
Master Thesis
Computer Science

Radboud University

libLISA: Learning Instruction Set
Architectures from scratch

Author:
Jos Craaijo
s4481674
j.craaijo@outlook.com

First supervisor:
Freek Verbeek
freek@vt.edu

First assessor:
Bernard van Gastel

B.vanGastel@cs.ru.nl

Second assessor:
Freek Wiedijk

freek@cs.ru.nl

June 22, 2021

Abstract

CPU instruction semantics are often written manually in natural language. Many soft-
ware analysis tools and compilers depend on these semantics. We present an approach
to learning the semantics of instructions with minimal human input. Our approach only
needs a description of CPU state and a way to observe the result of executing an instruc-
tion from a certain CPU state. We introduce a novel algorithm to analyze instructions
to extract data flow information and generalize instructions into encodings. We then
use existing program synthesis techniques to synthesize semantics for each encoding. We
implement this approach in libLISA, and show that it can learn the semantics of some
non-privileged x86-64 instructions that operate on general-purpose registers and flags.

Contents

1 Introduction 2

2 Related work 4
2.1 Instruction enumeration . 4
2.2 Instruction set semantics . 6

3 Approach 8
3.1 Instruction semantics . 9
3.2 Enumeration . 10

3.2.1 Encoding Analysis . 10
3.2.2 Filters . 11
3.2.3 Instruction prefixes . 11

3.3 Synthesizing Semantics . 12
3.4 Implementation . 14

3.4.1 Observations . 15
3.4.2 Results . 15

4 Encoding analysis 17
4.1 Fuzzing . 18
4.2 Inferring dataflows . 18

4.2.1 Memory accesses . 19
4.2.2 Normal dataflows . 21

4.3 Inferring encodings . 21
4.3.1 Comparing dataflows . 22
4.3.2 Changes in dataflows . 23
4.3.3 Changes in output values . 27

4.4 Encoding parts . 27
4.5 Instantiation . 29

5 Evaluation 30
5.1 Enumeration completeness . 30
5.2 Semantics correctness . 32
5.3 Coverage . 34
5.4 Undocumented instructions . 34

6 Conclusion 36
6.1 Discussion . 36
6.2 Future work . 38

1

Chapter 1

Introduction

Modern CPU instruction set architectures (ISAs) have complex semantics. Each CPU
implements its own version of an ISA, with unique implementation details and semantics.
Manufacturers provide semantics for their CPUs in huge reference manuals. For example,
Intel’s x86 reference manual [3] specifies semantics using pseudocode and natural language
in more than 5,000 pages.

Tools like compilers, disassemblers, decompilers and binary program analysis frame-
works like Valgrind [14] or Pin [15] rely on specifications of these semantics. All these tools
perform some kind of translation from or to instruction semantics. Compilers translate
higher-level code to sequences of instructions with the same semantics. Disassemblers,
decompilers and binary program analysis frameworks translate instruction semantics back
to a higher-level representation or interpretation.

For many of these tools, custom, hand-written specifications are created, which is an
error-prone process. Writing these semantics can sometimes be guesswork, as reference
manuals contain errors. For example, the developer of the Intel XED (dis)assembler
library stated: “I’ve found enough errors in the docs that, when I can, I usually check the
hardware directly or have someone look at the RTL for a couple of designs.” 1

Besides being error-prone, specifying semantics is also incredibly time-consuming. For
example, one attempt at formally specifying the full, non-deprecated, x86-64 user space
instruction set took 8 man-months [4]. This makes it infeasible to scale this approach
to multiple implementations. It is important to be aware of differences between imple-
mentations, even if both implementations conform to the official specification. For exam-
ple, Sandsifter [6] identified an issue where Intel processors interpreted an instruction’s
length differently compared to AMD processors and most disassemblers and emulators
(like QEMU). Such a difference makes it possible to hide malicious code from analysis
tools.

Because of these two issues, it is important to have trustworthy and machine-readable
semantics. Trustworthy semantics should be correct, complete and easily verifiable. When
semantics are easily verifiable, we no longer need to trust authoritative sources like ref-
erence manuals. Semantics can only be easily verifiable if verification can be automated.
From this, it follows that semantics must therefore also be machine-readable. A side-effect
of having machine-readable semantics, is that compilers and analysis tools can also re-use
these same semantics.

There is little directly related work. Related work either focuses on enumeration of
instructions, or synthesis of semantics, but not both. Existing manual and computer-
generated specifications rely on disassembler libraries, which contain hand-written code

1https://github.com/intelxed/xed/issues/56#issuecomment-312376836

2

to decode byte sequences. Only the semantics of the decoded instructions are specified.
Disassembler libraries are not trustworthy, since we cannot easily verify that they function
correctly. The reliance on disassembler libraries also means that existing specifications are
also hard to scale. Generating semantics for a new architecture requires manually writing
a disassembler library for that new architecture, which is a time-consuming process.

In this thesis, we introduce an algorithm to learn trustworthy semantics of instruction
sets, without prior knowledge of instruction syntax or behavior. Additionally, we build
an implementation of our algorithm, libLISA, which can automatically learn semantics
for the x86-64 ISA. We limit the scope of our implementation to instructions that operate
on general-purpose registers and flags in Linux x86-64 user space.

Compared to existing solutions, our approach requires less information. It only needs
to know how to execute an instruction and how to observe CPU state, but it does not
need any knowledge on how instructions are structured.

We run libLISA on a Ryzen 3900X, and enumerate around 36.13% of the instruction
space in 322 hours, finding 25373 instruction variants. Our enumeration correctly identi-
fies most instructions, finding 99.20% of all instructions within the enumerated range. We
learn the correct semantics of 4297 instruction variants, which represents around 4.65% of
the instruction space. Additionally, we identify a group of undocumented instructions by
comparing the output of libLISA to the disassembler library XED.

All results in this thesis, including the tool and its output are publicly available at:
https://github.com/Jos635/libLISA.

Our approach still has limitations. Specifically for x86-64, we are unable to handle
the millions of possible prefixes an instruction might have. We solve this by restricting
prefixes to a fixed order. Additionally, we use a synthesis approach that does not support
floating point operations, vector operations or memory reads or writes of more than 64
bits.

In Chapter 2, we discuss related work. In Chapter 3, we give an overview of the
approach we have taken. In Chapter 4, we explain one part of our approach, encoding
analysis, in more detail. In Chapter 5, we evaluate the correctness and completeness of
our approach. Finally, we conclude in Chapter 6.

3

Chapter 2

Related work

Our work combines two areas: instruction enumeration, and instruction set semantics.
As there is no related work combining these areas, we will discuss work for each area
separately.

2.1 Instruction enumeration

Small instruction sets can be enumerated effectively by considering all possible byte strings
in lexicographical order. In variable-length instruction sets like x86-64, there are so many
instructions that it becomes infeasible to enumerate them all. Research into instruction
enumeration focuses on developing methods to skip less “interesting” instructions.

Work in this area started with the Sandsifter tool [6], a CPU fuzzer for finding undoc-
umented instructions. Sandsifter introduces the concept of tunneling. When tunneling,
you extend a byte string one byte at a time as long as you observe that the byte string is
too short for an instruction. Having “tunneled in” to the full instruction, we start iter-
ating through possible instructions in lexicographical order. In order to not get “stuck”
in a 16-byte deep hole, we start taking progressively bigger iteration steps as long as the
instructions look similar. We determine whether two instructions look similar by com-
paring their length, and potentially some other properties (like whether the instruction
performs a memory access). Steps are commonly increased by factors of 28, aligning the
changed bits in the enumerated instructions with byte boundaries. This approach, which
we will call length-based enumeration, is illustrated in Figure 2.1.

By doing length-based enumeration, Sandsifter is able to enumerate a large part of
x86-64 instruction space with very little prior knowledge. Because it needs only simple
observations on instruction length and basic instruction behavior, Sandsifter enumerates
instructions relatively quickly while still remaining accurate. Sandsifter identified many
undocumented instructions both on Intel and AMD CPUs. It also identified a flaw in dis-
assembler libraries, a flaw in the Azure hypervisor and a “halt and catch fire” instruction
on an undisclosed CPU [6].

Unpublished work by Mahoney and McDonald [13] uses a different approach. Rather
than starting to skip instructions at some arbitrarily chosen point, they instead use a dis-
assembler to determine which instructions are less interesting to enumerate, and can be
skipped. Whereas a normal disassembler might output a list of operands for the instruc-
tion, their modified disassembler instead outputs which bits were used to determine the
operands. This information can then be used to skip similar instructions, i.e., instructions
that only differ in which operands are being used. The idea is that once we have seen one
instruction, for example add r1, r2, we can probably expect the instruction to function

4

00 00
1 step

1 step

1 step

1 step

1 step

1 step

28 steps

28 steps

28 ∗ 28 = 216 steps

216 steps

1 step

1 step

After 28 steps, the

step size is increased

by 28

After another 28

steps, the step size is

increased again

When observing a

change in length, the

step size is reset

00 01

00 02

00 03 00 00 00

00 03 00 00 01

00 03 00 00 02

...

00 03 00 00 FF

00 03 00 01 00

00 03 00 02 00

00 03 00 FF 00

00 03 01 00 00

00 03 02 00 00

...

00 03 FF 00 00

00 04 00

00 04 01

00 04 01

...

Figure 2.1: Length based enumeration increases the step size by some factor (here 28)
if instructions remain similar. Once an instruction seems to be different, step size is reset
back to 1.

the same if we alter an operand, for example, add r1, r3 would not be interesting if we
have already seen add r1, r2. We call this approach encoding-based enumeration.

Both techniques were only recently combined, in UISFuzz [12]. UISFuzz is a CPU
fuzzing tool used for finding undocumented instructions. By default, encoding-based
enumeration is used. Whenever the disassembler does not have information in its database
about an instruction, or when instruction decoding fails, UISFuzz falls back to length-
based enumeration. The subsequent iScanU [5] adapts this approach to work for fixed-
length instruction sets like RISC-V or ARMv8.

UISFuzz and iScanU are more performant than Sandsifter. The extra knowledge from
the disassembler library allows UISFuzz to enumerate the entire instruction space six
times faster than Sandsifter [12]. In theory, an encoding-based approach would also be
more accurate, since it can make more informed decisions about which instructions are
interesting, and which ones are not.

All approaches we discussed in this section are aimed at finding undocumented in-
structions. We are interested in learning the semantics of the instructions without using

5

manually generated knowledge. This means that we cannot use a disassembler library.
Encoding-based approaches are therefore not possible. Length-based enumeration is less
accurate than encoding-based enumeration. In certain cases, length-based enumeration
might skip over valid instructions. For example, if an instruction 00 F0 13 is valid, but
all other instructions between 00 00 00 and 00 FF FF are invalid, it will not be found.
Tunneling will enumerate 00 00 00, 00 00 01, 00 00 02, ..., 00 00 FF, then 00 01 00,
00 02 00, 00 03 00...00 FF 00. It will not consider the instruction 00 F0 13, because
00 F0 00 is not a valid instruction, so it continues to tunnel.

Length-based enumeration is also not possible on fixed-length instruction sets, since
it relies on differences in instruction lengths. And finally, length-based enumeration enu-
merates many more instructions than encoding-based enumeration. For example, given
an instruction mov r1, #0x00000000 (where the second operand is an immediate value
encoded in the instruction byte sequence), we would enumerate at least 1024 variations of
the form mov r1, #0x00000001, mov r1, #0x00000002, ..., mov r1, #0x000000FF, mov
r1, #0x00000100, mov r1, #0x00000200, corresponding to progressively increasing step
sizes. This significantly increases the amount of instructions for which we will need to
synthesize semantics.

2.2 Instruction set semantics

Official instruction set manuals, like Intel’s x86-64 reference manual [3] do not fit the
definition of trustworthy, as we saw in Section 1. The semantics are described in a mix
of natural language and pseudocode, and have often been found to contain errors.

Over the years, several attempts [8, 9] have been made to manually produce formal
specifications for the x86-64 instruction set. Most recently, Dasgupta et al. [4] were the
first to provide a (manually generated) complete formal semantics of the x86-64 user-
level instruction set. It covers 3155 instruction variants, corresponding to 774 different
mnemonics. The semantics were thoroughly validated by running co-simulations against
real hardware, and by manually comparing the semantics to earlier work. The semantics
replicate the official x86-64 specifications, and include special symbols for undefined results
(results that may be different on each implementation).

Manually writing semantics is a time-consuming process. For example, it took Das-
gupta et al. 8 man-months to produce the semantics [4]. Various attempts have been
made to automatically learn semantics. Godefroid and Taly [7] proposed using program
synthesis techniques to automatically synthesize some semantics. By constructing “tem-
plates” for common CPU operations, they were able to synthesize semantics for some
x86 instructions. The templates must still be specified manually, but templates are much
more generic than instructions. From 6 templates, semantics for 534 instruction variants
could be generated automatically.

Later work [10] uses a more advanced program synthesis technique, stratified synthesis.
With stratified synthesis, a base set of instruction semantics is needed. The set should
cover all unique functionality in the instruction set. Semantics for new instructions are
generated by synthesizing small programs consisting of only instructions in the base set
using STOKE [17]. Semantics for around 1,800 instruction variants were learned from
a base set of just 51 instructions. When comparing with earlier (hand-written) work,
50 cases with semantic differences were found. In all cases, the learned semantics were
correct and the hand-written specification was wrong.

All approaches we discussed in this section rely on a manually generated specification
of instruction syntax, operands and reading/writing behavior (usually an assembler/dis-

6

assembler library). This allows details like memory accesses and operand types to be
abstracted away. To date, to the best of our knowledge, there exists no system that can
synthesize semantics without relying on such a manual specification.

7

Chapter 3

Approach

Our goal is to build an algorithm that can learn the semantics of all “valid” instructions of
a CPU. Semantics available in, for example, reference manuals and disassembler libraries
are often manually specified. Manually specifying semantics is a time-consuming and
error-prone process, so we do not want to rely on manually generated information.

Definition 1. We will use the term instruction to refer to a single bit sequence. The
length of such a bit sequence is usually a multiple of 8.

A mnemonic describes a set of instructions. For example, in x86-64 the ADD1 mnemonic
describes all instructions that perform an addition. What is usually referred to as “the
ADD instruction” actually consists of 22 different opcodes, and billions of different bit
sequences. The mapping of instructions to mnemonics is described in reference manu-
als. Since we do not want to rely on reference manuals, we will not use the concept of
mnemonics in this thesis.

Similarly, the “validity” of an instruction is often also determined by reference man-
uals. We instead use the term decodablility.

Definition 2. An instruction is decodable if the CPU, when presented with the instruc-
tion, does not raise an undefined instruction exception (for example the “#UD” exception
for x86, or the “UNDEF” exception for ARM).

Expression

synthesis

Encoding

Analysis

Bit sequence

enumerator
Bit sequence Dataflow

Enumeration phase Synthesis phase

Instruction

semantics

Figure 3.1: Learning an instruction set can be divided into two phases: enumeration and
synthesis.

In this thesis we describe an algorithm for learning an instruction set from scratch.
As illustrated in Figure 3.1, we divide the algorithm into an enumeration and a synthesis
phase. The goal of the enumeration phase is to determine all decodable bit sequences.
Some analysis is used to determine which bit sequence to consider next. In prior work,

1Some assemblers do use different mnemonics for different operand kinds, for example ADDb for an
addition of bytes. Even in that case, the mnemonic still groups instructions with different operands
together. Operands might for example be registers, memory or immediate values.

8

a disassembler libraries or instruction length analysis has been used. We use a more
extensive encoding analysis, based on fuzzing. We explain our encoding analysis in more
detail in Chapter 4.

During the synthesis phase, the semantics of each decodable bit sequence are deter-
mined using program synthesis techniques. We use the output of the encoding analysis
as a “template” for the semantics we will generate, to speed up this phase.

3.1 Instruction semantics

When executing an instruction on a CPU, that instruction can modify storage locations.
Storage locations can be registers or memory locations. We consider CPU flags to be
special registers which can only be 0 or 1. Some instructions also produce side-effects such
as outputting a value on a processor pin, triggering an interrupt or changing processor
modes. We consider such side-effects out of scope.

Instruction semantics
...

output

(destination)

inputs

(source)

computations

Dataflow

Encoding

in
sta

n
tia

te
w

ith
(a

=
...,b

=
...,c

=
...,d

=
...)

111100bb 01aaaccc 000100d

’parts’ a, b, c and d

11110001 01111101 0001001

x0 = f0()i0,0, i0,1, i0,2, . . .

x1 = f1()i1,0, i1,1, i1,2, . . .

Figure 3.2: The semantics of a CPU instruction.

To describe the semantics of an instruction, we describe how each storage location
is updated. This gives us a set of assignments of the shape {x0 = f0(i0,1, i0,2, . . .), x1 =
f1(i1,1, i1,2, . . .), . . .} as illustrated in Figure 3.2. We will refer to x0, x1, . . . as the outputs
of the instruction, and to a1, a2, . . . as the inputs for x0. We call this a dataflow from
i0,1, i0,2, . . . to x0. To determine the output values of x0, x1, . . ., the CPU performs com-
putations f0, f1, When leaving out the computations, we get a partial specification of
semantics, consisting only of inputs and outputs which we call dataflows.

Modern CPUs can often access billions of distinct memory locations. Adding a sep-
arate assignment for each memory location is therefore unfeasible. Instead, we identify
memory locations by the order in which they are accessed. For each memory location an
instruction accesses, we add an additional assignment which computes the address of the
storage location.

9

Example 3. Consider an instruction 02 04 8a that computes the addition of a register
r1 and a value stored at memory address r2 + r3 ∗ 4, and stores this result in r1. This
instruction is similar to sum = sum + array[index] in C code.

We describe its execution with the following assignments:

1. Address(m1) = r2 + r3 ∗ 4

2. rIP = rIP + 3

3. r1 = r1 +m1

For simplicity we omit the storage locations that do not change. Note in particular,
that we are also describing how the instruction pointer rIP is updated afterwards (in 2).
While it might be trivial for this specific example, it is needed for instructions such as
jumps or function calls.

Many CPUs include support for accessing different parts of the same register sepa-
rately. For example, the 8-byte (64-bit) x86-64 register rax can be accessed via eax (lower
4 bytes2), ax (lower 2 bytes), ah (one-but-lowest byte) and al (lowest byte). For this rea-
son, we consider each operand to have a size. An operand size is a range of byte indices
that are read or written when the operand is accessed. Each destination and source might
have a different operand size, but the same source or destination may not occur multiple
times with different operand sizes.

We can group similar instructions together in encodings. An encoding can describe a
group of instructions that only differ by inputs, outputs or immediate values. These dif-
ferences must be caused by certain parts of the instruction bit sequence. To get semantics
out of an encoding, we can instantiate it with values for each of the parts. For example, to
instantiate the encoding 111100bb 01aaaccc 000100d, we must provide values for aaa,
bb, ccc and d. Instantiating this encoding with a = 111, b = 01, c = 101, d = 1 would
give us the instruction semantics shown in Figure 3.2.

3.2 Enumeration

As discussed in Chapter 2, the two main approaches to instruction enumeration or length-
based and encoding-based enumeration. Length-based enumeration is requires little infor-
mation, but is less accurate and does not work for fixed-size instruction sets. We prefer to
use encoding-based enumeration, as it is more accurate. However, it requires knowledge
about the structure of an instruction, often in the form of a disassembler library. Our
goal is to use as little manually generated information as possible, so we cannot use a
disassembler library. Instead, we introduce encoding analysis as a replacement. Encoding
analysis can provide the information we need for encoding-based enumeration in many
cases. When encoding analysis fails, we fall back to length-based enumeration.

3.2.1 Encoding Analysis

Our encoding analysis can learn the encoding and partial semantics (dataflows) of groups
of instructions, without using any manually provided information. Encoding analysis pro-
duces semantics similar to those described in Section 3.1, but without any computations.

2When writing to register eax, the upper 4 bytes of rax are set to 0, while writing to ax, al or ah will
not do so.

10

During enumeration, we are only interested in the classification of bits into parts. The
partial semantics are of no use to us during enumeration, but form the basis of the se-
mantics that we will learn during synthesis. Once we have identified an encoding, we can
skip over all but one instruction in the encoding, as we already know how they behave.

Example 4. We have identified an encoding 00000100 aaaaaaaa, which performs an
addition r0 = r0 + a. The part aaaaaaaa is the immediate value that is added to r0. For
example, 00000100 00000010 performs the addition r0 = r0 + 2.

Given the semantics of, for example, 00000100 00000010, it becomes trivial to deter-
mine the semantics of any other instruction in this encoding. To determine the semantics
of 00000100 00000001, we can simply replace the 2 by a 1, giving r0 = r0 + 1.

To enumerate as efficiently as possible, we want to enumerate either the instruction
00000100 00000010 or 00000100 00000001, but not both. Once we have identified the
encoding for one of these instructions, we can skip the other 255 similar instructions.

3.2.2 Filters

We aim to enumerate just one instruction for each encoding. Once we have enumerated an
instruction belonging to an encoding, we generate a filter to skip over all other instructions
also belonging to that encoding.

Example 5. Assume we are currently considering an instruction 0000 0110 1101 0011.
Encoding analysis infers an instruction encoding 0000 0110 1bb1 0aaa, where aaa and
bb are two parts.

We can now filter all instructions matching 0000 0110 1bb1 0aaa, i.e., all instruc-
tions matching the filter 0000 0110 1 1 0 , where ‘ ’ may be either a 0 or a 1.
The next instruction we enumerate will therefore be 0000 0110 1101 1000.

If encoding analysis fails, we cannot continue enumerating instructions one-by-one
until we eventually get to an instruction for which encoding analysis works again. It
might take billions (e.g., the equivalent of a 32-bit immediate value) of instructions before
encoding analysis is able to analyze an instruction again.

To mitigate this issue, we adapt the tunneling approach from Sandsifter [6]. Whenever
encoding analysis fails and we carry a bit past a byte boundary, we increase the step size
by which we enumerate the instructions by a factor of 28.

Example 6. Assume we are currently enumerating instruction 0E 12 64, and that en-
coding analysis fails for this instruction. If we are not filtering any instructions, we will
continue enumerating normally to 0E 12 FF. On the next increment, the FF will overflow
and we carry a 1 to 12. At this point, we start taking steps of 28 instructions at a time.
So after 0E 12 FF follows 0E 13 00, then 0E 14 00, 0E 15 00, etc.

Whenever we encounter any kind of difference, we reset the step size back to 1. This
difference might be a change in instruction length, an instruction that gets filtered or
successful encoding analysis.

If we still have not encountered an instruction that we could analyze successfully by
the time we reach 0E FF 00, we once again increase the step size by another 28 (giving a
step size of 28 ∗ 28 = 216. After 0F 00 00 follows 10 00 00, then 11 00 00, etc.

3.2.3 Instruction prefixes

Unfortunately all these steps still do not allow us to efficiently enumerate the entire x86-
64 instruction space. This is caused by instruction prefixes. Instruction prefixes are

11

sequences of one to three bytes that are placed in front of the instruction. The x86-64
instruction set allows an instruction to be prefixed multiple times, even if prefixes are
conflicting. The only constraint is that the total instruction length must be at most
15 bytes. As a consequence, there are many ways to encode the same instruction. For
example, there are at least 78 billion ways to encode the NOP (no operation) instruction
(considering only the case where the NOP instruction consists of 14 bytes, each filled with
one of 6 segment override prefixes, followed by the NOP opcode byte 0x90).

F0

F2

F3

66 REX
VEX

or XOP

non-prefix

bytes
Start End

Figure 3.3: We permit 6 different prefixes: one prefix from group 1 (F0, F2 or F3 – which
can be mandatory for some instructions), followed by a group 3 operand size prefix 66, then
a REX prefix and finally a VEX or XOP prefix. All prefixes are optional, and may be
skipped. Note that F2, F3 or 66 prefixes may not be placed in front of a VEX prefix. We
expect the CPU to give us an invalid instruction exception in those cases.

We believe it might be possible to identify prefixes automatically, but consider this
out of scope. To make enumeration possible, we simply enforce a fixed order of prefixes.
We also do not allow any of the segment override prefixes, as 4 of them have no effect in
long mode3 (long mode is the name of the 64-bit mode of x86-64 CPUs) and the other
two are harder to use from Linux user space. We also exclude the rarely-used address size
prefix (67), which limits all address calculations to 32 bits. The prefixes we permit are
illustrated in Figure 3.3.

3.3 Synthesizing Semantics

To synthesize instruction semantics, we use the dataflows we learned during enumeration
as a starting point. Each dataflow consists of sources and a destination. To turn a
dataflow into semantics, we need to synthesize a computation. As described in Section 3.1,
a computation is a function f that takes the values of the sources as inputs, and returns
the new value of the destination as output. We will use an enumerative program synthesis
technique [2] to synthesize an expression for each computation. We employ the divide-
and-conquer approach proposed by Alur, Radhakrishna and Udupa [1]: we separately
enumerate expressions that are correct for a subset of all possible inputs, and predicates
to distinguish the subsets. We then combine these using decision trees to form the full
computation.

Enumerative program synthesis does not use theorem proving or SMT solvers to in-
telligently synthesize a program from some specification. Instead, it simply enumerates
all possible programs that fit some grammar, in order to find a program that produces
the same result as the real computation.

3This only applies to the common case where compatibility mode is not being used. We consider only
the non-compatibility long mode in scope.

12

We use a non-recursive grammar to simplify enumeration. Our syntax describes a
linear program, which performs a number of steps in sequence. The steps must occur
in a specific order. Inputs must be preprocessed first, then constant values may occur,
and after that bitshifts, divisions, bitwise operations (in disjunctive normal form, DNF)
and arithmetic operations (sums of products) may occur in any order. We also include a
shorthand parity operation that computes the XOR of the lower 8 bits of a value, since
this is commonly needed for x86 flags. The result of each step is stored in a fresh variable,
giving a static single assignment (SSA) program.

The semantics of the grammar are as follows. All values are whole, signed, 128-bit
numbers. Preprocessing an input consists of interpreting it as a little endian or big endian
number, and optionally sign-extending it. This “lifts” the bitvector input into a 128-bit
number. Steps in a program are executed one-by-one. The result of the last operation is
returned as the result of the program. A tree is an if-then-else statement that uses the
result of a program (a “condition”) to decide between returning the result of one out of
two subtrees. If the condition is zero, the then-branch of the if statement is returned,
otherwise, the else-branch is returned.

Given a computation, we first synthesize a set of programs. Each program in the set
will describe some part of the output space of the computation. Once we have synthesized
such a set, we start learning a set of predicates. Predicates are programs, where we
interpret any non-zero return value as true, and a return value of zero as false. We
combine the predicates and programs using the decision tree learning algorithm ID3 [16].

Sign := Signed | Unsigned

Endianness := Little | Big

Input := (I, Sign, Endianness)

Const := N

DNF := (V and V and . . .) or (V and V and . . .) or . . .

Arith := (V ∗ V ∗ . . .) + (V ∗ V ∗ . . .) + . . .

Operation := V � V | V � V | V/V | Parity(V) | DNF | Arith
Program := (V = Input;)* (V = Const;)* (V = Operation;)*

Tree := if [Program] = 0 then Tree else Tree endif | [Program]

Figure 3.4: The grammar that is used for program synthesis. Programs are synthesized,
while Trees are learned with a decision tree learning algorithm. I represents an input, N
represents any natural number, and V represents a variable. If a variable is being assigned,
it must always be a fresh variable.

During synthesis, we further restrict how variables are used in operations. We limit
the number of different variables that may appear in a single operation to 4. Additionally,
we do not allow the same variable to appear multiple times in a product or a conjunction.

The grammar is designed such that it can efficiently enumerate most of the x86-64
general-purpose register semantics. In practice, the main limitation is the speed at which
we can generate and verify new programs. Above 4 or 5 operations, the number of possible
programs grows so quickly that it becomes infeasible to enumerate them.

Example 7. Consider the instruction 02 04 8a, introduced in Example 3, that computes
the addition of a register r1 and a value stored at memory address r2 + r3 ∗ 4, and stores
this result in r1.

We described its execution with the following assignments:

13

1. Address(m1) = r2 + r3 ∗ 4

2. rIP = rIP + 3

3. r1 = r1 +m1

The computations for these assignments are:

1. f1(x, y) = x+ y ∗ 4

2. f2(x) = x+ 3

3. f3(x, y) = x+ y

Using our grammar, the first function would be described as:

[
v1 = (i0 , Unsigned , Big) ;
v2 = (i1 , Unsigned , Big) ;
v3 = 4 ;
v4 = v1 + v2 * v3 ;

]

The second function as:

[
v1 = (i0 , Unsigned , Big) ;
v3 = 3 ;
v4 = v1 + v2 ;

]

And the third as (assuming memory is stored little endian):

[
v1 = (i0 , Unsigned , Big) ;
v2 = (i1 , Unsigned , L i t t l e) ;
v4 = v1 + v2 ;

]

3.4 Implementation

LibLISA is written in Rust. The project is split into six crates (Rust terminology for a
package/library):

1. liblisa-core contains generic definitions of CPU state, ISAs, encodings, dataflows
and other core components of libLISA.

2. liblisa-enc contains all code for encoding analysis.

3. liblisa-synth contains all code for the synthesis of computations.

4. liblisa contains some high-level code for processing encodings as well as code
to handle long-running enumeration, synthesis, or validation sessions that can be
interrupted at any time.

5. liblisa-x64 contains all code related to the x64 architecture. It defines registers,
flags and CPU state. It also provides implementations for observing the execution
of instructions.

14

6. liblisa-x64-kmod contains the kernel module and a wrapper library (see Sec-
tion 3.4.1).

7. lisacli contains code for the command-line (CLI) binaries that can be used to
invoke libLISA.

3.4.1 Observations

To observe the execution of instructions, we use the Linux ptrace API. Before starting
the observation process, we create some pages of shared memory. We then start the
observation process. The shared memory pages will be readable and writable from both
the observation process and the parent process, making it possible to efficiently read and
write memory from and to the observation process.

To make an observation, we preform the following steps:

1. Map memory pages as needed

2. Write the input data to the right location on the memory page

3. Set the registers and flags using PTRACE SETREGSET

4. Execute a single instruction using PTRACE SINGLESTEP

5. Read the resulting CPU state with PTRACE GETREGSET and by reading from the
mapped shared memory pages

In order to map the right memory pages in the simple implementation, we must execute
the mmap syscall from the observation process. To do this, we generate new code on the fly
that maps the pages that we want to map, and then write this to the shared memory page
mapped as the executable page. Then, using PTRACE SETREGSET and PTRACE CONTINUE

we execute the generated code.
PTRACE SINGLESTEP internally uses the x86-64 trap flag, which triggers an interrupt

after executing a single instruction. This allows us to observe the results after execut-
ing just a single instruction, regardless of what that instruction does to the instruction
pointer. CPU state is saved automatically by the Linux kernel upon a context switch.
The PTRACE GETREGSET syscall simply copies part of this stored state into memory we
can access.

If the execution of the instruction fails and triggers a CPU fault, Linux will generate
a signal. The ptrace API can intercept this signal. For some faults, like a page fault, we
can also see the address that was being accessed.

We have two different implementations for making observations. A simple implemen-
tation, that just uses the ptrace API, and an implementation that requires a kernel
module. The kernel module combines all ptrace invocations that the simple implementa-
tion does into a single ioctl call. It also permits us to directly map and unmap memory
of the child process. This eliminates two context switches and around a dozen switches
between kernel space and user space.

3.4.2 Results

Results are stored by serializing the structures to JSON via the serde json crate. We
provide a file containing all encodings that have been enumerated, as well as a file con-
taining the encodings with correctly synthesized computations. The former are stored

15

as a Vec<Encoding<X64Arch, BasicComputation>>, while the latter are stored as a
Vec<Encoding<X64Arch, DecisionTreeComputation>>.

The easiest way to use the results is to load them using the serde json crate. This
can be done as follows:

l e t f i l e = F i l e : : open (” f i l e . j s on ”) ? ;
l e t enumerated encodings : Vec<Encoding<X64Arch , BasicComputation>> =

serde j son : : from reader (f i l e) ? ;

The specific format of the JSON output depends on the architecture and the kind of
computations used. Although we do not provide a specification of the format, it should
be possible to export a JSON schema using a crate like schemars. This allows the results
to easily be used in other programming languages.

16

Chapter 4

Encoding analysis

In this chapter, we describe our encoding analysis introduced in Section 3.2.1 in more
detail. Our encoding analysis serves as a replacement for disassembler libraries. It can
learn the encoding and partial semantics of groups of instructions without using any
manually provided information. Our goal is to infer encodings as described in Section 3.1,
but without computations. Figure 4.1 gives a high-level overview of the encoding analysis.

Infer

dataflows
Compare

flip(I, 0)

Determine

encoding

parts

Dataflows

Base dataflows

Infer

dataflows
Compare

flip(I, 1) Dataflows

Infer

dataflows
Compare

flip(I, 2) Dataflows

Change

Change

Change

Encoding

Infer

dataflows

I

Figure 4.1: Given some instruction I, encoding analysis compares dataflows of I with
variants where a single bit has been flipped. flip(I, n) represents flipping the nth bit in I.
The differences are used to identify encoding parts.

We make one simplification specifically and only for encoding analysis. During encod-
ing analysis we assume that if one flag is updated, all flags have been updated. Since at
this point we have not identified any immediate values, it would be infeasible to fuzz some
output flags correctly. For example, fuzzing the zero flag on a 64-bit comparison with
an immediate value (i.e., finding a value for x such that x = c holds given an unknown
64-bit constant value for c) would be infeasible. However, to detect the overflow flag we
only need to find an x such that x + c ≥ 264, which is much easier. Since both flags are
often updated at the same time, we can often correctly determine that ‘some’ flags are
updated, but not which ones.

17

4.1 Fuzzing

We can see a dataflow as a set of properties. A property describes behavior of the in-
struction in terms of the values in storage locations after execution of the instruction,
sometimes in relation to the values before execution or after execution of a different in-
struction. For example, a dataflow from sources s1, s2, .., sn to destination d consists of
n + 1 properties. One property that describes the fact that d is a destination, and n
properties that describe that each of the sources si is a source for destination d.

We do not have a specification of CPU instruction behavior, nor are we able to view
the hardware design of the CPU. Therefore, we cannot use tools like theorem provers
or SMT solvers, which rely on such a specification, to prove properties. The only way
prove a property of an instruction would be to exhaustively enumerate the entire input
space consisting of every possible combination of values for every storage location. This
is infeasible for modern CPUs because of the size of the input space.

Since proving properties is impossible, we instead use fuzzing. To verify a property,
a fuzzer enumerates a randomly chosen subset of the input space, trying to find a coun-
terexample. If the fuzzer finds a counterexample, we conclude that the property does not
hold. If the fuzzer is not able to find a counterexample within a reasonable amount of
time, we will assume that the property holds.

When fuzzing an instruction (executing a single instruction with many randomly
generated values for storage locations), we usually specify properties in such a way that
finding a counterexample proves that something exists. This ensures that if the fuzzer
runs out of time before finding a counterexample, we do not assume existence of something
that may not exist.

4.2 Inferring dataflows

As we saw in Section 3.1, we can model instructions as a set of assignments. We call such
an assignment x0 = f0(i0,1, i0,2, . . .) a dataflow from sources i0,1, i0,2, . . . to destination x1.
For encoding analysis, we will not concern ourselves with learning the computation f0.

Definition 8. Let I be a valid instruction. The dataflows of this instruction are a tuple
of the form F = 〈M,S,D, δ, σ〉, where:

1. M is an ordered list of memory accesses [m1,m2, . . .];

2. S is a set of sources, as introduced in Section 3.1;

3. D is a set of destinations, as introduced in Section 3.1;

4. δ is an injective function D 7→ {S} that provides for each destination its sources;

5. σ is an injective function that assigns an operand size l..h to each destination (D)
or source of a destination (〈D,S〉), where l..h indicates that byte indices l up to and
including h are read or written.

Example 9. Consider once again the instruction 02 04 8a that computes the addition
of a register r1 and a value stored at memory address r2 + r3 ∗ 4, and stores this result in
r1. In Example 3 we saw that we can describe its execution with three assignments:

1. Address(m1) = r2 + r3 ∗ 4

18

2. rIP = rIP + 3

3. r1 = r1 +m1

The dataflow F = 〈M,S,D, δ, σ〉 of this instruction is then:

1. M = [m1]

2. S = [m1, r1, r2, r3, rIP]

3. D = [Address(m1), rIP, r1]

4. δ(Address(m1)) = {r2, r3}

5. δ(rIP) = {rIP}

6. δ(r1) = {r1,m1}

7. σ(x) = 0..7 for any x

Note how the constants (multiplication by 4 in the memory address, and addition of
3 to rIP) have disappeared. Since the constants are part of the computations and are not
inputs, we do not include them.

We will express memory accesses, destinations and which sources are used for which
destinations as one or more properties. We can then use fuzzing to determine whether
these properties hold. In practice, we need to determine dataflows in a particular order,
illustrated in Figure 4.2. First, we must determine partial dataflows, consisting only
of memory accesses and the dataflows that determine the addresses of these memory
accesses. After determining the memory accesses, we can determine other destinations
and the sources for each of those destinations, producing one dataflow per destination.
The memory accesses together with the dataflows for the other destinations constitute
the “complete” dataflows.

Determining the memory accesses has to be the first step in determining the dataflows.
When we want to fuzz an instruction, we cannot simply generate some random values
for the CPU state and execute that directly on the CPU. If the instruction accesses
memory, our randomized states will almost always cause memory faults, as the chance of
randomly mapping the right memory location corresponding to the memory location that
the instruction will access is very unlikely.

If we do know the memory accesses that an instruction is going to perform, we can
easily generate random states that always have the right memory locations mapped. To
do this, we execute the instruction, observe the address for which the fault occurred, then
map memory at exactly that address, and repeat this process for each of the memory
accesses.

4.2.1 Memory accesses

To determine all the memory accesses that an instruction performs, we start by assuming
the instruction performs no memory accesses. That is, we assume that the dataflows
F = 〈M,S,D, δ, σ〉 for some instruction I are all empty, i.e., M = {}, S = {}, D = {}.

Given this assumption, we now try to find a counterexample to the property “M
contains all memory accesses performed by I” by fuzzing. In other words, we try find
values for the storage locations, such that the CPU will raise a page fault when executing

19

Yes

Empty dataflows

Memory

Access?

Extended

dataflows

No

Infer Memory Accesses

Infer Dataflows

Partial Dataflows

Dataflows

Determine

destinations

Dataflow

Dataflow

Destination

Destination

Determine

sources

Determine

sources

Determine

sources

Figure 4.2: In order to infer dataflows, we first iteratively infer memory accesses. Next,
we determine the remaining destinations and infer sources for each of these.

the instruction. If we are able to find this, our memory accesses are incomplete. We
determine the sources for the address of this memory fault using the approach described
in Section 4.2.2, and extend M , S, D and δ with this new information. We repeat this
process until fuzzing concludes that M contains all memory accesses.

Remark. We can make the process of finding the inputs of a memory access more effi-
cient. Memory addresses are often of the form i0 + i1 ∗ c + i2 + . . ., i.e., the sum of all
inputs where one input is scaled by a constant factor. We can greatly improve performance
by directly trying to find such an expression for every memory access. Finding such an
expression directly gives us all the sources used to compute the memory address, which is
faster than determining the sources using fuzzing as described in Section 4.2.2.

Normally, we can generate a valid CPU state for an instruction by iteratively observ-
ing the memory access error, and then mapping memory at the observed address. This
is relatively slow, because making an observation involves multiple context switches (see
Section 3.4.1). If we have an expression for the memory address, we can skip this process
and map the memory at the right address without making any observations.

In libLISA, our implementation, we have seen this “fast path” be up to 50x faster than
the normal path. Additionally, there is less randomness involved in this process, so the
fast path is more accurate in some cases. By falling back to the normal approach if the fast
path fails, we are still able to analyze instructions that do not conform to the restricted
form we described here.

20

4.2.2 Normal dataflows

To find all destinations D, we once again use fuzzing. To figure out if a certain storage
location d is a destination, we are looking for a counterexample to the property “d is not
modified while executing the instruction”. If we find such a counterexample, d must be a
destination.

Given a destination d, we use fuzzing to determine its sources. More specifically, for
each storage location s we are looking to find a counterexample to the property “storage
location s is not a source for destination d”. To find such a counterexample, we must
find two input states that differ only for s, which after execution gives us two output
states where d does not have the same value. All s for which we are able to find such a
counterexample are sources for destination d.

After identifying the sources and destinations, we fuzz the instruction to determine
the operand sizes. We are interested in finding the smallest range of bytes in the storage
location that includes all bytes that get modified. For a destination d, we are trying to
find a range that includes all bytes for which we cannot find a counterexample to the
property “the nth byte of storage location d can be modified by instruction I”. For a
source s for destination d, we aim to find a range that includes all bytes for which we
cannot find a counterexample to “when modifying the nth byte of storage location s, the
storage location d might change after execution of instruction I”.

4.3 Inferring encodings

An instruction bit sequence consists of several parts, such as the opcode (which indicates
which operation is being applied), the instruction operands, prefixes, and in some cases
even unused bits. We aim to derive a classification of individual bits based on which part
they belong to. Specifically, we are interested in bits that belong to instruction parts
that constitute a register, operand size indicator, immediate value or immediate address.
Registers, immediates and operands are often encoded in specific bits. We see this with
x86-64, but also with other architectures, for example ARM, ARM64 and RISC-V.

Definition 10. Let [b0, b1, . . . , bn−1] be an instruction of length n, which is decodable.
An encoding is a tuple E = 〈P, ε, γ〉, where:

1. P = [p0, p1, p2, . . .] is a list of instruction parts that constitute some kind of value;

2. ε is a surjective function N 7→ P mapping a bit index i ≤ n to a part;

3. γ is a function (P 7→ N) 7→ F that takes a mapping of parts to values, and produces
the dataflows F corresponding to this mapping.

Example 11. Consider the instruction 02 04 8a that computes the addition of a regis-
ter r1 and a value stored at memory address r2 + r3 ∗ 4, and stores this result in r1.

In binary, the instruction would be 00000010 00000100 10001010. Suppose bits 11
and 12 (numbering the first bit 0) indicate which of the four registers r1, r2, r3, r4 are used
to store the result of the addition, such that 00 indicates r1, 01 indicates r2, etc.

One valid encoding of this function would be E = 〈P, ε, γ〉, where:

1. P = [p1]

2. ε(11) = ε(12) = p1

21

3. γ({p1 7→ 0}) is the dataflow shown in Example 9, γ({p1 7→ 1}) is the dataflow shown
in Example 9 but with destination r1 replaced with r2, etc.

Less formally, we can write this encoding as 00000010 000aa100 10001010. Based
on the information we provided in this example, this encoding contains all possible parts.
Usually, instruction encodings will consist of multiple parts. For example, we would expect
to find parts not only for the destination register r1, but also for the two source registers
r2 and r3. Note however, that there is no guarantee that these parts must exist.

There are multiple valid encodings. Another encoding would be E = 〈P, ε, γ〉, where:

1. P = []

2. the domain of ε is empty

3. γ({}) is the dataflow shown in Example 9

When there are multiple encodings possible, we are aiming to find an encoding that
assigns parts to as many bits as possible, as this speeds up enumeration and synthesis.

4.3.1 Comparing dataflows

To identify bits that belong to a part, we use changes. Since bits often serve a single
purpose (e.g., a bit usually either determines a register or an immediate value, but not
both), we can observe a single change when we flip a single bit. This occurs often enough
that we will ignore cases where multiple changes occur at the same time.

We can identify changes to sources, destinations and operand sizes by looking at
the dataflows. Changes to immediate values can be identified by fuzzing the original
instruction and the instruction with a single bit flipped. We will discuss the former in
Section 4.3.2 and the latter in Section 4.3.3.

Definition 12. Let F1 = 〈S1, D1,M1, δ1, σ1〉 and F2 = 〈S2, D2,M2, δ2, σ2〉 be dataflows.
A change between F1 and F2 is one of:

1. None

2. RegisterDifference(locations, rfrom, rto) where rfrom and rto are elements in S ∪ D
and locations are change locations

3. SizeDifference(locations, afrom, ato) where afrom and ato are ranges of byte indices of
the form l..h with l ≤ h, and locations are change locations

4. ImmDifference(locations)

5. MemoryError(m) where m ∈M1 ∪M2

6. Multiple

Changes can be combined. If the changes are equal except for location, a combined
change is formed by taking the union of both sets of locations. Otherwise, the combined
change is Multiple. Combining the changes in an empty set gives None.

22

Changes occur at a specific change location. We do not want to assign changes that
occur at different locations to the same part in an encoding, as they are not identical.
Additionally, we want all changes of the same type in an encoding to be independent.
That is, none of the change locations may overlap. This allows us to instantiate encodings
efficiently.

Definition 13. Let F1 = 〈S1, D1,M1, δ1, σ1〉 and F2 = 〈S2, D2,M2, δ2, σ2〉 be dataflows.
A change location for a change between F1 and F2 is either a destination d ∈ D1 or a

tuple 〈d, s〉 where d ∈ D1 and s ∈ S1. A single destination indicates that the output was
changed. For example, when a destination d changes into d′, it occurs “at d”. A tuple
〈d, s〉 indicates that the source s of the output d was changed.

We are interested in comparing the changes between some base instruction, and a
modified version of that instruction. The base instruction I1 will provide the “from”
value of a change, while the modified instruction I2 will provide the “to” value. A change
of None means that both instructions behave identically. A change of RegisterDifference
or SizeDifference means that a single register or operand size (which may be used in
multiple dataflows) changed into another register or operand size. An ImmDifference
indicates that there is a difference in the values in destinations after execution of the
instruction.

The last two changes, MemoryError and Multiple, are special cases. During the
computation of changes we might encounter a memory error. For example, an instruction
might attempt to access memory that we cannot physically map on the CPU. If we
encounter such a memory error for memory access m, we return a MemoryError(m)
instead. Multiple is used for all cases where there is more than one change, or where
changes occur that we cannot represent with one of the other changes.

Example 14. In Example 11, we showed how a part could be constructed if we some-
how knew that bits 11 and 12 determined the register of one of the destinations. We
can know this by looking at the changes. In the case of Example 11, we would find the
changes RegisterDifference({r1}, r1, r2) and RegisterDifference({r1}, r1, r3) for bits 11 and
12. These changes can be in the same part, because the locations and rfrom are equal.

We will discuss the translation from changes into parts in Section 4.4.

Definition 15. We define changes(I1, I2) to be the set of changes observed when com-
paring the instruction I1 with a modified variant I2.

4.3.2 Changes in dataflows

Let F1 = 〈S1, D1,M1, δ1, σ1〉 for I1 and F2 = 〈S2, D2,M2, δ2, σ2〉 for I2. Additionally, let
d1 ∈ D1 and d2 ∈ D2 such that either d1 = d2, or d1 /∈ D2∧d2 /∈ D1. This pairs dataflows
from the original instruction to their possible counterparts for the modified instruction.

For destinations that occur in both D1 and D2, d1 = d2 must hold. For destinations
that occur in either D1 or D2, but not both, all combinations are possible. If a single
destination changed, there will only be one possibility where d1 6= d2. If more than one
destination changed, the bit does not belong to a part, because bits in a part must have
a single purpose. In that case, we just want the final result to be Multiple. This happens
implicitly, since we will produce multiple conflicting changes if there is more than one
possibility where d1 6= d2, .

First, we consider changes to registers. We might either find a change in destination
registers (reg.d), or in source registers of a certain destination (reg.s). If, when comparing

23

the dataflows of I1 to I2, we see exactly one source being removed and one source being
added, this suggests that the source that was removed has changed into the source that
was added. The same applies when one destination is removed and one other destination
is added.

reg.d
d1 6= d2 is reg(d1) is reg(d2)

RegisterDifference([d1], d1, d2) ∈ changes(I1, I2)

reg.s

rfrom ∈ δ1(d1) rfrom /∈ δ2(d2) is reg(rfrom)
rto /∈ δ1(d1) rto ∈ δ2(d2) is reg(rto)

RegisterDifference([〈d1, rfrom〉], rfrom, rto) ∈ changes(I1, I2)

r0 =f0()r0, r1

r2 =f0()r2, r1

Original instruction:

Modified instruction:

*1 *2

Figure 4.3: Two changes are depicted. *1 represents a register change from r0 to r2 in
change location “output r0”, and *2 represents a register change from r0 to r2 in change
location “input r0 of output r0”. These two changes combine, because both are register
changes with the same original and new register.

Example 16. Consider some instruction I1 that performs an addition r0 = r0 + r1. This
is a dataflow from sources r0, r1 to destination r0. Let I2 be a modified version of I1 such
that r0 changes into r2, i.e., I2 performs an addition r2 = r2 + r1. This is illustrated in
Figure 4.3.

Both rules reg.d and reg.s apply. First, we can find one combination of d1 and d2

where rule reg.d applies (this also happens to be the only possible combination, since
|D1| = |D2| = 1):

reg.d
r0 6= r2 is reg(r0) is reg(r2)

RegisterDifference([r0], r0, r2) ∈ changes(I1, I2)

Next, we can also find one instance where rule reg.s applies:

reg.s

r0 ∈ {r0, r1} = δ1(r0) r0 /∈ {r2, r1} = δ2(r2) is reg(r0)
r2 /∈ {r0, r1} = δ1(r0) r2 ∈ {r2, r1} = δ2(r2) is reg(r2)

RegisterDifference([〈r0, r0〉], r0, r2) ∈ changes(I1, I2)

Since both of these differences are of the same type and share the same original and
new register, we can combine them into: RegisterDifference([r0, 〈r0, r0〉], r0, r2).

24

r0=f0()r0, r1

r0=f0()r1

Original instruction:

Modified instruction:

r0 = r0 + r1 ∗ 4

r0 = r1 + r1 ∗ 4

Figure 4.4: Register r0 is ‘folded’ onto r1 in the dataflows, because we cannot observe
that the same register is being used twice in the computation.

Another case to consider is what happens when a register is changed into a register
that is already present in the sources. For example, if r0 = f0(r0, r1) = r0 + r1 ∗ 4 were to
change into r0 = f ′0(r1) = r1 + r1 ∗ 4 as illustrated in Figure 4.4. In this case, we will see
the sources change from {r0, r1} to just {r1}. We will only see that a source (r0 in this
example) was removed, but we will not see another source being added.

Just by looking at the dataflows, we cannot determine if such a change is occurring,
and which register would be rto of a RegisterDifference. We use fuzzing to try and find
a register for which this is the case. For example, for Figure 4.4 we would try to find a
counterexample to f0(r1, r1) = f ′0(r1). Let R be all possible registers for which we could
not find a counterexample. If and only if R contains exactly one element, we can conclude
that a RegisterDifference exists (reg.fold). In any other case, we cannot be sure of what
is happening, and we consider the change Multiple (reg.nfold).

reg.fold

from ∈ δ1(d1) from /∈ δ2(d2)
|δ2(d1)− δ1(d1)| = 0 to ∈ R |R| = 1

RegisterDifference([〈d, from〉], from, to) ∈ changes(I1, I2)

reg.nfold

from ∈ δ1(d1) from /∈ δ2(d2)
|δ2(d1)− δ1(d1)| = 0 |R| 6= 1

Multiple ∈ changes(I1, I2)

Finally, we introduce two rules to cover differences in operand sizes for sources (size.s)
and destinations (size.d). These work analogous to reg.d and reg.s, except that they also
work for non-register storage locations.

size.s
s ∈ δ1(d1) ∪ δ2(d2) σ2(〈d1, s〉) 6∈ σ1(〈d2, s〉)

SizeDifference([〈d, s〉], σ1(s), σ2(s)) ∈ changes(I1, I2)

size.d
σ2(d2) ∈ σ1(d1)

SizeDifference([d1], σ1(d1), σ2(d2) ∈ changes(I1, I2)

We cannot represent changes between registers and memory locations or between two
memory locations. We would therefore like all of these cases to produce the change
Multiple. We introduce two rules to invalidate differences that involve any source or
destination that is not a register. The rule nonreg.s covers differences in sources, and the

25

rule nonreg.d covers differences in destinations. These rules are necessary because the
rules reg.d and reg.s do not apply if the change is not between two registers. We use the
symmetric difference operator ∆ for brevity.

nonreg.s
x ∈ δ1(d1)4 δ2(d2) ¬is reg(x)

Multiple ∈ changes(I1, I2)

nonreg.d
d ∈ D1 4D2 ¬is reg(d)

Multiple ∈ changes(I1, I2)

Example 17. Consider once again the instruction I1 = 02 04 8a that computes the
addition of a register r1 and a value stored at memory address r2 + r3 ∗ 4, and stores this
result in r1, introduced in Example 3.

We showed that its execution can be described with the following assignments:

1. Address(m1) = r2 + r3 ∗ 4

2. rIP = rIP + 3

3. r1 = r1 +m1

Imagine a certain bit flip to instruction I2 would give an instruction that behaved as
follows:

1. rIP = rIP + 3

2. r2 = r1 + r2

This variant performs no memory access, and stores its results in r2 instead of r1.
When determining changes(I1, I2), we consider all of the following possibilities for d1 and
d2:

1. d1 = d2 = rIP

2. d1 = Address(m1), d2 = r2

3. d1 = r1, d2 = r2

For the first possibility, we are not able to apply rule nonreg.s, since δ1(rIP)4δ2(rIP) =
∅. For the second possibility, we also cannot apply nonreg.s, since δ1(Address(m1))4δ2(r2)
contains only registers. Finally, for the third possibility we are able to apply nonreg.s:

nonreg.s
m1 ∈ δ1(r1)4 δ2(r2) ¬is reg(m1)

Multiple ∈ changes(I1, I2)

The rule nonreg.d also applies. Since D14D2 = {Address(m1), r1, r2}, we can apply
the rule as follows:

26

nonreg.d
Address(m1) ∈ D1 4D2 ¬is reg(Address(m1))

Multiple ∈ changes(I1, I2)

Note that from nonreg.d it also follows that if memory accesses M1 and M2 are not
identical, Multiple ∈ changes(I1, I2).

4.3.3 Changes in output values

Since we do not include constant values in dataflows, we cannot observe a change in such a
constant value by comparing only the dataflows. A constant value in the specification of an
instruction is usually an immediate value. If an immediate value changes, we can observe
a difference in the destinations after execution of the instruction. More specifically, given
an original instruction I1 and a modified instruction I2 we fuzz both instructions to find
changes in immediate values. For every destination d, we try to find a counterexample such
that the value of d after execution of I1 is not the same as the value of d after execution
of I2. If we are able to find such a case, then ImmDifference([d]) ∈ changes(I1, I2).

In practice, we also need to take into account all previous changes that we have found.
For example, if we know an input for some output changes from r1 to r2, we need to
adapt the values during fuzzing to make sure we do not get false positives.

4.4 Encoding parts

Finally, we can build an encoding by looking at the change produced by flipping each bit
in the instruction.

Definition 18. Given some instruction I from which we are going to build an encoding,
let change(n) =

∨
changes(I, flip(I, n)), i.e., the combination of all changes observed when

flipping bit n of I. The
∨

operator combines all changes together into a single change, as
described in Definition 12.

We are purposefully using an approach that is not guaranteed to always be correct.
For example, if fuzzing cannot find a counterexample before a certain deadline, we will
assume no counterexample exists. This is necessary to make enumeration and synthesis
feasible. It may also cause some noise in the changes, which we want to filter out. This
means that it might not be desirable to include some inferred changes in the final encoding.

We classify bits into parts based on the changes, and (non-)equivalence between
changes. Two changes are equivalent if they are either identical except for rto or ato, or
if one change is a MemoryError(m) and the other change is an ImmDifference(locations)
such that m ∈ locations.

For register changes and operand size changes, we do not expect the bits corresponding
to the changes to be consecutive. All bits belonging to equivalent changes may become
a part. For immediate values, we are specifically looking for sequences of consecutive
equivalent changes.

Definition 19. Given some instruction I = [b0, b1, . . . , bn], let c be a change found by
flipping some bit in I. If c is either a RegisterDifference or a SizeDifference, then a part
may be formed with all bit indices n for which change(n) is equivalent to c.

If c is an Imm, then a sequence of k bits with indices S = {m,m+1,m+2, . . . ,m+k−1}
may become a part, if the sequence adheres to the following three rules:

27

1. Given two indices i ∈ S, j ∈ S, change(i) must be equivalent to change(j);

2. No more than 1/4th of all changes in S may be a MemoryError;

3. The sequence must be at least 2 bits long, i.e., |S| ≥ 2.

We do not expect to classify all bits into a part, nor do we expect to classify all bits
that have a change other than Multiple or None to be in a part. Instead, we aim include
as many bits as possible in the parts. Each bit that we are able to add to a part, doubles
the number of instructions that we can skip during enumeration. We require all parts to
be independent from any other part. In order for parts to be independent, two different
parts may not contain changes of the same type with (partially) overlapping locations.
Because of this restriction, not all parts that may be formed, can be formed. Usually,
most parts will be independent. For parts that are dependent, we choose the part that
consists of the most bits.

Example 20. Consider an instruction 0010 0101. We identify the following changes
for each of the bits (left-to-right) by comparing the original instruction with a modified
instruction where we flipped that bit:

1. None

2. None

3. ImmDifference([d1])

4. Multiple

5. RegisterDifference([〈d1, s1〉, d1])

6. RegisterDifference([d1])

7. RegisterDifference([〈d1, s1〉, d1])

8. RegisterDifference([〈d1, s1〉, d1])

We will not be able to form a part with bit 3 (counted from the left, starting at 1). In
order for the immediate change to be a part, there would need to be at least two consecutive
equivalent changes. We also cannot form a part with the change for bit 6. While there is no
requirement on the number of consecutive equivalent changes for registers, the locations
conflict with those of the changes in bits 5, 7 and 8. Leaving out this bit allows us to
include three other bits, which allows us to classify more bits into parts. Finally, bits 5, 7
and 8 can form a part. Note that, had we not already excluded bit 3 because of sequence
length, the locations of bits 5, 7 and 8 would not conflict with those of bit 3, because the
changes are of a different type (RegisterDifference versus Imm).

The final classification ends up consisting of just one part:

1. P = {p1}

2. ε = {5 7→ p1, 7 7→ p1, 8 7→ p1}

Less formally, we could write this as 0010 a1aa.

As an optimization, None changes could be translated into “don’t care” bits. “Don’t
care” bits are bits that do not belong to a part, but may be 0 or 1 without affecting the
semantics of an instruction. For example, it would allow us to classify the bits in the
instruction in Example 20 as 10 a1aa, where ‘ ’ indicates a “don’t care” bit.

28

4.5 Instantiation

For γ, the function that instantiates an encoding into dataflows for a specific instruction,
we can look at part-wise changes to update the dataflows we already inferred, rather than
inferring new dataflows for each instantiation. When instantiating, we consider each part
separately. Given some part p, we determine the change between the original instruction,
and the instruction with the bits belonging to part p replaced with the newly assigned
value. Once we have done this for every part, we can easily construct the new dataflow
by applying the changes to the original dataflow one-by-one. We required that parts are
independent, i.e., they not contain overlapping locations. Because of this, we will not
have any overlapping changes when performing this procedure.

Example 21. Consider an instruction 00000010 00000100 10bbbaaa. For the case
where aaa = 010, bbb = 001 (i.e., the instruction we saw in Example 3) we know that
there are three dataflows (written as “destination⇐ sources” for brevity):

1. Address(m1)⇐ r2, r3

2. rIP ⇐ rIP

3. r1 ⇐ r1,m1

We would like to instantiate this instruction for aaa = 110, bbb = 000. For this, we
are going to look at the part-wise change compared to our base instruction, for a and b
separately.

First, we compute the change for a. Comparing our base instruction with the instan-
tiation aaa = 110, bbb = 001, gives RegisterDifference(r2, r6, {〈Address(m1), r2〉}). Next,
we compute the change for b. Comparing our base instruction with the instantiation
aaa = 010, bbb = 000, gives RegisterDifference(r3, r0, {〈Address(m1), r3〉}).

We can now construct the full dataflows for the instruction. We replace r2 in desti-
nation Address(m1) with r6, and replace r3 in destination Address(m1) with r0. Because
parts are independent, we can make these changes without worrying about overlap. The
final dataflows for the instantiated instruction, 00000010 00000100 10000110 are:

1. Address(m1)⇐ r6, r0

2. rIP ⇐ rIP

3. r1 ⇐ r1,m1

29

Chapter 5

Evaluation

To evaluate our approach, we ran our algorithm on a Ryzen 3900X CPU. We determine
the completeness of our enumeration and the correctness of our learned semantics results.
By completeness, we mean the ratio of instructions that we find during enumeration out of
all supported instructions on our CPU. By correctness, we mean the ratio of instructions
for which we have been able to synthesize semantics that produce the same results as
the real CPU implementation. We also compute the coverage of our semantics, i.e. the
ratio of all supported instructions on our CPU that we are able to correctly describe
with the learned semantics. Additionally, we searched for undocumented instructions by
comparing the encodings we found with the Intel XED disassembler library.

Comparisons to existing work are difficult. We do not use a disassembler library as
the basis from which we learn semantics. Therefore, our encodings do not necessarily
map to disassembler libraries in a logical manner. This makes direct comparisons with
related work difficult. The authors of the formalization of all non-deprecated x86-64 user
space instructions are working on formalizing instruction decoding [4], which would make
comparisons much easier.

Compared to the manual semantics specified by Dasgupta et al. [4], we also enumerate
and try to synthesize deprecated instructions. Since we do not want to rely on manually
specified information, we cannot use a list of deprecated instructions that we can ignore.
Because of this, it is necessary to enumerate even the deprecated instructions.

We consider all instructions operating only on general-purpose registers and flags in
Linux x86-64 user space to be in scope. While we do enumerate over all instructions, our
implementation does not support observing other register sets like floating point registers
or vector registers. We therefore cannot learn dataflows for other registers.

Our evaluation is based on 322 hours of enumeration, and 44 hours of synthesis. This
was not enough time to completely enumerate the x86-64 instruction set. We estimate to
have enumerated 36.13% of the x86-64 instruction set. We present the partial results we
obtained.

5.1 Enumeration completeness

We aim to determine how many instructions we identify, out of all instructions supported
on the CPU. Determining all supported instructions on a CPU is difficult. Disassembler
libraries can encode or decode a byte sequence, but cannot iterate over all possible encod-
ings. The Intel XED disassembler library contains a grammar that describes instruction
encoding, but using that grammar to iterate over all possible instructions is non-trivial.

30

To determine completeness, we compare the encodings we have found to randomly
found instructions, as well as instructions found in the Linux binaries gcc, ls, grep,
perl, ssh and libxul (a Firefox library). We choose these binaries because of their
relatively big size, as well as their popularity. This allows us to determine how useful our
enumerated encodings would be for real-world usage.

To build a list of randomly found instructions, we use randomly generated byte se-
quences. Because of the huge number of x86-64 instructions, we cannot generate a full
list of every instruction. Whenever the byte sequence is decodable on our CPU, we tunnel
until the instruction length changes. We add the last instruction we saw before the length
changed to our list of instructions. This approach keeps the number of instructions in the
list relatively small, while still exploring the full instruction space. We generated a list of
4 million unique instructions on the 3900X.

To extract instructions from Linux binaries, we load the .text section of each of the
binaries, and extract all instructions using XED. We try to remove duplicate instructions
from the list. We consider two instructions that are bit-for-bit identical to be duplicates.

We check completeness for each of the instruction lists separately. We do not fil-
ter out-of-scope instructions from the lists. Out-of-scope instructions are, for example,
floating point instructions, SIMD instructions, instructions that use segment registers, or
instructions that require elevated privileges.

We list completeness for each of the instruction lists in Table 5.1. We enumerate
instructions in lexicographical order. Since we could not enumerate the entire instruction
space in 322 hours, some instructions have not yet been enumerated. We enumerated
instructions up to some instruction C (the “cursor”). We consider an instruction I to
be seen if I < C. We consider I to be unseen if I ≥ C. We will ignore the unseen
instructions, and extrapolate from the seen instructions.

Within the seen instructions, we distinguish between found and missed instructions.
Given an instruction I from an instruction list, we consider the instruction found if we
can instantiate the dataflows for this instruction from an encodings we found. Missed
instructions are all other seen instructions. We express the completeness as found

found+missed ∗
100%.

Missing instructions might exist because we were unable to analyze it, or because
enumeration incorrectly skipped it. We might not be able to analyze an instruction if it
requires additional privileges, or if it accesses memory in a way we cannot handle. We
might skip an instruction during enumeration because of tunneling. We give an example
of how this might happen in Section 2.1. In practice, this rarely happens.

Source Total Seen Found Missed Completeness

scan 4655355 125466 124461 1005 99.20%

gcc 42749 3055 3054 1 99.97%

grep 13058 457 457 0 100.00%

ls 8362 347 347 0 100.00%

perl 83501 2878 2877 1 99.97%

ssh 36785 1285 1285 0 100.00%

libxul 1616659 43751 43750 1 100.00%

Table 5.1: The completeness of our enumeration.

The encodings that we learned represent many more instructions than the numbers

31

listed under ‘found’ in Table 5.1. Encodings can contain instructions that have not been
seen. For example, we might learn an encoding 00a0 0000 when our cursor C is at 0000
0000. This encoding also covers the instruction 0010 0000, which is past our cursor C
and therefore unseen. The largest part of the instructions covered by the encodings are
unseen. As enumeration progresses, the number of found instructions will start to increase
exponentially, since an increasing number of instructions that we consider will already be
covered by an encoding. While the table might suggest that only a few percent of all
instructions has been found, in reality this is around 36.13%. We do not count these
unseen instructions as found, because we do not know how many additional instructions
we would need to count as missed. Therefore, counting these instructions would skew the
completeness.

5.2 Semantics correctness

Determining whether our learned semantics are correct is complicated. Disassembler
libraries do not provide enough information to allow us to verify semantics. Even for
dataflows, disassembler libraries are not precise enough. A disassembler library only
provides a list of operands, but does not tell us how those operands are used. This causes
many false positives. For example, consider an instruction that computes the bitwise
OR of a register r and 0. Our encoding analysis will learn that this instruction does
nothing (except for possibly some flag changes). This is technically correct. However, a
disassembler library will tell us that the instruction reads from r and writes a result back
to r.

To avoid these complications we use fuzzing to verify our learned semantics. Fuzzing
has a number of drawbacks. Most importantly, we cannot verify what we cannot observe.
For example, since we do not observe SIMD registers, we will not be able to observe that all
SIMD instruction semantics that we learn are missing SIMD registers in their dataflows.
To compensate for this, we exclude any instruction that uses registers that we cannot
observe using XED. Fuzzing also cannot prove correctness. We can only show that it is
likely that we have found the correct semantics. Lastly, fuzzing only allows us to compare
our semantics to “reality”. It would be more interesting to compare our semantics to the
semantics used in, for example, reference manuals, emulators or compilers, to verify their
correctness.

With fuzzing, we also cannot differentiate between undefined behavior and defined
behavior. If we cannot synthesize an expression for a dataflow, we assume that we have
not learned the correct semantics. In reality, the value might be undefined or defined to
be random (for example RDRAND on x86-64).

More specifically, by “fuzzing to verify correctness” we mean the following: we take
an encoding, and instantiate it with random values for all parts. We then generate a
random CPU state for the instantiated encoding. We use the synthesized computations
to determine where to place data for memory accesses. We execute the instruction, and
observe the result. If the instruction executed successfully, we verify the result. For each
storage location, we check if the output value matches the value we expected based on
the synthesized computation. If the output value does not match the expected value,
we consider the entire encoding incorrect. We repeat this process many times for all
encodings.

From the encodings that we learned during enumeration, we generated 99789 com-
putations. We ran synthesis for 44 hours, and were able to synthesize semantics for
60826 computations. Given these computations, we could construct full semantics for

32

4395 encodings out of 25373 encodings. We used fuzzing to verify the correctness of these
semantics, and found that semantics for 4297 encodings were correct.

When encoding analysis fails, it often produces more separate encodings than when
encoding analysis is successful. There are usually around 8x more encodings if encoding
analysis did not work perfectly, although this varies a lot. Because of this issue, the
percentage of correct encodings is not a good indication of the correctness.

To compute the correctness, we use the instruction lists from Section 5.1. Since fuzzing
cannot verify the correctness of instructions that use registers we cannot observe, we use
XED to filter out all instructions that are out of scope. For each in-scope instruction, there
are three possibilities: we did not synthesize semantics (because we did not have enough
time, we did not enumerate the instruction, or because synthesis failed), we synthesized
correct semantics or we synthesized incorrect semantics. We express the correctness as

correct
corrrect+incorrect ∗ 100%. This gives an indication of whether we can trust synthesis to
synthesize only correct semantics. We present the results in Table 5.2

Because we consider all instructions in an encoding incorrect if one instruction in the
encoding is incorrect, the correctness that we compute is an under-approximation. Un-
fortunately it is difficult to better approximate the real correctness. Determining whether
the semantics are correct for each instruction separately would be computationally very
expensive.

Source Correct Incorrect Not synthesized Out of scope Correctness

scan 18229 107 95181 11949 99.42%

gcc 76 0 2672 307 100.00%

grep 32 0 324 101 100.00%

ls 14 0 315 18 100.00%

perl 124 0 2489 265 100.00%

ssh 54 0 1004 227 100.00%

libxul 1283 0 20780 21688 100.00%

Table 5.2: The correctness of our semantics, expressed as the percentage of instructions
that have a correct encoding. We do not have full semantics available for many encodings,
because synthesis ran for only 44 hours. The correctness is an under-approximation.

We manually analyzed around a hundred incorrect encodings, and determined the
cause of each incorrect encoding. We found that in many cases, it is impossible for our
encoding analysis to examine all possible values for a storage location. For example,
the x86-64 instruction mov QWORD PTR [rdi+0x0],rdi is one such case. This instruction
copies 64 bits of data stored in register rdi to the memory address computed by rdi+0x0.
Because rdi is used to access memory, it must be a valid address. On the 3900X and
many other x86-64 CPUs, valid addresses must have all upper 17 bits either set or unset.
Because Linux reserves addresses with the highest bit set for kernel usage, we can only
set the lower 47 bits of rdi, and must keep the upper 17 bits unset. This means that we
cannot detect a dataflow from the upper 17 bits of rdi into the memory location, and will
assume only the lower 47 bits of rdi are used. This problem could be solved by using a
bare-metal process, which does not have to adhere to constraints imposed by Linux. We
explain this in more detail in Section 6.2.

We did not find any encodings where the synthesized computations were incorrect.
This is expected: the program synthesis technique we use makes many observations and

33

finds a program that produces the correct output for all observations. This process
could be considered very similar to fuzzing. To verify the correctness of the individual
computations, a direct comparison to existing semantics would be more useful. Our
correctness validation mainly validates whether encoding analysis grouped instructions
into encodings correctly, whether it found correct dataflows, and whether the integration
of synthesized computations into an encoding produces correct semantics.

5.3 Coverage

Correctness and completeness both describe the effectiveness of the individual enumera-
tion and synthesis stages of our approach. To determine how useful our semantics cur-
rently are for real-world use cases, we also compute the coverage of our semantics. When
writing, for example, an analysis tool, the coverage indicates for what percentage of in-
structions you can use the learned semantics. We present the results in Table 5.3.

We compute the coverage as correct
total ∗ 100% . The coverage is the ratio of instructions

that our semantics describe, out of all instructions. Note that, unlike completeness and
correctness, we are no longer using the distinction between seen and unseen instructions
here.

Source Correct Total Coverage

scan 216561 4655355 4.65%

gcc 187 42749 0.44%

grep 52 13058 0.40%

ls 36 8362 0.43%

perl 231 83501 0.28%

ssh 82 36785 0.22%

libxul 3489 1616659 0.22%

Table 5.3: The coverage of our semantics. The total includes both in-scope and out of
scope instructions.

The difference between the instruction scan and the Linux binaries can be explained
by looking at which part of the instruction space we enumerated. Most notably we did
not have enough time to enumerate some common operations like pushing and popping
values to and from the stack, as well as some common operations like bitwise ANDs, XORs
and subtractions. These operations are located right after a huge group of instructions
starting with 0F. Many recent instructions were added to this group, for example MMX
and SSE instructions. Since we enumerate instructions in lexicographical order, we needed
to enumerate all instructions in this group before enumerating the much more common
instructions found after the group.

5.4 Undocumented instructions

We compare the encodings we found with XED. If XED is able to decode an instruction,
we assume it is documented. We manually inspected the instructions that XED was not
able to decode.

Most notably, we have identified a set of instructions that fail to decode in XED,
objdump, Capstone and various other disassemblers. It is a VEX-prefixed instruction with

34

opcode 00. The AMD reference manual (March 2021) does not list any VEX instructions
with opcode 00. One instruction belonging to this group of encodings is C4037D000000.
Our encoding analysis has identified no dataflows besides a single memory access. We
therefore suspect that the instruction is operating on floating point or vector registers,
which we considered out of scope. It is likely that this instruction is only present on
AMD CPUs. We have tried executing the instruction on multiple CPUs, and only found
it working on AMD CPUs:

1. AMD Ryzen R9 3900X: Executes

2. AMD EPYC (2nd gen): Executes

3. Intel i7-8700: Illegal instruction

4. Intel Celeron 847: Illegal instruction

5. Intel Xeon (Skylake): Illegal instruction

We also encounter the opposite of the disassembly “bug” that Sandsifter[6] identified:
Intel XED ignores the operand size prefix when decoding a jump instruction. Therefore,
it always reads a 4-byte immediate jump offset, regardless of the operand size. This is
correct, as far as Intel processors are concerned. Our AMD CPU (and therefore our encod-
ings as well) does take the operand size prefix into account and decodes a 2-byte instead
of a 4-byte jump offset. This is not an undocumented instruction, but an implementation
difference.

35

Chapter 6

Conclusion

This thesis presents libLISA, an approach to learning the semantics for entire instruction
sets. We rely only on a minimal set of manually generated information. We need to know
about CPU registers, flags, memory, and how to observe the execution of an instruction.
From this, we can learn the semantics of some instructions automatically.

Instead of using a disassembler library, we infer properties of instructions by fuzzing.
We identify several dataflows for each instruction. Each dataflow describes how a single
CPU register, flag or memory location is updated by the instruction. We group many
instructions together into encodings by looking at the similarities and differences between
the dataflows. Encodings describe dataflows for a group of instructions. By using program
synthesis techniques, we can then synthesize a computation for each dataflow. These
computations, together with the dataflows, form the semantics of an instruction.

We implemented this approach for instructions that can be executed in x86-64 Linux
user space. We ran our implementation for 322 hours. In that time we found 25373 en-
codings, which represents around 36.13% of decodable x86-64 instructions. We were able
to synthesize full semantics for 4395 encodings. Our generated semantics were correct for
99.42% of instructions for which we were able to synthesize semantics.

6.1 Discussion

Our encoding analysis will not work for all imaginable CPUs. Our encoding analysis
requires that instruction semantics fit our model. In particular, we expect a fixed number
of memory accesses to fixed-size memory regions. Conditional memory accesses are sup-
ported, as we can consider them as a memory read or write that is only used if a condition
is met.

The specific implementation for x86-64 has more limitations. The implementation
relies on page faults, which means it also requires memory accesses to either occur in
ascending or descending order, or be at least a full page size apart. When learning
the semantics of, for example, an emulator, this restriction would not be necessary. An
emulator could be modified to report all the memory accesses it performed, so that we
would not need to rely on page faults to detect them.

In some cases, it is impossible to properly analyze an instruction. For example, con-
sider the instruction xor r8, [r8], which XORs the value stored in register 8 with the
value stored in memory at the address stored in register 8. Our observations will now
be constrained to whatever valid memory addresses we can put in r8. When making
observations from x86-64 Linux user space with ptrace on a common consumer AMD or
Intel CPU, we can only set the lower 47 bits of the memory address. This means that we

36

cannot properly observe how the XOR affects the upper 17 bits of r8. Encoding analysis
might therefore return an incorrect result.

While we implemented libLISA for a variable-length instruction set, it should work on
fixed-length instruction sets as well. We are mainly using an encoding-based enumeration
technique rather than a length-based enumeration technique. Since encoding-based enu-
meration does not rely on instruction lengths, we can consider a fixed-length instruction
set to be a variable-length instruction set where all instructions have the same length.
The overhead to determine the instruction length is negligible.

We cannot guarantee that, given enough time, we can enumerate all instructions of
an instruction set. We use length-based enumeration as a fallback for when we are not
able to successfully analyze an instruction. As described in Section 2.1, it is possible
for instructions to be missed when tunneling. We suspect that it is very rare for this to
happen, at least on x86-64. We have not seen any missed instructions that were missed
because of tunneling during the 322 hours of enumeration we did. The only alternative
to tunneling is exhaustive enumeration. This might work on fixed-length instruction sets
like ARM, but for x86-64 it is infeasible.

Since our correctness evaluation is based on fuzzing, we cannot prove correctness. This
is not necessarily an issue. Without access to the hardware designs of the CPU, proving
correctness is impossible. Other approaches ultimately also end up either comparing
semantics to manually specified semantics, or use fuzzing and manual test cases to compare
results. The fact that we also use fuzzing to learn the semantics does not make the
results less reliable. Using fuzzing for validation has some problems, which we described
in Section 5.2, but none of these problems become worse by also using fuzzing for analysis.

The effectiveness of our encoding analysis depends on assumptions we make about
the structure of instructions. Most importantly, we assume that many bits will have a
single purpose. We believe that this assumption will hold for most instruction sets. If bits
have a single purpose, no complex logic is required to decode the values. This means that
instruction decoding uses less transistors, and will be faster and more energy-efficient.

The current implementation is limited in scope. It will only look at general-purpose
registers and flags. This means that we have an incomplete view of the behavior of, for
example, floating point, SSE and AVX instructions. We also cannot fuzz the segment
registers fs and gs efficiently, since modifying their values is more complicated than
modifying the values of normal registers.

To the best of our knowledge, this thesis presents the first approach that splits an
instruction into many dataflows. Godefroid and Taly [7] used just two templates for two
fixed purposes. One template for the “main calculation” and one to update the flags
register. Heule et al. [10] synthesized programs for the entire instruction in one go. By
splitting the semantics into many dataflows, we are able to reduce the complexity of the
expressions that we need to synthesize. This makes it much more feasible to synthesize
the semantics for thousands of instruction variants.

Because we considered large parts of the x86-64 instruction set out of scope, the gen-
erated semantics are not immediately useful for use in other tools. Since we were not able
to enumerate the full instruction space, our semantics also lack many common instruc-
tions. However, we believe that with some of the improvements listed in Section 6.2 the
generated semantics could become useful enough for use in analysis tools. We also think
our semantics could be used to build an emulator, although all privileged instructions
would still have to be implemented manually. Using the semantics in compilers is the
most difficult, as compilers need to be able to produce a program that runs correctly
on multiple architectures. Undefined behavior and implementation-dependent behavior

37

would have to be annotated manually for each instruction.

6.2 Future work

Currently, only a single configuration of a CPU can be analyzed. For example, for floating
point operations, the CPU has additional configuration bits for rounding modes, floating-
point register size, etc. By treating all these configuration bits as a “virtual prefix” for
every instruction, we could re-use the existing analysis to efficiently learn semantics for
multiple processor configurations. Configuration bits that do not affect the execution
of an instruction (for example, floating point rounding mode for a non-floating point
instruction) would be identified as such. This reduces the total number of instructions
that need to be enumerated.

A similar approach could be taken to reduce the overhead of real prefixes. By turning
a real prefix into a single bit in a mandatory “virtual prefix”, the logic that determines
what purpose each bit serves would work for entire prefixes as well. Bits for prefixes
that do not affect a particular instruction would be identified as Don’t Care bits, and no
separate analysis of the prefixed and non-prefixed instruction variants would be necessary.

Our implementation currently only supports general-purpose registers. Modern CPUs
often also have floating point and vector instructions. x86-64 in particular also still uses
some segment registers, even in x86-64. In order for the learned semantics to be useful in
real-world scenarios, we would have to learn semantics for all these instructions as well.

The learned semantics themselves could be extended with more information. For ex-
ample, the semantics could describe when CPU faults occur, the exact execution time of
an instruction or the memory locking and/or ordering behavior. Given the right hard-
ware, information like energy usage or EM emissions could also be learned automatically.
On some CPUs, it is also possible to measure the power usage of subsystems like the
instruction decoder individually [11]. It is likely that our encodings correspond relatively
well with simple CPU implementations that directly execute the instructions. However,
for advanced implementations that re-order instructions, use register rewriting, etc. char-
acteristics like timing, energy usage or EM emissions of an instruction depend on the
surrounding instructions. In such a case, we would need to look at sequences of instruc-
tions rather than a single instruction.

Our approach could be extended to other architectures. For example, ARM archi-
tectures found in devices like phones, Chromebooks and Apple M1 Macbooks. Our im-
plementation contains only a small module with architecture-specific code. Adapting the
implementation to a relatively similar architecture like 64-bit ARM or RISC-V would
therefore be easy.

Using the semantics, detailed comparisons could be made between various CPU im-
plementations. Differences in behavior could be caused by CPU bugs or by differences in
implementation of undefined details in the specification.

The current implementation, which uses the Linux ptrace API, requires multiple
context switches and system calls to make an observation. Making a single observation
takes up to 30us. We suspect that most of this time is overhead. To remove most of the
overhead caused by the Linux kernel, these observations could be done in a bare-metal
process running on a hypervisor. Additionally, by using a bare-metal process we could
map memory into the region that is normally reserved for kernel-only usage. This could
make analysis faster and more accurate.

The fact that we do not use a disassembler library, poses problems for validation.
Ideally, we would like to compare our results directly with previously specified semantics,

38

both manual and automatic. The authors of the formalization of all non-deprecated
x86-64 user space instructions are working on formalizing instruction decoding [4]. The
formalized instruction decoding together with the formalized x86-64 semantics could be
used to verify our results much more accurately.

With the learned semantics and some extensions mentioned here, accurate emulators
for specific CPUs could be generated mostly automatically. Only privileged instructions
and instructions that are impossible to synthesize (for example, an instruction that loads
a random value into a register) would have to be implemented manually. While existing
emulators often already provide many different choices of CPU implementation, these
choices often only enable or disable some CPU features. For example, choosing the CPU
type ‘x86 486’ in QEMU will disable features like SSE and AVX, but it will still use the
same instruction decoding as every other CPU. Using our approach, separate semantics
could be learned for each CPU.

We use a simple program synthesis technique to synthesize semantics for instructions.
More advanced program synthesis techniques could speed up synthesis, as well as synthe-
size more computations. The grammar could also be tweaked to improve synthesis. For
example, a grammar operating on bitvectors rather than 128-bit numbers would likely
perform better at expressing bitshifts and rotations, although it might perform worse for
mathematical operations.

To make the learned semantics more useful for real-world use cases, the enumeration
strategy could be changed. Currently, we enumerate the instruction space in lexicograph-
ical order. This will not enumerate the most used and most useful instructions first. A
simple improvement could be to enumerate the shortest instructions first. Shorter in-
structions usually perform the most commonly-used operations, while longer instructions
perform operations that are not needed as often. A good example of this in the x86-64
instruction set is stack pushing and popping instructions, which are of the form 5X where
the X is a hexadecimal digit indicating the register and the stack operation (pop/push).
A less common instruction like the AESENC instruction that performs a single round of
AES encryption takes at least 5 bytes.

39

Bibliography

[1] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. “Scaling enumerative pro-
gram synthesis via divide and conquer”. In: International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer. 2017, pp. 319–
336.

[2] Rajeev Alur, Rishabh Singh, Dana Fisman, and Armando Solar-Lezama. “Search-
Based Program Synthesis”. In: Commun. ACM 61.12 (Nov. 2018), pp. 84–93. issn:
0001-0782. doi: 10.1145/3208071. url: https://doi.org/10.1145/3208071.

[4] Sandeep Dasgupta, Daejun Park, Theodoros Kasampalis, Vikram S. Adve, and Grig-
ore Roşu. “A Complete Formal Semantics of X86-64 User-Level Instruction Set
Architecture”. In: Proceedings of the 40th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation. PLDI 2019. Phoenix, AZ, USA: Asso-
ciation for Computing Machinery, 2019, pp. 1133–1148. isbn: 9781450367127. doi:
10.1145/3314221.3314601. url: https://doi.org/10.1145/3314221.3314601.

[5] Rens Dofferhoff, Michael Göebel, Kristian Rietveld, and Erik Van Der Kouwe. “iS-
canU: A Portable Scanner for Undocumented Instructions on RISC Processors”.
In: 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN). IEEE. 2020, pp. 306–317.

[7] Patrice Godefroid and Ankur Taly. “Automated Synthesis of Symbolic Instruction
Encodings from I/O Samples”. In: SIGPLAN Not. 47.6 (June 2012), pp. 441–452.
issn: 0362-1340. doi: 10.1145/2345156.2254116. url: https://doi.org/10.
1145/2345156.2254116.

[8] Shilpi Goel, Warren A Hunt, and Matt Kaufmann. “Engineering a formal, exe-
cutable x86 ISA simulator for software verification”. In: Provably Correct Systems.
Springer, 2017, pp. 173–209.

[9] Shilpi Goel, Warren A Hunt, Matt Kaufmann, and Soumava Ghosh. “Simulation
and formal verification of x86 machine-code programs that make system calls”. In:
2014 Formal Methods in Computer-Aided Design (FMCAD). IEEE. 2014, pp. 91–
98.

[10] Stefan Heule, Eric Schkufza, Rahul Sharma, and Alex Aiken. “Stratified Synthesis:
Automatically Learning the X86-64 Instruction Set”. In: SIGPLAN Not. 51.6 (June
2016), pp. 237–250. issn: 0362-1340. doi: 10.1145/2980983.2908121. url: https:
//doi.org/10.1145/2980983.2908121.

[11] Mikael Hirki, Zhonghong Ou, Kashif Nizam Khan, Jukka K Nurminen, and Tapio
Niemi. “Empirical study of the power consumption of the x86-64 instruction de-
coder”. In: USENIX Workshop on Cool Topics on Sustainable Data Centers (CoolDC
16). 2016.

40

[12] Xixing Li, Zehui Wu, Qiang Wei, and Haolan Wu. “UISFuzz: An Efficient Fuzzing
Method for CPU Undocumented Instruction Searching”. In: IEEE Access 7 (2019),
pp. 149224–149236.

[14] Nicholas Nethercote and Julian Seward. “Valgrind: A Framework for Heavyweight
Dynamic Binary Instrumentation”. In: SIGPLAN Not. 42.6 (June 2007), pp. 89–
100. issn: 0362-1340. doi: 10.1145/1273442.1250746. url: https://doi.org/
10.1145/1273442.1250746.

[16] J. Ross Quinlan. “Induction of decision trees”. In: Machine learning 1.1 (1986),
pp. 81–106.

[17] Eric Schkufza, Rahul Sharma, and Alex Aiken. “Stochastic Optimization of Floating-
Point Programs with Tunable Precision”. In: SIGPLAN Not. 49.6 (June 2014),
pp. 53–64. issn: 0362-1340. doi: 10.1145/2666356.2594302. url: https://doi.
org/10.1145/2666356.2594302.

41

Articles and sources that are not
peer reviewed

[3] Combined Volume Set of Intel® 64 and IA-32 Architectures Software Developer’s
Manuals. Last accessed on 28/04/2021. url: https://software.intel.com/

content/www/us/en/develop/articles/intel-sdm.html.

[6] Christopher Domas. Breaking the x86 ISA. Last accessed on 22/04/2021. 2017. url:
https://github.com/xoreaxeaxeax/sandsifter.

[13] William Mahoney and J Todd McDonald. Enumerating x86-64–It’s Not as Easy
as Counting. Last accessed on 14/06/2021. url: https://www.unomaha.edu/

college-of-information-science-and-technology/research-labs/_files/

enumerating-x86-64-instructions.pdf.

[15] Pin - A Dynamic Binary Instrumentation Tool. Last accessed on 14/06/2021. url:
https://software.intel.com/content/www/us/en/develop/articles/pin-a-

dynamic-binary-instrumentation-tool.html.

42

