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Abstract

The growing production figures and pace of the open market make it more and more
important to enact accurately to new developments. Demand forecasting has the poten-
tial to analyse patterns and support demand planning for increased overall performance.
Forecasting models differ in predictive performance and practical use. The paper com-
pares two different estimation models through SARIMA and ARMA state-space models
and compares two different models through SARIMA and random forest on univariate
time series. Concluding, the SARIMA model performs better on predictive performance
than the random forest on the given time series. Still, in practice, the random forest for
time series does have potential due to its efficient scalability to other time series. The
non-convergent state-space model results in an inability for comparison in predictive
performance. Convergent ARMA state-space estimations do reveal the potential to out-
perform the SARIMA models, though it will be at the expenses of practical inefficiencies
in terms of computational costs.

Keywords — demand forecasting, time series analysis, SARIMA, state-space model,
random forest
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1 Introduction

1.1 Relevance

In the current globalised world, productions of large organisations have risen to enor-
mous quantities. The digitalisation has caused an increased necessity to act quickly on
the continuously changing environment as it increased the pace of the open market. The
growing production figures make it more and more important to plan accurately to new
developments as the growth will enlarge the impact on the organisation. Consequently,
it is crucial in demand planning to strive for increased accuracy and efficiency of orders
planning. Demand forecasting models have the potential to analyse and forecast de-
mand planning based on the history of data. These systems could complement current
human expertise in demand planning decision-making. Previously, less computation-
ally intensive models as Radial Basis Functions, ARIMA, and GARCH forecasted time
series for demand planning [11][12]. The development of digital systems resulted in a
wider range of models being applicable in-practice due to the advancements in terms of
computational power, such as the utilisation of Extreme Learning Machines and Deep
Learning [47] [17] [18].

The focus of this paper will be on a demand planning case with real data from
an organisation in the food industry. In the food industry, shortly perishable products
make stock and production planning to minimise products loss very challenging [4]. Due
to this challenge, a demand forecasting system which is both accurate and efficient is
important in this field.

A popular way to execute demand forecasting is ARIMA: because of the large
knowledge-base and widely supported tools, it is a relatively easy model to implement.
Besides its ease of implementation, it also is an efficient model making it applicable in
quickly changing environments. However, more computationally extensive models, such
as the state-space models, potentially have higher accuracy. These particular models can
be implemented through the use of the ARMA principle, resulting in a comparison of
two models with similar methods and different model estimations. Though state-space
models demand higher computational power [18], it is interesting to see whether the
trade-off between efficiency and accuracy is worth using state-space models in practice.
Note that the ARIMA and state-space models are both theoretically-driven models,
requiring the designer of such algorithms to thoughtfully select components and param-
eters for efficient and effective execution of the forecast.

These theoretically-driven models are interesting to compare to machine learning
models, which utilise their capability to continuously learn from the data to form a
model applicable to the data. Instead of selecting components and estimating all pa-
rameters on forehand as is the case with ARIMA and ARMA state-space models, ma-
chine learning models estimate and correct the parameters itself. Through the learning
process, machine learning tools can be utilised for the identification of time series pat-
terns in the past and forecasting the future. For time series analysis, machine learning
models have been used in the past, though literature lacks demand planning forecasting
random forests [21][45]. Random forest has been proven to be effective in predictions
and differs in its underlying model principles. Therefore, this paper compares random
forest to the ARIMA and ARMA state-space models in terms of predictive performance
and its applicability in practice [6].

The methods should get a use in-practice to add value to society and thereby should
not only perform well in terms of predictions but also be easy to understand and imple-
ment to get a function in the industry. Therefore, the performance of all three models
is captured not only through predictive performance measures but also through the
practical applicability of the models. Practical insights concerning ease of implemen-
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tation, ease of understanding, and computational efficiency are investigated as well in
order to conclude which model could fulfil the prediction task best, both in predictive
performance as practically.

1.2 Research Questions

Consequently, the formed research questions measure the predictive performances of
ARIMA, ARMA state-space models, and random forest in an experiment and compare
the models from the practical perspective. In more detail, the models are optimised for a
demand forecasting time series case in terms of accuracy with an overarching goal to im-
prove the forecasting precision. The best parameters for each model cause optimization
to compare the models’ potential fairly. Besides, the complexity of implementation, ease
of understanding, and computational efficiency investigate its applicability in practice.
The following research questions should lead to that goal:

i. What are the optimised models and according (hyper)parameters for SARIMA,
state-space models and random forests?

ii. To which extent do the models perform in terms of predictive performance?

iii. To which extent are the tested methods feasible for use in-practice?

The following sections investigate the research questions in order to give a conclu-
sion on the models’ comparison systematically. First, the methods section - section 2 -
presents the theory used for implementing the models. Afterwards, the specific experi-
mental setup is given at section 3. The results section, section 4, will reveal the results
of the research, which is further interpreted and compared in the discussion section -
section 5. The discussion also includes opportunities for future works. The conclusion
in section 6 wraps up the paper with the final findings.
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2 Methods

The methods section is supportive and illustrates the principles used in the Experimental
Setup. The introduction of each principle will start by an explanation of time series
analysis and stationarity in sections 2.1 and 2.2. Afterwards, the seasonality principles
utilised are explained and grounded at section 2.3. Subsequently, section 2.4 splits out
the foundations of ARIMA and further extends to the Seasonal ARIMA model which
offers extra, ARIMA related functionalities. As the ARIMA model needs sufficient
parameters for successful execution, the methods to do so are defined in the ARIMA
section as well. State-space model principles and its application on ARMA time series
are given in section 2.5, followed by the random forest principles and its application on
time series analysis in section 2.6. The methods section is finalised by arguing choices for
prediction accuracy metrics in section 2.7, which enables comparison of the predictive
performance of all three methods.

2.1 Time series Analysis

Time series analysis uses a series of data points sequenced by constant time intervals,
which usually is per hour, day, week, month or year. Through analysis of such a sequence
- or time series - one can identify patterns that occurred in the past to predict future
patterns. More practically for demand forecasting, one can identify the total orders per
week in the past and can use the information to forecast future orders. This information
can enable anticipation on, e.g. making sure one has the right supplies to produce the
incoming orders of the future. Usual patterns to identify in a time series are of long-term
trends, short-term seasonality, and ”unexplained” data - residuals. There are several
methods to identify trends, seasonality and the residuals. This paper focuses on three
models to identify the underlying patterns of the data: SARIMA, state-space model, and
random forest. SARIMA, state-space models and random forests are further described
at sections 2.4, 2.5 and 2.6. Before using those models, pre-processing the time series
can be necessary, and the stationarity section identifies the necessity further.

2.2 Stationarity

A stationary time series is a time series data without long-term trends or seasonality.
Though rapid, short-term changes or impulses may exist in time series, only as long as
their nature seems to be for the short-term [25]. As ARMA models assume and assume
stationary data for the time series analysis to execute, it is important to transform the
data to a stationary time series. If one does not deal with stationarity, the linear nature
of the underlying prediction model can cause problems for forecasting on time series with
trends and seasonality. Usual methods to deal with seasonality and trends is by season-
ality and trends correction, which will be further explained in section 2.3. This section
focuses on testing stationarity and testing whether a time series is stationary can be done
in several ways. In this paper, two common and widely used methods to test for station-
arity, the Augmented Dickey-Fuller test and the Kwiatkowski–Phillips–Schmidt–Shin
test, are utilised.

The ADF and KPSS tests analyse the time series and check whether the mean and
variance of the time series stay the same throughout the time series. Since the time
series should not have any trends or seasonality, the mean and variance of the residuals
should stay the same over time. In order to do so, current time steps are compared
to lagged time steps - a time step in the past. Comparing the current point with a
previous point, say 15 weeks ago, should not make a difference in terms of mean and
variance. The tests analyse the differences between points for each time step and form
its judgements by converting the calculations of mean and variances into a ”stationarity

3



score”. Subsequently, the stationarity score leads to the probability that a time series is
stationary. If the data turns out to be non-stationary, trends and seasonal corrections
are necessary to transform the time series data into a stationary time series. As the
time series in this paper only has a seasonal pattern, only the seasonal pattern will be
focused on and can be found in section 2.3,

The next subsections further cover the stationarity tests. First, the differences of the
KPSS and ADF tests is given through a brief, separate explanation at sections 2.2.1 and
2.2.2. The strengths of combining of both tests are argued at section 2.2.3. Also, lags
selection is an important parameter for the successful execution of stationarity tests.
Thereby, lags selection section finalises the stationarity tests through an explanation of
and the approach for lags selection.

2.2.1 KPSS test

The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test calculates the probability that
the time series has a unit-root - or is non-stationary - and is based on the following
hypotheses:

i. Null-hypothesis: Time series has no unit-root and is stationary

ii. Alternative hypothesis: Time series has unit-root and is non-stationary

Through this null-hypothesis, the KPSS function assumes a stationary time series and
tries to gather enough proof to reject the null hypothesis for a non-stationarity judge-
ment. The rejection-border of the hypothesis bases on the choice for the Critical Value
(α), which represents the percentage at which rejection of the null hypothesis is relevant.
For a stationary time series through the KPSS test, there should be a lack of evidence
to reject the null-hypothesis to make a case for stationary data.

2.2.2 ADF test

The Augmented Dickey-Fuller (ADF) test calculates the probability that the data set
has no unit-root - or is stationary - and has the following hypotheses:

i. Null-hypothesis: Time series has unit-root and is non-stationary

ii. Alternative hypothesis: Time series has no unit-root and is stationary

The mechanics of the ADF test is the same as the KPSS test, though the hypotheses
differ. The ADF test tries to gather enough proof to claim a stationary time series. As
well as the KPSS test, the ADF test bases its rejection-border on the choice for the
Critical Value (α), which indicates the proof necessary for the null-hypothesis (in %) to
be rejected. For a stationary time series, there should be enough evidence to reject the
null hypothesis.

2.2.3 Combining KPSS and ADF

Stationarity tests investigate whether the time series has a unit-root. Since the absence
of a unit-root implies stationarity, unit-root tests are suitable as testing tools. In this
paper, a combination of ADF and KPSS is used to test for stationarity. Both tests have
the same mechanics to calculate the probability for a unit-root, but differ in statistical
hypotheses: whereas the null-hypothesis for the KPSS test is a stationary time series, the
ADF test’s null-hypothesis is a non-stationary time series. Combining these methods
covers the weaknesses and enlarges the strengths of both methods. Using only the
KPSS test could raise the risk for a type II error: accepting the null-hypothesis while
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the alternative hypothesis is true in practice. The other way around is the case for the
ADF test, which has a risk for a type I error. Besides, the combination has proven to be
strong in the past, having high testing power and being consistent in its results [8, 22].
To utilise both the power of the KPSS test and ADF test, and to reduce the risk for
either type I or type II errors, this paper proposes the combination of both tests to test
for stationarity.

2.2.4 Lags Selection

Both principles need lags as input to calculate their values. Stationarity tests compare
the current time to the lagged time step, which is the lag value of time steps in the
past. Say, if the lag is to be 10, the test compares values belonging to the current time
steps with the values for ten time steps earlier. The comparison repeats for all possible
time steps in the time series. Due to a possible remainder of seasonality or trends, lags
selection can have a great influence on the success and power of a stationarity test.
Inaccurate lag selection can cause a decrease of the testing power and increases the
chance for the error types described in section 2.2.3 to occur. To deal properly with
lag selection, one can utilise the process proposed by Ng and Perron through the usage
of Schwert’s formula, which covers the lags selection accurately and simple [48][39][29].
Equation 1 denotes Schwert’s formula, in which pmax is the maximum lag size and T is
the seasonal frequency. pmax is the starting point for the lags selection through the Ng
and Perron procedure. If the absolute test statistic of the stationarity tests for the lag
pmax is greater the value of 1.6, the given lags selection should be utilised. If not, the
lag size should decrement until a test statistic has the correct value. Other procedures
can be applied as well for lag selection. Though the procedures base its outcome on the
same rule of thumbs, those procedures seem to be more time-extensive than the proposed
method. Therefore, combination Schwert’s formula and NG and Perron’s procedure is
chosen as the manner in solving the lag selection [48].

pmax = [12 ∗ (
T

100
)
1
4 ] (1)

2.3 Seasonality

A time series is seasonal if the time series has short-term trends with an interval of a
year at maximum. Detection and removal of seasonality can be important to make the
data more stationary and thus is used in this paper as applied the time series seems
to have seasonal patterns. Different manners exist to apply seasonal corrections. As
all time series are different, the different methods are applied to see which method is
best applicable to the used time series. This paper identifies three methods, which are
seasonal differencing, seasonal decomposition and Fourier seasonality. Seasonal differ-
encing is applied in the SARIMA model and is explained in section 2.3.1. Afterwards,
the concepts decomposition and Fourier seasonality are identified in sections 2.3.2 and
2.3.3.

2.3.1 Seasonal Differencing

Seasonal differencing uses the same principle explained at the integrated component of
the ARIMA models in section 2.4.2 and differs the current seasonal period with the
previous seasonal period. To obtain the seasonally differenced time series, one starts at
the end of the time series and substracts that data point with the data point, which has
is one seasonal period in the past. Hence, the time series is weekly, and the seasonality
is throughout the whole year, the seasonal period is 52 time steps for each week within
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that year. For seasonal differencing, one should subtract the current time step with 52
time steps in the past and do so for all time series data points to obtain a seasonally
differenced time series.

Though seasonal differencing can effectively increase the stationarity of a time series,
applying seasonal differencing also has a downside: The function returns a total of time
series points of the order of differencing times the seasonal period less than the original
time series. In other words, if the seasonal period is 52 time steps, and the original time
series has 260 time steps, the result of seasonal differencing is a time series of 208 time
steps. Due to the sketched situation, the trade-off between stationarity and a possible
increase of forecasting errors as a result of fewer data should be handled with care.

2.3.2 Seasonal Decomposition

Decomposition of a time series is splitting up a time series in a trend, seasonal and
residuals components. Several manners exist to split up the components. This paper
investigates the averaging method, which follows three steps. First, the method identifies
the trend through a moving average. Second, the seasonal component is found through
averaging over the seasonal periods. At last, the extraction of the trend and seasonal
components results in the remainder component of the original values.

2.3.3 Fourier Seasonality

Fourier seasonality has been widely used and applied in many fields and is based on the
Fourier transform. The Fourier transform decomposes the time series into constituent
frequencies. In other words, the Fourier Transform expresses movements of data in
sinusoids of different frequencies or time intervals in cosine functions [14]. The principle
generates sinusoids for the desired number of frequencies and the summation of these
functions should result in one or more ”power” vectors, which are the vectors at time t
for which the seasonal relationship between data points is highest [42]. The first power
vector which is found can be used as seasonal arguments and will result in the best
seasonal correction Fourier seasonality can achieve.

For improved computational efficiency and a minimal loss in output performance,
one can utilise the fast Fourier transform in Equation 2 [14]. In the formula, N is the
maximum seasonal period is utilised in the value formation for k. So, in case of a weekly
time series, the maximum seasonal period is 52, and the maximum value for k is 26.
Note that k is only expressable in Natural numbers.

y(t) =

k∑
i=1

Aisin(2πfit+ ϕi) (2)

where k = N/2.

2.4 ARIMA(p, d, q) Model

ARIMA is a model for time series analysis which is based on three components: Au-
toregressive (AR), Integrated (I), and Moving Average (MA) [5]. The three components
are in place to make sure a wide variety of time series fit into the model. Through
ARIMA, one can implement the components which are necessary for the time series to
be analysed, which can vary from all three components to only one component. What
components to implement depends on the type of time series, which can be caused by
differences in variances of the time series. setting values for the parameters p, d, and
q sets the choice for components. After the specification of the parameters, the model
can be used for forecasting - in this case, demand forecasting. The further subsections
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outline each part of the ARIMA model and provide theories for parameter choices and
model selection.

2.4.1 Auto-Regression

The AR function, of which the variable used in ARIMA(p, d, q) is p, assumes an auto-
correlated and stationary data set. By the hand of the assumption of auto-correlation,
the AR component calculates the correlation with a previous point to make statements
for future points. In other words, a first-order AR function - AR(1) - calculates the
correlation between the current time step and the previous time step. An AR(2) function
assumes a correlation of the current time step with the previous two time steps, and
so on. Thereby, the AR function tries to make sense of the data by identifying the
correlation of the current time step with previous time steps.

In order to do so, the AR is calculated through the mean (µ) plus the sum of
the multiplicity (φ1) of the previous value (Yt−1), and an error term ε. φ thereby
represents the strength of autocorrelation with the previous point. A common method
to obtain the right order p is by analyzing Partial-Autocorrelation Function outputs,
which is explained further at section 2.4.6. Equation 3 illustrates an AR(1) function
and Equation 4 is the general function for AR(p). Note that ARIMA utilises µ only
once, as the MA component will have the same variable in its formula.

Ŷt = µ+ φ1Yt−1 (3)

Ŷt = µ+

p∑
i=1

φiŶt−i + εt (4)

2.4.2 Integrated

The Integrated process (d) is built-in for improving stationarity in case the data has
a trend. The method ARIMA uses for trends correction is differencing, at which the
function transforms the data by subtracting - or differencing - time series points at time
t by the previous time series point (t − 1). Stationary data is required for the other
components (p and q) to perform as intended and reduces the risk of an invalid model.

For the differencing method, the order of differencing indicates the type of differenc-
ing to be applied. The equations illustrate the distinctions between orders of differencing.
At Equations 5, 6 and 7, the orders of differencing p are 0, 1 and 2. In the function,
Yt is the value at time t, whereas variations through Yt−1 and Yt−2 indicate values at
the previous time steps. As one can observe, the number of differencing indicates the
number of time steps at which the chain of differencing should continue. Once the order
of differencing grows above 2, the formula extends by the same pattern as given in the
equations.

yt = Yt (5)

yt = Yt − Yt−1 (6)

yt = (Yt − Yt−1)− (Yt−1 − Yt−2) = Yt − 2Yt−1 + Yt−2 (7)

2.4.3 Moving Average

The MA averages several values and moves or iterates through the time series to take
the average for each value [24]. In case of an ARIMA model, the order of q decides the
number of times to repeat the moving average. According to Box and Jenkins, analysis
of the Autocorrelation Function (ACF) output can be used as in deciding for the value
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for q [5], which is further explained at section 2.4.6. In Equation 8, the specific form
for MA(1) is given, whereas the generalized form is illustrated in 9. For both functions,
q is the order of the MA, θ is the parameter of the model, ε represents the error, and
µ is the mean of the time series. Note that the µ is also in the formula of AR and for
completeness, ARIMA uses µ only once.

Yt = µ+ εt + θ1εt−1 (8)

Yt = µ+ εt + θ1εt−1 + ...+ θqεt−q (9)

2.4.4 SARIMA (p, d, q)(P, D, Q)

Seasonal ARIMA(p,d,q)(P ,D,Q) uses the same techniques as ARIMA and extends the
model through three seasonality components. Whereas the under case letters describe
the orders of the ARIMA model, the capital letters describe the orders for seasonality and
use the same techniques. The capital letters implicate P to be the seasonal autoregressive
order, D to be the seasonal order of differencing, and Q to be the order of moving
averages. The underlying concepts are all explained at sections 2.4.1, 2.4.2 and 2.4.3.
However, whereas the (p,d,q) values use a standard lag of 1, the seasonal components
are applied on the seasonal lag. The seasonal lag equals the number of time series data
points to fulfil a seasonal period. In the case of weekly data for a year, the seasonal
period would be 52 time steps, and the seasonal lag is 52.

2.4.5 AIC and BIC

The Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) are
model comparison measures, which are useful at choosing the optimal SARIMA model.
The metrics are approximately unbiased estimates of the Kullback–Leibler index, which
estimates the fitted model relative to the true model [41][9]. AIC and BIC have the
same calculations, though BIC corrects stronger on the order of p, d, and q values in
the SARIMA algorithm. A higher order also implies a higher error which results in a
wider prediction range, and this could outweigh the model’s possible improvements [7].
In general, lower AIC and BIC values indicate a better model. As a rule of thumb,
a model is hardly different if the difference between AIC or BIC values of two models
differs with less than two [5].

2.4.6 ACF and PACF

The Autocorrelation Function (ACF) and Partial-Autocorrelation Function (PACF) are
useful tools in estimating the parameter values in a SARIMA model as both plots show
patterns which are the basis for correct values for the parameters. The mechanics of
both methods are quite similar.

ACF is used for estimating the q value and calculates the correlation of a time series
points with a lagged version of itself. In other words, it calculates the correlation of the
current time step with a previous time step for different lag sizes. In estimating the q
value, ACF plots are useful to analyze. If the correlation has a strong peak at the first
lags of the plot, the number of significant correlations equals the order of q in the MA
model. For seasonal corrections, an occurrence implies the Q variable to be applicable
on the time series. Finally, the differencing orders can also be extracted from the ACF
plots, as a trend will show a slowly increasing or decreasing ACF value over the year,
whereas for seasonality the ACF value will slowly increase and decrease throughout the
year into a fluent line around the x-axis.

PACF also calculates the correlation between two time spots, though it removes the
correlation of variables between the two time spots. PACF thereby only uses the true
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correlation between two time spots as it removed the influences of other time spots on
the correlation. For estimating the right order, the same trick as in the ACF plot works
for estimating the p value, based on the PACF plots. If the correlation of the PACF
plot has a strong peak at the first lags of the plot, the number of significant correlations
equals the order of p in the AR model. The same counts for P when analysing the
seasonal lag.

The ultimate goal of a SARIMA model is to miss enough evidence for significant
correlations for both the ACF and PACF plots. In other words, the underlying residuals
of the models’ estimation should be uncorrelated to make SARIMA model perform best.

2.5 State-space Model

State-space models calculate the next state solely based on the previous state and the
history of data of comparable state situations. State-space models can be used for a
wide variety of applications, such as analysis of neuroscience data, speech recognition,
and image processing [30][27][37]. Besides, the identification of current patterns in time
series and utilisation of the model to predict future values is within the range of the
state-space estimations as well. This paper combines the state-space estimations with
the ARMA model in order to model and forecast on the time series. In this section, first,
the general state-space model principles are illustrated which count for all types of state-
space models carried out in this paper. In order to predict future values, the Kalman
Filter is utilised, which is depicted in section 2.5.1. Finally, section 2.5.2 outlines the
state-space representation of ARMA.

In general, the state-space model has two types of representations: The continuous-
time representation and the discrete-time representation. As the analysis concerns a
time series analysis, the discrete-time representation - which follows the structure of
time series - is used. The discrete-time representation results in the two equations given
below, which are the observation and state equation.

yt = Ftθt + vt (10)

θt = Gtθt−1 + wt (11)

vt ∼ N(0, Vt) wt ∼ N(0,Wt) (12)

Observation equation yt describes the underlying data at time-step t. The observa-
tion equation follows the Markov model, which bases future states solely on the previous
state, forming a Markov chain [15] [43]. The state-space representation goes one step
further by introducing the state equation θt. The observation equation estimates vari-
ables in the form of the state equation, as seen in the equation. The state equation θt
is a ”hidden variable” which is not directly visible, though the output, dependent on
the state, is visible. Thus, through the state equation, the Markov chain extends to the
hidden Markov model [35]. The variables F , G, V , and W represent the structure of the
state-space representation. For the models implemented in this paper, the state-space
models’ parameters are Gaussian, which normally distributes the variables vt and wt

with variances Vt and Wt. The variances Vt and Wt are the variables utilised for the
implementation of the ARMA model as well, which is further explained in the ARMA
section.

2.5.1 Kalman Filter

The Kalman filter predicts the next observed value based on the estimations of the
current state variables and its uncertainties. Once the next point is observed, the new
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situation corrects the predicted estimates using a weighted average. It bases its predic-
tion on an estimation of a joint probability distribution over the variables for each time
step, which results in a matrix of chances for a variable value x to occur at time step t.

In practice, after initialization, the Kalman filter follows a two-step process. First,
the Kalman filter is initialised through building the model by the hand of states and
errors calculations. The first step in two-step process is predicting. At the prediction
step, the Kalman filter calculates its prediction based on the previous state, and the error
covariance describes the uncertainty of the prediction. Equation 13 forms the prediction
′̂xt with an estimated uncertainty in Equation 14 of ′Pt in terms of the covariance for
a normally distributed - Gaussian - error. In the second step, the actual value updates
the predicted value and its according variables. The current estimations, Pt and x̂t
in Equations 15 and 16, are updated by using the previous estimations - ˆ′P t and ′̂xt
- and the actual value yt. The optimal Kalman gain K in Equation 17 is utilised in
the calculation for covariances of Pt and state x̂t estimations to take possible errors
into account for future predictions. Once the new situations led to updated values, the
Kalman filter is ready to repeat the process for future time steps predictions.

Kalman Prediction

ˆ′P t = APk−1A
T +Q (13)

′̂xt = Ax̂t−1 +Bµt (14)

Kalman Update Estimations

Pt = (I −KkC ˆ′P t) (15)

x̂k = ′̂xt +Kt(yt − C ′̂xt) (16)

Kt = ( ˆ′P tC
t)/(C ˆ′P tC

T +R) (17)

2.5.2 ARMA

The ARMA model relies, as well as ARIMA, on the AR and MA models illustrated
at sections 2.4.1 and 2.4.3. In the state-space model, ARMA can be applied through
incorporating the principles in the variable construction of the state-space estimation
model. Particularly, two variables are affected: vt and wt, both introduced in the formula
of the general state-space model form in Equations 10 and 11. In matrix vt, the variables
entered for the AR specification are included, whereas in wt the variables are included
for the MA specification. Several methods to write the variables down are proposed
in literature and Harvey’s annotation is given in Equation 18 [36]. In this equation, d
represents the max(p, q + 1), φ represents the AR coefficients, whereas θ represents the
MA coefficients.

vt ∼ N(0, Vt)

Vt =



φ1 1 0 ... 0
φ2 0 1 ... 0

φ3 0 0
. . . 0

... 0 0 1
φd 0 0 ... 0



wt ∼ N(0,Wt)

Wt =



1
θ1
...
...

θd−1


(18)
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Figure 1: Random forest Example

2.6 Random forest for time series

Random forest is a supervised machine learning technique which builds decision trees in
order to make its judgement about the input variable(s). Random forests can be utilised
for classification and regression, and as this paper focuses on continuous, univariate time
series, regression is outlined in this explanation of the random forest. The decision trees
random forest utilises consist of if-else choices which lead the input variable(s) to an end-
point of the tree, consisting of a statement and the probability the statement is true.
The random forest typically uses multiple decision trees and combines all judgements of
the trees to make its final judgement. Figure 1 represents an example of a random forest,
which uses a collection of decision trees. As shown, each decision tree is built differently
and is built in the learning phase through bootstrap aggregation - or bagging - and
requires a training data set to do so. After building the trees, the input variable goes
through the if-else statements, and in the end, the random forest combines the outcomes
of all trees for a final judgement. For a deeper understanding of the principles used in
the random forest, the decision trees and its bagging methodology will be clarified in
more detail in section 2.6.1. As random forests cannot process plain time series, the
theory to pre-process the time series for analysis through random forests is given as well
in section 2.6.2.

2.6.1 Decision Trees

A decision tree can be used for regression and classification and uses if-then-else state-
ments to estimate the to-be predicted, dependent variable. An example of the decision
tree is given in Figure 2 at which the input variable is time = 44. Following the if-else
blocks, the dark-green pattern is the if-else statements the input variable fulfils, ending
up at a judgement block at the bottom of the tree. In this case, the time = 44 causes
the quantity to have a value between 19.000 and 21.000, with a certainty of 95%. As
shown in the example, decision trees consist of decision nodes and leaf nodes which
connect through branches. Decision nodes involve a statement and at least connect to
two or more other nodes, either a decision or a leaf node. Leaf nodes are end-nodes and
contain a judgement, and the probability the judgement is true. Once the input reaches
the end-note, the tree is finished and the result of the tree is clear. The depth of a tree
is decided by the number of layers of nodes. The deeper the tree is, the more detailed
the decision nodes are, and the higher the chance the judgement in the leaf node will
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Figure 2: Decision Tree Example

converge to the original data. Doing that too much will tend the decision tree to copy
previous data - or overfit the data - and should be prevented. Due to possible issues
in building the trees, the formation of a tree is an important practice and is key for
accurate execution of the trees.

Decision trees build on the underlying data at which one can use different techniques:
randomised bagging and adaboost are two examples of techniques one can choose to
apply [38][10]. Adaboost or adaptive boosting is a variant relying on the boosting
method, which has as the main principle to learn from previous mistakes. In particular,
adaboost does so by increasing the weight of misclassified or inaccurately regressed
data points. Following this practice, adaboost can discover and adapt the inaccurately
regressed and misclassified data points to a more accurate value. Randomised bagging
is based on the bagging method and uses multiple machine learning algorithms together
and averages its outcomes. Randomised bagging extends the principle of bagging by
adding noises to different machine learning algorithms. It has proven to be more accurate
and efficient in computability than the other methods and therefore is used in this
paper[6][38].

2.6.2 Time Series application

The random forest regression algorithm typically utilises data cases at which time does
not matter. However, for a time series analysis of a univariate time series, time should
be one of the important aspects in basing the models’ judgement. Dealing with two
main challenges is necessary before using time series in random forests.

First, random forests have challenges with seasonality and trends caused by the
replacement of values by values with an error, implemented through the bagging method.
Replacing the value could cause the seasonality and trend in the data to disappear, while
it is likely for the seasonal pattern to appear in the future as well. To deal with the
issue, the random forest implements the same techniques of trends corrections used in the
ARIMA model in section 2.4 and seasonal corrections in section 2.3 for pre-processing
the time series into a series that can be processed by random forest models. The pre-
processing results in the time series to be relatively constant and reduce the impact of
wrong replacements adapting the time series’ trends and seasonality.

Second, random forests are unable to predict indefinitely in the future, which implies
the model needs at least as many historical time series points as the time series points
it is trying to predict. It should be taken into account when choosing to apply random
forests. Since the training set is larger than the test set, it will not be an issue for the
used time series, and therefore, methods for solving this issue are not discussed.

12



2.7 Prediction Accuracy metrics

As forecasting is the goal of the models utilised in this paper, the comparison of fore-
casts is one of the core indicators for the performance of a forecasting model. Therefore,
choosing the metrics to capture that performance is an important process [13]. Several
measures have been investigated. Due to the case of having one univariate time series,
the issues in the choice for error measures are less than issues which might arise at hav-
ing several time series [20]. However, the decision is to combine several measures to get
as most as possible out of each measures’ strength and to prevent the loss of potentially
valuable information. The information possibly could be useful at comparisons cross
time series which is outside the scope of this research [3]. Therefore, the following five
measures are investigated: Root Mean Squared Error (RMSE), Mean Absolute Error
(MAE), Mean Percentage Error (MPE), Mean Absolute Percentage Error (MAPE) and
Theil’s-U. One should acknowledge the distinction between relative performance mea-
sures, which are accuracy measures in percentages, and absolute performance measures,
which are accuracy measures returning data-related values. The following paragraphs
describe each method briefly.

The Root Mean Squared Error is the root of the squared ME and is interpretative as
relative values to the real values within the time series. The method on which it is based,
Mean Square Error, was broadly adopted and supported at early stages of forecasting
papers [3], though has been judged of its incapability to compare across different time
series [1]. Taking the root of MSE does not solve the inability of comparison across
different time series. Nevertheless, it will not form a problem for this paper, which is
why it is used.

Mean Absolute Error is the mean of absolute errors. In other words, the mean
absolute error averages all errors in real terms. Consequently, all negative and positive
differences are made positive and then averaged to get a view on the real average error.
MAE should give an insight into the deviation of the forecasts.

Mean Percentage Error is interesting for investigating the balance of positive or
negative forecasts. The function returns the average percentual error of the average
error summing both positive and negative errors. A negative percentage means an
overall prediction which is too low, whereas a positive percentage means an overall
prediction which is too high. This measure could indicate a possible combination of
models if one model has a practice of predicting too high, whereas other models have a
practice of predicting too low.

Mean Absolute Percentage Error indicates the prediction error by averaging the per-
centages derived from the absolute error in each period, divided by the observed values
that belong to that period [23]. Among other methods, literature widely supports the
measure [46], and the measure is useful in getting a grasp on the percentual deviation
from real values.

Theil’s-U investigates the predictive power of a function and thereby differs from
the methods above. It does so by introducing the random walk into the error measures’
functions [2]. In general, values for Theil′s-U < 1 indicate the forecast reveals predictive
behaviour, which is better than a random walk. A strive should be to obtain values of
Theil’s U close to zero since this value represents a strong predictive power by the
forecasting function.
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3 Experimental Setup

The experimental setup enlights all principles mentioned in the methods section from
the implementation perspective. This section encourages reproducibility of the concepts
to use for other time series and is described step-by-step for thorough understanding.
First, section 3.1 discusses stationarity in which defines the methods and parameters.
Subsequently, implementation choices and prediction methods for SARIMA, state-space
model, and random forest are defined in-detail in sections 3.3, 3.4, and 3.5. This chapter
finalises by a description of the used time series in section 3.6. Note that Appendix I
contains the packages and functions used for implementation and Appendix V contains
code for methods mentioned in this section.

3.1 Stationarity

The ADF and KPSS tests execute the stationarity tests. A visual analysis of time series
graphs checks and validates the outcome of the stationarity tests. The stationarity tests
adopted are the KPSS test and ADF test.

Two variables to choose before executing the stationarity tests are the critical value
and lag. The critical values for both tests were formed based on the critical symmetric
power value theory, proposed by Charemza and Syczewska [8]. The paper proposes
equal critical values (α) for the ADF and KPSS test. To prevent type errors and to
maintain the power of both methods, α = 0.05 is adopted to test for stationarity. Lags
selection utilises Ng and Perron’s procedure with Schwert’s starting point proposed in
section 2.2.4, which results in a starting lag size of 10.

The second method for stationarity testing, the visuals analysis, is executed by check-
ing whether the transformed data tends to a stationary time series. This method is more
of a controlling action and relies on the interpretation of the researcher. The informa-
tion could enrich the overall understanding, which helps to formulate an explanation for
certain stationary time series and its forecasting behaviour.

3.2 Seasonal Transformations

The seasonal transformations applied are given in section 2.3 and involve differencing,
decomposition and Fourier. Before analysing the models’ output, the time series should
be stationarity and applying these forms of seasonal transformations can do so.

The components of the provided package define the state-space model, which sup-
ports both Fourier and regular seasonal corrections. In this way, the state-space models
deviate from the implementation done for the other two models as it forms the techniques
through a state-space representation. If one would choose to implement the seasonal
corrections in the same manner as the other methods, the impact of the state-space
estimation reduces. Therefore, utilising all state-space models components is necessary
for a full evaluation of the state-space estimation method.

3.3 SARIMA Models

In order to compare SARIMA models with the other investigated models, the optimal
model is identified using the core components of SARIMA. The search for optimal
models implies discovering the appropriate values for p, d, and q at implementing the
ARIMA models, but also includes the optimal orders of seasonal corrections (P ,D,Q).
A successful search for optimal orders is crucial in finding the optimal SARIMA method
and will be grounded in the model specification in section 3.3.1. Afterwards, methods
for comparing the SARIMA models is given in model comparison (Section 4.5). At last,
the prediction methods describe the way of adopting the rolling forecasts.
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3.3.1 Model Specification

The choice of parameters specifies the SARIMA models and can be obtained through
the application of two methods: the theoretical approach and model generation. Besides
model specification for SARIMA, the model generation approach for F-SARIMA model
specifies the optimal model using Fourier.

The theoretical approach bases its methods on the Box and Jenkins approach de-
scribed earlier, which checks ACF and PACF to come to the proper parameters. As
an input, the SARIMA model requires a stationary time series which is transformed
through seasonal transformations and checked through stationarity tests. Afterwards,
visual checks on the ACF and PACF plots of the residuals uses the theory in section
2.4.6 to theoretically choose the right parameters. If certain patterns come up at anal-
ysis of the plots, the values can be adapted in such a manner to get the desired result:
residuals which are as uncorrelated as possible. In the end, the procedure forms the
SARIMA parameters step-by-step and results in a theoretically-based SARIMA model.

The second method - model generation - generates a high variety of models and
compares these through AIC and BIC metrics. The variations of models differ in the
model specifications through different SARIMA parameters. Since the information cri-
teria differ strongly per level of differencing - which can bias the overall results - the
models are categorised by level of differencing and the models with the best AIC and
BIC values of each category are investigated further in the model comparison.

In order to find the best Fourier SARIMA model, the order of k has to be deter-
mined first. As the underlying time series will always reveal the same seasonal pattern
regardless of the SARIMA parameters, investigating all values of k through AIC and
BIC metrics is investigated first. The information criteria for k determines the value
for k used in the next step. The next step copies the model generation for SARIMA,
implicating the model generation investigates a given set of SARIMA parameters, cate-
gorises those on levels of differencing, and chooses the model specification with the best
information criteria in its category.

3.3.2 Model comparison

All models extracted from the steps at the model specification uses two steps for com-
parison: the models’ AIC and BIC values, and the prediction errors analysis. The
information criteria indicate the strength of the underlying model, whereas the predic-
tion errors capture the predictive performance. In theory, the models with the lowest
information criteria should predict best.

At last, the predictions’ error measures compares each model on predictive perfor-
mance. The prediction error measures, proposed in section 2.7, are investigated for all
models to see what model performs best in terms of predictions. Also, graphs of the best
models are the source for the visual representation to see how the forecast behaves and to
see whether a combination of models could cause an improved forecasting performance.
However, the papers’ content does not include graphs.

3.3.3 Prediction Methods

The data case used is a case in the food industry, and therefore the production cycles
are assumed to be short due to the use of fresh and perishable products. Therefore, a
relevant prediction interval is assumed to be weekly. The weekly interval for a period
of 52 time steps results in a situation that the forecasting model could learn from the
new situation at each time step. Rolling forecasts, forecasting for one time step at each
time step, therefore is a useful method to apply. However, packages providing rolling
forecasts were not found. Therefore, prediction algorithms regenerate the models at
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Figure 3: Rolling Forecast Principle

each time step at which it includes the newly available data, as shown in Figure 3. For
each time step, the ”newly available data” will be used to build a model and forecast for
one time step. For rolling forecast implementation, the rolling forecast uses the forecast
function of the Forecast package [19].

3.4 State-space models

The components used in the composition of the optimal state-space model are the poly-
nomial, seasonal, and ARMA component. Each component needs hyperparameters dV
and dW , which are important for correctly weighting each component. Also, the ARMA
components need values for coefficients of θ and φ. The maximum likelihood estimation
(MLE) and the Gibbs sampler search for the right values of the hyperparameters. The
mechanics of the estimation principles are further explained in section 3.4.1. For explor-
ing the best ARMA model and thus the best values for θ and φ, the SARIMA model’s
results are basis since the underlying time series is the same as in the state-space repre-
sentation. The experimental setup for prediction is further explained in section 3.4.2.

3.4.1 Hyperparameter Estimation

The Gibbs sampler and MLE estimate the correct hyperparameters in this paper. In
order to estimate the hyperparameters correctly, the estimators should converge to a
constant mean and variance. Convergence implies a correct estimation of hyperparam-
eters and thereby is essential in forming an optimal state-space model. In the case
of the MLE, the function returns its statement on the convergence of the parameter
estimations and thereby should not need any further investigations.

For a convergent hyperparameter estimation through Gibbs sampling, several pa-
rameters should be given on forehand. The parameter value choice can have a strong
influence on the efficiency and effectivity of the estimations process. The input param-
eters for the Gibbs sampler are the starting point of estimations of the observation and
state equations’ variables. They can have a high impact on the iterations necessary for
an accurate estimation. For simplifying the process of picking the estimations for the
observation and state equations’ variables, the original time series is normalised to a
scale between -5 and +5. As the time series values are normalised, it makes it easier for
the Gibbs sampler to adapt the initial estimations to actual estimations. The number
of iterations is standard set at 1000, of which the first 100 estimations are not used -
or ’burned’. If the sampler does not manage to converge within 1000 iterations, the
number of iterations increases to a higher number for investigating convergence at later
points of iterations.
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3.4.2 Prediction

In the other used methods, SARIMA and random forest, the rolling forecast is applied.
However, because the hyperparameter estimation is a time-extensive process, using the
rolling forecast would take several days or even weeks from scratch and thereby is not
feasible in this case. Besides, as the estimation of parameters is unlikely to change
a lot at including the new data points. Therefore, it should not be an issue to drop
recalculation of hyperparameters at each time step. However, one should consider the
room for improvement at the interpretation of the results.

In the end, it resulted in a 52-step prediction without rolling forecast. To prepare
the information for forecasting, first, the model is built, and the Kalman filter uses the
model for filtering. Subsequently, the forecast function utilises the Kalman filtered time
series and forecasts for 52 time steps.

3.5 Random Forest

To specify the random forest, one can give as input the number of trees to grow, the
depth of the trees, and an indication for the number of splits for each node. To set the
right depth of trees and the correct number of splits for each node, models generation
finds the best hyperparameters by saving the value for MAPE. As the random forest uses
a random error, outcomes of the forecasts differ each time the random forecast executes.
Therefore, for choosing the right value of each parameter, the parameters are analysed
separately by searching for a constant, low value of MAPE at each parameter. In other
words, for deciding the right value of tree depth, the tree depth values are analysed
for each value of node splits. If one can observe a low, constant performance for a
particular value of tree depth, the optimised random forest model uses that particular
value. The same is the case for node splits which checks all MAPE values for the different
tree depths. The combination of both optimal parameters should lead to the optimal
random forest model. The number of trees is set such that an increase in trees hardly
affects the forecasting accuracy. The idea of the number of trees is that the random
forest calculates each input row at least a few times. To prevent data points which are
hardly estimated and to keep the random forest efficient, the number of trees is set to
1500. Thereby, only outliers of data points might never be estimated or once.

3.5.1 Time Series Pre-processing

Before running the random forest, the time series needs pre-processing in order to make
it work properly. To do so, the model utilises decomposition to remove the trend in
the data. After the transformation, the time series has no trend while still having the
seasonal component. Random forest deals with the seasonal component through Fourier.
As explained in 2.3.3, the value for k has to be set. The underlying seasonal pattern does
not change between usage of different models, and therefore, Fourier SARIMA is the
source for the value for k. The data without trend and the extracted Fourier component
are the input time series for predictions.

3.5.2 Prediction

As is the case in predictions of SARIMA, rolling forecast is applied, which is explained in
more detail at section 3.3.3. As well as in the SARIMA case, the model is rebuilt on the
new data for each time step and subsequently predicts for one time step. As the model
predicts a time series without trend, the trend needs to be reunited afterwards. To do
so, ARIMA is used to recognise and forecast the trend for 52 time steps. Afterwards,
the predicted trend and predictions combined form the finalised predictions.
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3.6 Data

The time series contains five years of order and production details of a food manufac-
turer. A total of 2.2 million rows describe the order details in terms of quantity, week,
year, customer, product-type, order-number, production plant, and shipping country.
The production quantity is an important column and reveals the ordered quantity for
the organisation necessary to produce. Derived from that statistic, the organisation
can calculate the required resources to produce the product, which makes it a relevant
variable to predict.

For the time series analysis, it is relevant to split the data up into equal periods.
As the date in the data is weekly, the time series follows that pattern resulting in a
time series with 52 data-points each year, or 260 data points in total. The variable used
beside week and year, quantity, is summed per week to match the time series format.
A training and validation time series divide the time series for training and validating
the models. Based on results in the past in terms of training and validating the model
accordingly, this paper utilises the 80/20 division of the time series [28] [16]. Thereby,
the training set contains the first four years of data resulting in a total of 208 data-points
to train upon, and the validation set contains the last year of data which will compare
the forecasts to the actual values.

The plots in Figure 4 show the ordered quantity per week. As extracted from the
plots, the ordered quantity per week tends to a seasonal pattern and tends to have no
trend over the course of five years. Table 1 summarises the statistics of the time series,
giving insights in averages and distribution of the time series values.

Figure 4: Time Series - Quantity per week over 5 years
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Minimum 1st Quantile Median Mean 3rd Quantile Maximum

5.869.133 12.419.782 13.040.087 13.024.744 13.762.191 16.019.201

St. Deviation Skewness kurtosis Standard Error
1.233.309 -1,53 6,53 76.487

Table 1: Summary Statistics Time Series
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4 Results

4.1 Stationarity

The first step in building SARIMA or ARMA models is passing the tests for stationary
time series. For executing the stationarity tests, the critical value α and lag size require
values first. The applied methods described in section 3.1 result in α = 0.05 and maxi-
mum lag = 10. After running the tests, all tests pass the absolute value requirement of
1.6, which sets all lag sizes to 10. Though the original time series fulfils the requirements
for stationarity according to the tests, a form seasonal or trend correction is applied to
investigate whether data transformations could improve the forecasts. Also, through
the visual analysis, one can still observe a seasonal pattern in the original data in 4.
Applying seasonal corrections resulted in three stationary time series which are input
for the models used in this paper. All seasonal transformations resulted in stationary
time series. As illustrated in Table 2, the untransformed and seasonally differenced time
series just passed the ADF test for stationarity, for which p < 0.05 for stationarity. The
decomposed time series easily pass the ADF test. As for all time series p > .10 and
p > .05 is the requirement, all time series manage to pass the KPSS test.

The transformed time series are given visually in Figures 5, 6, and 7. Comparing
the results with the original time series one can see a great improvement in stationarity
due to the more constant means and variances one can observe. To observe whether the
differences in seasonal differencing result in differences in predictive performance, the
SARIMA uses all four time series in model specification. Note that for SARIMA the
untransformed and seasonal differenced time series are applied in one SARIMA model
since SARIMA can apply differencing through parameter choices.

Abbreviation Data Transformation ADF KPSS

UTS Untransformed TS p = 0.046 p > 0.10
SDif Seasonally Differenced TS p = 0.040 p > 0.10

SDec1 Seasonally Decomposed TS p = 0.029 p > 0.10
SDec2 Seasonally Decomposed by STL TS p = 0.020 p > 0.10

Table 2: Stationarity Tests for lag = 10

4.2 Optimal SARIMA Model

4.2.1 Model Specification

In this section, the theoretical approach and model generation mentioned in section
3.3.1 form the models. First, the theoretical approach specifies the models, followed by
the models established by model generation. Through model generation, the Fourier
SARIMA model finalises the model specification.

Theoretical approach

The theoretical approach utilises the theory provided by Box and Jenkins, further
grounded at section 2.4.5.

Differencing and Seasonally differencing order d and D
The stationarity section applies the seasonal corrections and thereby, application of

seasonal differencing is unnecessary for the seasonally transformed time series. As this
is the case for the two seasonally decomposed time series, these will be used to find the
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Figure 5: Time Series - Seasonally Differenced training set

best model. However, for a performance indicator of solely SARIMA, the original time
series is put in as well. Analyzing the ACF plot for the original time series in figure 8,
one can clearly see a ”wave pattern” indicating seasonality. Besides, figure 4 confirms
a time series tending to a seasonal pattern. Due to these facts, seasonal differencing -
D = 1 - is applied to make the time series stationary. Differencing is unnecessary due
to the absence of a trend, which indicates d = 0.

Seasonal Order of P and Q
The order of the seasonal autoregressive component P and seasonal moving average

component Q are decided by the hand of the ACF and PACF plots in Figures 9 and 10.
If the plots reveal significant correlation peaks at the seasonal lag size, which is 52 in
this case, seasonal orders are suitable for the time series, either seasonal autoregressive
or moving average. As the PACF plot illustrates a strong, significant, and negative peak
at lag 52, Q = 1 is the correct value for the seasonal moving average. The other two
time series reveal the same pattern as one can observe in Appendix II. Therefore, Q
value for the seasonally decomposed time series follow the decided value of Q = 1. As
one can observe in the next ACF and PACF plots, the correction has caused the peak
at lag = 52 to disappear in all three time series.

Order of p and q
The order of p and q are derived from the correlation plots ACF and PACF applied

on the residuals of the applied model, which has Q = 1 (Figures 11 and 12). Whereas
the orders of P and Q follow patterns on the seasonal lag (52), patterns of the plots at
the start of the year decide the orders of p and q. The plots indicate a strong peak at
the ACF plot at lag = 0 and a significant peak at and until lag = 1, which implies a
moving average model and thereby q = 1. As the plots for the other two time series in
Appendix II reveal the same pattern, the same q applies to the other time series.
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Figure 6: Time Series - Seasonally Decomposed training set

Figure 7: Time Series - Seasonally Differenced training set through STL

22



Figure 8: ACF - Original Time Series

Figure 9: ACF - Seasonally Differenced Time Series
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Figure 10: PACF - Seasonally Differenced Time Series

Figure 11: ACF - Residuals Seasonally Differenced Time Series, Q = 1
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Figure 12: PACF - Residuals Seasonally Differenced Time Series, Q = 1

Final models
The final models for all three time series are given in Table 3, including the values for

AIC and BIC. The values for AIC and BIC will be further used in the model comparison
at section 4.5.

Time Series Model AIC BIC

UTS SARIMA(0,0,1)(0,1,1) 4725 4737
SDec1 SARIMA(0,0,1)(0,0,1) 6148 6165
SDec2 SARIMA(0,0,1)(0,0,1) 6082 6099

Table 3: Theoretically generated SARIMA models

Model Generation - SARIMA

In the model generation process, models with different values for (p,d,q)(P ,D,Q) were
built and compared on their AIC and BIC values. The generation of models starts from
SARIMA(0,0,0)(0,0,0) and will iterate through all possible combinations until the model
reaches the ranges of the parameters. The choice for parameter ranges bases its values on
the stationarity assumption required for the successful execution of the model. For some
values for the seasonality component of SARIMA, the optimisation algorithm converges
to numbers too small to handle, which is one of the borders of the SARIMA function
for the testing range of parameters. Besides, the values for p, q, P and Q are capped
by 2, as a higher order also increases the error margins which outweighs the possible
improvements by the parameters. Table 4 represents the ranges of the parameters used
for model generation.
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The orders of differencing, either through trend or seasonal transformations, catego-
rizes the AIC and BIC values as differencing causes the AIC and BIC values to differ
strongly. In each category, the comparison of models results in the best model if it has
the lowest AIC and BIC values. The total comparison through model generation re-
sults in a comparison of 108 model specifications per time series. Besides the seasonally
transformed time series, the model generation uses the original time series as well to get
an indication of the performance of solely SARIMA.

Table 5 presents the best models in each category. For the full range of results for
each time series per category, one can observe Appendix III. As one can extract from
the best models in each category, seasonal differencing has a very positive effect on the
AIC and BIC values as these values far lower than the seasonally untransformed time
series. Differencing also has a positive effect in terms of a decrease in the information
criteria values. Whether the predictive performance improves is investigated in section
4.5, which identifies the optimal SARIMA model.

Parameter p d q P D Q

Parameter Values 2 1 2 0 1 2

Table 4: SARIMA Model Generation - Parameters

Time Series Model AIC BIC

UTS SARIMA(0,0,1)(0,0,2) 6336 6356
UTS SARIMA(0,1,1)(0,0,2) 6310 6330
UTS SARIMA(0,0,1)(0,1,1) 4725 4737
UTS SARIMA(0,1,2)(0,1,1) 4701 4713

SDec1 SARIMA(0,0,1)(0,0,2) 6146 6166
SDec1 SARIMA(0,1,2)(0,0,2) 6124 6144
SDec1 SARIMA(0,0,1)(0,1,1) 4731 4743
SDec1 SARIMA(0,1,2)(0,1,1) 4707 4719

SDec2 SARIMA(1,0,2)(0,0,1) 6080 6107
SDec2 SARIMA(2,1,2)(0,0,1) 6058 6085
SDec2 SARIMA(0,0,1)(0,1,1) 4725 4737
SDec2 SARIMA(0,1,2)(0,1,1) 4701 4713

Table 5: SARIMA Model Generation - AIC and BIC

Model Generation - Fourier SARIMA

As an alternative for decomposition and differencing, Fourier corrects for seasonality
as well. The Fourier transform utilises the SARIMA model afterwards, resulting in
an F-SARIMA model. To combine Fourier and SARIMA, first, model generation over
different values for k results in an analysis of the values through the analysis of the infor-
mation criteria. Second, model generation for SARIMA parameters earlier described at
section 3.3.1 executes over the best order of k. To find the best parameters of SARIMA
at the given time series and to increase comparability, this model generation for F-
SARIMA uses the same parameters given in Table 4. Since Fourier is a form of seasonal
correction, only the Fourier transformed time series is the input of the SARIMA function
and seasonal differencing is not applied.
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In Appendix IV one can find the results for searching the best order of k for the
Fourier function. Following the AIC and BIC values, the best order for k is k = 26.
The two categories result in two generated models given in Table 6, which the model
comparison further considers.

Model AIC BIC

F-SARIMA(1,0,1)(0,0,2) 7726 7932
F-SARIMA(1,1,1)(0,0,2) 7704 7911

Table 6: SARIMA Model Generation - AIC and BIC

4.2.2 Model Comparison

Model comparison compares through two manners in order to evaluate both the un-
derlying models and the models’ predictive performance. The AIC and BIC values
evaluate the underlying model, whereas error measures of rolling forecasts for one year
capture the predictive performance. Though both the underlying models and predic-
tive performance are measured, the predictive performance is as a key indicator of a
well-performing model in model comparison.

The predictive performance of the SARIMA models is captured in Table 8. Applying
the theoretical approach and model generation in section 4.2.1 resulted in one duplicate
model at the UTS time series. Therefore, the duplicate UTS model is removed from the
model generation accuracy part, resulting in three generated models for the UTS time
series, instead of four.

Following the results, one can argue that all types of seasonal correction result in
similar results by model generation: The best model of all time series have accuracy
values which are similar to each other. It is interesting to observe that only through
the application of the original time series (UTS) in combination with solely SARIMA
results in the best model by the theoretical approach. For the other time series, the
theoretical approach did not find the best model. Other variations of SARIMA in the
model generation for those time series outperform the theoretically formed models.

Table 9 indicates the forecasting accuracy of the best F-SARIMA models extracted
from the model generation. As the F-SARIMA(1,1,1)(0,0,2) performs slightly better,
the model comparison further considers the model in terms of predictive performance.
Note that due to running costs, the rolling forecast range decreases from 52 time steps to
10 time steps. Therefore, the values differ strongly from the values given in the SARIMA
comparison. For the overall comparison, the rolling forecast ranges will be the same for
each compared method.

All in all, the models for each seasonally transformed time series tend to perform
equally well. Though the theoretical approach seems to work best for the untransformed
time series, model generation managed to find the best models for all time series, which
resulted in three very comparable models. When looking further behind the commas,
the untransformed time series in combination with SARIMA(0,0,1)(0,1,1) works best
and therefore, further comparisons use this particular SARIMA model. Also, as other
methods apply Fourier as well, the best F-SARIMA model is extracted from the model
generation and the overall model comparison analyses the models in section 4.5.
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Time Series Model AIC BIC

UTS SARIMA(0,0,1)(0,1,1) 4725 4737
SDec1 SARIMA(0,0,1)(0,1,1) 4731 4743
SDec2 SARIMA(0,0,1)(0,1,1) 4725 4737

Table 7: Best SARIMA models - AIC and BIC

Time Series Model RMSE MAE MPE MAPE Theil’s U

UTS SARIMA(0,0,1)(0,1,1) 832728 622625 -0.29 5.11 0.55
SDec1 SARIMA(0,0,1)(0,0,1) 977884 709455 -0.90 6.00 0.65
SDec2 SARIMA(0,0,1)(0,0,1) 876931 633619 -0.98 5.35 0.58

UTS SARIMA(0,0,1)(0,0,2) 1097892 732046 -0.73 6.37 0.70
UTS SARIMA(1,1,1)(0,1,2) 1109579 734512 -1.14 6.43 0.70
UTS SARIMA(0,1,2)(0,1,1) 837572 627561 -0.30 5.15 0.55

SDec1 SARIMA(0,0,1)(0,0,2) 969101 717619 -0.75 6.04 0.64
SDec1 SARIMA(0,1,2)(0,0,2) 966723 715706 -0.75 6.02 0.64
SDec1 SARIMA(0,0,1)(0,1,1) 832238 626276 -0.26 5.12 0.55
SDec1 SARIMA(0,1,2)(0,1,1) 834646 628855 -0.24 5.14 0.55

SDec2 SARIMA(1,0,2)(0,0,1) 876268 638322 -0.98 5.37 0.58
SDec2 SARIMA(2,1,2)(0,0,1) 875958 639271 -0.97 5.38 0.58
SDec2 SARIMA(0,0,1)(0,1,1) 832727 622625 -0.29 5.11 0.55
SDec2 SARIMA(0,1,2)(0,1,1) 837572 627561 -0.30 5.15 0.55

Table 8: Forecasting Accuracy SARIMA models - For 52 time steps

Model RMSE MAE MPE MAPE Theil’s U

F-SARIMA(1,0,2)(0,0,2) 422293 380435 0.34 3.02 0.40
F-SARIMA(1,1,1)(0,0,2) 421129 379320 0.33 3.01 0.40

Table 9: Forecasting Accuracy F-SARIMA models - For 10 time steps
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4.3 Optimal Random Forest model

For the formation of random forests, one has to select features for investigating patterns.
To decide which variables are best for the given time series case, the random forest forms
a Fourier feature with a seasonal lag. As derived from the variable importance plot in
Figure 13, the seasonal lag and the seasonal period of 52 are strong indicators for the
ordered quantity. Therefore, these are the features of the random forest. Note that the
trend already has been extracted from the time series used in the random forest.

Besides, feature selection, one has to decide The lag size, one of the parameters, is
set to 1. Through trial and error, the lag is set to 1, and therefore, there possibly still
is room for improvement on the lag size. Besides lag size, model generation thoroughly
investigates the different values for node size and node split, MAPE calculations cap-
tured the accuracy of the predictions of the variable combinations. Table 4.3 represents
the results, in which node split ranges between 2-9 and node size ranges between 2-
8. The random forest used in this paper works with adding errors to time series data
points for recalculation of new trees. Since the errors are random, each calculation
for a random forest will differ in the outcome. Therefore, to obtain the best value for
node size and node split, the columns and rows are analysed separately in a search for
constant, low values. As one can extract from Table 4.3, nodesplit = 7 has low con-
stant performance, having values between 5.99-6.02, with two outliers to 6.9 and 5.95 -
which also is the second lowest value. For node size, constant low values are achieved
best at nodesize = 6, at which the function varies between 5.98 and 6.03. Therefore,
nodesplit = 7 and nodesize = 6 are utilized as hyperparameters for the random forest
function. Though there are deviations in choosing different values for node split and
node size, the deviations are minimal, which is why the choice of the parameter will
have a minimum impact on the improvement of the model.

Note that a node size and node split not are the actual values in the size of nodes
and the number of splits. For node split, a higher number indicates a higher number of
splits but not exactly the number of splits, and for node size, a larger node size causes
smaller trees to be grown instead of larger ones - as one might have expected. Instead,
the represented values are utilised as direct input for the randomForest function and
thereby are relevant for the paper.

The optimisation of the hyperparameters formulates the best random forest model.
Its predictive performance is presented in Table 11.

Node Splits (mtry)
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2 3 4 5 6 7 8 9

2 6.14 6.14 6.10 6.09 6.09 6.09 6.15 6.19

3 6.07 6.04 6.00 6.07 6.03 6.02 6.04 6.08

4 6.05 6.03 6.07 6.00 6.02 6.01 5.99 6.06

5 6.03 6.06 6.04 6.04 6.03 5.95 5.98 6.03

6 6.08 6.03 5.99 6.02 6.00 6.02 6.01 5.98

7 6.04 6.11 6.05 6.06 6.05 6.02 6.07 6.01

8 6.04 6.06 6.02 5.97 6.00 5.99 6.03 5.94

Table 10: MAPE for different hyperparameter values Node Splits & Node Size
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Figure 13: Variable importance random forest
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Model mtry nodesize RMSE MAE MPE MAPE Theil’s U

Random forest 7 6 973845.9 699383.1 -1.92 5.98 0.63

Table 11: Forecasting Accuracy Random Forest

4.4 Optimal State-space model

The thesis investigates 60 state-space model specifications in the search for a model
which fits the data. The formed state-space models utilise the polynomial, seasonal or
Fourier, and ARMA components. The Gibbs sampler, maximum likelihood estimation
(MLE), or a combination of both estimate the hyperparameters of the specified models.
Also, the input differs in the utilised time series, which are the original time series,
seasonally differenced or decomposed time series, and the original normalised time series.
The variations of components, estimations, and time series resulted in state-space models
of which the hyperparameter estimations did not seem to converge. In other words, the
estimation functions did not manage to fit the model components to the given time series.
This section describes what model variations, estimation variations, and variations of
time series have been tested. Afterwards, the section finalises by identification of the
most promising model in terms of convergence for the given time series. In the discussion
at section 5.3.1, the state-space model is included in future work and methods to make
the state-space model function for the given data case.

By the hand of the best state-space model in terms of convergence, the issues found
in state-space models are described and explained. The hyperparameter estimation
is executed on a normalised time series through MLE and Gibbs sampling to get a
complete image of estimation methods. The utilised components in the state-space
model follow the theoretical approach and cover patterns identified in the other applied
models. The theoretical approach resulted in the application of a polynomial function
for slight trend corrections, a seasonal component seasonal corrections, and an ARMA
component to cover the pattern throughout the time series. The ARMA component
follows the patterns found in the SARIMA model, resulting in an ARMA(0,1) model
with an MA coefficient which is the same as estimated through the Arima function
– 0.2. When executing the MLE, the function indicates a converged hyperparameter
estimation implying the hyperparameter estimation should be correct. For verification,
Table 12 gives the results of no estimation, the MLE, and Gibbs sampling estimation
for a polynomial, seasonal and ARMA (0, 1) state-space model with a normalised time
series. As extracted from the table, no estimation performs better than estimating the
components through either Gibbs sampling or the MLE, and thereby the estimation
methods tend to a non-convergent estimation of the components.

For further analysis of the estimation methods, Figures 14 and 15 support the Gibbs
sampling method investigation. The Gibbs sampling of the hyperparameters should be
a horizontal flat line around the optimal value for hyperparameters. As one can observe
in both figures, this is not the case for the Gibbs sampler executed in this paper, which
indicates the hyperparameter estimations used for the observation variance and hidden
state variance are incorrect. Note that the hidden state variance estimations include the
estimation of 54 variables used in the components.

Further analysis of the MLE could have been obtained by implementing the likelihood
estimator. The outcome of the MLE indicates convergence. Nevertheless, due to the
accuracy and outcomes of the other estimation method, there is a strong incentive that
convergence is not the case. Therefore, it could be interesting to implement the estimator
to plot the outcome of the estimation for different parameter inputs in order to get a
grasp on happens within the function. The Future Work section includes this extension.
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Note that the example described above is the example which seemed to tend most
to convergence and thereby has the best convergence performance of all over 60 tested
model specifications. Thereby, the other functions seem to be further away from con-
vergent hyperparameters. Since none of the models has the optimal hyperparameters,
statements about optimal state-space models are impossible to produce. Also, a com-
parison between state-space models would be unfair as a model which converges faster
is more likely to have improved performance. In practice, these models could perform
better and thus is not a correct indication of models’ performance. Though correctly
estimated models are missing, the ’luckily’ found state-space model through not esti-
mating the hyperparameters at all can be seen as an indication for the potential of
state-space models.

Figure 14: Gibbs sampler - dV - Observation Variance Estimation

Figure 15: Gibbs sampler - dW - Diagonal elements of the system variance estimations
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Estimation RMSE MAE MPE MAPE Theil’s U

No estimation 862538 667883 0.02 5.36 0.55
Maximum likelihood estimation 904900 681704 1.81 5.45 0.59

Gibbs sampler 1071414 815198 1.64 6.22 0.69

Table 12: Forecasting Accuracy SARIMA models

4.5 Models’ Comparison

This section analyses the predictive performance of all optimal models. Table 13 presents
the accuracy measures for ten time steps of each best model. Since the F-SARIMA can
only calculate to ten time steps due to computational performance, the table expresses
the ten time step accuracy measures of the other models as well for comparison.

As one can perceive, the accuracy metrics for ten time steps are far more accurate
than the accuracy metrics for 52 time steps. Most likely, this is due to a pattern in
the data in the second half of the validation set, which one can hardly perceive in the
previous years of the training set. As the first ten time steps exclude the deviating time
series points in the second half of the validation set, the models only investigate the
pattern which looks like the patterns in previous years, which results in a more accurate
forecast in general.

Comparing the methods, the SARIMA model performs best in terms of MAE and
MAPE metrics. However, Theil’s U, MPE, and RMSE of F-SARIMA have the best
values compared to the other functions. This indicates SARIMA performs better in
absolute deviation from the actual values, whereas F-SARIMA performs best in terms
of an equal deviation, either positive or negative. Figure 16 confirms that by revealing
the F-SARIMA model has a more peaked forecast around the validation time series,
whereas the other two forecasts have fewer peaks. What is interesting to see in the
random forest is that the Theil’s U of random forest is equal to SARIMA and the MPE
performs best. However, the other accuracy metrics perform far worse than the other
forecasting models. As one can observe in the figure, the first forecast of random forest
is far off, which decreases the performance of RMSE, MAE and MAPE and increases
the MPE.

All in all, the SARIMA performs best in absolute deviation of the validation time
series. F-SARIMA performs well in both absolute and average deviation, whereas ran-
dom forest performs best in average deviation. Note that random forest most likely
performs best on the metrics due to a strongly deviating starting point. SARIMA and
F-SARIMA perform both well, and one can argue that the usage of both models de-
pends on the forecasting goal. Where SARIMA is more balanced in its predictions,
F-SARIMA has stronger peaks. If one wants peaked indications of the next week, one
could use F-SARIMA. Though if one wants a stable forecast for the next week, one
could use SARIMA.

Model RMSE MAE MPE MAPE Theil’s U

SARIMA(0,0,1)(0,1,1) 466039 365833 1.85 2.88 0.46
F-SARIMA(1,1,1)(0,0,2) 421129 379320 0.33 3.01 0.40

Random forest 584070 460596 0.14 3.83 0.46

Table 13: Forecasting accuracy best methods
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Figure 16: Three best models - forecast comparison
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5 Discussion

5.1 Predictive Performance

The results section gives insights into the predictive performance of SARIMA, state-
space models, and random forest for the utilised time series. It is clear SARIMA proofs
to be most capable of producing forecasts: SARIMA outperforms the other methods
on all five metrics and thereby performs significantly better. Three different variants of
SARIMA - caused by different seasonal corrections - perform equally well. The variants
of SARIMA performing best do not always have the lowest AIC and BIC values: applying
more forms of differencing seems to have a positive impact on decreasing the information
criteria. At the same time, the forecasts might be negatively influenced by applying more
forms of differencing. Therefore, a comparison of only AIC and BIC values can border
finding the optimal SARIMA model. The application of Fourier in SARIMA does not
seem to have a positive impact on the performance of the algorithm compared to the
other seasonal transformations. The best Fourier model performs worse on all accuracy
metrics than SARIMA, which implies that Fourier transformations do not have a positive
impact as a tool for seasonal corrections on the given time series.

Nevertheless, F-SARIMA still performs well compared to the random forest, which
could be since SARIMA specialises in univariate time series [44]. In contrast, the random
forest could perform better on multivariate data sets [40]. Also, the application of Fourier
seasonality within the random forest might have the same, suboptimal effect as in the
F-SARIMA case - compared to the SARIMA model. Therefore, comparing the random
forest function to the F-SARIMA function is an equal comparison. Still, the F-SARIMA
model performs better than the random forest model on every predictive performance
aspect. Applying seasonal decomposition or seasonal differencing could improve the
random forest forecasts in the given time series.

5.2 Application in-practice

Implementation Complexity

The implementation of the models employs the R language and its libraries for simpli-
fying the implementation process. However, not all libraries are as easy to implement,
and some models need additional code to make it work in the presented cases.

The most accessible model for implementing is the SARIMA model. Through the
package by Hyndman, it is relatively easy to get a grasp on the processes necessary
for modelling and forecasting the time series. The simple formation of models makes
the learning curve sharper, as one can quickly identify and adapt SARIMA models if
the previous case seems suboptimal. Additionally, one can find a broad literature base
to find support once issues arise. In the case of applying model generation or rolling
forecasts, the extensions of code mainly concern the formation of loops, which is not
complex for a developer. However, the code might cause some issues when implemented
by a user unfamiliar with R or programming languages in general.

The state-space models also are quite unsophisticated to implement: the structure
of each component is clear, and one does not necessarily need to know the ins and outs
of the model itself. However, the literature base on hyperparameter formation is not
extensive in the specific context of time series analysis. Besides, if one has issues with
the package, most of the relevant sources available are written by Petris and Petrone
themselves - designers of the package. Though their quality-of-work is well, issues arising
from standard usage are hard to cover by only two writers. Albeit the formation of the
model itself is simple and intuitive, the support through literature is less extensive,
which makes the implementation more sophisticated than the SARIMA principle.
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The random forest needs pre-processing for time series and the translation of the
time series to matrices involves quite some transitions, especially when one is applying
trends and seasonal corrections. The utilised library for random forests is simple to use
and has an extensive literature base to solve possible issues. The time series application
has limited though extensive literature. It is doable if one understands how to implement
R. Implementation of model generation and rolling forecasts are as straightforward as
the implementation of the principles at SARIMA. However, the code is, compared to
the other two methods, quite extensive and inexperienced users of R should beware of
becoming overwhelmed by the lines of code.

All in all, SARIMA is the most convenient method for implementation due to the
clean methods provided in the libraries and the extensive literature base to investigate
once one faces issues. The components structure of the state-space model feels intuitive
and clarifies the formation of the model in terms of basic components. Besides, the im-
plementation of the hyperparameter estimation methods is straightforward. However,
support on a correct execution of the model through a correct hyperparameter and
components structure is limited, which can make it a hassle to implement the method
successfully. Though random forest needs a relatively long function to operate, the code
and principles implemented are understandable and documented well in literature. In
terms of programming experience needed to implement the functions correctly, SARIMA
is the simplest to implement, followed by random forest for time series and lastly, the
state-space models. Note that outcomes on only one univariate time series form this
judgement. Successful implementation of state-space models through an accurate hy-
perparameter estimation by having a different time series could have caused state-space
models to be easier to implement than random forests for time series.

Understanding of models’ principles

Understanding of the models is the foundation for model composition and parameter
choices and is - in most cases - a necessity for successful implementations. Complex
models are more likely to form a boundary in the usage of the models in practice.
Therefore, the models should be easy to understand while still assessing well predictive
performance. The following two perspectives enlight each model: the ease of under-
standing in general, and the necessity of understanding for the implementation of the
models.

The ease of understanding the SARIMA model is simple: one has an excellent chance
to find out each components’ function in the model. As the seasonal components use the
principles of the original ARIMA components, one needs to understand the autoregres-
sive, integrated (differencing), and moving average components as central principles.
Besides, the translation of the ARIMA components to Seasonal ARIMA components
through different lags selection is also necessary for understanding the model. As the
underlying principles are intuitive and straightforward, the underlying model is easy to
understand if one wants to.

However, this is not a necessity for applying the model. For model composition
and parameter choices at SARIMA, one can follow the two strategies mentioned in this
paper: either the theoretical strategy or the model generation strategy. Both strategies
differ in the level of understanding necessary for an optimal model formation. For the
theoretical approach, one will need to get a grasp on the interpretation of ACF and
PACF plots to choose the order of each parameter. Also, recognition of patterns in both
the original time series and the underlying models’ residuals is essential for correcting
the order of each parameter and optimising the models. Note that only interpretation
of the plots is necessary - not necessarily the understanding of the underlying principles
- which makes the process of choosing the orders of parameters simple if one has an
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overview to do so. A simple step-by-step execution, as done in this paper, lead to
one of the optimal SARIMA models. Thereby, for this time series, finding the optimal
SARIMA model through theory did not require much understanding of the SARIMA
models. An approach which does not need any understanding at all is the formation of
the models through model generation. If the user follows the methods used in this paper,
only computational power and understanding of R are necessary for the formation of
the optimal SARIMA model.

Random forest requires an understanding of the principles for choosing accurate
values for the number of node splits, depth of the decision trees, and the number of
trees to generate. The principles behind Random Forest have extensive explanations
through literature. Also, one can visualise the random forest, which makes the model
and its use of decision trees simple to understand. However, if one is diving deeper into
the material, the available methods of bagging and boosting for optimising the random
forest can be confusing due to the high number of variations in literature.

Nevertheless, the core principles of the random forest make the method understand-
able, intuitive and applicable in a quick manner. Besides the core principles of random
forest, application of random forests on time series does require an understanding of
the formation of matrices as it uses the theory to translate time series and its seasonal
components to the data form random forest can handle. As random forests only need
initialisation of two parameters which seem to have a limited impact on the performance
of the model, the random forest is scalable to other time series: the model learns the
variables it utilises in forecasting itself based on the given time series. However, the
formation of the variables can also be a downside of a random forest. The model only
returns the trees without an explanation. The unexplained trees make the process of
finding out the main variables random forest bases its judgement upon difficult. Thereby,
the random forest variables selection can be a black-box for the user, which causes a
lack of understanding in the specified underlying model. Subsequently, it is harder for
the user to slightly adapt or optimise the model by-hand since each time series has its
specification of variables.

The state-space model is a complex model which uses matrices and normally dis-
tributed errors in two main equations to form the model. Though the principles and
components used in state-space models, such as Gaussian errors and the Hidden-Markov
Chain, are understandable, the implementation of several components can be hard to
grasp. Every variable will need its specific position in a variable matrix for a correct
implementation, which can confuse the view of what happens in the underlying model
formation. Due to limited information in literature for time series applications and the
utilised library, understanding the actual workings of the combinations of components
for the state-space model - such as the polynomial, seasonal, and ARMA component -
can be a hassle. Estimating the components is an integral part in forming the model, as
the estimations shape the components to the time series used in the specific case. Once
one tries to implement the hyperparameter estimation in the given setting, quite some
issues can arise of which the literature base is limited. In this paper, issues emerged
in the form of a seemingly non-convergent maximum likelihood estimation which was
said to be convergent in the output. The future work section further investigates solva-
tions of the issue. The other estimation method - Gibbs sampling - could not converge
the estimations for hyperparameters either. Though the issue of convergence might be
harder than average on the utilised time series, the fact that there is a risk for an inten-
sive hyperparameter estimation makes the model less attractive and harder to interpret
results.
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Computational Costs

The efficiency of a model can make an impact on the applicability of the models in-
practice, which makes it a relevant factor to enlighten. Since other applications might
involve long-term forecasts and the formation of models and its parameters differ in
running costs in terms of time, computational costs can be an important aspect for
deciding whether or not to use a model. Note that this paper only uses indications of
time for models running on a Windows system at which other small applications ran
parallel. Also, the length of a time series and the complexity of a time series can hugely
affect the computational costs necessary for finding the optimal model. Nevertheless,
regarding the time indications, every model has run at least 30 times which stabilised
the running time costs for each model. The given running periods are rough estimations
of the actual running time on the utilised Windows machine for the specific time series.

The formation of a SARIMA model is efficient takes seconds to minutes for the
used time series, depending on the complexity of the model. When one knows about
applying the theoretical approach, the SARIMA model needs to be generated around
six times at maximum, resulting in a total running time of 15 minutes when having a
computationally complex SARIMA model. Thereby, the SARIMA model is very efficient
and is suitable in quickly changing environments. However, if one wants to fit the best
model through model generation, the calculation times increase significantly to 2 hours
and 15 minutes, which makes it harder to apply on, e.g. real-time data. Nevertheless,
by planning model generation once a week and utilise the best model throughout the
rest of the week, the model can still be used frequently. Since the underlying history
of data is unlikely to change drastically in most cases, a less frequent model generation
should not be a problem.

Fourier SARIMA models are more computationally expensive than SARIMA, and
when running through model generation, it can take ten to fifteen hours to find the
optimal F-SARIMA model. Computationally advanced F-SARIMA functions, with high
orders of SARIMA parameters and a high order ofK, took roughly 1 hour and 30 minutes
to execute. A computationally simple F-SARIMA model takes roughly 2 minutes to
execute. The Fourier component thereby strongly affects the efficiency of the SARIMA
model, which might affect the usage in-practice. It still is possible to plan the F-SARIMA
model generation function over-night on a daily basis. However, it is advisable to do so
every week, especially considering a possible longer execution at different time series.

The random forest function is quite efficient and only needs about five minutes to
execute for the given time series. Thereby, the usability of the model in-practice in
terms of computational costs is comparable with the SARIMA model. Pro of applying
random forests over the other models is that the random forest directly fits the newly
generated decision trees to the newly available data, resulting in a fit which always suits
the newest time series.

The execution of state-space models itself is quick, and if the hyperparameters are
known, it only takes seconds to generate the model and the forecast. However, the
initialisation of hyperparameters has proven to be a time-intensive practice. If one de-
cides to utilise seasonal components, the number of hyperparameters to estimate equals
a seasonal period minus one. So, instead of estimating three variables at applying the
polynomial and ARMA components, the function has to estimate 54 for weekly data
with a seasonal trend over one year. Note that if one manages to find the actual hy-
perparameter estimations for a given time series, one can reuse the values as a starting
point in optimising the state-space models to future time series extensions. So, theo-
retically, the efficiency of the full calculation - which has taken 30 hours in this paper
without the desired result - can be made highly more efficient by already having the right
hyperparameters for a time series in the past. Due to non-convergent hyperparameters
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in this paper, it is difficult to give an impression of computational costs for estimating
and re-estimating the hyperparameters. Thereby, in the future, this could be considered
once having a fully functioning, optimal state-space model. Concluding, the state-space
model tends to be interesting for real-time time series analysis, though this paper does
not have the proof to give definite statements on this topic.

5.3 Future Work

5.3.1 State-space models

The hyperparameter estimation for the state-space models tested in this paper did not
converge. Consequently, future work would be to apply several methods for a convergent
hyperparameter estimation. The estimation functions used in this paper, which are the
Gibbs sampler and maximum likelihood estimation, could run for longer timespans to
make them converge. However, for a broad comparison of state-space models having
efficient estimation functions are important for higher velocity in model comparisons.
Reaching a higher efficiency in estimation could be done through further investigating
combinations of both the MLE and Gibbs sampler, where the MLE could provide the
starting point for the Gibbs sampler. Hyperparameter starting points close to the actual
values decrease the iterations necessary for the Gibbs sampler to converge and thereby
decreases running costs of the sampler. To further utilise and improve the starting
point through the MLE, one could implement the MLE by hand and see what values for
hyperparameters perform well as an initial starting point. Also, one can plot the output
in graphs to see what is going on in the likelihood estimation. Once the MLE works
well, the output could be a starting point for the Gibbs sampler for the final convergence
of hyperparameters.

Once one manages to optimise the estimations of hyperparameters, further investiga-
tion of the coefficients of the ARMA components and the choice for the order of ARMA
could be the next step to find out what model suits the time series best. Estimating the
coefficients for ARMA could be done by the MLE. Afterwards, the true values for the
hyperparameters could be estimated to obtain a fully fitted model. Having several con-
vergent models makes them comparable, and thereby this process should be repeated for
several orders of ARMA and several coefficients for ARMA to find the model fitting the
underlying time series. Afterwards, one can compare the model specifications through
the accuracy measures used in this paper. By applying this structured comparison to
all kinds of state-space models, one can form optimisation of the models as structured
as the SARIMA models’ optimisation given in this paper. Though this is likely to be a
computationally expensive task, the pros of state-space models mentioned in the compu-
tational costs section might make it worth it to initialise and utilise the best state-space
model. Besides, when executing this task in a structured manner as described here,
possible improvements for the efficiency of the model generation might come up as well,
which could decrease the high computational costs. Improvements could be in the form
of first estimating components separately and combining those afterwards, or by having
a stationary time series as input to save the computational costs caused by the polyno-
mial and seasonal components. Note that if one chooses to apply seasonally and trends
correction outside the state-space model, one might not employ the full capacity of the
state-space estimations. Therefore, the advice is to implement the seasonality and trend
transformations as a component of the state-space estimation - as one can observe the
full potential of state-space models in this particular setting.

Lastly, one could investigate an extension of the ARMA components with the sea-
sonal ARMA components as it seems to fit the utilised time series well and the extension
could cause a broader set of time series to fit in the model. Current scientific work does
not yet apply the seasonal ARMA components for state-space models. Suggested is to
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apply the Seasonal ARMA components either through the inclusion of the hyperparam-
eters in the matrices – resulting in a new state-space model component – or by applying
the seasonal ARMA transformations on forehand through utilising the residuals in state-
space modelling. Though advanced, the first option would be the most interesting case
to investigate as one utilises the full capacity of state-space modelling.

5.3.2 Multivariate Time Series

This paper identifies the predictive behaviour of univariate time series - a set of data
points with a time variable and a continuous variable. Multivariate time series have
several continuous variables in a time series structure and thereby can form a more
comprehensive view on the patterns throughout the data to utilise in forecasting. In
SARIMA, application of multivariate models is possible, though it does not necessarily
improve predictive performance. It would be interesting to see whether an optimised
SARIMA model for the given multivariate time series would lead to an improvement.
The forecast package by Hyndman already provides the functionality of multivariate time
series, and thereby the boundary should be low in applying the multivariate time series,
once applicable. Ditto for multivariate time series as input for random forests, which will
require a new data translation from the variable into the matrix. The favour of random
forests over SARIMA is that the implementation should be easier and the formation
of the model is likely to be more simple than SARIMA models, as SARIMA models
require more understanding or computationally extensive model generation algorithms.
However, one would need an understanding of R to implement random forests in the
given setting.

For the state-space models applied in this paper, the case is a bit harder. Besides
the issues of convergence of the parameter estimation, the utilised dlm package can only
handle univariate time series. Consequently, this would imply that one will have to
implement a state-space model from scratch, which will be a time-extensive task and
requires a profound understanding of state-space models. Nevertheless, the extension by
multivariate time series for state-space models proposed in this paper could be exciting
as a successful implementation of state-space models might improve the current state-
of-art methods used.

5.3.3 Hierarchical Time Series

Another time series extension which could be interesting to investigate in future work
is a hierarchical structure of time series. In hierarchical structures, a specified variable
groups the time series into several univariate time series at which models run separately.
In the case of the utilised time series, the time series could be grouped by the customer to
see whether customers show the same ordering patterns throughout the four years. If so,
one could model highly predictable customers first, and one could group unpredictable
customers to specialise in each customer group and improve the overall predictions.

Shifting the focus to the models utilised in this paper, one could apply all three
models to this structure of time series. The random forest seems to be the easiest to
apply, as the random forest will take care of variable definitions itself. SARIMA will
either require high computational power or a high amount of time and understanding
of SARIMA to design a SARIMA model for each time series. For state-space models,
the initialisation for one univariate time series already takes hours. The initialisation
for multiple univariate time series repeats that process resulting in an inefficient model
formation. Due to the high computational costs, which are costly in terms of time, the
state-space model does not seem to be the ideal model for hierarchical time series.
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6 Conclusion

Demand Forecasting performs best at the utilization of the traditional SARIMA model
in terms of predictive performance compared to random forests in the given univari-
ate time series. Though state-space models do have the potential to outperform the
SARIMA model, the models applied and estimated in this paper do not give enough
evidence to support the hypothesis. In practice, the SARIMA model seems to be the
most appropriate model for a single univariate time series to use due to the low compu-
tational costs, the ease of understanding of its principles, and the wide implementation
support in the literature. However, for wide applicability of the model over multiple
univariate time series, the random forest is an efficient alternative for SARIMA models
due to its scalability property which makes implementation efficient. The state-space
models are the least efficient, hardest to master, and is least supported throughout liter-
ature. However, the state-space models do reveal a high potential through its predictive
performance. Due to the relative novelty of state-space models for time series analysis,
the state-space models do have the potential to outperform the traditional SARIMA and
random forest models on predictive performance once the model has a more comprehen-
sive literature base. However, one should consider whether the possible improvement in
prediction accuracy is worth the investment in both the formation of the model as the
computational power necessary to execute the function.

Concluding, the non-convergent state-space model results in an inability to compare
SARIMA and state-space models on predictive performance. However, convergent state-
space ARMA estimations do reveal the potential to outperform the SARIMA models,
though it will be at the expenses of practical difficulties. The SARIMA model outper-
forms the random forest in predictive performance for the given time series. Still, the
random forest for time series does have potential due to its efficient scalability to other
time series.
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Appendices

Appendix I - Packages for implementation

Functionality Package Function Reference

KPSS test urca ur.kpss [32]
ADF test aTSA adf.test [33]

Table 14: Stationarity packages and functions

Functionality Package Function Reference

Fourier forecast fourier [19]
Differencing Stats diff [34]

Decomposition Stats decompose / stl [34]

Table 15: Seasonality packages and functions

Functionality Package Function Reference

SARIMA forecast Arima [19]
ACF/PACF Stats acf / pacf [34]

AIC/BIC Stats AIC / BIC [34]
Forecasting forecast forecast [19]

Accuracy measures forecast accuracy [19]

Table 16: SARIMA packages and functions

Functionality Package Function Reference

Polynomial component dlm dlmModPoly [31]
Seasonal component dlm dlmModSeas [31]
ARMA component dlm dlmModARMA [31]

Gibbs sampler dlm dlmGibbsDIG [31]
Maximum likelihood estimation dlm dlmMLE [31]

Kalman filter dlm dlmFilter [31]
Forecasting dlm dlmForecast [31]

Table 17: State-space model packages and functions
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Functionality Package Function Reference

Random forest randomForest randomForest [26]
Decomposition Stats stl [34]
Trends forecast forecast auto.arima [19]

MAPE forecast accuracy [19]

Table 18: Random forest packages and functions

Appendix II - ACF and PACF plots

Residuals different time series SARIMA(0,0,0)(0,0,0)

Section 4.2.1: Utilized for defining order of P / Q

Figure 17: ACF - SDec1 Time Series

Figure 18: PACF - SDec1 Time Series
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Figure 19: ACF - SDec2 Time Series

Figure 20: PACF - SDec2 Time Series
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Residuals different time series SARIMA(0,0,0)(0,0,1)

Section 4.2.1: Utilized for defining order of p / q

Figure 21: ACF - SDec1 Time Series, Q = 1

Figure 22: PACF - SDec1 Time Series, Q = 1
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Figure 23: ACF - SDec2 Time Series, Q = 1

Figure 24: PACF - SDec2 Time Series, Q = 1
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Residuals different time series SARIMA(0,0,1)(0,0,1)

Section 4.2.1: Final residuals of each theoretically based model

Figure 25: ACF - SDec1 Time Series SARIMA(0,0,1)(0,0,1)

Figure 26: PACF - SDec1 Time Series SARIMA(0,0,1)(0,0,1)
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Figure 27: ACF - SDec2 Time Series SARIMA(0,0,1)(0,0,1)

Figure 28: PACF - SDec2 Time Series SARIMA(0,0,1)(0,0,1)
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Appendix III - AIC and BIC values

Original Time series

Section 4.2.1: Utilized in Model Generation SARIMA

AIC BIC AICC p d q P D Q

6336 6356 6336 0 0 1 0 0 2
6336 6356 6336 1 0 0 0 0 2
6337 6363 6337 1 0 2 0 0 2
6338 6368 6339 2 0 2 0 0 2
6338 6361 6338 1 0 1 0 0 2
6338 6361 6338 0 0 2 0 0 2
6338 6361 6338 2 0 0 0 0 2
6339 6366 6340 2 0 1 0 0 2
6344 6361 6345 0 0 0 0 0 2
6349 6372 6349 1 0 2 0 0 1
6349 6365 6349 1 0 0 0 0 1
6349 6366 6349 0 0 1 0 0 1
6350 6376 6350 2 0 2 0 0 1
6351 6371 6351 1 0 1 0 0 1
6351 6371 6351 2 0 0 0 0 1
6351 6371 6351 0 0 2 0 0 1
6353 6376 6353 2 0 1 0 0 1
6356 6370 6357 0 0 0 0 0 1
6379 6396 6379 1 0 1 0 0 0
6380 6401 6381 1 0 2 0 0 0
6381 6401 6381 2 0 1 0 0 0
6382 6405 6383 2 0 2 0 0 0
6386 6399 6386 1 0 0 0 0 0
6386 6402 6386 2 0 0 0 0 0
6389 6405 6389 0 0 2 0 0 0
6389 6402 6389 0 0 1 0 0 0
6402 6412 6402 0 0 0 0 0 0

Table 19: SARIMA Model Generation - UTS - Category 1: d = 0, D = 0
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AIC BIC AICC p d q P D Q

6310 6330 6311 1 1 1 0 0 2
6310 6330 6311 0 1 2 0 0 2
6312 6336 6313 1 1 2 0 0 2
6313 6336 6314 2 1 1 0 0 2
6313 6330 6314 0 1 1 0 0 2
6314 6340 6315 2 1 2 0 0 2
6324 6344 6325 2 1 1 0 0 1
6324 6338 6325 0 1 1 0 0 1
6325 6348 6325 2 1 2 0 0 1
6325 6341 6325 0 1 2 0 0 1
6325 6342 6325 1 1 1 0 0 1
6326 6346 6326 1 1 2 0 0 1
6343 6363 6343 2 1 0 0 0 2
6354 6364 6354 0 1 1 0 0 0
6356 6369 6356 0 1 2 0 0 0
6356 6376 6356 2 1 2 0 0 0
6356 6369 6356 1 1 1 0 0 0
6356 6373 6356 2 1 0 0 0 1
6356 6373 6357 2 1 1 0 0 0
6357 6374 6357 1 1 2 0 0 0
6361 6378 6361 1 1 0 0 0 2
6376 6390 6377 1 1 0 0 0 1
6379 6392 6379 2 1 0 0 0 0
6386 6399 6386 0 1 0 0 0 2
6396 6406 6396 1 1 0 0 0 0
6402 6412 6402 0 1 0 0 0 1
6425 6431 6425 0 1 0 0 0 0

Table 20: SARIMA Model Generation - UTS - Category 2: d = 1, D = 0
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AIC BIC AICC p d q P D Q

4725 4737 4725 0 0 1 0 1 1
4725 4738 4726 1 0 0 0 1 1
4727 4742 4727 2 0 0 0 1 1
4727 4742 4727 0 0 2 0 1 1
4727 4742 4727 1 0 1 0 1 1
4727 4742 4727 0 0 1 0 1 2
4727 4743 4728 1 0 0 0 1 2
4728 4737 4728 0 0 0 0 1 1
4729 4750 4729 2 0 2 0 1 1
4729 4747 4729 2 0 0 0 1 2
4729 4747 4729 0 0 2 0 1 2
4729 4747 4729 2 0 1 0 1 1
4729 4747 4729 1 0 1 0 1 2
4729 4747 4729 1 0 2 0 1 1
4730 4742 4730 0 0 0 0 1 2
4731 4755 4732 2 0 2 0 1 2
4731 4752 4731 2 0 1 0 1 2
4731 4752 4732 1 0 2 0 1 2
4754 4773 4755 2 0 2 0 1 0
4757 4766 4757 0 0 1 0 1 0
4757 4770 4758 2 0 0 0 1 0
4758 4767 4758 1 0 0 0 1 0
4758 4770 4758 0 0 2 0 1 0
4758 4771 4759 1 0 1 0 1 0
4759 4765 4759 0 0 0 0 1 0
4759 4775 4760 2 0 1 0 1 0
4760 4775 4760 1 0 2 0 1 0

Table 21: SARIMA Model Generation - UTS - Category 3: d = 0, D = 1
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AIC BIC AICC p d q P D Q

4701 4713 4701 0 1 2 0 1 1
4702 4714 4702 1 1 1 0 1 1
4702 4717 4702 1 1 2 0 1 1
4703 4718 4703 2 1 1 0 1 1
4703 4718 4703 0 1 2 0 1 2
4704 4719 4704 1 1 1 0 1 2
4704 4722 4704 1 1 2 0 1 2
4704 4713 4704 0 1 1 0 1 1
4705 4723 4705 2 1 1 0 1 2
4705 4723 4705 2 1 2 0 1 1
4706 4718 4706 0 1 1 0 1 2
4707 4728 4708 2 1 2 0 1 2
4731 4744 4732 2 1 1 0 1 0
4732 4741 4732 0 1 2 0 1 0
4732 4745 4733 1 1 2 0 1 0
4732 4742 4733 1 1 1 0 1 0
4733 4739 4733 0 1 1 0 1 0
4733 4749 4734 2 1 2 0 1 0
4737 4749 4737 2 1 0 0 1 1
4739 4754 4739 2 1 0 0 1 2
4753 4762 4753 1 1 0 0 1 1
4754 4767 4755 1 1 0 0 1 2
4772 4782 4773 2 1 0 0 1 0
4773 4779 4773 0 1 0 0 1 1
4773 4783 4774 0 1 0 0 1 2
4791 4797 4791 1 1 0 0 1 0
4809 4812 4809 0 1 0 0 1 0

Table 22: SARIMA Model Generation - UTS - Category 4: d = 1, D = 1
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Seasonally Decomposed Time series

Section 4.2.1: Utilized in Model Generation SARIMA

AIC BIC AICC p d q P D Q

6146 6166 6147 0 0 1 0 0 2
6146 6166 6147 1 0 0 0 0 2
6147 6177 6148 2 0 2 0 0 2
6148 6165 6148 0 0 1 0 0 1
6148 6171 6149 2 0 0 0 0 2
6148 6172 6149 0 0 2 0 0 2
6148 6172 6149 1 0 1 0 0 2
6148 6165 6149 1 0 0 0 0 1
6149 6165 6149 0 0 0 0 0 2
6150 6170 6150 2 0 0 0 0 1
6150 6170 6150 0 0 2 0 0 1
6150 6170 6150 1 0 1 0 0 1
6150 6177 6151 2 0 1 0 0 2
6150 6177 6151 1 0 2 0 0 2
6151 6164 6151 0 0 0 0 0 1
6151 6174 6151 2 0 1 0 0 1
6152 6175 6152 1 0 2 0 0 1
6153 6179 6153 2 0 2 0 0 1
6171 6184 6171 0 0 1 0 0 0
6172 6185 6172 1 0 0 0 0 0
6172 6195 6173 2 0 2 0 0 0
6173 6189 6173 2 0 0 0 0 0
6173 6189 6173 0 0 2 0 0 0
6173 6190 6173 1 0 1 0 0 0
6174 6195 6175 2 0 1 0 0 0
6175 6185 6175 0 0 0 0 0 0
6175 6195 6175 1 0 2 0 0 0

Table 23: SARIMA Model Generation - SDec1 - Category 1: d = 0, D = 0
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AIC BIC AICC p d q P D Q

6124 6144 6124 0 1 2 0 0 2
6124 6144 6124 1 1 1 0 0 2
6125 6149 6126 2 1 2 0 0 1
6126 6142 6126 0 1 2 0 0 1
6126 6149 6126 2 1 1 0 0 2
6126 6149 6126 1 1 2 0 0 2
6126 6142 6126 1 1 1 0 0 1
6126 6143 6127 0 1 1 0 0 2
6127 6147 6128 2 1 1 0 0 1
6128 6148 6128 1 1 2 0 0 1
6128 6154 6128 2 1 2 0 0 2
6129 6142 6129 0 1 1 0 0 1
6147 6161 6148 0 1 2 0 0 0
6148 6161 6148 1 1 1 0 0 0
6149 6166 6149 2 1 1 0 0 0
6149 6166 6150 1 1 2 0 0 0
6151 6171 6151 2 1 2 0 0 0
6151 6161 6151 0 1 1 0 0 0
6174 6194 6175 2 1 0 0 0 2
6175 6192 6175 2 1 0 0 0 1
6190 6207 6190 1 1 0 0 0 2
6192 6205 6192 1 1 0 0 0 1
6200 6214 6200 2 1 0 0 0 0
6218 6232 6218 0 1 0 0 0 2
6219 6229 6219 1 1 0 0 0 0
6220 6230 6220 0 1 0 0 0 1
6244 6251 6244 0 1 0 0 0 0

Table 24: SARIMA Model Generation - SDec1 - Category 2: d = 1, D = 0
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AIC BIC AICC p d q P D Q

4731 4743 4731 0 0 1 0 1 1
4731 4744 4732 1 0 0 0 1 1
4732 4747 4732 2 0 0 0 1 1
4732 4747 4733 0 0 2 0 1 1
4732 4748 4733 1 0 1 0 1 1
4733 4754 4733 2 0 2 0 1 1
4733 4748 4733 0 0 1 0 1 2
4733 4742 4733 0 0 0 0 1 1
4733 4749 4734 1 0 0 0 1 2
4734 4752 4734 2 0 0 0 1 2
4734 4752 4735 2 0 1 0 1 1
4734 4752 4735 1 0 2 0 1 1
4734 4752 4735 0 0 2 0 1 2
4734 4753 4735 1 0 1 0 1 2
4734 4759 4735 2 0 2 0 1 2
4735 4747 4735 0 0 0 0 1 2
4736 4757 4737 2 0 1 0 1 2
4736 4757 4737 1 0 2 0 1 2
4761 4779 4761 2 0 2 0 1 0
4763 4775 4763 2 0 0 0 1 0
4763 4773 4764 0 0 1 0 1 0
4764 4776 4764 0 0 2 0 1 0
4764 4773 4764 1 0 0 0 1 0
4764 4770 4764 0 0 0 0 1 0
4765 4777 4765 1 0 1 0 1 0
4765 4780 4765 2 0 1 0 1 0
4766 4781 4766 1 0 2 0 1 0

Table 25: SARIMA Model Generation - SDec1 - Category 3: d = 0, D = 1
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AIC BIC AICC p d q P D Q

4707 4719 4707 0 1 2 0 1 1
4707 4722 4708 1 1 2 0 1 1
4708 4720 4708 1 1 1 0 1 1
4708 4723 4708 2 1 1 0 1 1
4709 4718 4709 0 1 1 0 1 1
4709 4724 4709 0 1 2 0 1 2
4709 4727 4710 1 1 2 0 1 2
4709 4725 4710 1 1 1 0 1 2
4710 4728 4710 2 1 1 0 1 2
4710 4728 4711 2 1 2 0 1 1
4710 4723 4711 0 1 1 0 1 2
4712 4733 4713 2 1 2 0 1 2
4737 4749 4737 2 1 1 0 1 0
4738 4747 4738 0 1 2 0 1 0
4738 4750 4739 1 1 2 0 1 0
4739 4745 4739 0 1 1 0 1 0
4739 4748 4739 1 1 1 0 1 0
4739 4754 4739 2 1 2 0 1 0
4745 4758 4746 2 1 0 0 1 1
4747 4763 4748 2 1 0 0 1 2
4761 4770 4761 1 1 0 0 1 1
4763 4775 4763 1 1 0 0 1 2
4779 4786 4780 0 1 0 0 1 1
4781 4790 4781 0 1 0 0 1 2
4781 4790 4781 2 1 0 0 1 0
4798 4804 4798 1 1 0 0 1 0
4815 4818 4815 0 1 0 0 1 0

Table 26: SARIMA Model Generation - SDec1 - Category 4: d = 1, D = 1
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Seasonally Decomposed by STL Time series

Section 4.2.1: Utilized in Model Generation SARIMA

AIC BIC AICC p d q P D Q

6080 6107 6081 1 0 2 0 0 2
6080 6107 6081 2 0 1 0 0 2
6080 6104 6081 1 0 2 0 0 1
6080 6104 6081 2 0 1 0 0 1
6082 6102 6082 0 0 1 0 0 2
6082 6112 6083 2 0 2 0 0 2
6082 6109 6083 2 0 2 0 0 1
6082 6099 6083 0 0 1 0 0 1
6083 6103 6083 1 0 0 0 0 2
6083 6100 6084 1 0 0 0 0 1
6084 6107 6084 1 0 1 0 0 2
6084 6107 6084 0 0 2 0 0 2
6084 6107 6084 2 0 0 0 0 2
6084 6104 6085 1 0 1 0 0 1
6084 6104 6085 0 0 2 0 0 1
6084 6105 6085 2 0 0 0 0 1
6088 6104 6088 0 0 0 0 0 2
6091 6104 6091 0 0 0 0 0 1
6141 6155 6142 0 0 1 0 0 0
6142 6155 6142 1 0 0 0 0 0
6143 6166 6144 2 0 2 0 0 0
6143 6160 6143 2 0 0 0 0 0
6143 6160 6143 0 0 2 0 0 0
6143 6160 6144 1 0 1 0 0 0
6145 6165 6146 2 0 1 0 0 0
6145 6165 6146 1 0 2 0 0 0
6146 6156 6146 0 0 0 0 0 0

Table 27: SARIMA Model Generation - SDec2 - Category 1: d = 0, D = 0
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AIC BIC AICC p d q P D Q

6058 6085 6059 2 1 2 0 0 2
6058 6082 6059 2 1 2 0 0 1
6060 6080 6060 0 1 2 0 0 2
6060 6083 6061 1 1 2 0 0 2
6060 6080 6061 1 1 1 0 0 2
6060 6077 6061 0 1 2 0 0 1
6061 6081 6062 1 1 2 0 0 1
6061 6078 6062 1 1 1 0 0 1
6062 6085 6062 2 1 1 0 0 2
6063 6083 6063 2 1 1 0 0 1
6066 6082 6066 0 1 1 0 0 2
6069 6082 6069 0 1 1 0 0 1
6107 6124 6108 2 1 0 0 0 1
6108 6128 6108 2 1 0 0 0 2
6118 6131 6118 0 1 2 0 0 0
6119 6132 6119 1 1 1 0 0 0
6120 6136 6120 2 1 1 0 0 0
6120 6137 6120 1 1 2 0 0 0
6122 6142 6123 2 1 2 0 0 0
6123 6133 6123 0 1 1 0 0 0
6129 6142 6129 1 1 0 0 0 1
6129 6146 6130 1 1 0 0 0 2
6154 6164 6154 0 1 0 0 0 1
6156 6169 6156 0 1 0 0 0 2
6168 6181 6168 2 1 0 0 0 0
6189 6199 6190 1 1 0 0 0 0
6217 6224 6217 0 1 0 0 0 0

Table 28: SARIMA Model Generation - SDec2 - Category 2: d = 1, D = 0
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AIC BIC AICC p d q P D Q

4725 4737 4725 0 0 1 0 1 1
4725 4738 4726 1 0 0 0 1 1
4727 4742 4727 2 0 0 0 1 1
4727 4742 4727 0 0 2 0 1 1
4727 4742 4727 1 0 1 0 1 1
4727 4742 4727 0 0 1 0 1 2
4727 4743 4728 1 0 0 0 1 2
4728 4737 4728 0 0 0 0 1 1
4729 4750 4729 2 0 2 0 1 1
4729 4747 4729 2 0 0 0 1 2
4729 4747 4729 0 0 2 0 1 2
4729 4747 4729 2 0 1 0 1 1
4729 4747 4729 1 0 1 0 1 2
4729 4747 4729 1 0 2 0 1 1
4730 4742 4730 0 0 0 0 1 2
4731 4755 4732 2 0 2 0 1 2
4731 4752 4731 2 0 1 0 1 2
4731 4752 4732 1 0 2 0 1 2
4754 4773 4755 2 0 2 0 1 0
4757 4766 4757 0 0 1 0 1 0
4757 4770 4758 2 0 0 0 1 0
4758 4767 4758 1 0 0 0 1 0
4758 4770 4758 0 0 2 0 1 0
4758 4771 4759 1 0 1 0 1 0
4759 4765 4759 0 0 0 0 1 0
4759 4775 4760 2 0 1 0 1 0
4760 4775 4760 1 0 2 0 1 0

Table 29: SARIMA Model Generation - SDec2 - Category 3: d = 0, D = 1
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AIC BIC AICC p d q P D Q

4701 4713 4701 0 1 2 0 1 1
4702 4714 4702 1 1 1 0 1 1
4702 4717 4702 1 1 2 0 1 1
4703 4718 4703 2 1 1 0 1 1
4703 4718 4703 0 1 2 0 1 2
4704 4719 4704 1 1 1 0 1 2
4704 4722 4704 1 1 2 0 1 2
4704 4713 4704 0 1 1 0 1 1
4705 4723 4705 2 1 1 0 1 2
4705 4723 4705 2 1 2 0 1 1
4706 4718 4706 0 1 1 0 1 2
4707 4728 4708 2 1 2 0 1 2
4731 4744 4732 2 1 1 0 1 0
4732 4741 4732 0 1 2 0 1 0
4732 4745 4733 1 1 2 0 1 0
4732 4742 4733 1 1 1 0 1 0
4733 4739 4733 0 1 1 0 1 0
4733 4749 4734 2 1 2 0 1 0
4737 4749 4737 2 1 0 0 1 1
4739 4754 4739 2 1 0 0 1 2
4753 4762 4753 1 1 0 0 1 1
4754 4767 4755 1 1 0 0 1 2
4772 4782 4773 2 1 0 0 1 0
4773 4779 4773 0 1 0 0 1 1
4773 4783 4774 0 1 0 0 1 2
4791 4797 4791 1 1 0 0 1 0
4809 4812 4809 0 1 0 0 1 0

Table 30: SARIMA Model Generation - SDec2 - Category 4: d = 1, D = 1
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Appendix IV - F-SARIMA Model Generation

Parameter determination for K

Section 4.2.1: Utilized in Model Generation F-SARIMA

AIC BIC AICC K

7963.899 7981.703 7964.136 1
7956.879 7981.804 7957.324 2
7959.731 7991.777 7960.451 3
7951.287 7990.454 7952.351 4
7949.091 7995.380 7950.571 5
7949.272 8002.683 7951.240 6
7930.353 7990.884 7932.882 7
7922.036 7989.689 7925.203 8
7919.400 7994.174 7923.282 9
7917.535 7999.431 7922.213 10
7912.179 8001.196 7917.735 11
7895.320 7991.459 7901.837 12
7888.136 7991.396 7895.701 13
7875.050 7985.431 7883.752 14
7866.909 7984.411 7876.838 15
7866.647 7991.271 7877.897 16
7856.460 7988.205 7869.126 17
7845.105 7983.972 7859.287 18
7842.125 7988.113 7857.923 19
7833.488 7986.597 7851.006 20
7824.013 7984.244 7843.359 21
7825.979 7993.331 7847.262 22
7822.260 7996.733 7845.593 23
7817.644 7999.239 7843.144 24
7814.288 8003.004 7842.075 25
7807.028 7999.305 7836.004 26

Table 31: F-SARIMA Model Generation - K-value = 26
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Parameter determination SARIMA at Fourier K = 26

Section 4.2.1: Utilized in Model Generation F-SARIMA

AIC BIC AICC p d q P D Q

7725.945 7932.464 7759.994 1 0 1 0 0 2
7726.779 7936.859 7762.179 2 0 1 0 0 2
7726.783 7936.864 7762.183 1 0 2 0 0 2
7728.776 7942.416 7765.559 2 0 2 0 0 2
7729.849 7932.807 7762.581 0 0 1 0 0 2
7729.954 7932.913 7762.687 1 0 1 0 0 1
7730.711 7933.670 7763.444 1 0 0 0 0 2
7730.985 7937.505 7765.035 0 0 2 0 0 2
7731.522 7938.041 7765.571 2 0 1 0 0 1
7731.531 7938.050 7765.581 1 0 2 0 0 1
7731.563 7938.083 7765.613 2 0 0 0 0 2
7733.905 7943.985 7769.305 2 0 2 0 0 1
7734.518 7933.916 7765.966 0 0 0 0 0 2
7735.430 7934.828 7766.878 0 0 1 0 0 1
7736.118 7935.516 7767.566 1 0 0 0 0 1
7736.267 7939.226 7769.000 0 0 2 0 0 1
7736.895 7939.854 7769.628 2 0 0 0 0 1
7738.472 7934.310 7768.668 0 0 0 0 0 1
7796.764 7999.723 7829.497 1 0 2 0 0 0
7796.865 7999.824 7829.598 2 0 1 0 0 0
7797.623 7997.021 7829.071 1 0 1 0 0 0
7798.455 8004.974 7832.505 2 0 2 0 0 0
7799.072 7994.909 7829.268 0 0 1 0 0 0
7800.352 7996.190 7830.549 1 0 0 0 0 0
7800.424 7999.822 7831.872 0 0 2 0 0 0
7801.082 8000.480 7832.530 2 0 0 0 0 0
7807.028 7999.305 7836.004 0 0 0 0 0 0

Table 32: F-SARIMA Model Generation - Category 1: d = 0, D = 0
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AIC BIC AICC p d q P D Q

7704.358 7910.654 7738.578 1 1 2 0 0 2
7705.037 7914.889 7740.614 2 1 2 0 0 2
7708.039 7910.778 7740.935 0 1 2 0 0 2
7708.673 7911.413 7741.569 1 1 2 0 0 1
7708.891 7911.630 7741.786 1 1 1 0 0 2
7709.875 7916.171 7744.095 2 1 1 0 0 2
7710.152 7916.448 7744.372 2 1 2 0 0 1
7713.031 7912.214 7744.635 0 1 1 0 0 2
7713.984 7913.167 7745.588 0 1 2 0 0 1
7714.671 7913.853 7746.275 1 1 1 0 0 1
7715.584 7918.323 7748.479 2 1 1 0 0 1
7717.302 7912.928 7747.647 0 1 1 0 0 1
7762.800 7965.539 7795.695 2 1 0 0 0 2
7771.667 7970.850 7803.271 2 1 0 0 0 1
7773.488 7976.227 7806.384 2 1 2 0 0 0
7775.667 7971.292 7806.011 0 1 2 0 0 0
7776.711 7975.894 7808.315 1 1 2 0 0 0
7776.917 7972.542 7807.261 1 1 1 0 0 0
7777.786 7976.968 7809.390 2 1 1 0 0 0
7783.975 7976.044 7813.093 0 1 1 0 0 0
7795.249 7994.431 7826.853 1 1 0 0 0 2
7801.938 7997.563 7832.283 1 1 0 0 0 1
7828.475 8024.101 7858.820 2 1 0 0 0 0
7831.903 8027.529 7862.248 0 1 0 0 0 2
7839.373 8031.441 7868.490 0 1 0 0 0 1
7863.125 8055.194 7892.242 1 1 0 0 0 0
7896.708 8085.220 7924.630 0 1 0 0 0 0

Table 33: F-SARIMA Model Generation - Category 2: d = 1, D = 0
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Appendix V - Code rolling forecast, model generation & random
forest

1 # alldata: training and validation time series combined

2 # dataint: last index training data

3 # lengthtest: number of rolling forecasts

4 # o: order of the (p, d, q) parameters

5 # s: order of the (P, D, Q) parameters

6 roll_arima <- function(alldata , dataint , lengthtest , o, s) {

7 results <- data.frame()

8

9 for(i in 0: lengthtest) {

10 print(i)

11 ma <- Arima(ts(alldata [1:( dataint+i)], start = c(2014 , 1), frequency =

52), order = o, seasonal = s, include.drift = TRUE)

12

13 pred <- forecast(ma , h = 1)

14 pred$index <- (dataint + i)

15 print(pred)

16 results <- rbind(results , as.data.frame(pred))

17 }

18

19 return(results)

20 }

Listing 1: SARIMA rolling forecast

1 # alldata: training and validation time series combined

2 # dataint: last index training data

3 # lengthtest: number of rolling forecasts

4 # o: order of the (p, d, q) parameters

5 # s: order of the (P, D, Q) parameters

6 # k: Fourier seasonality period

7 roll_arima_fourier <- function(alldata , dataint , lengthtest , o, s, k) {

8 results <- data.frame()

9

10 for(i in 0: lengthtest) {

11 print(i)

12 ma <- Arima(ts(alldata [1:( dataint+i)], start = c(2014 , 1), frequency =

52), xreg = fourier(ts(alldata [1:( dataint+i)], start = c(2014 , 1),

frequency = 52), K = k), order = o, seasonal = s, include.drift = TRUE

)

13

14 pred <- forecast(ma , xreg = fourier(ts(alldata [1:( dataint+i)], start =

c(2014 , 1), frequency = 52),

15 K = k, h = 1), h = 1)

16

17 pred$index <- (dataint + i)

18 print(pred)

19 results <- rbind(results , as.data.frame(pred))

20 }

21

22 return(results)

23 }

Listing 2: F-SARIMA rolling forecast
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1 # data: training time series

2 # maxp: maximum order of p for iterations

3 # d: order of differencing

4 # maxq: maximum order of q for iterations

5 # maxsp: maximum order of P for iterations

6 # sd order of seasonal differencing

7 # maxsq: maximum order of Q for iterations

8 # drift: application of drift: TRUE / FALSE

9 model_generator_sarima <- function(data , maxp , d, maxq , maxsp , sd , maxsq ,

drift) {

10 results = data.frame ()

11 for (sp in 0: maxsp) {

12 for (sq in 0: maxsq) {

13 for (p in 0:maxp) {

14 for (q in 0:maxq) {

15 o <- c(p, d, q)

16 s <- c(sp , sd , sq)

17 print(o)

18 print(s)

19 am <- forecast :: Arima(data , order = o, seasonal = s,

20 include.drift = drift)

21 results <- rbind(results , c(am$aic , am$bic , am$aicc , o, s))

22 }

23 }

24 }

25 }

26 return(results)

27 }

Listing 3: SARIMA model generator

1 # data: training time series

2 # maxk: maximum value for k for Fourier

3 # drift: application of drift: TRUE / FALSE

4 model_generator_farima_k <- function(data , maxk , drift) {

5 results = data.frame ()

6 for (k in 1:maxk) {

7 o <- c(0, 0, 0)

8 s <- c(0, 0, 0)

9 print(o)

10 print(s)

11 am <- forecast :: Arima(data , order = o, seasonal = s, xreg = forecast ::

fourier(data , K = k), include.drift = drift)

12 results <- rbind(results , c(am$aic , am$bic , am$aicc , o, s, k))

13 }

14 return(results)

15 }

Listing 4: F-SARIMA model generator - k value
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1 # data: training time series

2 # maxp: maximum order of p for iterations

3 # d: order of differencing

4 # maxq: maximum order of q for iterations

5 # maxsp: maximum order of P for iterations

6 # sd order of seasonal differencing

7 # maxsq: maximum order of Q for iterations

8 # k: value for k of Fourier

9 # drift: application of drift: TRUE / FALSE

10 model_generator_farima_arima <- function(data , maxp , d, maxq , maxsp , sd,

maxsq , k, drift) {

11 results = data.frame ()

12 for (sp in 0: maxsp) {

13 for (sq in 0: maxsq) {

14 for (p in 0:maxp) {

15 for (q in 0:maxq) {

16 o <- c(p, d, q)

17 s <- c(sp , sd , sq)

18 print(o)

19 print(s)

20 am <- forecast :: Arima(data , order = o, seasonal = s, xreg =

forecast :: fourier(data , K = k), include.drift = drift)

21 results <- rbind(results , c(am$aic , am$bic , am$aicc , o, s, k))

22 }

23 }

24 }

25 }

26 return(results)

27 }

Listing 5: F-SARIMA model generator - SARIMA parameter values
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1 # dataset: training and validation time series

2 # dataint: final index of training time series

3 # lengthtest: number of time data points to predict

4 # mtrypar: list of node split parameter values to iterate through

5 # nodesizepar: list of node size parameter values to iterate through

6 RFRandomForest_pm_estimation <- function(dataset , dataint , lengthtest ,

mtrypar , nodesizepar) {

7 trend_forx <- data.frame()

8 accuracy.matrix <- matrix(0, nrow = length(mtrypar), ncol = length(

nodesizepar))

9 row.names(accuracy.matrix) <- mtrypar

10 colnames(accuracy.matrix) <- nodesizepar

11

12 for(m in mtrypar) {

13 for(n in nodesizepar) {

14 print(m)

15 print(n)

16 results <- data.frame()

17 for(i in 0: lengthtest) {

18 datacase <- ts(dataset [1:( dataint+i)], start = c(2014, 1),

frequency = 52)

19

20 fuurx <- fourier(datacase , K = 26)

21 decomp_tsx <- stl(datacase , s.window = "periodic", robust = TRUE)

22 trend_partx <- ts(decomp_tsx$time.series [,2])

23 trend_fitx <- auto.arima(trend_partx)

24 trend_forx <- rbind(trend_forx , forecast(trend_fitx , 1)$mean)

25

26 lag_orderx = 1

27 periodx = 52

28 Nx <- length(datacase)

29 windowx <- (Nx / 52) - lag_orderx

30 new_loadx <- rowSums(decomp_tsx$time.series[, c(1,3)])

31 lag_seasx <- decomp_tsx$time.series [1:( periodx*windowx), 1]

32

33 matrix_trainx <- data.table(Load = tail(new_loadx , windowx*periodx

),

34 fuurx[( periodx + 1):Nx ,],

35 Lag = lag_seasx)

36 rf_modelx <- randomForest(Load ~., data = data.frame(matrix_trainx

),

37 ntree = 1000, nodesize = n, mtry = m,

38 importance = TRUE)

39

40 test_lagx <- decomp_tsx$time.series [(( periodx*windowx)):Nx, 1]

41 fuur_testx <- fourier(datacase , K = 26, h = 1)

42 matrix_testx <- data.table(fuur_testx , Lag = test_lagx)

43

44 trend_forx_selector = i + 1

45 for_rfx <- predict(rf_modelx , data.frame(matrix_testx)) + trend_

forx[trend_forx_selector , ]

46 results <- rbind(results , for_rfx [1])

47 }

48 accuracy.matrix[as.character(m), as.character(n)] <- accuracy(ts(

results , start = c(2018 , 1), frequency = 52), vts)[5]

49 print(accuracy.matrix[as.character(m), as.character(n)])

50 }

51 }

52 return(accuracy.matrix)

53 }

Listing 6: Random forest parameter estimation
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1 # dataset: training and validation time series

2 # dataint: final index of training time series

3 # lengthtest: number of time data points to predict

4 # m: node split parameter value

5 # n: node size parameter value

6 RFRandomForest_forecast <- function(dataset , dataint , lengthtest , m, n) {

7

8 trend_forx <- data.frame()

9 results <- data.frame()

10

11

12 for(i in 0: lengthtest) {

13 print(i)

14 datacase <- ts(dataset [1:( dataint+i)], start = c(2014, 1), frequency =

52)

15

16 fuurx <- fourier(datacase , K = 26)

17 decomp_tsx <- stl(datacase , s.window = "periodic", robust = TRUE)

18

19 trend_partx <- ts(decomp_tsx$time.series [,2])

20 trend_fitx <- auto.arima(trend_partx)

21 trend_forx <- rbind(trend_forx , forecast(trend_fitx , 1)$mean)

22

23 lag_orderx = 1

24 periodx = 52

25 Nx <- length(datacase)

26 windowx <- (Nx / 52) - lag_orderx

27

28 new_loadx <- rowSums(decomp_tsx$time.series[, c(1,3)])

29 lag_seasx <- decomp_tsx$time.series [1:( periodx*windowx), 1]

30

31 matrix_trainx <- data.table(Load = tail(new_loadx , windowx*periodx),

32 fuurx[( periodx + 1):Nx ,],

33 Lag = lag_seasx)

34

35 rf_modelx <- randomForest(Load ~., data = data.frame(matrix_trainx),

36 ntree = 1000, nodesize = n, mtry = m,

37 importance = TRUE)

38

39 test_lagx <- decomp_tsx$time.series [(( periodx*windowx)):Nx, 1]

40 fuur_testx <- fourier(datacase , K = 26, h = 1)

41 matrix_testx <- data.table(fuur_testx ,

42 Lag = test_lagx)

43

44 trend_forx_selector = i + 1

45 for_rfx <- predict(rf_modelx , data.frame(matrix_testx)) + trend_forx[

trend_forx_selector , ]

46 results <- rbind(results , for_rfx [1])

47 }

48 return(results)

49 }

Listing 7: Random forest rolling forecast
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AIC Akaike Information Criterion. 8, 15, 25–27, 35

AR Autoregressive. 6–10

BIC Bayesian Information Criterion. 8, 15, 25–27, 35

I Integrated. 6

KPSS Kwiatkowski–Phillips–Schmidt–Shin. 3–5, 14, 20

MA Moving Average. 6–8, 10, 31

MAE Mean Absolute Error. 13, 33

MAPE Mean Absolute Percentage Error. 13, 17, 29, 33

ME Mean Error. 13

MLE maximum likelihood estimation. 16, 31, 39

MPE Mean Percentage Error. 13, 33

MSE Mean Square Error. 13

PACF Partial-Autocorrelation Function. 7–9, 15, 21, 36
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