probably, due to additional restriction on a margin
that should be preserve during training.

The main results obtained on original VoxCeleb1 evaluation list are presented in
Table 4. To highlight dependence on volume of the corpus data used for training a
network, EERs are estimated on VGG-M-based model trained on VoxCeleb1 and Vox-
Celeb2 train sets. Since experiments showed that 128-dimensional representation LDA
revealed slightly better results, it was used for all further tests. The VoxCeleb-O eval-
uation list has equal amount of match and non-match pairs. Figure 10 (a) represents
histogram of the cosine similarity score distributions for target and non-target pairs
evaluated for the ResNet34-II model.

By comparing the different systems trained on VoxCeleb2 train set, the deepest
ResNet-based model trained with Softmax achieved the lowest error rate 6.97% even
though the number of parameters 29% less than for a baseline model. What stands
out in the table is that doubling the number of filters in the building blocks results in
16% better EER and almost three times more parameters to train in comparison to
ResNet-I model. However, it more effective than increasing the depth and preserving
filter bank size. In fact that gives only 5.4% reduction of EER. From this data, it could
be concluded that the PLDA backend shows better results for all models and metrics.
In terms of minDCF, ResNet34-II fine-tuned with AAM-loss achieved the best result.
However, it is only 1% better than for same model trained with softmax. During the
additional experiment, it was observed that extracting embeddings before the RELu
activation function is more effective. This is better by 4.4% in EER.

The results of the experiments show that ResNet34-II model outperformed ResNet34-
I and ResNet34-II trained with the magrin loss at all operating points. These outcomes
are illustrated by the DET curves in Figure 10 (b). Overall, these results indicate that
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Model Loss Backend Training set EER(%) Cmindet

VGG-M softmax cosine similarity VoxCeleb1 20.43 -
VGG-M softmax cosine similarity VoxCeleb2 14.69 -
VGG-M softmax centering + cos VoxCeleb2 12.61 -
VGG-M softmax LDA + cos VoxCeleb2 10.58 -
VGG-M softmax LDA(128)+PLDA VoxCeleb2 10.73 -
VGG-M softmax LDA(374)+PLDA VoxCeleb2 10.76 -
VGG-M softmax LDA(512)+PLDA VoxCeleb2 10.79 -
ResNet18 softmax cosine similarity VoxCeleb2 11.94 -
ResNet18 softmax centering + cos VoxCeleb2 10.36 -
ResNet18 softmax LDA(128) + cos VoxCeleb2 10.94 -
ResNet18 softmax LDA(128)+PLDA VoxCeleb2 9.2 -
ResNet34-I softmax cosine similarity VoxCeleb2 9.70 -
ResNet34-I softmax centering + cos VoxCeleb2 9.02 0.716
ResNet34-I softmax LDA(128)+PLDA VoxCeleb2 8.71 0.692
ResNet34-II softmax cosine similarity VoxCeleb2 8.54 0.676
ResNet34-II softmax centering + cos VoxCeleb2 7.62 0.665
ResNet34-II softmax LDA(128)+PLDA VoxCeleb2 7.29 0.654
ResNet34-II AAM-loss cosine similarity VoxCeleb2 7.71 0.662
ResNet34-II AAM-loss centering + cos VoxCeleb2 7.78 0.658
ResNet34-II AAM-loss LDA(128)+PLDA VoxCeleb2 7.50 0.647

Table 4: Experimental results on MFCCs on VoxCeleb-O evaluation list (includes 37720
pairs and 40 speakers).

not only capacity, but also architecture play important role.

5.2 System evaluation on log mel filterbanks

In this section, experiments are carried on mel log filterbanks. The main results ob-
tained on VoxCeleb1 evaluation lists are presented in Table 5. Experimental results
presented in Section 5.1 were took into account to achieve better performance. In fact,
the ResNet34-II architecture was chosen for all further experiments. In addition, all NN
were trained on longer segments (≈ 4 sec); embeddings were extracted on full-length
utterances before RELu activation. PLDA was used as a backend model applied to
length-normalized 128 projections. The augmentation strategy used for experiments is
described in Section 3.5.

For the first experiment, the model was trained without spectrum augmentation.
Similar to results obtained on MFCC features, the system with PLDA backend out-
perform at all operating points. Thus, the PLDA backend was employed for all further
experiments. Figure 11(a) illustrates the DET curves for the systems with three different
backend: cosine similarity scoring, centered cosine similarity scoring, PLDA backend.
Although centered cosine scores are better at the EER point, they are slightly worse
than cosine scores at a very low false rejection rate.

As can be seen from the Table 5, spectrum augmentation results in a clear improve-
ment for all evaluation lists. This model achieves an EER of 4.67% on the VoxCeleb-O
evaluation list which is 7% better than for a system without augmentation. Same trend
is observed for other evaluation lists. In terms of minDCF, system with augmentation is
just about 1.5% better. In contract to expectation, a model fine-tuned with the margin
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(a) A histogram of the centered cosine similarity score dis-
tributions target/non-target for ResNet34-II model trained
with softmax.

(b) DET curves for ResNet34-based models. EERs are indi-
cated as red dots.

Figure 10: Results for ResNet34-based models.

(a) DET curve for ResNet34-II model trained with Softmax
without augmentation evaluated for the VoxCeleb-E list.

(b) DET curves for ResNet34-based models evaluated for
the VoxCeleb-O list.

Figure 11: Results for ResNet34-based models.
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Model Loss Backend Eval. list EER Cmindet

ResNet34-II Softmax LDA+PLDA VoxCeleb-O 4.83 0.480
ResNet34-II (aug) Softmax LDA+PLDA VoxCeleb-O 4.67 0.478
ResNet34-II (aug) AAM-softmax LDA+PLDA VoxCeleb-O 6.72 0.641
ResNet34-II Softmax LDA+PLDA VoxCeleb-E 4.67 0.497
ResNet34-II (aug) Softmax LDA+PLDA VoxCeleb-E 4.58 0.493
ResNet34-II (aug) AAM-softmax LDA+PLDA VoxCeleb-E 7.17 0.688
ResNet34-II Softmax LDA+PLDA VoxCeleb-H 8.16 0.646
ResNet34-II (aug) Softmax LDA+PLDA VoxCeleb-H 7.91 0.644
ResNet34-II (aug) AAM-softmax LDA+PLDA VoxCeleb-H 12.2 0.796

Table 5: Experimental results on log mel filtebanks features on three evaluation lists:
VoxCeleb-O (37 720 pairs and 40 speakers), VoxCeleb-H (set within pairs with the same
gender and nationality that includes 552 536 pairs and 1251 speakers), VoxCeleb-E
(includes 581 480 pairs and 1251 speakers).

showed much worse performance. Further training for five additional epochs resulted
in 33% higher EER. Additional experiment with fixing layers before the pooling layer
during fine-tuning, has not resulted in the performance improvement. Figure 11(b) il-
lustrates the DET curves ResNet-II model: the model trained with Softmax, the model
trained with Softmax with spectrum augmentation, the model trained with AAM-loss
with spectrum augmentation. It could be seen that model with augmentation is better
at the EER point, but it is slightly worse at a low miss rate.

Comparison with state-of-the-art models is reported in Table 6. In fact, all state-
of-the-art models employ data augmentation, very deep architecture with loss functions
that encourage inter-class separability and within-individual compactness. This results
confirm observed during experiments behaviour: deeper architecture with more filters
provides better performance.

5.3 Visualizing bottleneck features

One of the aim of the project is to investigate the generalization ability of the trained
recognition models and to give an inside onto the projection layer responsible for embed-
dings. Visualization of 2D and 3D projections of activations computed for pre-softmax
layer could be the way to understand the nature of identification networks. To visualize
512-dimension feature vectors extracted from a hidden fully-connected layer, t-SNE and
PCA are applied for dimensionality reduction. For the t-SNE approach, the number of
components, perplexity and training iterations are set to 2, 50 and 1500, respectively. In
order to analyse the generalization ability of proposed models, embeddings are obtained
on previously unseen train part of VoxCeleb1 data set.

All models provide similar patterns. As an example, 2D and 3D projections of ac-
tivations sampled from from ResNet34-II pre-softmax layer for 20 previously unseen
randomly-selected speakers are shown in Figure 12 and 13. Illustrated results revealed
more compact clusters for the system trained on log mel filterbank features. That corre-
sponds to the numerical results presented in Section 5.1-5.2. In fact, this model showed
38% lower error-rate. From Figures 12, it could seen that the t-SNE-based projection
allows to separate speakers much better than PCA. Moreover, a combination of these
two methods gives even better separation. In fact, t-SNE is applied to dimensionality
reduction using PCA. Since cumulative explained variation for 10 principal components
is already 0.999, the subspace size is set to 10.
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Authors test set Model Loss EER (%) Cmindet

Nagrani at al. [29] VoxCeleb-O ResNet50 (aug) contrastive loss 3.95 0.429
Zeilani at al.[53] VoxCeleb-O ResNet160+cos+S-norm (aug) AAM loss 1.31 0.154
Xiang at al [28] VoxCeleb-O TDNN+PLDA (aug) AAM loss 2.694 -
Xie at al [25] VoxCeleb-O Thin ResNet34 + GhostVLAD(aug) Softmax 3.22 -
our model VoxCeleb-O ResNet34-II+PLDA (aug) Softmax 4.67 0.478
Nagrani at al. [29] VoxCeleb-E ResNet50 (aug) contrastive loss 4.42 0.524
Zeilani at al.[53] VoxCeleb-E ResNet256+cos+S-norm (aug) AAM loss 1.35 0.164
Xiang at al [28] VoxCeleb-E TDNN+PLDA (aug) AAM loss 2.764 -
Xie at al [25] VoxCeleb-E Thin ResNet34 + GhostVLAD(aug) Softmax 3.13 -
our model VoxCeleb-E ResNet34-II+PLDA (aug) Softmax 4.58 0.493
Nagrani at al. [29] VoxCeleb-H ResNet50 (aug) contrastive loss 7.33 0.673
Zeilani at al.[53] VoxCeleb-H ResNet256+cos+S-norm (aug) AAM loss 2.48 0.233
Xiang at al [28] VoxCeleb-H TDNN+PLDA (aug) AAM loss 4.732 -
Xie at al [25] VoxCeleb-H Thin ResNet34 + GhostVLAD(aug) Softmax 5.06 -
our model VoxCeleb-H ResNet34-II+PLDA (aug) Softmax 7.91 0.644

Table 6: Comparison of our models achieved the best performance with state-of-the-art systems.
Results are reported on three VoxCeleb1 evaluation lists. All models were trained on VoxCeleb2
dataset only. Since some authors did not published minDCF estimation, this information is missed
in the table.

(a) Embedding obtained from NN trained on MFCCs features (b) Embedding obtained from NN trained on log mel filterbanks fetures

Figure 12: Visualisations of t-SNE-based projections of embeddings extracted from ResNet34-II fc7 layer.
20 clusters corresponds to 20 different randomly-chosen speakers from VoxCeleb1 train set.
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(a) Embedding obtained from NN trained on MFCCs features

(b) Embedding obtained from NN trained on log mel filterbanks features

Figure 13: Visualisations of PCA-based, t-SNE-based, t-SNE+PCA-based projections (1st vs. 2nd di-
mension) of embeddings extracted from the ResNet34-II fc7 layer. Y denotes a speaker class number.
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6 Discussion

An initial objective of the project was to examine NN topology, losses, backends and
frame-level input features utilized for text-independent speaker recognition systems. The
most obvious finding to emerge from the analysis is a dependence of the performance on a
train corpus size. Experiments also confirms that training on longer utterances improves
significantly a recognition model. One of the objectives of this thesis was to investigate
how performance of recognition systems depends on network capacity. The results of
this study indicate that evaluation metrics tend to decrease with network depth and
number of filters for ResNet-based models. However, total number of parameters is less
important than architecture. In fact, all ResNet-based systems outperformed the plain
baseline model even though it contained more parameters. One unanticipated finding
was that models fine-tuned with AAM-loss achieved higher error-rate than trained with
simple Softmax. This results are contrary to previous studies which have suggested that
margin losses encourage inter-class separability. A possible explanation for this might be
a slow convergence of AAM-loss. Thus, training with more epochs with a small learning
rate could improve results. Prior studies have noted the importance of centering em-
beddings before scoring. Indeed, mean subtraction constantly improved results for all
backends. The results also show that a separately trained PLDA backend model benefits
in comparison with cosine similarity scoring. Comparison of the findings with those of
other studies confirms that NN model trained on log filterbanks features shows better
performance. However, this comparison should be done more accurate by preserving
length of input utterances. The most interesting finding was the ability of bottleneck
layer to cluster unseen speakers by visualizing activations of the projection layer.

Overall, a recognition model proposed in this study showed good results on all evalu-
ation lists even though there is a gap in the performance between presented and state-of-
the-art systems. Worse results may be explained by deeper architectures used in these
studies, with more filters in each ResNet block. It is also common for all state-of-the-art
systems to apply data augmentation in the time domain by adding noise, background
music or reverberation while this study employs spectrum augmentation. Further re-
search should be undertaken to investigate the performance using data augmentation in
the time domain, other margin losses and calibration for PLDA scoring.

7 Conclusion

The purpose of the present research was to investigate CNN-based systems for text-
independent speaker recognition. Although the current study is based on comparison
of only four models, the findings suggest that performance correlate with CNN capac-
ity. Processing time did not allow to train each model with more epochs and examine
deeper architectures with larger filter size. A further research could assess whether aug-
mentation in a time domain along with spectrum augmentation improve performance
of the recognition system. The second aim of this study was to investigate the ability
of the bottleneck layer to separate new speakers. Sampling activation from the embed-
ding layer and projecting on a plain revealed meaningful clusters that confirmed the
generalization ability of the model to define speaker manifolds.
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