
Radboud University Nijmegen

Faculty of Science

A Study In Meta
A Deep Dive Into Self-Interpreters for Lambda Calculus

Thesis Msc Mathemathical Foundations of Computer Science

Author:
Luuk Verkleij

Supervisor:
Herman Geuvers

Second reader:
Freek Wiedijk

P

pPq

R

pRq
eval

unquotequote unquotequote

evaluation

August 2021

Contents

1 Introduction 3

2 Preliminaries 5
2.1 Untyped Lambda Calculus . 5

2.1.1 Evaluation . 6
2.1.2 Church Encoding . 8

2.2 Typed Lambda Calculus . 9
2.2.1 Church Encoding . 11
2.2.2 Normalization . 12

2.3 System Fω . 12
2.3.1 Adding Polymorphism . 14
2.3.2 Adding Type Operators . 15
2.3.3 Normalization . 16
2.3.4 Church Encoding . 17

3 Self Interpreters 19

4 Self-Interpreters For Untyped Lambda Calculus 21
4.0.1 Quote as a term . 22
4.0.2 Recursive function definition scheme 24
4.0.3 Self-Evaluator . 27

4.1 A Trivial Self-Recognizer . 30
4.2 Mogensen Self-Interpreter . 34

4.2.1 Function Definition Scheme . 36
4.2.2 double quote property . 37

4.3 Closed Term Self-Interpreters . 39
4.3.1 Closed-Term Function Definition Schemes 40

4.4 Barendregt Self-Interpreter . 42
4.4.1 Function Definition Scheme . 42

5 Self-Interpreters For Typed Calculi 44

6 Self-interpreters For Normalizing Calculi 48
6.1 Computability Theory and Breaking The Self-Recognizer Normalization

Barrier . 49
6.2 Bauer’s Normalization Barrier . 51
6.3 Complexity of �τ . 53
6.4 Self-Evaluator . 57

7 System Fω Self-Recognizers 58
7.1 Trivial Self-Recognizer . 58
7.2 Brown-Palsberg Self-Recognizer . 63

7.2.1 Representing Types . 63
7.2.1.1 Properties & Proofs . 63

7.2.2 Coding Terms Lower-Order terms 68
7.2.2.1 Properties & Proofs . 69

7.2.3 Coding Higher-Order Terms . 74
7.2.3.1 Constructor Abstraction Term 74
7.2.3.2 Constructor Application Term 77

7.2.4 The Final encoding Function . 78

1

7.2.4.1 Proofs . 80
7.3 Function Definition Scheme . 85
7.4 Applications . 87

7.4.1 Term Type Tester . 87
7.4.2 Normal Form Checker . 89
7.4.3 Term Type Counter . 94

7.5 Restrictions . 98
7.5.0.1 Type Recognition . 98

8 Discussion 100

9 Related Work 101

10 Conclusion 102

2

1 Introduction

Self-interpreters, or sometimes called metacircular interpreters, are interpreters for the
languages written in itself. They are omnipresent in the world of programming, for
example Javascript[19], Python[32] and Haskell[26] have self-interpreters. Haskell is es-
pecially interesting, since it is, as a functional programming language, closely related to
lambda calculus [2].

Lambda calculus was invented by Alonzo Church in 1936 and, like Turing machines,
is a formal system designed to formalize the informal notion of effective calculable [14].
In the 85 year that followed it has been instrumental for theoretical computer science.
Untyped lambda calculus has been a foundation for functional programming languages,
whereas typed normalizing calculi have spawned proof assistants, like Coq[28]. How-
ever, even after 85 years of research, there are still plenty of questions in need to be
answered. One of them arises with the intersection of strongly normalizing calculi and
self-interpreters.

It is possible to distinguish between two self-interpreters, a self-recognizer which can
interpreted the language in itself and a self-evaluator, which can interpreted language’s
evaluation in itself. The first self-recognizer for lambda-calculus was from Kleene [21]
in 1936. The first typed self-recognizer came from Rendel, Ostermann and Hofer, as
they presented a self-recognizer for F*ω [30]. The first self-recognizer for a strongly
normalizing barrier was defined by Brown and Palsberg, which resulted in disproving
a popular conjecture that is called the Normalization Barrier Conjecture. The normal-
ization barrier is according to conventional wisdom that a self-interpreter for a strongly
normalizing lambda calculus is impossible [10, 29]. The overturning of conventional
wisdom have led to some questions. While a self-recognizer is possible in a strongly
normalized lambda calculus, Brown and Palsberg stated that it is still an open question
if a self-evaluator is possible[11]. Bauer notes that with the definition as understood it
is possible to have a self-interpreter with weak structural properties. He questions if the
definition of self-interpreter needs to be expanded such that strong structural properties
are guaranteed[9].

In this thesis we try to get a clearer picture about two questions:

� Is there a definition for a self-interpreter that leads to strong structural properties

� Is it possible to have a self-evaluator for a strongly normalized lambda calculus.

We do this by making a review of the self-interpreters for lambda calculus. The result is
that self-interpreters, that supports function definition schemes, have strong structural
properties. We also find that a self-evaluator for a strongly normalizing lambda calculus
is possible.

We start the thesis with Section 2 where we present a summary of the lambda calulculi
used in this paper. In Section 3 we investigate what self-interpretation means in gen-
eral. In Section 4 we look at 3 different self-interpreters for untyped lambda calculus
and investigate their properties. In Section 5 we investigate what will change with a
self-interpreter when we add types to lambda calculus. In Section 6 we investigate what
the Normalization Barrier Conjecture is and why and what it means to break the nor-
malization barrier. At the end of this section we answer an open question from Brown
and Palsberg. In Section 7 we will investigate the first two self-interpreters that broke
through the normalization barrier defined by Brown and Palsberg[10]. We end with

3

Section 8, where we discuss the results, Section 9, where we discuss related work, and
as last Section 10 where we summarize and come to a conclusion.

4

2 Preliminaries

2.1 Untyped Lambda Calculus

Here we will summarize the key properties we use in this paper. For readers interested in
a tutorial we refer to other sources [6, 33]. A compact summary of the untyped lambda
calculus can be found in Definition 2.1.

Definition 2.1. Untyped Lambda Calculus
Grammar

〈term〉 := 〈var〉 | (λ 〈var〉 . 〈term〉) | (〈term〉 〈term〉)

Λ is the set of all terms.
Λc is the set of all closed terms.

α-equivalence

M =α M
y 6∈ FV(M)

λx . M =α λy . M [x := y]

M =α N

N =α M

M =α N N =α L

M =α L

β-reduction

(λx . M) N →β M [x := N]
M →β N

λx . M →β λx . N

M →β N

Z M →β Z N

M →β N

M Z →β N Z

M �β N if M reduces to N in zero or more steps
M �+

β N if M reduces to N in one or more steps.

M �β N

M =β N N =β M

Fixed-Point Combinator

Y := λf . (λx . f (x x)) (λx . f (x x))

Untyped lambda calculus is defined using the following grammar

〈term〉 := 〈var〉 | (λ 〈var〉 . 〈term〉) | (〈term〉 〈term〉)

The three cases we call variable, abstraction and application. Variables are written in
lower case a, b, c... , whereas a term is written in a upper case M,N,P,Q, the set

5

of all terms in notated with Λ. As a convention we say that applications are left asso-
ciative, so we write ((M N) P) as M N P . Abstraction is right associative, we write
(λx . (λy . (λz . x))) as λx . λy . λz . x and to reduce clutter we often write it as λx y z . x.

When a term has a variable, we distinguish between free and bound variables. When we
have an abstraction before the variable with the same name we say that it is bound, like
x in the term λx . x. When there is no abstraction before the variable with the same
variable name it is free, like the variable x in the terms x or λy . x. When all variables
are bound we say that the term is closed and the set of closed terms we denote with Λc.

When variables are bound we find that we have terms that are the same except for
renaming, like the terms λx . x and λy . y. We can make use of α-conversion to turn
these two terms into the same term. α-Conversion is defined as follows:

λx . M →α λy . M [x := y]

We say that two terms M1 and M2 are α-equivalent to each other, written as M1 =α M2,
if the two terms are equal to each other by applying zero or more α-conversions. Formally
we define α-equivalence as follows:

Definition 2.2. (Definition of the Relation =α)

M =α M
y 6∈ FV(M)

λx . M =α λy . M [x := y]

M =α N

N =α M

M =α N N =α L

M =α L

Alpha-equivalence does not affect evaluation, therefore if we want to avoid dealing with
variable renaming we may want to remove α-conversion. This is especially useful when
implementing lambda calculus. This can be done by making use of the De Bruijn
representation [16], defined as follows:

〈term〉 := n | λ 〈term〉 | 〈term〉 〈term〉

Where n is a number and point towards which abstraction it is bound to. For example
”λx y . x” is ”λ λ 2” in De Bruijn representation.

2.1.1 Evaluation

For evaluation the lambda calculus uses the β-reduction rule. A β-reduction is trans-
forming a term of the form (λx . M) N , called a redex, by substituting variable x with
the term N . The term we get in result who write as M [x := N] is called a redux. When
a term does not have a redex, we say the term is in normal form. When M does has a
redex we can reduce this in a other name named N which we write as M →β N . The
→β relation is defined in Definition 2.3.

Definition 2.3. Definition of the relation →β

(λx . M) N →β M [x := N]
M →β N

λx . M →β λx . N

6

M →β N

Z M →β Z N

M →β N

M Z →β N Z

Sometimes we have to do a α-conversion before β-reduction. For example when we
consider (λx . x y) y. Then if we don’t do a α-conversion first, we get (λx y . x y) y →β

λy . y y, whereas it should reduce to something α-equivalent to λx . x y. In short, when
a beta-reduction binds a free variable, then we need to do a α-conversion first. Often
we want to say that a term M reduces to N in zero or more steps. For this we write
�β and we formally define as follows:

Definition 2.4. Definition of the relation �β

M =α N

M �β N

M →β N

M �β N

M →β N N �β L

M �β L

We write M �+
β N if M reduces into N in one or more steps. When M �β N we say

that M and N are β-equivalent, written as M =β N and N =β M .

We can get a normal form of a term by repeatedly applying β-reduction. Not all terms
do have a normal form however. Consider the term (λx . x x)(λx . x x), then we have

(λx . x x)(λx . x x)→β (λx . x x)(λx . x x)→β (λx . x x)(λx . x x)→β . . .

What we do have is that if a term has a normal then it only have one. A property that is
called confluence or the Church-Rosser property, proven by Church and Rosser in 1936
[15]. Here we present the proof as given by Barendregt [8].

Theorem 2.5. (Confluence / Church-Rosser Property)
If M �β N1 and M �β N2 then there exists some N3 such that N1 �β N3 and
N2 �β N3, or in diagram form:

M

N1 N2

N3

Proof. Prove of this property can be found in the literature, the standard prove is
found in Barendregt’s book ”The Lambda Calculus” [8].

From this we find that if M has a normal form, then that is the only one. Therefore
when we can talk about the normal form, instead of a normal form.

7

Corollary 2.6. Let M be a term. If M has a normal form, then it is unique up
to α-equivalence.

Proof. Let N1 and N2 be two distinct normal forms of M . We have N1 =β N2,
therefore there is a term Z such that N1 �β Z and N2 �β Z. Since both N1 and
N2 are in normal form and therefore do not have a redex, then it follows from the
definition of �β that N1 =α Z =α N2.

We have another important property for the lambda calculus, we namely have a fixed-
point theorem.

Theorem 2.7. For every term M there is a term X such that M X =β X.

Proof.
Let N = λx . M (x x) and X = N N , then we have

X = N N =β λx . M (x x) N =β M (N N) = M X

From this we can define a fixed-point combinator, i.e. a function that returns some
fixed-point of its argument.

Corollary 2.8. Let Y be defined as follows: Y := λf . (λx . f (x x)) (λx . f (x x))
Then Y is a fixed-point combinator, i.e. for every term M M (Y M) =β Y M .

This will come in handy, since we now can define a term by recursion by using the
fixed-point combinator.

2.1.2 Church Encoding

In lambda calculus we can also define datatypes, like the booleans, natural numbers and
tuples and operations on them. These are named after Church as he defined it first. Here
we show the definition and operations, but not proof the correctness of them.

Definition 2.9. (Church Booleans)

true := λt f . t

false := λt f . f

Definition 2.10. (Church Booleans Operations)

and := λp q . p q p

or := λp q . p p q

not := λp . p false true

if := λp t f . p t f

8

Note that with this encoding of booleans, booleans themselves already form a if state-
ment. Therefore the term if is not needed, however it can be useful clarification.

To define the church numerals, we will be making use of power notation which we define
as follows

M1N := MN and Mn+1N := M(MnN)

Definition 2.11. (Church Numerals)

0 := λf x . x

n := λf x . fnx

Definition 2.12. (Operations on Church Numerals)

Succesor Function: suc := λn . λf . λx . f (n f x)

Addition: add := λm . λn . n suc m

Multiplication: mult := λm . λn . λf . m (n f)

Exponentiation: exp := λm . λn . n m

Definition 2.13. (Church Pairs)

Pairing Function: pair := λx y z . z x y

First Projection: fst := λp . p true

Second Projection: snd := λp . p false

2.2 Typed Lambda Calculus

Until now we have looked at lambda calculus without types. There are also are typed
variants. In this section we will summarize the important properties of simply typed
lambda calculus, or λ→ , for this paper. For a tutorial we point the reader to Baren-
dregt’s ”Introduction to Lambda Calculus” [6]. A summary of simply typed lambda
calculus can be found in Definition 2.14.

Definition 2.14. Simply Typed Lambda Calculus / λ→
Grammar

〈type〉 := ε | 〈typevar〉 | 〈type〉 → 〈type〉
〈preterm〉 := 〈termvar〉 | λ 〈var〉 : 〈type〉 . 〈term〉 | 〈preterm〉 〈preterm〉

Type Derivation Rules
A context is defined as Γ = {x1 : τ1, . , xn : τn}.

9

x : σ ∈ Γ

Γ ` x : σ

Γ, x : σ `M : τ

Γ ` (λx : σ . M) : σ → τ

Γ `M : τ → σ Γ ` N : τ

Γ `M N : σ

Terms
A pre-term M is a term of λ→ if there exists a context Γ and a type τ such that
Γ `M : τ
Λτ denotes all terms of type τ .
Λτc denotes all closed terms of type τ .
If Λτc = ∅ then we say τ is not inhabited.

We will be introducing simply typed lambda calculus, also written as λ →, which is the
foundation of every typed lambda calculus. We will be defining types as follows:

〈type〉 := ε | 〈typevar〉 | 〈type〉 → 〈type〉

Here 〈typevar〉 is of the form of {α, β, γ, ...} and act similarly to variables in terms. We
can consider types again as open and as closed. Here we take ε as our base type, and we
consider ε the empty type. We will see that it is possible for types to not have closed
terms and we define that ε is such a type.

Now for the definition of terms, we will assume that every term has a type as we defined
before.

〈preterm〉 := 〈termvar〉 | λ 〈var〉 : 〈type〉 . 〈term〉 | 〈preterm〉 〈preterm〉

We call this pre-term because not every pre-term we can define makes sense if we enforce
typing. For example if we have the pre-term λx : σ . x, type τ 6= σ and a term M : τ ,
then we want to disallow the pre-term (λx : σ . x) M . To do this we introduce derivation
rules.

Definition 2.15. Type Judgement

x : σ ∈ Γ

Γ ` x : σ

Γ, x : σ `M : τ

Γ ` (λx : σ . M) : σ → τ

Γ `M : τ → σ Γ ` N : τ

Γ `M N : σ

Γ is called a context, which is a set {x1 : σ1, . . . xn : σn}. When we can derive M : σ
from a context Γ we have a type judgement, written as Γ `M : σ.

Now we define a term of λ→ to be a pre-term M with a type judgement Γ ` M : σ.
Note that for all closed terms we have a type judgement of the form ∅ ` M : σ, also
written as ` M : σ. The set of all terms of type σ is written as Λσ and the set of all
closed terms of type σ is written as Λσc .

By introducing types we get a interesting side effect, not every type has a closed term.
An example for this is ε by definition but also the type type (ε → ε) → ε as no closed
terms. When there is a type σ and a term M such that ` M : σ, we say that σ is
inhabited. Note that while ε is not inhabited, ε → ε is inhabited by the term λx : ε . x
as follows from this type derivation:

x : ε ∈ {x : ε}
{x : ε} ` x : ε

` (λx : ε . x) : ε→ ε

10

2.2.1 Church Encoding

In λ→ we can also define datatypes, like the booleans, natural numbers and tuples
and the operations on them. Here we again show no proof of the correctness of defini-
tions.

Definition 2.16. (Church Booleans)

true := λt f : τ . t

false := λt f : τ . f

Let Boolτ := τ → τ → τ then

Definition 2.17. (Church Booleans Operations)

and := λp q : Boolτ . λt f : τ . p (q t f) f

or := λp q : Boolτ . λt f : τ . p t (q t f)

not := λp : Boolτ . λt f : τ . p f t

if := λp : Boolτ . λt f : τ . p t f

Note that with types we can no longer take the short cuts we did with untyped lambda
calculus and also note that the term if only works for terms of type τ .

Let τ be some type, then we define the church numerals (under type τ) as follows:

Definition 2.18. (Church Numerals)

0 := λf : τ → τ . x : τ . x

n := λf : τ → τ . x : τ . fnx

Now let the type Natτ := (τ → τ)→ τ → τ .

Definition 2.19. (Operations on Church Numerals)

suc := λn : Natτ . λf : τ → τ . λx : τ . f (n f x)

add := λm : Natτ . λn : Natτ . λf : τ → τ . λx : τ . m f (n f x)

mult := λm : Natτ . λn : Natτ . λf : τ → τ . λx : τ . m (n f) x

Compared to untyped lambda calculus we do not have exponentiation, as it is impossible
to define. In fact the type Natτ under β-conversion are exactly the extended polynomials
[40].

11

Definition 2.20. (Church Pairs)

pairτ := λx y : τ . z : τ → τ → τ . z x y

fstτ := λp . p trueτ

sndτ := λp . p falseτ

2.2.2 Normalization

We have seen that not all terms that are definable in untyped lambda calculus are defin-
able when we introduce types. What is also not definable is the fixed-point combinator.
This however hints at a property that λ→ has, namely every term has a normal form.
A property we will call normalization. We can consider this property analogous to the
”total” property from computability theory. Except in lambda calculus we can consider
two different types of normalization. Since β-reduction rules are non-deterministic it
will happen that there are multiple possible β-reductions we can choose from. We call
the order in which we have chosen the β-reductions a path. So we can consider a term
to be normalizing either if there exists a finite path to the normal form or a if every
path will lead in finite steps to a normal form.

Definition 2.21. A calculus is Weakly Normalizing when for every term there is
at least one finite reduction path ending in a normal form.

Definition 2.22. A calculus is Strongly Normalizing when there is no term with
an infinite reduction path.

We find that λ→ is strongly normalizing.

Lemma 2.23. λ→ is strongly normalizing.

Proof.
Multiple proofs of this can be found from the literature. The classical proof is given
by Tait in ”Intensional interpretations of functionals of finite type” [37]. Inspired
by the Barendregt–Geuvers–Klop conjecture, Morten Heine Sørensen infers a proof
of strong normalization from weak normalization in ”Strong Normalization from
Weak Normalization in Typed λ-Calculi”[35].

2.3 System Fω

In this section we will we will summarize the important properties of System Fω, or
λω , for this paper. For a compact version we refer to Definition 2.24. For a tutorial
of System Fω and other calculi in the Barendregt’s lambda cube we refer the reader to
Barendregt’s ”Lambda Calculi with Types” [3, §5].

Definition 2.24. System Fω / λω
Grammar

12

〈kind〉 := ∗ | 〈(kind〉)→ 〈kind〉
〈ctor〉 := 〈typevar〉 | 〈ctor〉 → 〈ctor〉 | Π 〈typevar〉 : 〈kind〉 . 〈ctor〉

| λ 〈typevar〉 : 〈kind〉 . 〈ctor〉 | 〈ctor〉 〈ctor〉
〈preterm〉 := 〈termvar〉 | λ 〈termvar〉 : 〈type〉 . 〈term〉 | 〈preterm〉 〈preterm〉

| (λ 〈typevar〉 : 〈kind〉 . 〈preterm〉) | (〈preterm〉 〈ctor〉)

A context is defined as Γ = {x1 : τ1, . , xn : τn} ∪ {α1 : κ1, . , αm : κm}.

Kind Derivation Rules

α : κ ∈ Γ

Γ ` α : κ

Γ ` τ : ∗ Γ ` σ : ∗
Γ ` τ → σ

Γ, α : κ ` τ : ∗
Γ ` Πα : κ . τ

Γ, α : κ1 ` C : κ2

Γ ` (λα : κ1 . C) : κ1 → κ2

Γ ` C1 : κ2 → κ1 Γ ` C2 : κ2

Γ ` C1 C2 : κ1

Type β-Reduction

(λα . C1) C2 →β C1[α := C2]
C1 →β C2

λα : κ . C1 →β λα : κ . C2

C1 →β C2

C3 C1 →β C3 C2

C1 →β C2

C1 C3 →β C2 C3

τ1 →β σ1 τ2 →β σ2

τ1 → τ2 →β σ1 → σ2

τ →β σ

Πα : κ . τ →β Πα : κ . σ

Type Derivation Rules

x : σ ∈ Γ

Γ ` x : σ

Γ ` σ : ∗ Γ, x : σ `M : τ

Γ ` (λx : σ . M) : σ → τ

Γ `M : τ → σ Γ ` N : τ

Γ `M N : σ

Γ, α : κ `M : τ

Γ ` (λα : κ . M) : (Πα : κ . τ)

Γ `M : (Πα : κ . τ) Γ ` C : κ

Γ `M C : τ [α := C]

Γ `M : τ Γ ` τ =β σ Γ ` σ : ∗
Γ `M : σ

Term β-reduction

(λx : τ . M) N →β M [x := N] (λα : κ . M) C →β M [α := C]

13

M →β N

L M →β L N

M →β N

M L→β N L

M →β N

M C →β N C

M →β N

λx : τ . M →β λx : τ . N

M →β N

λα : κ . M →β λα : κ . N

System Fω, also named λω , is one of the calculi on the Barendregt lambda cube[4], as
shown in Figure 1. It extends λ→ with polymorphism and type operators. Here we will
only introduce System Fω and not the rest of Barendregt’s cube.

Figure 1: Barendregt’s Lambda Cube[4]

2.3.1 Adding Polymorphism

To get to System Fω, we will first introduce polymorphism to a typed lambda calculus.
Polymorphism can also be understood as making terms be depended on typed. For ex-
ample in our simply typed world, for every type we have a different identity term, namely
the term λx : τ . x. All of these are the same term, just under a different type. What we
could do introduce a new application rule involving types, i.e. some rule M τ , such that
we can have a single identity term. This is what we do when we introduce polymorphism.

First we introduce what is essentially a type for types, we will be named a kind. A
kind is symbolised with ∗ and every type is of kind ∗. Now we can introduce a abstrac-
tion rule, λα : ∗ . M and with that an application rule M τ . Now for type checking
we will want that our new application term can only accept types. For this we have
to introduce a new type which accept a type variable and gives back a type. This will
be written as Πα : ∗ . τ . This results in grammar for our calculus as in Definition
2.3.1.

Definition 2.25. (Grammar for Typed Calculus with Polymorphism)

〈kind〉 := ∗
〈type〉 := 〈typevar〉 | 〈type〉 → 〈type〉 | Π 〈typevar〉 : 〈kind〉

| 〈type〉 〈preterm〉
〈preterm〉 := 〈termvar〉 | λ 〈termvar〉 : 〈type〉 . 〈term〉 | 〈preterm〉 〈preterm〉

| (λ 〈typevar〉 : 〈kind〉 . 〈type〉) | (〈preterm〉 〈type〉)

Now that we have a way to bind and make use of type variables, we have to also introduce
α-equality for types. For example the types Πα : ∗ . α looks a lot like Πβ : ∗β and in
fact we want them to be the same. We can adept the α-equivalence definition given in
2.2 to terms.

14

Definition 2.26. (α-Equivalence For Types)

τ =α τ
α 6∈ FV(τ)

Πα : ∗ . τ =α λβ . τ [α := β]

τ =α σ
σ =α τ

τ =α σ σ =α ν
τ =α ν

We have also introduced new pre-terms, so to make use of these we require an extension
to type derivation rules, α-equality for terms and β-reduction.

Definition 2.27. (Extensions for Polymorphism)
α-Equivalence

τ =α σ
y 6∈ FV(M)

λx : τ . M =α λy : σ . M [x := y]

M =α N

λα : ∗ . M =α λα : ∗ . N
M =α N τ =α σ

M τ =α N σ

Type Derivation Rules

Γ, α : ∗ `M : τ

Γ ` (λα : ∗ . M) : (Πα : ∗ . τ)

Γ `M : (Πα : ∗ . τ)

Γ `M σ : τ [α := σ]

β-Reduction

(λα : ∗ . M) σ →β M [α := σ]
M →β N

λα : ∗ . M →β λα : ∗ . N

M →β N

M τ →β N τ

2.3.2 Adding Type Operators

Secondly we will be introducing type operators to a typed lambda calculus. Type op-
erators can also be understood as making types be depended on types. For example in
our simply typed world, for every type we have a different pair type. However all of
them are of the form of τ → τ → (τ → τ → τ) → τ . Similarly to the identity term in
the polymorphic example, we may want to have a single ”type” Pair that accepts a type
τ and returns Pairτ such that we can have a single pairing type. Essentially, we would
like to have functions for types. For this we introduce type operators.

Since we now have kinds for types, introduced when we added polymorphism, we can
extend our type system with rules of λ→ . If we represent kinds with κ, then we can
add a rule to our kinds κ1 → κ2. Then now we can add abstraction and application
to our type system. We from now on will call types and functions on types together

15

constructors, denoted with C and abbreviate with ctor. This results in the following
new grammar:

〈kind〉 := ∗ | 〈(kind〉)→ 〈kind〉
〈ctor〉 := 〈typevar〉 | 〈ctor〉 → 〈ctor〉 | Π 〈typevar〉 : 〈kind〉 . 〈ctor〉

| λ 〈typevar〉 : 〈kind〉 . 〈ctor〉 | 〈ctor〉 〈ctor〉

Note that with the introduction of constructors, we can also make use of this with the
polymorphism. Therefore we also change the pre-terms polymorphic cases.

〈preterm〉 := 〈termvar〉 | λ 〈termvar〉 : 〈type〉 . 〈term〉 | 〈preterm〉 〈preterm〉
| (λ 〈typevar〉 : 〈kind〉 . 〈preterm〉) | (〈preterm〉 〈ctor〉)

Now that we have introduced rules from λ→ to our typing system, we also need derivation
rules and reduction rules. Note that we have a clear distinction between types, denoted
with τ and type and constructors, denoted with C, as we still require terms to be of a
type, which is always of kind ∗.

Kind Derivation Rules

α : κ ∈ Γ

Γ ` α : κ

Γ ` τ : ∗ Γ ` σ : ∗
Γ ` τ → σ

Γ, α : κ ` τ : ∗
Γ ` Πα : κ . τ

Γ, α : κ1 ` C : κ2

Γ ` (λα : κ1 . C) : κ1 → κ2

Γ ` C1 : κ2 → κ1 Γ ` C2 : κ2

Γ ` C1 C2 : κ1

Type β-Reduction

(λα . C1) C2 →β C1[α := C2]
C1 →β C2

λα : κ . C1 →β λα : κ . C2

C1 →β C2

C3 C1 →β C3 C2

C1 →β C2

C1 C3 →β C2 C3

τ1 →β σ1 τ2 →β σ2

τ1 → τ2 →β σ1 → σ2

τ →β σ

Πα : κ . τ →β Πα : κ . σ

Putting it all together, we get System Fω as we can see in Definition 2.24.

2.3.3 Normalization

Instead of proving that System Fω is strongly normalizing, it’s also possible to prove
that all calculi from Barendregt’s lambda cube are strongly normalizing.

16

Theorem 2.28. All calculi in Barendregt’s lambda cube are strongly normalizing

Proof.
Multiple proofs that λC is strongly normalizing are available in the literature. We
point to Herman Geuvers’ proof in ”A short and flexible proof of strong normaliza-
tion for the calculus of constructions” [17]. Since λC is an extension of the other
calculi in the Barendregt’s cube, it follows that they are also strongly normaliz-
ing.

2.3.4 Church Encoding

We can again define a church encoding, but unlike λ→ these will be closer to the Church
Booleans from untyped lambda calculus, since we now can chose our type.

Definition 2.29. (Church Booleans)

Bool := Πα : ∗ . α→ α→ α

true := λα : ∗ . λt f : Bool α . t

false := λα : ∗ . λt f : Bool α . f

Definition 2.30. (Church Booleans Operations)

and := λp q : Bool . Πα : ∗ . λt f : α . p α (q α t f) f

or := λp q : Bool . Πα : ∗ . λt f : α . p α t (q α t f) f

not := λp : Bool . Π : α : ∗ . λt f : α . p α f t

if := λp : Bool . Π : α : ∗ . λt f : α . p α t f

When defining the Church Numerals for System Fω, we get a nice surprise; we can define
the exponentiation again.

Definition 2.31. (Church Numerals)

Nat := Πα : ∗ . (α→ α)→ α→ α

0 := λα : ∗ . λf : α→ α . x : α . x

n := λα : ∗ . λf : α→ α . x : α . fnx

17

Definition 2.32. (Operations on Church Numerals)

suc := λn : Nat . λα : ∗ . λf : α→ α . λx : α . f (n α f x)

add := λm n : Nat . n Nat suc m

mult := λm n : Nat . λα : ∗ . λf : α→ α . m α (n α f)

exp := λm n : Nat . λα : ∗ . n (α→ α) (m α)

One of the strengths of polymorphism and type operators is that now we are able to
define tuples. These tuples are analogous to the Church pairs from untyped lambda
calculus.

Definition 2.33. (Church Tuples)

Tuple := λα β : ∗ . Πγ : ∗ . (α→ β → γ)→ γ

tuple := λα β : ∗ . λx : α . λy : β . λγ : ∗ . λz : α→ β → γ . z x y

tfst := λα β : ∗ . λp : Tuple α β . p α (λx : α . λy : β x)

tsnd := λα β : ∗ . λp : Tuple α β . p β (λx : α . λy : β x)

And from Church tuples we can define Church pairs.

Definition 2.34. (Church Pairs)

Pair := λα : ∗ . Tuple α α

pair := λα : ∗ . λx y : α . tuple α α x y

fst := λα : ∗ . λp : Pair α . tfst α α p

snd := λα : ∗ . λp : Pair α . tsnd α α p

18

3 Self Interpreters

The informal definition of a self-interpreter is an interpreter for the language written
in the language itself.[11][7][24] However we have to note that the precise definition of
self-interpreter seems to be contested or at least unclear. Therefore it is important that
first the definition of self-interpretation, used in this paper, will be presented and the
motivation for this definition.

The definition of self-interpreter is unclear, as was shown when Matt Brown and Jens
Palsberg released their paper ”Breaking Through the Normalization Barrier: A Self-
Interpreter for F-omega”.[10] In this paper they broke through conventional wisdom
that a self-interpreter is impossible for total languages and this sparked multiple com-
ments about the definition of self-interpreter. For example Ben Lynn commented on this
”there is no official agreement on the definition of representation or self-interpretation,
or even how we should name these concepts.”[23] and Andrej Bauer commented ”The
construction is trivial, which makes one wonder whether something is wrong with the
notion of self-interpreter used by Brown and Palsberg.” [9]. This uncertainty of the
definition is also made clear by the paper itself, since the first thing Brown and Palsberg
did is clarify that they use Barendregt’s [7] notation of self-interpreter and a year later
Brown and Palsberg came back on their assertion that they had made a self-interpreter.
Instead in their paper ”Typed Self-Evaluation via Intensional Type Functions” they
renamed it to a self-recognizer.[11]

Before we give the notion of self-interpretation, we have to note where the terminol-
ogy comes from. The concept of self-interpretation comes from popular programming
languages, like Lisp, Python, Haskell, Javascript and many more. In these programming
languages one has a self-interpreter in the form of an evaluate or execute function. In
these functions we can enter a program of the program language itself, as a string, and
it will return the value that would be obtained through evaluation of the program. Now
it is important to remember that when we do this, we enter a string, a value. This is
important to note, since that means that when we are talking about self-interpretation,
we are talking about a combination of representation and some form of interpretation.
In the case of programming languages, the representation is the string. The representa-
tion of a program we call an encoding and the encoding function itself we call quote or
p−q and we write pPq if we have a program P in its representation form.

Finally we still need to mention the interpreter part of the self-interpreter, which is
also where the confusion is. When we interpret a representation of a program, let’s say
P , we could return two end results, either the evaluation of the program or a representa-
tion of the evaluation of the program. There is a difference between those two. Let’s say
we have a program P , which evaluates into R, and the representation of this program
pPq. Then to get R we could have a program to turn pPq into P and then evaluate.
Such a program we will call unquote and the program together with the representation
will be called a self-recognizer. However to turn pPq into the representation of the result
of the evaluation of P is less easy. This is because we will find that, in general, there does
not exist a program which turns R back into a representation, which means in general
we are not able to use unquote. Instead we need a program E that evaluates pPq to
pRq. The combination of eval and the representation we will call a self-evaluator. The
two different self-interpretations are shown in Figure 2.

19

P

pPq

R

pRq
eval

unquotequote unquotequote

evaluation

Figure 2: Self-Recognizer and Self-Evaluator. [11]

From Figure 2 we can do some diagram chasing to get some properties of our functions.
For the quote and unquote function we note that unquote◦quote is the identity function
for programs, and similarly quote◦unquote is the identity function for the range of quote.
From this we can already conclude that both unquote and quote have to be injective.
We also have eval = quote ◦ ”evaluation” ◦ unquote implying that the function eval on
pPq halts if and only if P halts.

This definition of having two different self-interpreters, namely a self-recognizer and
self-evaluator and the figure showing the difference, has been taken from Matt Brown
and Jens Palsberg [11] and will be used as the definition of the self-interpreter for the
rest of this paper.

20

4 Self-Interpreters For Untyped Lambda Calculus

In the previous section we have made an assertion for what a self-interpreter is. We
have seen that there are fundamentally two parts, a representation and an interpreter.
To apply this to untyped lambda calculus, first we will give a formal definition of a
representation, self-recognizer and self-evaluator in untyped lambda calculus and the
conclusion we can draw. After that we will discuss some representations, what inter-
preters they support and the difference between this on closed and open terms.

Why we need representation in the first place can be explained when we assume no
representation, which is equivalent to assuming that quote is the identity function. Note
that from a glance at Figure 2 we can already see that quote = unquote = eval = idΛ,
turning them all into an equivalent term. Moreover, without representation we also lose
the ability to do information analysis on terms.

Lemma 4.1.
The terms E1, E2 and E3 do no exist such that

E1 M =β true ⇐⇒ M is in normal form (for all M ∈ Λ)

E2 M =β

1 if M =α λx . N2 for some N1 ∈ Λ

2 if M =α N1 N2 for some M1, N2 ∈ Λ

3 otherwise

(for all M ∈ Λ)

E3 M1 M2 =β true ⇐⇒ M1 =α M2 (for all M1,M2 ∈ Λ)

Proof.
For all cases, let I = λx . x.
Case E1

true =β E1 I =β E1 (I I) =β false

Case E2

1 =β E2 I =β E2 (I I) =β 2

Case E3

true =β E3 I I =β E3 I (I I) =β false

Therefore to have a representation of terms seems to be crucial. Now, before we can
formally define what a self-interpreter is in untyped lambda calculus, we must define
what it means to be a representation of a term. We have claimed that a representation
of a terms is a value. Values in the case of (untyped) lambda calculus are term that
are in normal form. Now by definition of the self-interpreter, we need some function
such that every term is represented by a unique representation. We note that in lambda
calculus we have α-equivalent terms, terms that are the same up to renaming. Since
α-equivalence can disappear when we for example use De Bruijn representation, we will
work modulo α-equivalences. This leads us to the following definition.

21

Definition 4.2.
An encoding function is a function p−q : Λ → Λ, such that for all M,N ∈ Λ we
have

� Injectivity up to alpha equivalence, i.e. pMq =α pNq⇒M =α N

� Normality, i.e. pMq is in normal form

The set {pMq | M ∈ Λ} is called a representation or an encoding.

Now that we have defined what a representation is, we can derive the definitions for
both self-interpreters from Figure 2.

Definition 4.3.
A self-recognizer is a pair (p−q, unquote), where p−q : Λ→ Λ is a encoding function
and unquote ∈ Λ an interpreter, such that the following holds for all M ∈ Λ

unquote pMq �β M

Definition 4.4.
A self-evaluator is a pair (p−q, E), where p−q : Λ→ Λ is a encoding function and
E ∈ Λ an interpreter, such that the following holds for all terms M ∈ Λ

E pMq �β pnf(M)q if M has a normal form

E pMq has no normal form otherwise

For the self-recognizer it is possible to take a shortcut. This is since after we apply the
recognizer term, an evaluation of the term will happen no matter what. Therefore to
have a recognizer it is enough to reduce to something that will reduce to the same thing
as the term. Meaning, we only need to have beta-equivalence for our recognizer.

Definition 4.5.
A weak self-recognizer is a pair (p−q, unquote), where p−q : Λ → Λ is a encoding
function and unquote ∈ Λ an interpreter, such that the following holds for all
M ∈ Λ:

unquote pMq =β M

4.0.1 Quote as a term

You may have noticed that the encoding function itself is not defined as lambda term.
If it is definable, then we have eval := λx . quote (unquote x). Unfortunately quote is
not definable in untyped lambda calculus.

Lemma 4.6.
The encoding function is not lambda definable, i.e. there does not exists a quote ∈ Λ
such that quote M =β pMq for all M ∈ Λ.

Proof.

22

Let I = λx . x. Assume, towards contradiction, that such a quote does exists.
Then by definition of the encoding function we have pI Iq 6=β pIq. However, by
definition of quote we also have:

pI Iq =β quote (I I) =β quote I =β pIq

However by definition of p−q, we have pI Iq 6=β pIq, which leads us to the con-
tradiction.

This is unfortunate, as we cannot define the evaluator by just composing the quote and
unquote terms together. However note that the quote term as defined in Lemma 4.6 is
stronger than we need. For the composition to work we only need a quote term to turn
terms into the representation of its normal form, given that it has one. This, though, is
likely also impossible.

Conjecture 4.7. If a encoding function p−q and term unquote form a self-recognizer
then there is no term nfquote such that for all terms M that have a normal form
we have

nfquote M =β pnf(M)q

Therefore some form of a general quote term is impossible. This does not rule out
some very specific kinds of quote function. In fact, for all the untyped lambda calculus
representations we will define, we will have two very specific quote terms.

Definition 4.8. We say an encoding function p−q has the double quote property
if there are two terms app and dquote for which we have

app pMq pNq �β pM Nq

dquote pMq �β ppMqq

What is nice about this property is that we have a fixed-point theorem. This theorem
is from Kleene [22] for which Barendregt [8] shows a variation for untyped lambda
calculus. Here we show a proof based on one from Mogensen [25].

Lemma 4.9. (Second Fixed-Point Theorem)
Let p−q be a encoding function with the double quote property, then for all terms
F there exists a term M such that

M �β F pMq

Proof. Let F be some term. Now define M as follows:

M := A pAq where A := λn . F (app n (dquote n))

23

Then we have

M

= A pAq

→β F (app pAq (dquote pAq)) (Definition A)

�β F (app pAq ppAqq) (Definition dquote)

�β F pA pAqq (Definition app)

= F pMq

We will see that all our representations will have the double quote property and there-
fore they all have the second fixed-point theorem. This leads us to following informal
conjecture:

Conjecture 4.10. If a representation is effective it has the double quote property.

4.0.2 Recursive function definition scheme

We have some properties that representations can have, however until now we have
only looked at what we can do with representations, which we can also do without
representations. To show that we can indeed do more with representations, we will
make use of a function definition scheme, as defined by Geuvers[18].

Definition 4.11. We say a encoding function p−q has a function definition scheme
if for all H1, H2 and H3 there exists some term H such that we have

H pxq =β H1 pxq H

H pM Nq =β H2 pMq pNq H

H pλx . Mq =β H3 (λx . pMq) H

If a representation has such a function definition scheme, then we can create the first
two terms given in Lemma 4.1 for the representation.

Lemma 4.12. Let (p−q, unquote) be a self-recognizer where unquote is a closed
term. Let p−q support a function definition scheme. Then we have a term that
can distinguish a variable, abstraction or application.

Proof. Let A1, A2 and A3 be as follows

A1 := λx y . 1

A2 := λx y z . 2

A3 := λx y . 3

then by the function definition scheme we have a term A for which every M we

24

have

A pMq =β

3 if M =α λx . N2 for some N1 ∈ Λ

2 if M =α N1 N2 for some M1, N2 ∈ Λ

1 otherwise

Corollary 4.13. There are terms isvar, isapp and isabs such that

isvar pMq =β true ⇐⇒ M = x

isapp pMq =β true ⇐⇒ M = N1 N2

isabs pMq =β true ⇐⇒ M = λx . N

Proof. Follows from Lemma 4.12.

Lemma 4.14. Let (p−q, unquote) be a self-recognizer where unquote is a closed
term. Let p−q support a function definition scheme. Then we have a NF checker
term, i.e. a term A such that

A pMq �β true ⇐⇒ M is in normal form

Proof. Let A1, A2 and A3 be as follows

A1 := λx h . true

A2 := λx y h . if (isAbs x) then false else (and (h x) (h y))

A3 := λx h . (λz . h (x z)) I

Case for when M is in normal form
Base case M = x

A pxq =β A1 x A�β true

Inductive case M = (λx . N1) N2

A pN1 N2q

=β A2 pN1q pN2q A

=β and (A pN1q) (A pN2q)

= true induction and reduction

Inductive case M = (λx . N1) N2

25

A pλx . Nq

=β A3 (λx . pNq) A

=β (λz . A((λx . pNq) z)) I

=β (λz . A pNq[x := z]) I

=α (λx . A pNq) I

=β (λx . true) I induction

=β true

Case for when M is not in normal form
Base case: M = (λx . N1) N2

A p(λx . N1) N2q =β A2 p(λx . N1)q pN2q A

=β if (isAbs p(λx . N1)q) then false

else (and (A p(λx . N1)q) (A pN2q))

=β false

Induction case: M = N1 N2

A pN1 N2q =β A2 p(λx . N1)q pN2q A

=β if (isAbs p(λx . N1)q) then false

else (and (A p(λx . N1)q) (A pN2q))

=β if (isAbs p(λx . N1)q) then false else falseBy IH

=β false

Induction case: M = λx . N1

A pλx . N1q =β A3 pλx . N1q A

=β (λz . A (pN1q z)) I

=β (λz . A pN1q[x := z]) I

=β (λz . false) I By IH

=β false

We find that a representation supporting a function definition scheme could be called
strong, since we can already define multiple terms on it for analysis. In fact, when we
have a term H such that H pxq =β x, then we can define a weak recognizer term.
It seems that having a function definition scheme is the stronger requirement for a
representation. We will investigate this further by presenting a self-recognizer that does
not supports a function definition scheme.

Lemma 4.15. Let p−q be a representation with a function definition scheme. Let
unvar be a term such that

unvar pxq =β x

26

Then we have a weak recognizer

Proof.
Let unvar be as in the statement. Now let

unquote1 := λx h . unvar x

unquote2 := λx y h . (h x) (h y)

unquote3 := λx h . λy . h (x y)

Base case M = x

unquote pxq =β unvar x

=β x

Inductive case M = N1 N2

unquote pN1 N2q =β (unquote N1) (unquote N2)

=β N1 N2

Inductive case M = λx . N

unquote pλx . Nq =β λz . unquote N [x := z]

=αβ λx . N

4.0.3 Self-Evaluator

For the definition of an evaluator we have multiple options. The most straightforward
option would be to define a term that reduces a single redex and then continuous ap-
plying this until we reach a normal form if there is one by making use of the function
definition scheme and the fixed-point operator. There are two problems with going this
method. The first one is practical, it is actually not obvious to define a single redex re-
duction term, and Mogensen believes that it the single redex reduction is more complex
to define than his self-evaluator[25]. Secondly we have to deal with evaluation strategies,
which may result into terms that have a normal form using the underlying evaluation
not having it using the evaluator or visa versa. For example the term (λx . y) Ω has a
normal form if we go for left redex first reduction but not if we go for right redex first.
Therefore if a term is actually an evaluator depends upon the underlying evaluation
strategy.

Mogensen instead chooses to define an evaluator where the underlying evaluation mech-
anism handles the reduction. This results in a term which always uses the correct
evaluation strategy such as to be considered an evaluator. To define the Mogensen
evaluator we first need to assume some properties of the representation.

Definition 4.16. We say a representation is modular if there terms var, app and

27

abs such that

var x =β pxq

app pMq pNq =β pM Nq

abs λx . pMq =β pλx . Mq

The idea for the Mogensen evaluator is when we get into an application case pM Nq, we
want to transform pMq into a function that takes pNq such that we get pM [x := N]q.
However there are cases where M is not an abstraction term. In that case we want pMq
to be transformed into a function that makes an application node when given N .
Secondly if we do not hit an application, we do not want to return a function, but the
representation. Mogensen solves these conflicting goals by returning a pair of a function
and representation. The resulting evaluator we get is in Definition 4.17.

Definition 4.17. Let p−q be a modular representation with a function definition
scheme, with a term unvar such that

unvar pxq =β x

Then the Mogensen evaluator, E, is defined as follows:

E := λm . snd (Ê m)

Where Ê is defined using the function definition scheme making use of the following
terms

Êvar := λm h . unvar x

Êapp := λm n h . (fst (h m)) (h n)

Êabs := λm h . (λg . pair g (abs (λw . snd (g (P var w))))) (λv . h (m v))

and where P is defined using the function definition scheme making use of the
following terms

Pvar,abs := λm h . pair (λv . h (app m (snd v))) m

Papp := λm n h . Pvar,abs (app m n) h

The evaluator works as follows; the final evaluator is the term E. This term uses the
given representation and the term Ê to get a pair of a function and representation, so
we return the representation.
The term Ê is split in three parts. The first part is the variable. Since we assume
closed terms we know that this variable has been substituted, so we return this. For the
application case we want the function, i.e. the first term in the pair, apply this to the
evaluated second term.
Things get interesting when we hit an abstraction, here the function that does the
reduction is build. P makes sure that when a application node has a variable in front,
it builds an application node whenever it is applied to an argument.

Conjecture 4.18. Let p−q be a modular representation with a Mogensen evaluator
term E, then (p−q, E) forms a self-evaluator

28

Proof. The proof ended up to be out of scope for the paper. Mogensen has a proof
of his evaluator for the Mogensen representation, which could be adapted into a
more general proof.[25]

29

4.1 A Trivial Self-Recognizer

Before we go into the representations presented by Mogensen and Barendregt, we will
look at a simple novel representation, based on the simple recognizer given by Brown
and Palsberg[10]. This representation may be the simplest representation that supports
a recognizer, and therefore we will call this representation the trivial self-recognizer.

Thinking about a simple recognizer, the first one we would reach for would be a recog-
nizer that is the indentity term and where the encoding function would be pMq = M
or pMq = nf(M). This, though, is not possible by definition of the encoding functions,
since the first example does not have normality, whereas the second is not injective.

To form a self-recognizer, we need a representation with a bit more. To get normal-
ity for an encoding function, we can make use of the fact that we can turn any redex
irreducible by putting a free variable in front of it. Do this for all redexes and we make
a term irreducible. Then at the end we can bind the free variable and then for any
term we have an normal and unique representation. Now applying the identity term to
a representation of a term would return us the term itself.

Definition 4.19. Let z be some variable not in M , then we define the trivial
self-recognizer (p−q, unquote) as follows

pMq = λz . pMqz Where z is a fresh variable

pxqz = x

pλx . Mqz = λx . pMqz
pM Nqz = z pMqz pNqz
unquote = λq . q I

Lemma 4.20. (p−q, unquote) forms a self-recognizer.

Proof. First note that we have the following reduction:

unquote pMq = (λq . q I)pMq

→β pMq I

= (λz . pMqz) I

→β pMqz[z := I]

Therefore we can finish the proof by proving pMqz[z := I] �β M , which we will
do by using induction on the structure of the lambda term M .

Base case: M = x

pxqz[z := I] = x

Inductive case: M = λx . N

pλx . Nqz[z := I] = λx . pMqz[z = I]

�β λx . M By IH

30

Inductive case: M = N1 N2

pN1 N2qz[z := I] = I pN1qz[z := I] pN2qzz = I]

→β pN1qz[z := I] pN2qz[z := I]

�β N1 N2 By IH

Now we have a very simple representation that seems to support a recognizer but not
a lot more. However we claimed in Section 4.0.1 that all our untyped lambda calculus
representations will have the double quote property. Interestingly enough this simple
representation has this as well.

Definition 4.21.

app := λm n . λx . x (m x) (n x)

dquote := λm . λw z . m (λa b . w (w z a) b)

Lemma 4.22. For all terms M and N we have

app pMq pNq �β pM Nq

Proof.

app pMq pNq �β λx . x (pMqz x) (pNqz x)

�β λx . x (pMqz[z := x]) (pNqz[z := x])

=α λz . z pMqz pNqz
= pM Nq

Lemma 4.23. For all terms M we have

dquote pMq =β ppMqq

Proof.
Let D := λa b . w (w z a) b, then we have

dquote pMq �β λw z . pMqz[z := D]

Therefore to complete the proof, we require that

pMqz[z := (λa b . w (w z a) b)] =β ppMqzqw (1)

Which we prove using induction on the structure of the term.
Base case

pxqz[z := D] =β x =β ppxqzqw

31

Inductive case

pλx . Mqz[z := D] =β λx . pMqz[z := D]

=β λx . ppMqzqw By IH

= ppλx . Mqzqw

Inductive case

pM Nqz[z := D] =β D pMqid[z := D] pNqz[z := D]

=β w (w z pMqz[id := D]) pNqz[z := D])

=β w (w z ppMqzqw) (ppNqzqw) By IH

=β w (w z ppMqzqw) (ppNqzqw)

= w pz pMqzqw ppNqzqw
= pz pMqz pNqzqw
= ppM Nqzqw

Corollary 4.24. The representation p Mq, as in Definition 4.19, has the double
quote property.

While having a trivial self-recognizer is informative, the question remains if we can do
even more with it and what its limitations are. We find that indeed this representation
is not as powerful as later representations we will look at. For example it is unable to
check if an encoded term is an abstraction, application or variable, which also implies
that it does not have a function definition scheme.

Lemma 4.25. The trivial self-recognizer does not support a term isAbs such that
for all terms M we have

isAbs pMq =β true ⇐⇒ M = λx . N for some term N

Proof.
Towards contradiction, let’s assume there is a term isAbs such as in the statement,
then we get the following equivalence

true =β isAbs pλx . xq

= isAbs λz . λx . x

=β (isAbs λz . y)[y := λx . x]

= (isAbs λz . pyqz)[y := λx . x]

= (isAbs pyq)[y := λx . x]

=β false[y := λx . x]

=β false

32

Corollary 4.26. The trivial self-recognizer does not support a function definition
scheme.

33

4.2 Mogensen Self-Interpreter

Now that we have looked at a weak representation, we are interested in stronger repre-
sentations. In this section we will present the representation defined by Mogensen [25]
and will look at the strength of this representation. We will find that it support both
a recognizer and an evaluator. Moreover it will support a function definition scheme,
from which we can conclude that it too has the double quote property.

Definition 4.27. The Mogensen encoding function p−qm is defined as follows [25]

pxqm = λe . e U3
1 x e

pM Nqm = λe . e U3
2 pMqm pNqm e

pλx.Mqm = λe . e U3
3 (λx . pMqm) e

Theorem 4.28. p−qm is a encoding function

Proof. To prove that Mogensen code is a encoding function, we have to prove that
it has normality and is injective up to alpha equivalence. Normality can be proven
by induction on the terms.

Base case
For all variables x, we have that pxqm = λe . e U3

1 x e has no beta redexes, there-
fore it is in normal form.

Application case
For all terms M,N , we have that pM Nqm = λe . e U3

2 m(M) pNqm e. By in-
duction hypothesis we have that pMqm and pNqm are in normal form, therefore
λe . e U3

2 pMqm pNqm e has no beta redexes and therefore is also in normal form.

Abstraction case
For all terms M , we have that pλx . Mqm = λe . e U3

3 (λx . pMqm) e. By induc-
tion hypothesis we have that pMqm is in normal form, therefore there are no beta
redexes λx.pMqm and so there are none in λe . e U3

3 (λx.pMqm) e, and therefore
it is in normal form.

Injectivity we can prove by case distinction.
Let M,N be some terms such that M 6=α N . Towards contradiction, assume
pMqm =α pNqm. If M is some variable, then pMqm = λe . e U3

1 x e =α pNqm.
So therefore N =α x, however since x is free, we have N =α M .
The argument is similar for the other two cases.

Now that we have defined the Mogensen definition and proven that it indeed fits our
definition for an representation, we can go on to prove the properties of it. The first
thing we find is that this representation forms a self-recognizer.

Definition 4.29. The recognizer[25] for the Mogensen representation is defined
as follows

unquotem := λa . a (λb . b K S C)

34

Where

K := λxy . x,

S := λxyz . xz(yz),

C := λxyz . xzy

Theorem 4.30. The pair (p−qm, unquotem) forms a self-recognizer.

Proof. First we show, by induction on the structure of lambda terms, that
pMqm (λb . b K S C)�β M .

Base case

pxqm (λb . b K S C)→β (λb . b K S C) U3
1 x (λb . b K S C)

→β (U3
1 K S C) x (λb . b K S C)

�β K x (λb . b K S C)

�β x

Application case

pM Nqm (λb . b K S C)→β (λb . b K S C) U3
2 pMqm pNqm (λb . b K S C)

→β (U3
2 K S C) pMqm pNqm (λb . b K S C)

�β S pMqm pNqm (λb . b K S C)

�β pMqm (λb . b K S C) (pNqm (λb . b K S C))

�β M N

Abstraction case

pλx . Mqm (λb . b K S C)→β (λb . b K S C) U3
3 (λx . pMqm) (λb . b K S C)

�β C (λx . pMqm) (λb . b K S C)

�β λz . (λx . pMqm) z (λb . b K S C)

→β λz . pMqm[x := z] (λb . b K S C)

=α λx . pMqm (λb . b K S C)

�β λx . M

Now with this fact in our pocket, we can take any M ∈ Λ and then we have

unquotempMqm →β pMqm(λb . b K S C)�β M

Mogensen does not only present a recognizer for his representation, but also an evaluator,
proving that it also forms a self-evaluator, therefore having our first representation that
forms a self-interpreter.

35

Definition 4.31. Evaluator for the Mogensen encoding. [25, §4 Self-reduction]

Em := λm . R m (λa b . b)

where

R := Y λr m . m (λx . x)

(λm n . (r m) (λa b a) (r n))

(λm .

(λg . λx . x g

(λa b c . c

(λw. g

(P λa b c . a w)

(λa b . b)

)

)

)

λv . r (m v)

)

4.2.1 Function Definition Scheme

Before we prove that Mogensen representation also has the double quote property, we
will present that it supports a function definition scheme. Proving this will not only
show that it has properties that the trivial self-recognizer does not have, but will also
greatly help in defining and proving correctness of the dquote term.

Proposition 4.32. Let A1, A2, A3 ∈ Λ. Then there is an H ∈ Λ such that

H pxqm =β A1 pxqm H

H pM Nqm =β A2 pMqm pNqm H

H pλx . Mqm =β A3 (λx . pMqm) H

Proof.
Let H = λx . x (λy . y B1 B2 B3) where

B1 = λx y . A1 (λe . U3
1 x e) (λa . a y)

B2 = λx y z . A2 x y (λa . a z)

B3 = λx y . A3 x (λz . z y)

Then H forms the term H as in the statement.

36

Variable case

H pxqm =β pxqm (λb . b B1 B2 B3)

=β (λb . b B1 B2 B3) U3
1 x (λb . b B1 B2 B3)

=β B1 x (λb . b B1 B2 B3)

=β A1 (λe . U3
1 x e) H

= A1 pxqm H

Application case

H pN1 N2qm =β pN1 N2qm (λb . b B1 B2 B3)

=β (λb . b B1 B2 B3) U3
2 pN1qm pN2qm (λb . b B1 B2 B3)

=β B2 pN1qm pN2qm (λb . b B1 B2 B3)

=β A2 pN1qm pN2qm H

Abstraction case

H pλx . Mqm =β pλx . Nqm (λb . b B1 B2 B3)

=β (λb . b B1 B2 B3) U3
3 (λx . pNqm) (λb . b B1 B2 B3)

=β B3 (λx . pNqm) (λb . b B1 B2 B3)

=β A3 (λx . pNqm) H

4.2.2 double quote property

The double quote property together with the second fixed-point theorem are proven by
Mogensen in his paper ”Efficient Self-Interpretation in Lambda Calculus” [25]. Here we
present his proof by using the function definition scheme.

Lemma 4.33. There is a term dquote such that

dquote pMq =β ppMqq

Proof. First let

var := λx . λe . e U3
1 x e

app := λx y . λe . e U3
2 x y e

abs := λx λe . e (λy . U3
3 x) e

Then we have for these terms the following property:

var x�β pxq

app pMq pNq �β pM Nq

abs λx . pMq �β pλx . Mq

Define dquote1, dquote2 and dquote3 as follows:

37

dquote1 := λx h . abs λe . app (app (app (var e) pU3
1
q) x) (var e)

dquote2 := λx y h . abs λe . app (app (app (app (var e) pU3
2
q) (h x)) (h y)) (var e)

dquote3 := λx h . abs λe . app (app (app (var e) pU3
2
q)(λy . (h (x y)))) (var e)

Let dquote be the term we get from the function definition scheme with terms
dquote1, dquote2 and dquote3. Then we have

Base case M = x

dquote pxq =β abs λe . app (app (app (var e) pU3
1
q) pxq) (var e)

=β pλe . e U3
1 . pxq eq

= ppxqq

Inductive case M = N1 N2

dquote pN1 N2q =β abs λe . app (app (app app ((var e) pU3
2
q) (dquote pN1q))

(dquote pN2q)) (var e)

=β abs λe . app (app (app app ((var e) pU3
2
q) ppN1qq) ppN2qq)

(var e)

=β pλe . e U3
2 pN1q pN2q eq

= ppN1 N2qq

Inductive case M = λx . N

dquote pλz . Nq =β abs λe . app (app (app (var e) pU3
2
q)

(λy . (dquote pNq[z := y]))) (var e)

=αβ abs λe . app (app (app (var e) pU3
2
q)

(λy . ppNqq) (var e)

=β pλe . e U3
3 (λz . pNq) eq

= ppλx . Mqq

Corollary 4.34. The Mogensen representation has the double quote property and
therefore a second fixed-point theorem.

38

4.3 Closed Term Self-Interpreters

For this section we will look at a different type of self-interpreter. The Mogensen one
is a nice self-interpreter, however it is very much defined in lambda terms. Historically
arithmetization has been important for computability proofs. For example Church used
Gödel numbering to represent untyped lambda calculus to show for the first time that
there are arithmetic problems that is not solvable [14]. We will see that a very important
difference between those representations based on numbers and the representations we
have already seen is that numbers are closed-term, i.e. they do not have free variables.
Therefore we will generalize these representations to closed-term representations.

Definition 4.35.
A closed-term encoding function is a encoding function p−q as in Definition 4.2
such that for all terms M we have pMq is closed.

The set {pMq | M ∈ Λ} is called a closed-term representation or a closed-term
encoding.

Unfortunately such a representation does not have a self-recognizer such as we have seen
before.

Lemma 4.36. Let p−q be a closed-term encoding function, then it does not have
recognizer term as in Definition 4.3.

Proof.
Assume, towards contradiction, that there exists some term unquote such that
unquote pMqg =β M for all M ∈ Λ. Now take a x 6∈ FV (unquote) and let M be a
some term where M 6=β x, then by assumption we have

M =β x[x := M]

=β (unquote pxq)[x := M]

= unquote[x := M] pxq[x := M]

= unquote pxq[x := M] By x 6∈ FV(unquote)

= unquote pxq By pxq is closed

=β x

Instead for closed-term representations we will define the self-recognizer as a self-recognizer
limited to only closed-terms.

Definition 4.37.
A closed-term self-recognizer is a pair (p−q, unquote), where p−q : Λ → Λc is
a closed-term encoding function and unquote ∈ Λ an interpreter, such that the
following holds for all closed terms M ∈ Λc

unquote pMq �β M

One of the nice features of closed-term self-recognizer is that we often have an equality
term. This is clear when we use numbers as our representation of choice.

39

Definition 4.38. We say a representation has an equality term if there exists a
term eq such that

eq pMq pNq =β true ⇐⇒ pMq =β pNq (for all M,N ∈ Λ)

With an equality term also comes a mapping term. A mapping term will be very useful
when proving properties of the representation, at least useful enough that we will often
assume that such an equality term exists.

Corollary 4.39. When we have a closed-term representation with an equality
term, then we have an mapping term, i.e. a term map such that

map f x a b =β

{
x if a = b

f b otherwise

Proof.
Given that we have a equality term, we can define the following term:

map = λf x a b . (eq a b) (x) (f b)

which is the mapping term.

4.3.1 Closed-Term Function Definition Schemes

For the closed-term representations we would like to have function definition schemes
like we have seen before in the open-term representations. However when we look at
Definition 4.11, we will find a problem with the abstraction case. With an open term
self-recognizer, when some variable x is in de term, then it is also there in the encoded
term. Therefore λx . pxq binds the x in a open term self-recognizer. This is not the
case in closed-term representations. Therefore we will be in need for a different function
definition scheme, here take from Geuvers [18].

Definition 4.40. We say that a closed-term representation has a closed-term func-
tion definition scheme, if for all terms A1, A2, A3 there exists a term H such that

H pxiqb =β A1 pxiqb H

H pM Nqb =β A2 pMqb pNqb H

H pλxi . Mqb =β A3 pxiqb pMqb H

The function definition scheme defined above is not inferior to the open-term variant, as
we can adapt the lemmas above we have seen for the open-term variant to the variant
presented.

Lemma 4.41. A closed representation with a equality term and a closed-term
function definition scheme has a weak recognizer.

40

Proof. Let

unquote1 := λm h f . f m

unquote2 := λm n h f . (h f m) (h f n)

unquote3 := λx m h f . λz . h (map f x z) m

Let the term ̂unquote be the term we get from making use of the function definition
scheme. The we have

̂unquote pMq F =β M [x1 := F px1q, . . . , xn := F pxnq]

where {x1, . . . , xn} = FV(M). We prove this by induction on M .

Base case M = x

̂unquote pxiq F =β F pxiq

=β xi[xi := F pxiq]

Inductive case M = N1 N2

Let {x1, . . . , xn} = FV(M), {y1, . . . , ym} = FV(N) and {z1, . . . zk} = FV(M N).
Note that FV(N1 N2) = FV(N1) ∪ FV(N2).

̂unquote pN1 N2q F

=β ̂unquote pN1q F (̂unquote pN2q F)

=β N1[x1 := F px1q, ..., xm := F pxmq]

(N2[y1 := F py1q, ..., yn := F pynq]) By IH

= (N1 N2)[z1 := F pz1q, ..., zk := F pzkq]

Inductive case M = λx . N
Let {y1, . . . , yn} = FV(λxi . N). Note that FV(N) = FV(N) ∪ {xi}.

̂unquote pλxi . Mq F

=β λxi . ̂unquote pMq F ′ where F ′ := map F xi pxiq

=β λxi . M [xi := F ′, pxiq, y1 := F ′ py1q, ..., yn := F ′ pynq] By IH

=β λxi . M [xi := xi, y1 := F py1q, ..., yn := F pynq] Corollary 4.39

= (λxi . M)[x1 := F px1q, ..., xn := F pxnq]

Now define unquote := λm . ̂unquote m I and let M be some closed term. Then
we have

unquote pMq =β M [x1 := F x1, . . . , F xn]

= M By M closed

41

4.4 Barendregt Self-Interpreter

An example of a closed-term self-interpreter we will look at is defined by Barendregt[5].

Definition 4.42. The Barendregt encoding function is as follows defined: [5]

pxiqb = 〈0, i〉
pM Nqb = 〈1, 〈 pMqb, pNqb 〉 〉
pλxi . Mqb = 〈2, 〈pxiq, pMqb〉〉

Where 〈−,−〉 is some computable injective function that maps pairs of natural
numbers to a single natural number.

A nice thing about this definition is that we can lend some theorems from computational
theory and get some terms and properties for free.

Lemma 4.43. For the Barendregt representation we have the following properties
and terms.

1. eq pMqb pNqb =β true ⇐⇒ pMqb = pNqb

2. The double quote property and therefore a second fixed-point theorem.

3. Projection terms Π1 and Π2 such that Π1〈m,n〉 =β m and Π1〈m,n〉 =β n

Proof. This follows from that Barendregt encoding function is computable and
that lambda calculus is Turing complete.

4.4.1 Function Definition Scheme

Proposition 4.44. Let A1, A2, A3 ∈ Λ. Then there is an H ∈ Λ such that

H pxqb =β A1 pxqb H

H pM Nqb =β A2 pMqb pNqb H

H pλx . Mqb =β A3 pxqb pMqb H

Proof. We give the recursive equations for H.

H 〈0, y〉 = A1 〈0, y〉 H
H 〈1, y〉 = A2 (Π1 y) (Π2 y) H

H 〈2, y〉 = A3 (Π1 y) (Π2 y) H

42

Which means that the following term H does the job:

H = Y (λf . λx .

if (eq (Π1 x) 0) (A1 f x)

elif (eq (Π1 x) 1) (A2 (Π1 (Π2 x)) (Π2 (Π2 x)) f)

else (A3 (Π1 (Π2 x)) (Π2 (Π2 x)) f)

)

Corollary 4.45. The Barendregt representation has a weak self-recognizer

Proof. Follows from Lemma 4.43 and Proposition 4.44

43

5 Self-Interpreters For Typed Calculi

We have seen the self-intepreters for untyped lambda calculus. The question remains if
we could extend this to different forms of typed lambda calculus. In this section we will
explore this and give the definitions for representation and self-interpreters for typed
calculus.

With typed lambda calculus we are dealing with types, therefore, when we adopt our
definition of representation to the typed variant we will have to deal with the type of
the representation. Here we notice that typed representations already have two very
different cases. When we would consider a representation similar to the Mogensen rep-
resentation for untyped lambda calculus an important question is if could be typed. To
have a typed Mogensen representation has to be a function of type of the term that is
being represented. If we otherwise would consider something like the Barendregt rep-
resentation we are only dealing with numbers and therefore only dealing with a single
type for all our representations.

Definition 5.1.
Let � be a function from types to types, then an encoding function is a function
p− : τq : Λτ → Λ�τ , such that for all M,N ∈ Λ we have

� Injectivity up to alpha equivalence, i.e. pM : τq =α pN : σq⇒M =α N

� Normality, i.e. pM : τq is in normal form

The set {pM : τq | M ∈ Λτ and forall types τ} is called a representation or an
encoding.
When there is a type σ such that �τ = σ for all τ , then we the representation has
a constant type.

With this definition we can both capture the Barendregt type encoding functions and
the Mogensen type encoding function. However it is not clear if calculi with a simple
type system, like simple typed calculus, System T and PCF, can support an open-term
representations. For example we can prove that the Mogensen encoding is untypable in
these calculi.

Theorem 5.2. Mogensen encoding function is untypable in simple lambda calculus

Proof. Let x be some variable of type τ , then we have for px : τqm the following
type judgment

{e : σ} ` e : (ρ1 → ρ2 → ρ3 → ρ1)→ τ → σ → π . . .

{e : σ} ` e (λx1 : ρ1 . λx2 : ρ2 . λx3 : ρ3 . x1) : τ → σ → π

{e : σ} ` e (λx1 : ρ1 . λx2 : ρ2 . λx3 : ρ3 . x1) x : σ → π {e : σ} ` e : σ

{e : σ} ` e (λx1 : ρ1 . λx2 : ρ2 . λx3 : ρ3 . x1) x e : π

∅ ` λe : σ . e (λx1 : ρ1 . λx2 : ρ2 . λx3 : ρ3 . x1) x e : σ → π

∅ ` px : τqm : σ → τ

So we have the constraint that σ = (ρ1 → ρ2 → ρ3 → ρ1)→ τ → σ → π, which is
impossible.

44

This is not the only problem we have with calculi with simple types. The second hurdle
we have to overcome is when we try to turn the self-interpreters definitions into typed
definitions. Let’s say we want a recognizer unquote, then this is a typed term with a
simple type, so let’s say unquote : τ → σ. Now the recognizer we have defined cannot
be as with the untyped version, since if M1 and M2 do not have the same type, then
unquotepM1q and unquote pM2q should also not have the same type, however here they
are both of type σ. This problem however is possible to solve when instead of simple
types we look at more complex type systems, like extending to polymorphic types. To
keep typed calculi with a simple type system in the conversation we will change the
definition.

Definition 5.3. A typed self-recognizer is for all types τ a pair (p− : τq, unquoteτ),
where p− : τq : Λτ → Λ�τ is a typed encoding function and unquoteτ ∈ Λ�τ→τ an
family of terms, such that the following holds for all M ∈ Λτ :

unquoteτ pM : τq �β M

We will again call the self-recognizer weak if we have β-equivalence relation instead
of a reduction.
When there exists a term unquote

unquote τ =β unquoteτ

we say that the typed self-recognizer is a polymorphic self-recognizer.

Definition 5.4. A typed self-evaluator is for all types τ a pair (p− : τq, Eτ), where
p− : τq : Λτ → Λ�τ is a typed encoding function and Eτ ∈ Λ�τ→τ an family of
terms, such that the following holds for all M ∈ Λτ :

Eτ pM : τq =β pnf(M) : τq

We will again call the self-recognizer weak if we have β-equivalence relation instead
of a reduction.
When there exists a term E

E τ =β E
τ

we say that the typed self-recognizer is a polymorphic self-recognizer.

Now that we have definitions for self-interpreters and representations for typed lambda
calculus, it is interesting if it is possible to adapt the lemmas we have seen for untyped
lambda calculus to the typed version. First thing we find is that the encoding function
is again not definable for the typed version.

Lemma 5.5. For any calculus extending λ→ we have that for any type τ , the
encoding function p− : τq is not lambda definable, i.e. there does not exists a
Cτ ∈ Λτ→�τ such that Cτ M =β pM : τq for all M ∈ Λτ .

Proof. Assume, towards contradiction, that such a Cτ does exists. Let M ∈ Λτ .
Then again we have:

p(λx : τ . x)M : τq =β Cτ ((λx : τ . x) M) =β Cτ M =β pM : τq

45

But not all theorems have a typed version. One of the theorems that does not have
a counterpart is the second fixed-point theorem. By enforcing types we get a problem
when looking for a fixed-point M for some term F . First thing we notice is that for the
second fixed-point equation M =β F pMq to be valid we need to assume that F has
type �τ → σ, where τ is the type of M . From this we have to conclude that F has type
�τ → τ . So to adapt Lemma 4.9 we have to limit it to the type �τ → τ . If we try to
adapt the proof of the Lemma, we get a problem with the type when using the terms
dquote and app. This can be solved by assuming a fixed type for our representation,
which leads us to the following lemma.

Lemma 5.6. Let p− : −q be an encoding function with constant type ν. Let F be
a term of type ν → τ . Then there exists a M of type τ such that

M =β F pM : τq

.

Proof. Let A := λx : ν . app n (dquote n). then

M

= A pAq

→β F (app pAq (dquote pAq)) (Definition A)

�β F (app pAq ppAqq) (Definition dquote)

�β F pA pAqq (Definition app)

= F pMq

Interestingly the lack of a second fixed-point theorem will be important when we look
at strongly normalizing calculi, we then need a representation without a fixed-point.

One of the things we can adapt is the function definition scheme, even though it becomes
a bit messier. It would be impossible to define this for a calculus using simple types,
since to do this, our H has to look into the representation, find the underlying type and
then somehow create terms based on this type. Therefore, Like the second fixed-point
theorem, we have to assume that our representation has a constant type.

Definition 5.7. We say a representation, with a constant type ν, has a function
definition scheme if for terms, H1, H2 and H3 with types

H1 : ν → (ν → σ)→ σ

H2 : ν → ν → (ν → σ)→ σ

H3 : ν → ν → (ν → σ)→ σ

46

there exists some term H : ν → σ such that we have

H px : τq =β H1 px : τq H

H pM N : τq =β H2 pM : τ2 → τq pN : τq H

H px : τ1q =β H3 px : τ1q pM : τ2q) H

Similar to the self-intepreters, if we assume that we have polymorphic types, we can
define a function definition scheme that is more in line with the function definition
scheme we have seen for untyped lambda calculus.

H τ px : τq =β H1 τ px : τq H

H τ pM N : τq =β H2 τ1 τ2 pM : τ2 → τq pN : τq H

H τ pλx . M : τq =β H3 τ2 (λx . pM : τ2q) H

This is more in line to the untyped version, however it still wouldn’t be as powerful. For
example we would not be able to define a unquote since the output would be a static
type. Later we will see a solution for this in System Fω by Brown and Palsberg. We
can also cautiously conclude that when we want representation similar to the untyped
lambda calculus version, polymorphism is a must.

47

6 Self-interpreters For Normalizing Calculi

With self-interpreters for strongly normalizing calculi we have a problem. It is common
knowledge that it is impossible. This common knowledge is called the Normalization
Barrier Conjecture. It is a popular conjecture as is shown by Brown and Palsberg [10].
They quote Turner: ”For any language in which all programs terminate, there are always
terminating programs which cannot be written in it - among these are the interpreter
for the language itself” [38] and they quote Stuart: ”Total programming languages are
still very powerful and capable of expressing many useful computations, but one thing
they can’t do is interpret themselves” [36]. Yet Brown and Palsberg also claim that they
have broken the normalization barrier [10]. So what is going on?

The conjecture itself is a derivative from a theorem from computability theory that
states that a total universal function for the computable functions is impossible. This
theorem is conjectured to imply that strongly normalizing lambda calculi do not have
self-interpreters. However nothing is as fallible as common knowledge. Brown and Pals-
berg claim in their 2016 paper that they broke the normalisation barrier and gave a proof
why the conjecture itself is false[10]. However the claim that they broke this barrier is
notably in its absence in their 2017 paper[11], which can be attributed to the confusion
of the two different self-interpreters we have seen in Section 3. Andrej Bauer explains
the problem differently and claims that the disconnect between the conjecture and the
Brown-Palsberg paper comes from the definition for representations[9]. Currently the
Wikipedia page, or more accurately L. Parreaux, cites that this problem is a result of
the conjecture being about self-evaluators and not self-reducers[27].

So now we have a problem of hidden assumptions and inconsistent definitions. There-
fore this section will be dealing with clearing up some of the fog of the Normalization
Barrier Conjecture. First we will look at a bit of computability theory to know where
the conjecture comes from and why this does not generalise according to the arguments
presented in the 2016 Brown-Palsberg paper. Secondly we will look at Andrej Bauer’s
argument for why we do have a form of the Normalization Barrier, given a stricter
definition of representations. Thirdly we will look at Andrej Bauer’s insight for the
complexity required for the type of the representation. Last we will explain the role of
the self-evaluator in all this.

48

6.1 Computability Theory and Breaking The Self-Recognizer
Normalization Barrier

The first thing we need to know is what the Normalization Barrier Conjecture is and
where it comes from. In computability theory there is a theorem which we can informally
understand as follows; if we write an interpreter for the total, computable functions in
N→ N, then that interpreter must go into an infinite loop on some inputs.

The theorem here presented will be based on the one given by Brown and Palsberg
[10]. Like a lot of famous theorems in computability, the theorem is proven using a
diagonal argument.

But before we can present the theorem we need some definitions.

Definition 6.1. Let p−q be an injective function that maps each total, com-
putable function in N → N to an element of N. Then a universal function for the
total,computable functions in N→ N is a function u in (N× N) ⇀ N such that for
every total, computable function f in N→ N we have

∀v ∈ N . u(pfq, v) = f(v)

and where ⇀ means that u may be partial. Univ(N → N) is the set of universal
functions for the total, computable functions in N→ N.

From this definition we can prove a key property of the universal function.

Lemma 6.2. If u ∈ Univ(N→ N), then pu(x) = u(x, x) + 1 isn’t total.

Proof.
Let u and pu be as in the statement. Towards contradiction assume that pu is
total. Since pu is a total, computable function, we have that ppuq is defined and
therefore we have

pu(ppuq)

= u(ppuq, ppuq) + 1

= pu(ppuq) + 1

So we have reached a contradiction, therefore pu isn’t total.

And from this the theorem follows.

Theorem 6.3. If u ∈ Univ(N → N), then u isn’t total.

Proof.
Let u be as in the statement and assume towards contradiction that u is total. Let
pu = u(x, x) + 1. Since u is total, we have pu is total, however this contradicts
Lemma 6.2 and therefore we have that u isn’t total.

First note that, while we can consider the universal function a self-interpreter, it does
not fit seamless in our definition. This is since we consider a representation an encoding
function over both functions and values, here we only get a encoding over functions.

49

However we can safely put it in the self-recognizer camp, since its behaviour is equivalent
to a self-recognizer. To see this we could try to define the universal function on constant,
total function in lambda calculus. Let’s say univ is the universal function and p−q is a
encoding function over terms, then we require the following:

univ pMq x =β M x ∀M ∈ ΛN→N, x ∈ ΛN

A recognizer term unquote would have this property by definition.

Now we want to translate the theorem into a theorem for lambda calculus that extends
simply typed lambda calculus. First we want to translate the property from Lemma
6.2. Here the proof relies on a clever construction of pu and that n 6= n + 1. We can
translate n 6= n+ 1 as M 6= λx . M . Therefore the translation of Lemma 6.2 looks like
this:

Lemma 6.4. Let L be a strongly normalizing calculus extending simple typed cal-
culus. Let (p−q, unquote) be a self-recognizer. Let Pu := λx . λy . ((unquote x) x)
If u ∈ SelfRec(L), then (Pu, pPuq) 6∈ L.

Proof.
Suppose u ∈ SelfRec(L) and (Pu pPuq) ∈ L. We calculate:

pupu

=βλy . ((u pPuq) Pu)

=βλy . (pu pPuq)

From (Pu pPuq) ∈ L we have that (Pu pPuq) is strongly normalizing. From the
Church-Rosser property of L, we have that (Pu pPuq) has a unique normal form;
let us call it v. Therefore we have

v =β λy . v

both are in a distinct normal form, which is a contradiction. Therefore we have
(Pu, pPuq) 6∈ L

Now notice the lack of types for the abstractions in Pu. Well for some representations,
Pu does not exists, for example in the typing �τ := τ . It may also be possible for
unquote and Pu to be typeable but Pu pPuq not be typeable. While it seems we can
generalise the theorems from computability theorem for some representation types, it
definitely does not generalise to all types. We will see that the self-recognizer will be
definable later on and therefore the normalization barrier will be broken.

The question remains however why so many people thought a self-interpreter would
be impossible for strongly normalizing calculi. Here we have to note that computability
theory is only about natural numbers, so it may imply that a self-recognizer on num-
bers, Barendregt style, is impossible. Andrej Brauer investigates this question and the
question what the type requirements are for a self-recognizer [9]. We will go over it in
the following sections.

50

6.2 Bauer’s Normalization Barrier

While in the last section we have seen that we have no normalization barrier in general,
Bauer proves that we have such a barrier for self-interpreters for System T [9]. In this
section we generalise this proof to show that weak normalizing typed lambda calculus ex-
tending simple typed lambda calculus does not have self-recognizer with a constant type.

The first thing we find is that when we have a constant self-recognizer at some type,
let’s say τ , then we have a fixed-point operator at the function type, i.e. τ → τ .

Lemma 6.5. If a lambda calculus extending simply lambda calculus has a self-
recognizer (p− : τq, unquoteτ) with a constant type, i.e. �σ = ν for all types σ,
then every closed term M of type τ → τ has a fixed-point.

Proof.
Let M and ν be as in the statement and let N : ν → τ , with
N = λx : ν . M (unquoteν→τ x x). We notice that N is a closed term, since M
and unquote are closed. By definition of our encoding function, we have pNq : ν.
Therefore unquoteν→τ pNq pNq ∈ Λτc . And we have:

A

= unquoteν→τ pNq pNq

→β N pNq

�β M (unquoteν→τ pNq pNq)

= M A

Therefore A is a fixed-point of M .

With this lemma, we can prove that there does not exists a constant self-recognizer for
any weakly normalizing typed calculi.

Theorem 6.6. If a lambda calculus extending simply typed lambda calculus has a
self-interpreter (p− : τq, unquoteτ) with constant encoding function, then it is not
weakly normalizing.

Proof.
For the self-interpreter, let �σ = ν for all types σ. Let τ be some type. Now let
f : τ → τ and x : τ be variables. Then by Theorem 6.5 there exists some term
fix : τ → τ such that

fix f x =β f (fix f x)

Now by the Church-Rosser theorem we have that there exists some M such that
fix f x�β M and f (fix f x)�β M . Then for any N1, N2 we have f N1 �β f N2,
since f is an variable and therefore irreducible. So

M =α f M2 for some M2 where fix f x�β M2

or a bit more understandable, we have the situation as shown in Figure 3

51

N

fix f x

M f N

f (fix f x)=β

=α

1+

Figure 3

Now assume that we have some P such that P =β f P and there exists a i-step
reduction for some i ∈ N, such that P �i

β f Q, f P �β f Q and P �β Q, i.e. the
situation we can see in Figure 4.

Q

P

f Q

f P=β

i+

Figure 4

Then Q =β f Q and therefore by the Church-Rosser theorem there exists some R
such that Q �β R and f Q �β R. Now since f is a variable, it is irreducable.
Therefore R =α f S where Q�β S. And therefore the reduction Q�β R =α f S
has at least one step. Or in a final picture, shown in Figure 5.

P

Q

S

f P

f Q

R f S f f S

=β

=β

=α

i+

1+

Figure 5

So therefore P has a beta reduction path of size at least i+ 1.
So now we can conclude that for any arbitary i ∈ N there is exists a M such that
fix f x�i+

β M , which means that fix f x has an inifinite beta-reduction path, and
therefore it is not weakly normalizing.

Now with the theorem in our pocket, we can prove a version of the popular conjecture

Corollary 6.7. (Bauer’s Normalization Barrier)
A typed lambda calculus extending simply typed lambda calculus that is strongly

52

normalizing does not have a self-recognizer with a constant type.

Proof. Strong normalization implies weak normalization, therefore it directly fol-
lows from Theorem 6.6

However we will see that this normalization barrier does not extend to self-recognizers
with representations that have no constant types.

6.3 Complexity of �τ

So it is not possible for a strong-normalizing calculus extending simply typed lambda
calculus to have a self-recognizer with a constant encoding function. Then the question
that arise: Are there maybe more constraints to a self-recognizer for such a calculus?
Andrej Bauer [9] looks at this, and found that there are restriction to the complexity of
the type of the encoded terms.

However, what do we mean when we say complexity of a type? We have some in-
tuition on this, the type τ → τ should be more complex than τ . A type complexity we
could propose for simple typed lambda calculus could be something as follows:

Definition 6.8. For simple typed lambda calculus, extended with the types nat
and bool, and the if statement and equality, we define the function lev from types
to natural numbers as follows

lev(τ) =

{
max(1 + lev(ρ), lev(σ)) τ = ρ→ σ

0 τ = nat

A flaw in this definition is that a level function is very specific for the lambda calculus
in question. If we extend our lambda calculus with some other type or feature, we have
to change our level function. Luckily the following definition seems to capture type
complexity well.

Definition 6.9. A type σ is a retract of type τ , written σ / τ if there is s ∈ Λσ→τc ,
called section, and a r ∈ Λτ→σc , called a retraction, such that

λx : σ . r (s x) =βη λx : σ . x

And with the definition of type retraction we get some useful properties.

Lemma 6.10.

� σ / σ

� if ρ / σ and σ / τ then ρ / τ

� if σ / σ′ and τ / τ ′ then σ′ → τ / σ → τ ′

Proof.
Case σ / σ
λx : σ . idσ (idσ x) =β λx : σ . idσ x =β λx : σ . x

Case if ρ / σ and σ / τ then ρ / τ

53

Let ρ, σ and τ be some type such that ρ / σ and σ / τ . Then there exists some
r1 : ρ→ σ and s1 : σ → ρ such that

λx : ρ . r1 (s1 x) =βη λx : σ . x

and a r2 : σ → τ and s2 : τ → σ such that

λx : σ . r2 (s2 x) =βη λx : σ . x

. Take r = λx : ρ . r1 (r2 x) and s = λx : τ . s2 (s1 x), then

λx : ρ . r (s x) =α λx : ρ . (λy : ρ . r1 (r2 y)) ((λz : τ . s2 (s1 z)) x)

=β λx : ρ . (r1 (r2 (s2 (s1 x)))

=β λx : ρ . (r1 ((λy : r2 (s2 y)) (s1 x)))

=βη λx : ρ . (r1 (s1 x))

=βη λx : ρ . x

Case if σ / σ′ and τ / τ ′ then σ′ → τ / σ → τ ′

Let σ, σ′, τ and τ ′ be some type such that σ /σ′ and τ / τ ′. Then there exists some
r1 : σ → σ′ and s1 : σ′ → σ such that

λx : ρ . r1 (s1 x) =βη λx : σ . x

and a r2 : τ → τ ′ and s2 : τ ′ → τ such that

λx : τ . r2 (s2 x) =βη λx : σ . x

Let
r = λf : σ → τ ′ . λx : σ′ . r2 (f (r1 x))

and
s = λf : σ′ → τ . λx : σ . s2 (f (s1 x))

then

λf : σ′ → τ . r (s f) =α λf : σ′ → τ . (λg : σ → τ ′ . λx : σ′ . r2 (g (r1 x)))

((λh : σ′ → τ . λy : σ . s2 (h (s1 y))) f)

=β λf : σ′ → τ . (λx : σ′ . r2 ((λy : σ . s2 (f (s1 y))) (r1 y))))

=β λf : σ′ → τ . (λx : σ′ . r2 (s2 (f (s1 (r1 y)))))

=βη λf : σ′ → τ . (λx : σ′ . f y)

=η λf : σ′ → τ . f

This seems to capture type complexity. For example Bauer [9] shows that his level
function defined for System T implies retraction of two types and it can be shown this
is true for our defined level function for simply typed lambda calculus.

Now we can use this more general notion for type complexity to define a more general
level function.

Definition 6.11. A complexity function is a function lv from types to the natural

54

numbers such that for all σ, τ , if lv(σ) ≤ lv(τ) then σ / τ .

Small problem with this is that it leaves us with an unspecified complexity function.
This can be difficult to work with. However we conjecture that we can always transform
a level function into something as follows:

Conjecture 6.12. if a lambda calculus has a complexity function, then it has a
complexity function lv′ such that lv′(ρ→ σ) = max(1 + lv′(ρ), lv′(σ)).

So if we use a complexity function, we can just assume it has the rule

lv(σ → τ) = max(1 + lv(σ), lv(τ))

without loss of generality.

Now we can show that if the complexity of �τ isn’t equal or higher to τ , for any
complexity function, then we have fixed-points for some functions. This proof again
closely follows a proof given by Bauer [9]. But first we have to introduce some notation.
For any type τ , we define (τ)i for i ∈ N as follows:

(τ)0 = τ (τ)i+1 = (τ)i → (τ)i

Theorem 6.13. Let lv be a complexity function for some typed calculus. For any
type τ , if a weak Brown-Palsberg self-interpreter satisfies lv(�τ) < lv(τ), then

every f ∈ Λ
(τ)i

c , for i ≥ 1, has a fixed-point with respect of βη−equivalence.

Proof. Let i ∈ N. Then we notice that

lv(�τ → (τ)i) = max(lv(�τ) + 1, lv((τ)i)) = lv((τ)i)

Therefore we have lv(�τ → (τ)i) ≤ lv(τ i). Now by definition of the complexity
function we have a �τ → (τ)i / τ i, so therefore we have some

s : (�τ → (τ)i)→ (τ)i and r :→ (τ)i → �τ → (τ)i

such that
λx : �τ → (τ)i . r (s x) =βη λx : �τ → (τ)i . x

Now we let f ∈ Λ
(τ)i

c , g = λx : �τ . f (r (unquoteτ x) x), and n = ps gq. Then we
have

r (unquote n) n =β r (s g) n

=βη g n

=β f (r (unquote n) n)

So f has a fixed-point under βη-equivalence.

With this theorem, we can show that any �τ needs to be at least as complex as τ .

55

Corollary 6.14. Let lv be some complexity function for a weakly normalizing
calculus. Then any self-interpreter satisfies lv(�τ) ≥ lv(τ) for every type τ .

Proof. Assume, toward contradiction, that for some τ we have lv(�τ) < lv(τ). Let

s := λn : (τ → τ)→ τ → τ . λf : τ → τ . x→ τ . f (n f x)

Then s is of type (τ)3 and therefore by theorem 6.13 s has a fixed-point. However,
as seen in the proof of theorem 6.6, this leads to a contradiction.

56

6.4 Self-Evaluator

We have said a lot about the self-recognizer in this section and not a lot about the other
self-interpreter, the self-evaluator. Would it even be possible to define a self-evaluator
or is there a self-evaluator barrier? We have seen that the evaluator, in Section 4.0.3,
is more difficult to define than a recognizer and makes use of fixed-point combinator.
Here things changes when we are talking about a strongly normalizing calculus and the
representations we can make with it.

Let say we have a strongly normalizing calculus with products and with an effective
representation p− : τq, now we can define a new representation and an evaluator as
follows

pM : τq′ := (pM : τq, pnf(M) : τq)

Eτ := λx : �τ ×�τ . pair (snd x) (snd x)

Now (pM : τq′, Eτ) forms a self-evaluator.

With non-normalizing calculi we would add the requirement for the representation to
be effective to avoid such trivial representations. However since we are working in a
strongly normalizing calculus, this representation is also effective. And since every term
has a unique normal form it is also a definable representation.

It seems like there is really not a simple requirement for this trivial self-evaluator to
go away. For example we could add the constraint that we need to also be able to
do single-step reductions, however then we could define still an effective representation
that includes all single steps. We could include the constraint that we should be able
to do all possible single step reductions and switch strategy ad-hoc. This still wouldn’t
solve the problem since we can build a tree of all possible strategies as representations
and use this. And again since we are working in a strongly normalizing calculus these
representations would both be definable and effective.

Therefore either the definition of the self-evaluator is faulty or it does not imply a
lot about the strength of the representation and the calculus itself.

57

7 System Fω Self-Recognizers

Before we go into a System Fω self-recognizer, we need to acknowledge that types are
complicated in System Fω. We have seen this in Section 2.3, that types in System Fω
is a form of λ→ . They are complicated enough that we can define a encoding function
on types.

Definition 7.1.
An encoding function on constructors in System Fω (a.k.a λω) is a function J−K :
Ctor(λω)→ Ctor(λω), such that for all M,N ∈ Λ we have

� Injectivity up to beta equivalence, i.e. JτK =β JσK⇒ τ =β σ

The set {JτK | M ∈ Ctor(λω) and for all types τ} is called a representation on
constructors or an encoding on constructors.

Note that we only need up to β-equivalence, because of the type derivation rules as seen
in Definition 2.24. With this definition the identity function is also a encoding function
on constructors, which is what we want as we will see in the next section. We will also
change the definition of encoding function on terms to include the encoding function on
terms.

Definition 7.2.
Let J−K be an encoding function on types. Let � be a function from encoded types
to types, then an encoding function on terms is a function p− : τq : Λτ → Λ�JτK,
such that for all M,N ∈ Λ we have

� Injectivity up to alpha equivalence, i.e. pM : τq =α pN : σq⇒M =α N

� Normality, i.e. pM : τq is in normal form

The set {pM : τq | M ∈ Λτ and forall types τ} is called a representation or an
encoding.
When there is a type σ such that �JτK = σ for all τ , then we the representation
has a constant type.

7.1 Trivial Self-Recognizer

Brown and Palsberg showed, for the first time, that a strong self-interpreter is possible for
a strongly normalizing calculus and therefore broke through the normalization barrier
[10]. Before they introduce their complex self-interpreter, they define a trivial self-
interpreter which inspired the one that we have seen in Section 4.1.

Definition 7.3. Let the identity function be the encoding for constructors. Let
for all types τ and for all terms M ∈ Λτ the trivial encoding function be pM : τq1,

58

with �JτK = �τ := (Πα : α→ α)→ τ, as follows:

pM : τq1 = λid : (Πα : ∗ . α→ α) . pM : τq1

px : τq1 = x

pλx : τ1 . M : τ1 → τ2q1 = λx : τ1 . pM : τ2q1
pM N : τq1 = id (τ2 → τ) pM : τ2 → τq1 pN : τ2q1

pλα : κ . M : Πα : κ.τq1 = λα : κ . pM : τq1
pM τ2 : τ1[α := τ2]q1 = (id (Πα : κ . τ1) pM : (Πα : κ . τ1)q1) τ2

We find that the defined function is an encoding function is injective, as it maps terms
to itself with some added variables added. It is also in normal form, since wherever
redexes can form, namely in the application cases, we block reductions by adding the id
term in front. Therefore the encoding function is a polymorphic encoding function as
defined in Definition 7.2.

While it is good that the encoding function follows our definition, we also need that
it is definable in System Fω terms.

Lemma 7.4. For all M ∈ Λτ , if Γ ` M : τ , then Γ′ ` pM : τq1 : τ , where
Γ′ = Γ ∪ {id : Πα : ∗ . α→ α}

Proof. The proof is by induction on the structure of terms. The only non-trivial
type judgements are the application cases. These have been done in Figure 6.

Corollary 7.5. If Γ `M : τ , then Γ ` pM : τq1 : (Πα : ∗ . α→ α)→ τ .

Proof. It follows from Lemma 7.4 and the following type judgement.

...

Γ ` (Πα : ∗ . α→ α) : ∗ Γ, id : Πα : ∗ . α→ α ` pM : τq1 : τ

Γ ` λid : (Πα : ∗ . α→ α) . pM : τq1 : (Πα : ∗ . α→ α)→ τ

Definition 7.6. We define the recognizer for the trivial self-recognizer as follows:

unquote
1

= λα : ∗ . λq : (Πβ : ∗ . β → β)→ α . q (λβ : ∗ . λx : β . x)

Now however, we need still an important thing. That the claim we make, that
(p− : −q1, unquote1 τ) forms a self-interpreter, is indeed true. For this we will use some
extra notation, where

1 = (λβ : ∗ . λx : β . x)

which will make the proof a bit more clear. Before we proof that it indeed forms a
self-interpreter, we will proof that when we substitute id into a encoded term with, you
guessed it, the polymorphic identity function 1, it beta reduces to the term itself.

59

F
ig

u
re

6
:

T
y
p

e
ju

d
g
m

en
ts

o
f

th
e

a
p

p
li

ca
ti

o
n

ca
se

s

Γ
′
`
id

:
(Π
α

:
∗
.
α
→
α

)
Γ
′
`

(τ
2
→
τ
)

:
∗

Γ
′
`
id

(τ
2
→
τ
)

:
(τ

2
→
τ
)
→

(τ
2
→
τ
)

Γ
′
`
pM

:
τ 2
→
τ
q

:
τ 2
→
τ

Γ
′
`
id

(τ
2
→
τ
)
pM

:
τ 2
→
τ
q

:
τ 2
→
τ

Γ
′
`
pN

:
τ 2
q

:
τ 2

Γ
′
`
id

(τ
2
→
τ
)
pM

:
τ 2
→
τ
q
pN

:
τ 2
q

:
τ

Γ
′
`
id

:
(Π
α

:
∗
.
α
→
α

)
Γ
′
`

(Π
α

:
κ
.
τ 1

)
:
∗

Γ
′
`
id

(Π
α

:
κ
.
τ 1

)
:

(Π
α

:
κ
.
τ 1

)
→

(Π
α

:
κ
.
τ 1

)
Γ
′
`
p M

:
(Π
α

:
κ
.
τ 1
q 1

:
(Π
α

:
κ
.
τ 1

)

Γ
′
`
id

(Π
α

:
κ
.
τ 1

)
p M

:
(Π
α

:
κ
.
τ 1
q 1

:
(Π
α

:
κ
.
τ 1

)
Γ
′
`
τ 2

:
∗

Γ
′
`

(i
d

(Π
α

:
κ
.
τ 1

)
p M

:
(Π
α

:
κ
.
τ 1

)q
1
)
τ 2

:
τ 1

[α
:=

τ 2
]

60

Lemma 7.7. For all terms M ∈ Λτ we have pM : τq1[id := 1]�β M .

Proof. We prove this by induction on the structure of System Fω.
Base case

px : τq[id := 1] = x

Abstraction case

pλx : τ1 . M : τ1 → τ2q[id := 1] = λx : τ1 . pM : τ2q[id := 1]

�β λx : τ1 . M

Application case

pM N : τq[id := 1]

= 1 (σ → τ) pM : σ → τq[id := 1] pN : σq[id := 1]

→β (λx : σ → τ . x) pM : σ → τq[id := 1] pN : σq[id := 1]

→β pM : σ → τq[id := 1] pN : σq[id := 1]

�β M N

Type abstraction case

pλα : κ . M : Πα : κ.τq[id := 1]

= λα : κ . pM : τq[id := 1]

�β λα : κ . M

Type application case

pM τ : σ[α := τ]q[id := 1]

= (1 σ pM : σq[id := 1]) τ

→β ((λx : σ . x) pM : σq[id := 1]) τ

�β ((λx : σ . x) M) τ

→β M τ

Corollary 7.8. The pair (p− : −q1, unquote1 τ) forms a self-interpreter.

Proof.

unquote
1
τ pM : τq1

→β (λq : (Πβ : ∗ . β → β)→ τ . q 1) pM : τq1
→β pM : τq1 1

→β pM : τq1[id := 1]

�β M

61

62

7.2 Brown-Palsberg Self-Recognizer

7.2.1 Representing Types

For their encoding function on terms, Brown and Palsberg present a novel encoding
function for types which has been designed to support three properties.
First of all they require it to code all constructors, not only types. Secondly it should
preserve beta-equivalence between types and finally it should be expressive enough to
for the benchmarks they defined.

Now let us assume we have some encoding function which represent terms, then the
question is what type do we require the encoded term to be. The first thing to note
is that a term is always a type, which is of a single kind. That, together with the
beta-equivalence requirement, means we can only code the type abstraction and type
application as themselves.

Now recall our encoding function for the trivial self-recognizer. There the type was
for a encoded term of type τ is (Πα : α→ α)→ τ . The problem with this typing is that
it can only accept the polymorphic identity function [39], and then can only output a
term of type τ . However we want to output a type dependent on the type of the term,
so that we still have the self-recognizer, but can also result in for example a natural
number or boolean.
The way this can be done is assuming a constructor F : ∗ → ∗ and let the encoded term
depend on this F . Then given F to be the identity, we want the encoded term to result
in the type itself. Or if we enter the constant F = λα : ∗ . Nat, we want the resulting
type to be a natural.

Now bringing this together we can define a pre-encoding function on types.

Definition 7.9. Let F be a free variable, with F : ∗ → ∗. We define the pre-
encoding function for constructors as follows:

JαK = α

Jτ1 → τ2K = F Jτ1K→ F Jτ2K

JΠα : κ . τK = Πα : κ . F JτK

Jλα : κ . CK = λα : κ . JτK

JC1 C2K = JC1K JC2K

And then we define the encoding function to be the pre-encoding function where we
abstract from F .

Definition 7.10.

JCK := λF : ∗ → ∗ . JCK

By definition it follows that J−K is a encoding function on constructors as defined in
Definition 7.1.

7.2.1.1 Properties & Proofs

Now that we have encoding for constructors, we still want to check the requirements,
properties and most of important of all, check if it is in fact an encoding function as

63

we have defined. Note that we already fulfilled a requirement, namely that the function
works not only on types, but on all constructors. However the requirement that it pre-
serves beta-equivalence isn’t as obvious.

We will start off with checking if the (pre-)encoding function is well-formed. That is,
given a constructor we want to know if the (pre -)encoded constructor is a constructor
in System Fω.

Lemma 7.11. If Γ ` C : κ, then Γ, F : ∗ → ∗ ` JCK : κ and Γ ` JCK : (∗ → ∗)→
κ.

Proof.
First let us define Γ2 := Γ ∪ {F : ∗ → ∗}.
Induction Hypothesis:

C2 : κ2 is a subconstructor of C =⇒ (Γ ` C2 : κ2 =⇒ Γ2 ` JC2K : κ2)

Base case C = α
Trivial, since JαK = α.

Case C = τ1 → τ2
By induction hypothesis we have Γ2 ` Jτ1K : ∗ and Γ2 ` Jτ1K : ∗. Then by
F : ∗ → ∗ ∈ Γ2 we have Γ2 ` F Jτ1K : ∗ and Γ2 ` F Jτ2K : ∗ and therefore
Γ2 ` Jτ1 → τ2K : ∗

case C = λα : κ′ . C2 (and C = Πα : κ′ . τ)
From assumption Γ ` C we have Γ, a : κ′ ` C2 : κ2. Then by induction hypothesis
we have Γ2, a : κ′ ` JC2K : κ2, and therefore we have Γ2 ` Jλα : κ2 . C2K : κ.
Πα : κ′ . τ goes the same, except for the extra F application step, which follows
from F : ∗ → ∗ ∈ Γ2.

case C = C1 C2 : κ
By induction hypothesis we have Γ2 ` JC1K : κ2 → κ and Γ2 ` JC2K : κ2, so
therefore Γ2 ` JC1 C2K : κ.

We have another property that will be important for showing that the encoding function
preserves beta and alpha equivalence, namely a substitution lemma. The pre-encoding
function has the nice property that a pre-encoded constructor with a substitution is the
same as substituting the pre-encoded substitution in the pre-encoded constructor.

Lemma 7.12. Let C1, C2 be constructors, then JC1K[α := JC2K] = JC1[α := C2]K

Proof. Base cases C1 = α and C1 6= α.

Jα[α := C2]K = JC2K = α[α := JC2K] = JαK[α := JC2K]

Jβ[α := C2]K = JβK = β = β[α := JC2K] = JβK[α := JC2K]

64

Case C1 = τ1 → τ2.

Jτ1 → τ2[α := C2]K = Jτ1[α := C2]K→ Jτ2[α := C2]K

= Jτ1K[α := C2]→ Jτ2K[α := C2] by IH

= (Jτ1K→ Jτ2K)[α := C2]

= Jτ1 → τ2K[α := C2]

Case C1 = Πβ : ∗ . τ .

JΠβ : ∗ . τ [α := C2]K = Πβ : ∗ . Jτ [α := C2]K

= Πβ : ∗ . JτK[α := JC2K] by IH

= JΠβ : ∗ . τK[α := JC2K]

Case C1 = D1 D2

JD1 D2[α := C2]K = J(D1[α := C2]) (D2[α := C2])K

= JD1[α := C2]K JD2[α := C2]K

= JD1K[α := JC2K] JD2K[α := JC2K] by IH

= (JD1K JD2K)[α := JC2K]

= JD1 D2K[α := JC2K]

Case C1 = λβ : κ . D

Jλβ : κ . C2[α := C2]K = λβ : κ . JC2[α := C2]K

= λβ : κ . JC2K[α := JC2K] by IH

= Jλβ : κ . C2K[α := JC2K]

Now that we have that out of the way, we can show that the pre-coding function preserves
alpha equality.

Lemma 7.13. Let C1 and C2 be constructors, then we have

C1 =α C2 ⇐⇒ JC1K =α JC2K

Proof.
Base case C1 = α

C1 =α C2 and C1 = α ⇐⇒ C1 = α and C2 = α

⇐⇒ JC1K =α JC2K and C1 = α

Case C1 = Πα : κ . τ

C1 =α C2 ⇐⇒ C2 = σ1 → σ2 ∧ τ1 =α σ1 ∧ τ2 =α σ2

⇐⇒ C2 = σ1 → σ2 ∧ Jτ1K =α Jσ1K ∧ Jτ2K =α Jσ2K by IH

⇐⇒ JC1K =α JC2K

65

The cases C1 = Πα : κ . τ and C2 = D1 D2 are similar to this one.

Case C1 = λα : κ . τ

C1 =α C2 ⇐⇒ C2 = λβ : κ . σ ∧ τ =α σ[β := α]

⇐⇒ C2 = λβ : κ . σ ∧ JτK =α Jσ[β := α]K by IH

⇐⇒ C2 = λβ : κ . σ ∧ JτK =α JσK[β := α] by Lemma 7.12

⇐⇒ JC1K =α JC2K

And from this, preservation of alpha equivalence from the encoding function follows
trivially.

Corollary 7.14. Let C1 and C2 be constructors, than C1 =α C2 if and only if
JC1K =α JC2K.

While alpha-equivalence is a nice property to have, this does not fulfill the beta-equivalence
property required by Brown and Palsberg. To proof beta-equivalence, we will prove the
stronger beta-reduction equivalence, i.e. if τ reduces to some σ, then the encoded τ also
reduces to the encoded σ.

Lemma 7.15. Let C1 and C2 be some constructors. Then we have

C1 �β C2 ⇐⇒ JC1K =⇒ JC2K.

Proof.
Let C1 and C2 be constructors such that C1 �β C2. Then we can show JC1K �β

JC2K by induction on C1.

Base case C1 = α
C1 is in normal form, therefore C1 = C2, which means JC1K = JC2K and therefore
JC1K�β JC2K.

Case C1 = τ1 → τ2
By assumption we have C1 �β C2 and therefore there are types σ1, σ2 such that
τ1 �β σ1, τ2 �β σ2 and C2 = σ1 → σ2.

JC1K = F Jτ1K→ F Jτ2K

�β F Jσ1K→ F Jσ2K by IH

= JC2K

Case C1 = Πα : κ . τ
By assumption we have C1 �β C2 and therefore there is a type σ such that τ �β σ

66

and C2 = Πα : κ . σ. Then we have

JC1K = Πα : κ . F JτK

�β Πα : κ . F JσK by IH

= JC2K

Case C1 = λα : κ . D
By assumption we have C1 �β C2 and therefore there is a constructor E such that
D �β E and C2 = λα : κ . E. Then we have

JC1K = λα : κ . JDK

�β λα : κ . JEK by IH

= JC2K

Case C1 = (λα : κ . D1) D2

Now we have two possibilities for how C2 looks like. The first is that the top redex
did not reduce, and therefore there are constructors E1 and E2 where D1 �β E1,
D2 �β E2 and C2 = (λα : κ . E1) E2. Then

JC1K = J(λα : κ . D1)K JD2K

= (λα : κ . JD1K) JD2K

�β (λα : κ . JE1K) JE2K by IH

= J(λα : κ . E1)K JE2K

= JC2K

Or we have that the top redex did reduce and therefore there are constructors E1

and E2 where D1 �β E1, D2 �β E2 and C2 = E1[α := E2].

JC1K = J(λα : κ . D1)K JD2K

= (λα : κ . JD1K) JD2K

→β JD1K[α := JD2K]

→β JE1K[α := JE2K] by IH

→β JE1[α := E2]K by Lemma 7.12

= JC2K

Corollary 7.16. Let C1 and C2 be constructors, than we have

C1 =β C2 =⇒ JC1K =β JC2K ⇐⇒ JC1K =β JC2K

67

7.2.2 Coding Terms Lower-Order terms

Now that we have an encoding function on types, we will look at the encoding function
on terms. First we will look at with what we will call lower-order terms, i.e. the terms
we also have in simple typed lambda calculus. These are variable, term abstraction and
term application. Also, following in the footsteps of the paper by Brown and Palsberg,
we will present the closed term version.

We again start with a pre-encoding function, where we are going to assume that the type
of this pre-encoding function on terms is our pre-encoding function on types applied to
the given constructor, i.e. if we have a closed term of type τ , the pre-encoded term has
the type F JτK.

We will start with variables. Unlike the others, we won’t surround these with a free
variable, since the self-recognizer will only be defined for closed terms.

px : τqω = x

Next we look at the application case. We take a terms M1 M2 : τ , where M1 : σ → τ
and M2 : σ. Then we introduce a app term, similar to the id term in the trivial self-
interpreter. However, unlike the trivial self-interpreter, this term is not only to block
β-reduction, but is also there to make use of by binding it to different terms. Now for
this be as flexible as possible, we need information. We will be only dealing with two
types, namely F JσK and F JτK. Note that this is since F Jσ → τK = F (F JσK→ F JτK).
And then we simply apply these two types and the terms, and the app term should have
all the information it needs.

Finally we will look at the abstraction case. We let M = λx : σ . M2, with M : σ → τ
and M2 : τ . This one is very similar to the application case, except in reverse. Here
we want to introduce an abs term, and again apply it to the two types we have to deal
with. And then finally we apply the term and types to the abstraction.

Putting it all together we get the following pre-encoding and encoding function for
lower-order terms.

Definition 7.17. We define the types Abs and App as follows:

Abs : λF : ∗ → ∗ . Πα, β : ∗ . (α→ β)→ F (α→ β)

App : λF : ∗ → ∗ . Πα, β : ∗ . F (α→ β)→ α→ β

Let F , abs and app be free variables with F : ∗ → ∗, abs : Abs F and app : App F .
We define the pre-coding function for lower-order terms as follows:

px : τqω = x

pλx : σ . M : σ → τqω = abs (F JσK) (F JτK) (λx : F JσK . pM : τqω)

pM N : τqω = app (F JσK) (F JτK) pM : σ → τqω pN : σqω

pM : τq = λF : ∗ → ∗ .
λabs : Abs F .

λapp : App F . pM : τqω

68

7.2.2.1 Properties & Proofs

Now for our first requirement. We wanted an encoded term with a type based on the
encoded type of the term. To proof we have correctly defined the type of the encoding
function, we will start with the proving that the pre-coding function has the type as we
have previously required. We will both proof that this works for closed terms given an
specific environment.

Lemma 7.18. Let Γ `M : τ be a lower-order term. Define Γ2 as follows:

Γ2 :={x : F JσK | x : σ ∈ Γ} ∪ {α : κ | α : κ ∈ Γ}
∪ {F : ∗ → ∗, app : App F, abs : Abs F}

Then Γ2 ` pM : τqω : F JτK.

Proof.
Note that we can conclude from the definition of Γ2 and Lemma 7.11 that if
Γ ` C : ∗ then Γ2 ` JCK : ∗ and Γ2 ` F JCK : ∗.

Induction hypothesis

N is a subterm of M =⇒ (Γ ` N : σ =⇒ Γ2 ` pN : σqω : F JσK)

Base case M = x

(x : τ) ∈ Γ
Def Γ2

(x : F JτK) ∈ Γ2

Γ2 ` px : τqω : F JτK

Case Γ ` λx : σ1 . N : σ1 → σ2

By Γ ` σ1 → σ2 : ∗ and Lemma 7.11 we have that Γ2 ` F Jσ1 → σ2K : ∗. Therefore
we have

abs : Abs F ∈ Γ2 Γ2 ` F Jσ1K : ∗ Γ2 ` F Jσ2K : ∗
(1)

Γ2 ` abs (F JσK) (F Jσ2K) : (Jσ1K→ Jσ2K)→ F Jσ1 → σ2K)

By induction hypothesis and assumption of Γ `M : τ we have:

Γ2 ` F Jσ1K : ∗
Γ, (x : σ1) ` N : σ2

Γ2, (x : F Jσ1K) ` pN : σ2qω : F Jσ2K
(2)

Γ2 ` (λx : F Jσ1K . pN : σ2qω) : F Jσ2K

Taking this all together we can finish the proof for pλx : σ1 . Mσ2 : σ1 → σ2qω in
a final prooftree.

(1) (2)

Γ2 ` abs (F JσK) (F JτK) (λx : F Jσ1K . pN : σ2qω) : F Jσ1 → σ2K

69

Case N1 N2 : τ and N2 : σ1

By Γ ` N1 N2 : τ and Lemma 7.11 we have that Γ2 ` F Jσ → τK : ∗. Therefore we
have

abs : Abs F ∈ Γ2 Γ2 ` F JσK : ∗ Γ2 ` F JτK : ∗
(1)

Γ2 ` abs (F JσK) (F JτK) : (F Jσ → τK)→ (F JσK)→ (F JτK)

By induction hypothesis and assumption of Γ `M : τ we have:

Γ ` N1 : σ → τ
(2a)

Γ2 ` pN1 : σ → τqω : F Jσ → τK

Γ ` N2 : σ
(2b)

Γ2 ` pN2 : σqω : F JσK

Taking this all together we can finish the proof for pN1 N2 : τqω in a final prooftree.

(1) (2a) (2b)

Γ2 ` app (F JσK) (F JτK) pN1 : σ → τqω pN2 : σqω : F JτK

Now note that the environment is based on the environment of the term itself and
the free variables we defined in the pre-coded function. Therefore if we bind the free
variables then the encoding of a closed term is itself a closed term.

Definition 7.19.

Exp =λα : (∗ → ∗)→ ∗ . ΠF : ∗ → ∗ . Abs F → App F → (α F)

Corollary 7.20. Given some lower-order term M with Γ `M : τ and define
Γ2 := {x : F JσK | x : σ ∈ Γ} ∪ {α : κ | α : κ ∈ Γ} then we have Γ2 ` pM : τqω :
Exp JτK

Proof. Follows from Lemma 7.18 and the following beta-reduction:

Exp JτK�β ΠF : ∗ → ∗ . Abs F → App F → F JτK

Now the question remains if the function p− : −qω is an encoding function, as we have
defined in Definition 7.17. For a reminder, for this to be true the function needs to be
injective and normal.

Lemma 7.21. The function p− : −qω is normal for lower-order terms, i.e. given
some simple term M with Γ `M : τ the encoded term pM : τqω is in normal form

Proof.
We note that the terms abs and app are bound and therefore cannot reduce. The
same is true for the constructor F . Therefore a beta reduction can only occur in
the application case. In specific, if we are have a term M = M1 M2, then pM1qω

70

has to be of the form λx : τ . N , which is impossible.

Lemma 7.22. The function p− : −qω is injective for lower-order terms, i.e. given
some simple term M and N with ΓM `M : τ and ΓN ` N : σ then we have

pM : τqω =α pN : σqω =⇒ M =α N

Proof.
Let M , N be as in the Lemma statement.

Base case M = x : τ .
We have pN : σqω =α x : F JτK So there is some variable y and type σ such that
N = y : σ. Now we have py : σqω = y : F JσK =α x : F JτK. Therefore JσK = JτK,
then by Lemma 7.12 we have σ =α τ and so N =α M .

Case M = (λx : τ1 . M2) : τ1 → τ2
So we have pN : σqω =α pλx : τ1 . M2 : τ1 → τ2qω, and therefore there is some y,
some σ1, σ2 and N2 such that N = (λy : σ1 . N2) : σ1 → σ2. Therefore we have

abs (F Jτ1K) (F Jτ2K) (λx : F Jτ1K . pM2 : τ2qω)

=α abs (F Jσ1K) (F Jσ2K) (λy : F Jσ1K . pN2 : σ2qω)

Therefore by Lemma 7.12 we have τ1 =α σ1 and τ2 =α σ2 and by the induction
hypothesis we have M2 =α N2. Therefore M =α N .

Case M = M1 M2

By pN : σqω =α pM1 M2 : σqω, which means that there exists some N1 : σ2 → σ
and N2 : σ2 such that N = N1 N2.

app (F Jτ2 → τK) (F Jτ2K) pM1 : τ2 → τqω pM2 : τ2qω
=α app (F Jσ2 → σK) (F Jσ2K) pN1 : σ2 → σqω pN2 : σ2qω

Therefore by Lemma 7.12 we have τ2 → τ =α σ2 → σ and τ2 =α σ2 and by the
induction hypothesis we have M1 =α N1 and M2 =α N2. Therefore M =α N .

Corollary 7.23. The function from Definition 7.17 is an encoding function for
lower-order terms.

It is good to know that we have defined the encoding functions according to our def-
initions, however we are still missing the most important part. What can we do with
the encoding function? We will show that it at least forms a strong self-interpreter for
lower-order terms. To prove this we will first define the term foldExp, which will bind
the free variables of the pre-coding function.

71

Definition 7.24.

foldExp : ΠF : ∗ → ∗ . Abs F → App F →
Πα : (∗ → ∗)→ ∗ . Exp α→ F (α F)

foldExp := λF : ∗ → ∗ . λabs : Abs F . λapp : App F .

λα : (∗ → ∗)→ ∗ . λe : Exp α . e F abs app

Lemma 7.25. Let M be a closed simple term with ∅ ` M : τ . Now let C : ∗ → ∗
be a constructor and A1 : Abs C, A2 : App C be some terms. Then we have

foldExp C A1 A2 JτK pM : τqω

�β pM : τqω[F := C, app := A1, abs := A2]

Proof.

foldExp C A1 A2 JτK pM : τqω

�β pM : τqω C A1 A2

= (λF : ∗ → ∗ . λabs : Abs F . λapp : App F . pM : τqω) C A1 A2

�β pM : τqω[abs := A1, app := A2]

Now for the grand finale for encoding lower-order terms, a constructive proof that a
strong self-interpreter exists for lower-order terms.

Definition 7.26.

Id : ∗ → ∗
= λα : ∗ . α

unAbs : Abs Id

= λα : ∗ . λβ : ∗ . λf : α→ β . f

unApp : App Id

= λα : ∗ . λβ : ∗ . λf : α→ β . λx : α . f x

unquote : Πα : U . Exp α→ Id (α Id)

= foldExp Id unAbs unApp

Lemma 7.27. Let M be a simple term, then for all types τ and for all simple
closed terms M , the pair (pM : τqω, unquote JτK) forms a strong self-interpreter,
i.e.

unquote JτK pM : τqω �β M.

Proof. Let the term M be as in the statement and let S = [F := Id, abs :=
unAbs, app := unApp]. Base case x : τ

72

px : τ : qω S = x : Id τ �β x : τ

Now we take induction hypothesis as pM : τqω S �β M , then we have
Case λx : σ1 . M : σ1 → σ2

pλx : σ1 . M : σ1 → σ2qω S

�β unAbs σ1 σ2 (λx : σ1 . pM : σ2qω S)

�β unAbs σ1 σ2 (λx : σ1 . M)

�β λx : σ1 . M

Case N1 N2

pN1 N2 : τqω S

�β unApp (σ → τ) σ (pN1 : σ → τqω S) (pN2 : σqω S)

�β unApp (σ → τ) σ N1 N2

�β N1 N2

Then by Lemma 7.25 we have that the pair (p− : τqω, unquote JτK) form a
self-interpreter for any type τ .

73

7.2.3 Coding Higher-Order Terms

In this section we want to finish the encoding function on terms. The remaining terms
we will call the Higher-Order terms. We will handle both the abstraction and application
with types separately. This is because both will require some extras, which is directly
related to the fact that constructors are not terms, which will require some explanation.

7.2.3.1 Constructor Abstraction Term

First we will discuss the term that abstracts a constructor over a term, i.e. terms of the
form Πα : κ . M . So here α is being quantified over.

Now a quantifier is redundant when a term M has the type Πα : κ . τ and α does
not occur in τ . So for example the term λα : κ . 1 has a redundant quantifier. When we
want to define a encoding for constructor abstraction terms similar to how we defined
the encoding for abstraction terms, we will be dealing a lot with redundant quantifiers.
To see this, let us assume that we have some F with F = λα : ∗ . τ , where τ is indepen-
dent of α. Now we would like to code constructor abstraction terms as something like
tabs (...) (Πα : κ . pM : σqω) with a type of F JΠα : κ . σK. We assumed F is constant,
so therefore α is a redundant quantifier that we have to remove.

We know that the quantifier does not affect the type, now we want to prove that this
also doesn’t affect the beta-reduction.

Lemma 7.28. When we have a term λα : κ . N of type Πα : κ . τ with α 6∈ FV(τ),
then given some constructor C : κ we have

(λα : κ . M) C =β M

Proof.
Base case M = x

x[α := C] = x

Case M = λx : τ2 . N

(λx : τ2 . (λβ : κ . N) C)[α := C]

=β (λx : τ2 . (λβ : κ . N [α := C]) C)

Case M = N1 N2

(N1 N2)[α := C]

= N1[α := C] N2[α := C]

=β N1 N2By IH

Case M = λβ : κ2 . N

(λα : κ . λβ : κ2 . N) C

→β λβ : κ2 . N [α := C]

=β λβ : κ2 . N by IH

74

Case M = N D

(N D)[α := C]

=β N D[α := C] by IH

=α (Πβ : κ . N2) D[α := C]

=β N2[β := D[α := C]]

Then either α 6∈ D or β is redundant and then it follows from induction hypothesis.

From this lemma we can conclude that given a term with a redundant quantifier, we
can apply any constructor without affecting the term inside. We also have that every
constructor is inhabited, therefore given a kind we simply can generate a constructor of
this kind. Such a constructor generator can be defined as follows:

Definition 7.29. The constructor generator C(κ).

C(∗) = (Πα : ∗ . α)

C(κ1 → κ2) = λα : κ1 . C(κ2)

However note that C(−) is not definable in System Fω. So to still be able to strip
redundant quantifiers, we attach a constructor of the right kind to every type abstraction
term in the pre-coding.
To do this Brown and Palsberg define a strip term. This term will also take some
additional inputs to make sure that the quantifier is redundant. The strip function is
defined as follows:

Definition 7.30. Strip function

S(F, κ, λα : κ . τ) = λβ : ∗ . λf : (Πγ : ∗ . F γ → β) . λx : (Πδ : κ . F Jτ [α := δ]K) .

f Jτ [α := C(κ)]K (x C(κ))

Strip = λF : ∗ → ∗ . λα : ∗ . Πβ : ∗ . (Πγ : ∗ . F γ → β)→ α→ β

Lemma 7.31. Let Γ ` λα : κ . N : Πα : ∗ . τ . Then we have

Γ, (F : ∗ → ∗) ` S(F, κ, (λα : κ . τ)) : (Strip F JΠα : κ . τK)

Proof.
First we note that ∅ ` C(κ) : κ and Γ ` τ : ∗ from assumption. Then we can also
conclude that Γ, F : ∗ → ∗ ` JτK by Lemma 7.11. With these in mind we can
quickly check if it is well typed.

Γ ` f : F Jτ [α := C(κ)]K→ β Γ ` x : F Jτ [α := C(κ)]K Γ ` Jτ [α := C(κ)]K : κ

f Jτ [α := C(κ)]K (x C(κ))

Now the question remains if the typing Strip is the correct typing for the strip

75

function.

Strip F JΠα : κ . τK

�β Πβ : ∗ . (Πγ . F γ → β)→ JΠα : κ . τK→ β

=α Πβ : ∗ . (Πγ . F γ → β)→ JΠδ : κ . τ [α := δ]K→ β

= Πβ : ∗ . (Πγ . F γ → β)→ Πδ : κ . F Jτ [α := δ]K→ β

Lemma 7.32. Let F be a constant constructor, i.e. F = λα : ∗ . σ for some
closed type σ. Let M = λα : κ . N of type Πα : κ . τ . Then we have

S(F, κ, Jλα : κ . τK) σ (λα : ∗ . Iσ) (λα : κ . pN : τqω)

�β pN : τqω

Proof.

S(λα : ∗ . τ, κ, Jλα : κ . τK) σ (λα : ∗ . Iσ) (λα : κ . pN : τqω)

= (λα : ∗ . λf : (Π : β : ∗ . F β → α) . λx : (Πγ : κ . F (C γ)) .

f (Jλα : κ . τK C(κ)) (x C(κ))) σ (λα : ∗ . Iσ) (λα : κ . pN : τqω)

�β (λf : (Π : β : ∗ . σ → σ) . λx : (Πγ : κ . σ) . f (Jλα : κ . τK C(κ)) (x C(κ)))

(λα : ∗ . Iσ) (λα : κ . pN : τqω)

�β (λα : ∗ . Iσ) (Jλα : κ . τK C(κ)) ((λα : κ . pN : τqω) C(κ))

�β Iσ ((λα : κ . pN : τqω) C(κ))

�β Iσ pN : τqω[α := C(κ)]

�β pN : τqω

With the strip function defined and checked, we can define the pre-encoding function
for type abstraction terms.

Definition 7.33.

TAbs = λF : ∗ → ∗ . Πα : ∗ . Strip F α→ α→ F α

Let F : ∗ → ∗, tabs : TAbs F , then we define the pre-coding function for type
abstraction terms as follows:

pλα : κ . M : Πα : κ.τqω = tabs JΠα : κ . τK S(F, κ, Jλα : κ . τK) (λα : κ . pM : τqω)

76

7.2.3.2 Constructor Application Term

When dealing with constructor application terms, we know it will always be in the form
of (λα : κ . N) τ . Again we are dealing with a constructor abstraction term. Now here
we want to deal with the case for when the quantifier is not redundant, for example if we
want to have a term that interpreters closed terms, i.e. E p(λα : κ . N) τ : σ[α := τ]qω �β

(λα : κ . N) τ . In our encoding function we make these terms by substituting the free
variables in the pre-coding function. The pre-coding function is of type F Jσ[α := τ]K,
which needs to be σ[α := τ]. To do this we have to bind F to the identity, i.e. λα : ∗ . α.
Now F is not constant, and therefore also not redundant.

But we are still not there. For the encoded function, we want to give the term and
the constructor to some free variable. Now note that a encoded term of type λα : κ . N
is of type JΠα : κ . τK = Πα : κ . JτK. Since, by Lemma 7.12 we have Jσ[α := τ]K =
JσK[α := JτK], we can just apply the encoded type to the encoded term and get a term
of the right type. For this we can use, what Brown and Palsberg call, an initiation func-
tion, which looks as follows: (λx : JΠα : κ . σK . x JτK). Note that, like the constructor
abstraction term with the function C(−), we can just add JτK to the term and let the
term itself figure it out. However since it will not be needed to use the encoded type τ ,
except for initiation, we add the function to the term.

Since the initiation function is more intuitive than the strip function, proving prop-
erties for the term is not necessary. Now putting this together we can define an type
application term pre-coding.

Definition 7.34.

TApp = λF : ∗ → ∗ . Πα : ∗ . F α→ Πβ : ∗ . (α→ F β)→ F β

Let F : ∗ → ∗ and tapp : TApp F be free variables, then we define the pre-coding
function for type application terms as follows:

pM C : σ[α := C]qω = tapp JΠα : κ . σK pM : (Πα : κ . σ)qω Jσ[α := C]K

(λx : JΠα : κ . σK . x JCK)

77

7.2.4 The Final encoding Function

Definition 7.35. The constructor generator C(−) and stripfunction S(−,−,−).

C(∗) = (Πα : ∗ . α)

C(κ1 → κ2) = λα : κ1 . C(κ2)

Strip = λF : ∗ → ∗ . λα : ∗ . Πβ : ∗ . (Πγ : ∗ . F γ → β)→ α→ β

S(F, κ, λα : κ . τ) : Strip F JΠα : κ . τK

= λβ : ∗ . λf : (Πγ : ∗ . F γ → β) . λx : (Πδ : κ . F Jτ [α := δ]K) .

f Jτ [α := C(κ)]K (x C(κ))

Definition 7.36. Let F : ∗ → ∗, then we define the pre-coding function for types
as follows:

JαK = α

Jτ1 → τ2K = F Jτ1K→ F Jτ2K

JΠα : κ . τK = Πα : κ . F JτK

Jλα : κ . CK = λα : κ . JτK

JC1 C2K = JC1K JC2K

Definition 7.37. Typing definitions

Abs = λF : ∗ → ∗ . Πα : ∗ . Πβ : ∗ . (F α→ F β)→ F (F α→ F β)

App = λF : ∗ → ∗ . Πα : ∗ . Πβ : ∗ . (F α→ F β)→ F α→ F β

TAbs = λF : ∗ → ∗ . Πα : ∗ . Strip F α→ α→ F α

TApp = λF : ∗ → ∗ . Πα : ∗ . F α→ Πβ : ∗ . (α→ F β)→ F β

Definition 7.38. Let F : ∗ → ∗, abs : Abs F , app : App F , tabs : TAbs F and
tapp : TApp F be free variables, then we define the pre-coding function for terms

78

as follows:

px : τqω = x

pλx : σ . M : σ → τqω = abs JσK JτK (λx : F JσK . pM : τqω)

pM N : τqω = app JσK JτK pM : σ → τqω pN : σqω
pλα : κ . M : Πα : κ.τqω = tabs JΠα : κ . τK S(F, κ, Jλα : κ . τK)

(λα : κ . pM : τqω)

pM C : σ[α := C]qω = tapp JΠα : κ . σK pM : (Πα : κ . σ)qω Jσ[α := C]K

(λx : JΠα : κ . σK . x JCK)

Definition 7.39. encoding function for types and terms

JCK = λF : ∗ → ∗ . JCK

pM : τqω = λF : ∗ → ∗ .
λabs : Abs F .

λapp : App F .

λtabs : TAbs F .

λtapp : TApp F . pM : τqω

79

7.2.4.1 Proofs

Now that the finished encoding function is presented, we can finalize the proofs from
Section 7.2.2.1. First we will proof that the encoding function is well-formed, as in given
a System Fω term, we get a System Fω term back.

Lemma 7.40. Let Γ `M : τ be a term. Define Γ2 as follows:

Γ2 :={x : F JσK | x : σ ∈ Γ} ∪ {α : κ | α : κ ∈ Γ}
∪ {F : ∗ → ∗, app : App F, abs : Abs F tapp : TApp F, tabs : TAbs F}

Then Γ2 ` pM : τqω : F JτK.

Proof.
Induction hypothesis

N is a subterm of M =⇒ (Γ ` N : σ =⇒ Γ2 ` pN : σqω : F JσK)

Base case - lower order terms
Follows from Lemma 7.18.

Case M = λα : κ . N : (Πα : κ . σ)
From Lemma 7.31 we have that

Γ2 ` S(F, κ, (λα : κ . τ)) : (Strip F JΠα : κ . τK)

Therefore
Γ2 ` pλα : κ . N : (Πα : κ . σ)qω : F JΠα : κ . τK

follows from

IH

Γ2, α : κ ` pM : τqω : F JτK

Γ2 ` (λα : κ . pM : τqω) : JΠα : κ . τK

Case M = N C : τ [α := C]

Γ2 ` pN C : τ [α := C]qω : F Jτ [α := C]K

follows from

IH

Γ2 ` pM : Πα : κ . σq : F JΠα : κ . σK

and, by making use of Lemma 7.12,

Πα : κ . F JσK = JΠα : κ . σK

Γ2, x : JΠα : κ . σK ` x : Πα : κ . F JσK JCK : κ

Γ2, x : JΠα : κ . σK ` x JCK : (F JσK)[α := JCK]

Γ2 ` (λx : JΠα : κ . σK . x JCK) : JΠα : κ . σK→ F Jσ[α := C]K)

Now we update the Exp typing from which follows that the encoding function is well-

80

formed.

Definition 7.41.

Exp =λα : (∗ → ∗)→ ∗ . ΠF : ∗ → ∗ . Abs F → App F →
TAbs F → TApp F → F (α F)

Corollary 7.42. Given some simple term M with Γ `M : τ and Γ2 as defined in
7.40 we have

Γ2 ` pM : τqω : Exp JτK

The Lemma for proving that p− : −qω is an encoding function needs some updating.
For this we only have to prove the higher-order term cases.

Lemma 7.43. The function p− : −qω is normal, i.e. given some term M with
Γ `M : τ the encoded term pM : τqω is in normal form

Proof.
We have seen in 7.21 why the lower order terms are in normal form. Now note
that the terms tabs and tapp are bound and therefore cannot reduce. Therefore a
beta reduction can only occur in the type application case. For this to occur, if we
have a term M = M1 τ , then pM1qω has to be of the form λα : κ . M , which is
impossible.

Lemma 7.44. The function p− : −qω is injective, i.e. given some term M and
N with ΓM `M : τ and ΓN ` N : σ then we have

pM : τqω =α pN : σqω =⇒ M =α N

Proof.
Base case: see Lemma 7.22. Let M , N be as in the Lemma statement.

Case M = (λα : κ . M2) : (Πα : κ . τ2)
We have pN : σqω =α pλα : κ . M2 : (Πα : κ . τ2)qω, and therefore there is some
β, κ2, σ2 and N2 such that N = λβ : κ2 . N2 : (Πβ : κ2 . σ2). Therefore we have

tabs JΠα : κ . τ2K S(F, κ, Jλα : κ . τ2K) (λα : κ . pM2 : τ2qω)

=α tabs JΠβ : κ2 . σ2K S(F, κ2, Jλβ : κ2 . σ2K) (λβ : κ2 . pN2 : σ2qω)

Therefore by Lemma 7.12 we have Πα : κ . τ2 =α Πβ : κ2 . σ2 and by the induction
hypothesis we have M2 =α N2. Therefore M =α N .

Case M = M1 C : τ2[α := C]
We have pN : σqω =α pM1 C : τ1[α := C]qω, and therefore there is some β, σ2, C2

81

and N1 such that N = N1 C2 : σ2[α := C2]. Therefore we have

tapp JΠα : κ . τ2K pM1 : (Πα : κ . τ2)qω Jτ2[α := C]K (λx : JΠα : κ . τ2K . x JCK)

=α tapp JΠβ : κ . σ2K pN1 : (Πβ : κ . σ2)qω Jσ2[α := C2]K

(λx : JΠβ : κ . σ2K . x JC2K)

Therefore by Lemma 7.12 we have Πα : κ . τ2 =α Πβ : κ . σ2 and τ2[α := C] =
σ2[α := C2] and therefore we have to have C =α C2. By the induction hypothesis
we have M2 =α N2 and therefore M =α N .

Corollary 7.45. The function from Definition 7.38 is an encoding function.

Now for the self-interpreter we have to redefine the foldExp term.

Definition 7.46.

foldExp : λF : ∗ → ∗ . Abs TAbs F → TApp F → App F → F →
λα : (∗ → ∗)→ ∗ . Exp α→ F (α F)

foldExp := λF : ∗ → ∗ . λabs : Abs F . λapp : App F . λtabs : TAbs F . λtapp : TApp F .

λα : (∗ → ∗)→ ∗ . λe : Exp α . e F abs app tabs tapp

Lemma 7.47. Let M be a closed term with ∅ ` M : τ . Now let F : ∗ → ∗ be a
constructor and A1 : Abs F , A2 : App F,A3 : TAbs F , A4 : TApp F be some terms.
Then we have

foldExp C A1 A2 A3 A4 JτK pM : τqω

�β pM : τqω[F := F, app := A1, abs := A2, tabs := A3, tabs := A4]

Now to proof that the encoding function has a term that makes it a self-interpreter, we
give the definition of the interpreter.

82

Definition 7.48. The interpreter for Brown-Palsberg encoding function.

Id : ∗ → ∗
= λα : ∗ . α

unAbs : Abs Id

= λα : ∗ . λβ : ∗ . λf : α→ β . f

unApp : App Id

= λα : ∗ . λβ : ∗ . λf : α→ β . λx : α . f x

unTAbs : TAbs Id

= λα : ∗ . λs : Strip Id α . λf : α . f

unTApp : TApp Id

= λα : ∗ . λf : α . λβ : ∗ . λg : α→ β . g f

unquote : Πα : (∗ → ∗)→ ∗ . Exp α→ Id (α Id)

= foldExp Id unAbs unApp unTAbs unTApp

Which brings us to the last part, proving that they form a self-interpreter.

Lemma 7.49. For all types τ the pair (p− : τqω, unquote JτK) forms a strong closed
self-interpreter, i.e. for all types τ and for all closed terms M : τ we have

unquote JτK pM : τqω �β M.

Proof. Let the term M be as in the statement and let

S = [F := Id, abs := unAbs, app := unApp tabs := unTAbs, tapp := unTApp].

Base case: lower-order terms
Similar to Lemma 7.27.

Case M = λα : κ . N : (Πα : κ . σ)

pλα : κ . N : Πα : κ . σqω S

�β unTAbs (Πα : κ . σ) S(Id, κ, λα : κ . σ) ((λα : κ . pN : σqω)S)

�β unTAbs (Πα : κ . σ) S(Id, κ, λα : κ . σ) (λα : κ . N)

�β λα : κ . N

Case M = N C : σ2[α := C]

pM = N C : σ1[α := C]qω S

�β unTApp (Πα : κ . σ2) (pN : (Πα : κ . σ2)qω S) (σ1[α := C])

(λx : (Πα : κ . σ2) . x C)

�β (λx : (Πα : κ . σ2) . x C) (pN : (Πα : κ . σ2)qω S)

�β (λx : (Πα : κ . σ2) . x C) N

�β N C

83

Then by Lemma 7.47 we have that the pair (p− : τqω, unquote JτK) form a self-
interpreter for any type τ .

84

7.3 Function Definition Scheme

We have seen the term foldExp and that we can define a recognizer with it. If we think
about it, it suspiciously looks like a term for a function definition scheme.

Definition 7.50. (BP Function Definition Scheme)
Let J−K be an encoding function on constructors. Let p− : τq ∈ Λτ → ΛJτK be an
encoding function on terms. Let F : ∗ → ∗ and let H1 : Abs F,H2 : App F,H3 :
TAbs F and H4 : TApp F . Then there exists a H : Πα : ∗ . α→ F α such that:

H Jσ1 → σ2K pλx : σ1 . M : σ1 → σ2q

=β H1 (Jσ1K F) (Jσ2K F) (H Jσ2K pM : σ2qω)

H Jσ2K pM N : σ2qω
=β H2 (Jσ1K F) (Jσ2K F) ((H Jσ1 → σ2K pM : σ1 → σ2qω)

(H Jσ1K pN : σ1qω))

H JΠα : κ.τK pλα : κ . M : Πα : κ.τqω
=β H3 (JΠα : κ . τK F) S(F, κ, (Jλα : κ . τ) F K)

(λα : κ . (H JτK pM : τqω))

H Jσ[α := C]K pM C : σ[α := C]qω

=β H4 (JΠα : κ . σK F) (H JΠα : κ . σK pM : (Πα : κ . σ)qω)

(Jσ[α := C]K F) (λx : JΠα : κ . σK F) . x (JCK F))

Lemma 7.51. The Brown-Palsberg encoding function has a BP function definition
scheme.

Proof. Let
H := foldExp F H1 H2 H3 H4

85

Then we have

H Jσ1 → σ2K pλx : σ1 . M : σ1 → σ2qω

�β pλx : σ1 . M : σ1 → σ2qω S

= H1 (Jσ1K S) (Jσ2K S) (pM : σ2qω S)

=β H1 (Jσ1K F) (Jσ2K F) (H Jσ2K pM : σ2qω)

H Jσ2K pM N : σ2qω

�β pM N : σ2qω S

= H2 (Jσ1K S) (Jσ2K s) ((pM : σ1 → σ2qω S) (pN : σ1qω S))

=β H2 (Jσ1K F) (Jσ2K F) ((H Jσ1 → σ2K pM : σ1 → σ2qω)

(H Jσ1K pN : σ1qω))

H JΠα : κ.τK pλα : κ . M : Πα : κ.τqω

�β pλα : κ . M : Πα : κ.τqω S

= H3 (JΠα : κ . τK S) S(F, κ, Jλα : κ . τK S) (λα : κ . (pM : τqω S))

=β H3 (JΠα : κ . τK F) S(F, κ, Jλα : κ . τK F) (λα : κ . (H JτK pM : τqω))

H Jσ[α := C]K pM C : σ[α := C]qω

�β pM C : σ[α := C]qω S

= H4 (JΠα : κ . σK S) (pM : (Πα : κ . σ)qω S) Jσ[α := C]K

(λx : JΠα : κ . σK . x JCK)

=β H4 (JΠα : κ . σK F) (H JΠα : κ . σK pM : (Πα : κ . σ)qω) (Jσ[α := C]K F)

(λx : (JΠα : κ . σK F) . x (JCK F))

Note that this function definition scheme is not as strong as the Mogensen and Baren-
dregt function definition scheme. This is since we miss the variable case and instead of
giving the function H to H1, . . . H4, we already apply it to the next part of the code.
It would be interesting to see if a self-interpreter can be made with such a function
definition scheme.

86

7.4 Applications

Now the question remain, how powerful is the BP self-interpreter. To get a feeling for
this, we will show some applications and there after restriction. Brown and Palsberg
present in their paper [10] that the encoding is strong enough to do testing predicates for
abstraction and application, size measurement, normal-form checking and continuation-
passing-style transformation. Here we will expand on this by showing that we can
differentiate between the four types of terms and we will show we that we can compare
the structures of two terms, resulting in a α-equivalence testing term, given that the
types are the same.

7.4.1 Term Type Tester

First we will define a term such that we know what for a type of term it is. Let say we
have a closed term M and we want to know if it is an (constructor) abstraction term or
(constructor) application term. Then we can define a function that does this as follows:

f(M) =

1 if M = λx : σ . N

2 if M = N1 N2

3 if M = λα : σ . N

4 if M = N C

Now we want to define a term, let’s say isTerm, such that isTerm pM : τqω �β f(M).
We can do this by defining four different terms and then make use of the foldExp lemma.
Let us first define KNat = λα : ∗ . Nat and define the four terms as follows:

TAbs : Abs KNat =λα : ∗ . λβ : ∗ . λf : Nat→ Nat . 1

TApp : App KNat =λα : ∗ . λβ : ∗ . λf : Nat . λx : Nat . 2

TTAbs : TAbs KNat =λα : ∗ . λs : Strip KNat α . λf : α . 3

TTapp : TApp KNat =λα : ∗ . λf : Nat . λβ : ∗ . λi : α→ β . 4

Now by the function definition scheme we can say there is a term isTerm that makes
uses of the defined terms. That this term can distinguish between terms can be shown
by proving every case, like is done below for the abstraction term case.

T pλx : σ . N : σ → τqω
�β pλx : σ . N : σ → τqω S

= TAbs (F JσK) (F JτK) (λx : F JσK . (pM : τqω S))

�β 1

From this, it follows that we know what term we are dealing with, and therefore we
have the following corollary:

87

Corollary 7.52. We have terms isAbs, isApp, isTAbs and isTApp such that

isAbs M =β true ⇐⇒ M =α λx : τ . M2

isApp M =β true ⇐⇒ M =α M1 M2

isTAbs M =β true ⇐⇒ M =α λα : κ . M2

isTApp M =β true ⇐⇒ M =α M2 τ

88

7.4.2 Normal Form Checker

For the second application of the Brown-Palsberg self-interpreter we will define a term
that can check if the encoded term is in normal form or not. While this seems like a
case of applying our previous defined term isTerm, this is unfortunately not possible.
To see this, we can think about what happens when we want to check if an application
term M = M1 M2 is in normal form. For the encoded version we would have to define
a term of type App KBool which is true if M1 is an abstraction. Since we have defined
our F to be KBool, if we apply our term using foldExp, we would get two times the type
Bool and two terms of type Bool as input, that represent if those terms were in normal
form or not. So the problem we now have is that we lost the information of the encoded
term, so therefore we can’t check what type they were, and therefore we can’t create a
normal form term.

Now to get around this, instead of using a singular Boolean as output, we will use
a pair of Booleans. The first Boolean will represent if the term is in normal form or not,
and the second Boolean will represent if the term is not in normal form or if the term
is an abstraction. Now if we are in the application case and the second Boolean of our
first term is false, we know that either that term is an application or is not in normal
form. Either way, we can conclude that the application is not in normal form.

Now we can define our term that will check if a encoded term is in normal form or
not. For this we will use some the terms pairb := pair Bool, fstb := fst Bool and
sndb := sndBool and the constructors Bools := Pair Bool and KBools := λα : ∗ . Bools.

NFAbs : Abs KBools

:= λα : ∗ . λβ : ∗ . λf : Bools→ Bools .

pairb (fstb (f (pairb true true))) false

NFApp : App KBools

:= λα : ∗ . λβ : ∗ . λx : Bools . λy : Bools .

(λz : Bool . pairb z z) (and (sndb x) (fstb y))

NFTAbs : TAbs KBools

:= λα : ∗ . λs : Strip KBools α . λf : α .

pairb (fstb (s Bools (λα : ∗ . λx : Bools . x) f)) false

NFTApp : TApp KBools

:= λα : ∗ . λf : Bools . λβ : ∗ . λinst : α→ Bools .

(λz : Bool . pairb z z) (sndb f)

isNFPair :=foldExp KBools NFAbs NFApp NFTAbs NFTApp

isNF :=λα : (∗ → ∗)→ ∗ . λt : Exp α . fstb (isNFPair α t)

Now we claim that the term isNF, given a closed term M in the encoding of Brown-
Palsberg, reduces to true if M is in normal form and else reduces to false, i.e. we want
to prove the following statement

M is in normal form ⇐⇒ isNF JτK pM : τqω �β true

This statement will be proven in two steps. First we will proof the necessary condition,
since in this case we will be able to ignore free variables, which makes the proof easier

89

Lemma 7.53. Given a term M : τ , we have

M is not in normal form =⇒ isNFPair JτK pM : τqω �β pairb false false

Proof. Let

S := [F := KBools, abs := nfabs, app := nfapp, tabs := nftabs, tapp := nftapp]

Assume M is not in normal form. Then there is at least one subterm N of M such
that N is either of the form N = (λx : σ . N1) N2 or N = N2 σ.

Base case N = (λx : σ . N1) N2

pN : τqω S �β (λx : Bool . pairb x x) (and (sndb (p(λx : σ . N1) : σ → τqω) S)

(fstb (pN2 : σqω S)))

�β (λx : Bool . pairb x x) (and false (fstb (pN2 : σqω S)))

�β (λx : Bool . pairb x x) false

�β pairb false false

Base case N = (λα : κ . N2) C

pN : τ [α := C]qω S �β (λz : Bool . pairb z z)

(sndb (p(λα : κ . N2) : (Πα : κ . τ)qω S))

�β (λz : Bool . pairb z z) false

�β cpair false false

Induction case M = λx : σ1 . M2

pM : τqω S �β nfAbs Bools Bools (λx : Bools . pM2 : σ2qω)

�β pairb (fstb ((λx : Bools . pM2 : σ2qω) (pairb true true))) false

�β pairb (fstb ((λx : Bools . pairb false false) (pairb true true))) false

�β pairb (fstb (pairb false false)) false

�β pairb false false

Induction case M = M1 M2

pM1 M2 : τqω S �β nfApp Bools Bools (pM1 : σ → τqω S) (pM2 : σqω S)

�β (λz : Bool . pairb) (and (sndb (pM1 : σ → τqω S))

(fstb (pM2 : σqω S)))

�β (λz : Bool . pairb) (and false false)

= pairb false false

90

Induction case M = λ : α : ∗ . M2

pλ : α : ∗ . M2 : (Πα : ∗ . σqω S
�β nfTAbs JΠα : κ . τK S(F, κ, Jλα : κ . τK) (λα : κ . pM2 : σqω S)

�β pairb (fstb (pM2 : σqω S) false

�β pairb false false

Induction case M2 C

pM2 C : σ[α := C]qω S �β nfTApp JΠα : κ . σK pM : (Πα : κ . σ)qω Jσ[α := C]K

(λx : JΠα : κ . σK . x JCK)

�β (λz : Bool . pairb z z) (sndb (pM : (Πα : κ . σ)qω S))

�β (λz : Bool . pairb z z) false

= pairb false false

Therefore we have for a closed term ∅ `M : τ not in normal form that

foldExp KBools NFAbs NFApp NFTAbs NFTApp JτK pM : τqω �β pairb false false

This time to prove the sufficient conditions we have to deal with the free variables.

Lemma 7.54. Given a term ∅ `M : τ , we have

M is an abstraction and is in normal form

=⇒ isNFPair JτK pM : τqω �β pairb true false

M is an application and is in normal form

=⇒ isNFPair JτK pM : τqω �β pairb true true

Proof. First we define a substitution term, let

S := [F := KBools, abs := nfabs, app := nfapp, tabs := nftabs, tapp := nftapp]

By Lemma 7.47 we have

isNFPair JτK pM : τqω �β pM : τqω S

Now to prove the statement in the Lemma, we will have to prove that fstb(p: qωS)�β

true. We will do this by proving that for a closed termM : τ we have pM : τqω S �β

pairb true false if M is an abstraction term and pM : τqω S �β pairb true true if M
is an application term. However to do this this for only closed term is not obvious
at all. Therefore we instead will proof a different statement, for which we will
define some special terms.

fvandN := and (and x1 . . . (and xn−1 xn)) (and y1 . . . (and ym−1 ym))

where {x1, . . . , xn} ⊆ {fstb e : e ∈ FV(N)} and

{y1, . . . , ym} ⊆ {sndb e : e ∈ FV(N)}
fvandpN := pairb fvandN fvandN

91

Note that fvandN is defined as multiple terms and that fvandN can be equal to true
when n and m are zero. Now we will prove that for an open term M : τ we have
pM : τqω S =β andp (pairb true false) fvandpM if M is an abstraction term and
pM : τqω S =β andp(pairb true false) fvandpM if M is an application.

Base case M = x:

x S = x =β andp (pairb true true) fvandpM

Induction Case M = λx : σ . N

pλx : σ . M2 : σ1 → σ2qω S

�β nfApp PairB PairB (λx : PairB . pM2 : σ2qω S)

�β pairb (fstb ((λx : PairB . (pM2 : σ2qω S)) (pairb true true))) false

�β pairb (fstb ((pM2 : σ2qω S)[x := pairb true true])) false

=β pairb ((and true fvandN)[x := pairb true true]) false

=β pairb (and true fvandM) false

=β andp (pairb true false) fvandpM

Induction Case M = N1 N2

pN1 N2 : τqω S

�β nfApp σ → τ σ (pN1 : σ → τqω S) (pN2 : σqω S)

�β (λz : PairB . pairb z z) (and (sndb (pN1 : σ → τqω S)) (fstb (pN2 : σqω S)))

=β (λz : PairB . pairb z z) (and (sndb x) (fstb y))

(andp (pairb true true) fvandpN1
) (andp (pairb true ?) fvandpN2

)

=β (λz : PairB . pairb z z) (and (and true fvandN1) (and true fvandN2))

=β (λz : PairB . pairb z z) (and true fvandM)

�β andp (pairb true true) fvandpM

Induction Case M = λα : κ . N

pλα : κ . M2 : (Πα : κ . τ)qω S

�β NFTabs JΠα : κ . τK S(F, κ, Jλα . τK) (λα : κ . (pM2 : τqω S))

�β pairb (fstb (S(F, κ, Jλα . τK) Bools (λα : κ . λx : Bools . x)

(pM2 : τqω S))) false

�β pairb (fstb pM2 : τqω) false

=β pairb (and true fvandN) false

=β andp (pairb true false) fvandpM

Induction Case M = M2 C

pM2 C : σ[α := C]qω S

�β nfTApp JΠα : κ . σK pM2 : Πα : κ . σqω Jσ[α := C]K (λx : JΠα : κ . σKx JCK)

�β (λz : PairB . pairb z z) (sndb (pM2 : Πα : κ . σqω S))

=β (λz : PairB . pairb z z) (and true fvandN)

=β andp (pairb true true) fvandpM

92

Now for a closed term M : τ we have that the term fvandpM is always equivalent
to pairb true true. Therefore we have that

pM : τqω S =β andp (pairb true true) (pairb true true)�β pairb true true

if M is an abstraction and

pM : τqω S =β andp (pairb true true) (pairb true true)�β pairb true true

if M is an application. Therefore we can conclude, that if M is closed term, we
have

isNF JτK pM : τqω �β true

Corollary 7.55. Given a term ∅ `M : τ we have

isNF JτK pM : τqω �β true ⇐⇒ M is in normal form

Proof.

93

7.4.3 Term Type Counter

Now for something a bit more difficult, instead of checking we could count the types
of the all the subterms we have for a closed term. So for example we could define a
function f : Λ→ N.

f(M) :=

2 if M = x

3 · f(N) if M = λx : σ . N

5 · f(N1) · f(N2) if M = N1 N2

7 · f(N) if M = λα : σ . N

11 · f(N) if M = N σ

Then f would count types of subterms using a Gödel pairing function.

Now we would like to define a term count such that count pM : τqω �β f(M). And
again we would to make use of foldExp. So let us define the four terms.

countAbs : Abs KNat =λα : ∗ . λβ : ∗ . λf : Nat→ Nat . mult 3 (f 2)

countApp : App KNat =λα : ∗ . λβ : ∗ . λx : Nat . λy : Nat . mult 5 (mult x y)

countTAbs : TAbs KNat =λα : ∗ . λs : Strip KNat α . λx : α .

mult 7 (s Nat (λα : ∗ . λy : Nat . y) x)

countTApp : TApp KNat =λα : ∗ . λx : Nat . λβ : ∗ . λi : α→ β . mult 11 x

Now we define count as follows:

count = foldExp KNat countAbs countApp countTAbs countTapp

Now to proof that it works, we will first proof a different results, namely we first proof
what we will get if we don’t require M to be closed and only up to β-equivalence.

However before we do the proof, to make it hopefully clearer we will introduce some
functions on the terms.

g(M) :=

1 if M = x

3 · f(N) if M = λx : σ . N

5 · f(N1) · f(N2) if M = N1 N2

7 · f(N) if M = λα : σ . N

11 · f(N) if M = N σ

#b(N) = number of bound variables in N

prodfN = mult x1 (mult x2 (. . . (mult xk−1 xk) . . .))

where [x1, . . . xk] are free variables in N

Now let [x1, . . . xk] be the list of free variables in the term N , than we define the term
prodfN as follows:

prodfN := mult x1 (mult x2 (. . . (mult xk−1 xk) . . .))

94

Lemma 7.56. Let

S =[F := KNat, abs := countAbs, app := countTApp,

tabs := countTAbs, tapp := countTApp]

Let M be a term, then we have

pM : τqω S =β mult (mult g(M) 2#b(M)) prodfM

Proof.
The proof will be done by induction on the derivative of M .

Induction hypothesis:

N is a subterm in M =⇒ pN : σqω S =β mult (mult g(N) 2#b(N)) prodfN

Base case M = x

px : τqω S = x : Nat

=β mult (mult 1 1) x

= mult (mult g(x) 2#b(x)) prodfx

Case M = λx : σ . N

pλx : σ . N : σ → τqω S

=β countAbs Nat Nat (λx : Nat . (pM : τqω S))

=β mult 3 ((λx : Nat . (pM : τqω S)) 2)

=β mult 3 Nat . (pM : τqω S)[x := 2]

=β mult 3 (mult g(N) 2#b(N)) prodfN)[x := 2] by IH

=β mult g(λx : σ . N) 2#b(λx:σ . N)) prodfλx:σ . N

Case M = N1 N2

pN1 N2 : τqω S

=β countApp Nat Nat (pN1 : σ → τqω S) (pN2 : σqω S)

=β mult 5 (mult (pN1 : σ → τqω S) (pN2 : σqω S))

=β mult 5 (mult (mult (mult g(N1) 2#b(N1)) prodfN1
)

(mult g(N2) 2#b(N2)) prodfN2
) By IH

=β mult (mult g(N1 N2) 2#b(N1 N2)) prodfN1 N2

95

Case M = λα : κ . N

pλα : κ . N : Πα : κ.τqω S

=β countTAbs JΠα : κ . τK S(F, κ, Jλα : κ . τK) (λα : κ . pN : τqω S)

=β mult 7 (S(F, κ, Jλα : κ . τK) Nat (λα : ∗ . λy : Nat . y)

(λα : κ . pN : τqω))

=β mult 7 (pN : τqω S)[α := C(κ)]

=β mult 7 (mult g(N) 2#b(N)) prodfN) By IH

=β mult (mult g(λα : κ . N) 2#b(λα:κ . N)) prodfλα:κ . N

Case M = N τ

pN τ : τ [α := σ]qω S

=β countTApp (Πα : κ . Nat) (pN : (Πα : κ . τ)qω S) (Jτ [α := σ]K S)

(λx : (Πα : κ . Nat) . (x JσK) S)

=β mult 11 (pN : (Πα : κ . τ)qω S)

=β mult 11 (mult g(N) 2#b(N)) prodfN) by IH

=β mult (mult g(N σ) 2#b(N σ)) prodfN σ

Now that we know what we get from any term, the closed term case follows almost
directly by applying substitution.

Corollary 7.57. Let M be a closed term then we have

count pM : τqω �β f(M)

Proof.
Let S = [F := KNat, abs := countAbs, app := countTApp, tabs := countTAbs, tapp :=
countTApp], then we have that

count pM : τqω �β pM : τqω S

By the previous lemma and M is closed we have

pM : τqω S =β mult g(M) 2m

Note g(M) ·2m = f(M) and hence mult g(M) 2m =β f(M). Since f(M) is a single
number and therefore in normal form, we can conclude

count pM : τqω �β f(M)

Instead of counting the term, we can also turn a closed term, ignoring type, into an
unique number. First what we do is turn this term into the Bruijn notation. Now, given

96

an injective pairing function, we can define a function f that turns every closed term in
de Bruijn notation into a unique number.

f(M) :=

〈1, n〉 if M = n

〈2, f(N)〉 if M = λ : σ . N

〈3, 〈f(N1), f(N2)〉 if M = N1 N2

〈4, f(N)〉 if M = λα : σ . N

〈5, f(N)〉 if M = N C

For the pairing function we will use the Cantor pairing function. We can define this as
follows in System Fω.

Definition 7.58.

cntr = λx : Nat . λy : Nat . add (div (mult (add x y) (add (mult x y) 1)) 2) y

Defining the arithmetization term is quite straight forward, except for the variable cases.
This is since the term λx : σ . λy : σ . y should result in a different number than that
of the term λx : σ . λy : σ . x. Specifically, since we are using de Bruijn notation, y is
represented by the number 1 and x is represented by the number 2. To do this we will
use a similar trick as with the term isNF. We will, instead of returning a singular num-
ber, return a pair of numbers, where the first number will represent the arithmetization
and second number will represent a counter for the number of abstractions.

To define the term, we will introduce the following terms pairn := pair Nat, fstn :=
fst Nat and sndn := sndNat and the constructors Nats := Pair Nat and KNats := λα :
∗ . Nats.

Definition 7.59.

arthabs : Abs KNats =λα : ∗ . λβ : ∗ . λf : Nats→ Nats .

(λc : Nat . (λb : Nat . pairn (cntr 2 b) (suc c))

(fstn (f (pair 0 c)))) (sndn (f (pairn 0 0)))

arthapp : App KNats =λα : ∗ . λβ : ∗ . λx : Nats . λy : Nats .

: Nat . pairn (cntr 3 (cntr (fstn x) (fstn y)))

(max (sndn x) (sndn y))

arthtabs : TAbs KNats =λα : ∗ . λs : Strip KNats α . λx : α .

pairn (cntr 4 (s Nats (λα : ∗ . λy : Nats . y)

(fstn (s x)))) (sndn (s x))

arthtapp : TApp KNats =λα : ∗ . λx : Nats . λβ : ∗ . λi : α→ β .

pairn (cntr 5 (fstn x)) (sndn x)

arth = foldExp KNats arthAbs arthApp arthTAbs arthTapp

Unfortunatly the proof proved to be out of scope for this thesis.

97

7.5 Restrictions

While the self-interpreter defined by Brown and Palsberg seems strong, there are some
restriction that it has, which the Mogensen and Barendregt self-interpreter do not have.
We will present two of these restrictions, the first one being that we can’t turn a encoded
term into the normal form of the encoded term and the second the limitations between
comparing two encoded terms of different types.

7.5.0.1 Type Recognition

Now before we start, it is good to remind ourselves that we can’t compare constructors
in System Fω. This follows from that constructors are not terms. We can easily prove
that such a term does not exists.

Corollary 7.60. Let C1, C2 be some constructors of kind κ with C1 6=β C2. Then
there does not exists a term E such that E C1 C2 =β false and E C1 C1 =β true.

Proof. Assume such a term E exists and C1 6=β C2. Now note that E is of type
Πα : κ . Πβ : κ . Bool, which means that both α and β are redundant quantifiers.
We also know that there is some term M such that E =α λα : κ . λβ : κ . M . By
Lemma 7.28 we therefore have the following contradiction

true =β E C1 C1 =β M =β E C1 C2 =β false

For the Brown-Palsberg self-interpreter we have something similar. Given two terms of
different types, we don’t have a term that can check if they have different types. This is
the same as proven there is no can’t check α-equivalence between two closed terms. This
is since we already have proven that we can compare structure between two encoded
terms. And we have α-equivalence between two closed terms if and only if both the
structure and type is the same.

Now to proof that α-equivalence we define the term idCode. This term will be used
to turn a encoded type into a encoded term for the identity term of this type.

Definition 7.61.

idCode : Πα : (∗ → ∗)→ ∗ . Exp α
idCode := λα : (∗ → ∗)→ ∗ . λF : ∗ → ∗

λabs : Abs F .

λapp : App F .

λtabs : TAbs F .

λtapp : TApp F . abs (α F) (α F) (λx : F (α F) . x)

Now note that if we input an encoded type, for example σ, then we get from the term
idCode the encoded identity function of σ, i.e. we have idCode JσK�β pλx : σ . x : σ → σqω.
Now with this construction we can prove that a term that checks α-equivalence is im-
possible.

98

Lemma 7.62. There does not exists a polymorphic term E such that

E JτK JσK pM : τqω pN : σqω =β true ⇐⇒ M =α N

Proof. Assume, towards contradiction, that such a E term exists. Now fix some
type τ and σ such that τ 6=β σ and then define the term E2 as follows:

E2 := λα : (∗ → ∗)→ ∗ . λβ : (∗ → ∗)→ ∗ . E α β (idCode α) (idCode β)

Then we have E2 JτK JτK 6=β E2 JτK JσK which contradicts Corollary 7.60

From this we can directly prove that there does not exists a term that can check if two
terms have different types.

Corollary 7.63. There does not exists a polymorphic term E such that

E JτK JσK pM : τqω pN : σqω =β true ⇐⇒ M =β N

What is more, from this prove it also follows there is not term that can check β-
equivalence. This follows since the identity term is in normal form, and therefore two
identity terms from idCode are beta equivalent if and only if they are of the same type.

Corollary 7.64. There does not exists a polymorphic term E such that

E JτK JσK pM : τqω pN : σqω =β true ⇐⇒ M =β N

99

8 Discussion

(Trivial) Self-Interpreters - This document has been about self-interpreters and what
they support. However in the end we could not conclude with a good definition for a
self-interpreter. To quote Bauer: ”In order to shed further light on self-interpreters
for total languages we need a definition of self-interpreters which takes into account
structural properties of self-interpreters that distinguishes the interpreter by Brown and
Palsberg from the one given in Theorem 3.2 [trivial self-recognizer].”
It is still an open question what a good definition is, however we believe that a repre-
sentation supporting a function definition scheme will be an important part of the puzzle.

Self-Evaluators - We have shown in Section 6.4 that self-evaluation is not a hard
problem to solve for strongly normalizing calculi. However we understand self-evaluation
from not strongly normalizing calculi to be a hard problem, as discussed in Section 4.0.3.
The gap between the difficulty of these problems is striking and can be explained by
the short cut you can take when working in a strongly normalizing calculi. Removing
the short cut it is unclear if a self-evaluator is possible at all, in fact it is likely that
it is impossible at all since in the self-evaluators shown we required a fixed-point oper-
ator. It may be possible to proof that any representation with a term app, such that
app pMq pNq =β pM Nq, does not have a self-evaluator by making use of Bauer’s [9]
argument in Theorem 2.5 in combination with the trivial self-evaluators. This leads us
to the following conjecture

Conjecture 8.1. Any self-evaluator for a strongly normalizing calculus is a form
of a trivial self-evaluator.

Function Definition Schemes - A central point of this document regarding self-
interpreter was if they had function definition schemes. We have seen that these function
definition schemes are powerful and that assuming some simple terms we could prove
that a representation would also form a self-recognizer or self-evaluator. There seems to
be a correlation between what the structural properties is of a self-interpreter and the
function definition scheme. I would be interesting to investigate how strong this relation
is and especially if there are things we can prove that we can not do if we cannot define
a function definition scheme.

Performance - While in this document we have looked at self-interpreters from a
theoretical point of view, they are mostly looked at a viewpoint of a concrete program
with performance metrics. When thinking about self-interpreters we think about them
as they are implemented in modern lanuages. This makes performance also often a
consideration for the lambda calculus version. For example Mogensen presented the
Mogensen representation since ”The size of the representations of the λ-terms using this
[Barendregt’s] schema grows (at least) exponentially in the size of the terms. Operations
on this [Barendregt’s] representation are also extremely expensive”[25] and with that
came the first self-recognizer for untyped lambda calculus that was not weak. For Brown
and Palsberg this was also an consideration and implemented their self-recognizer in
Haskell [10]. So therefore it will also be important how these structural properties of self-
interpreters links to performance metrics like size of the representation and expensiveness
of operations.

100

9 Related Work

For more related work we refer the reader to both of Brown and Palsberg papers [10][11],
as they have an excellent piece which this section is based upon.

Typed Self-Interpretation
There are plenty of self-recognizers for typed calculi in the literature. The first typed
self-recognizer was shown by Rendel, et al. [31]. They showed it for an extension of
System Fω, which is not strongly-normalizing. With their representation also came
a size operation, proving a stronger representation than the trivial self-recognizers we
have seen. Jay and Palsberg presented a typed self-recognizer for a combinator calculus,
which was the first self-recognizer for a language with decidable type checking [20]. We
have seen that Brown and Palsberg presented the first self-recognizer for a strongly-
normalizing calculus and they have also presented the first self-evaluator, which was for
a not strongly-normalizing extension of System Fω [11].

Dependent Types
In this document we have taken a look at System Fω for self-interpretation. We have
seen that System Fω includes two of the three properties of Barendregt’s lambda cube,
polymorphism and type operators. The last dependency we need to get to the calculus of
constructions is dependent types. Dependent types are also used in proof assistants, as
most are based on the calculus of constructions. It is possible to make use of dependent
types to ensure that only well-typed terms are represented. For example Shürmann et al.
represented System Fω in LF [34]. Chapman presented a meta-circular representation
of a dependent type theory in Agda [12]. These representations are especially useful for
machine-checked proofs of the meta-theorems for the represented language.
Altenkirch and Kaposi formalize a simple dependent type theory in another type theory
[1]. A key problem of defining a typed representation of a depended typed represen-
tation is that types, terms, type context and type equality are all dependent on each
other. Their solution relies on making use of Quotient-Inductive Types. It is not full
self-representation, since QIT was not represented and the authors cite it as an open
challenge.

Typed Meta-Programming
What we have looked at in this document, typed self-interpretation, is a form of typed
meta-programming. With typed meta-programming we have a type representation of
one language in possible another language. That this can be useful is shown by Chen
and Xi, who demonstrated that types can make meta-programming less error-prone [13].

101

10 Conclusion

We have investigated what a self-interpreter means in different types of lambda calculus
and especially if it is possible in strongly normalizing lambda calculi. To do this we
first found out what was meant with self-interpretation in a more general sense. Using
Figure 2 and some diagram chasing we concluded that we can distinguish between two
types of self-interpreters; a self-recognizer and a self-evaluator.

To explore what it is that lets self-interpreters have good structural properties, we
looked at two different untyped lambda calculus self-interpreters that have strong struc-
tural properties, one define by Mogensen and one defined by Barendregt. We compared
these to novel trivial self-recognizer inspired by the one given by Brown and Palsberg.
Making use of the function definition schemes we could prove structural properties for
the Mogensen and Barendregt representations, whereas we found that the trivial self-
recognizer did not support a function definition scheme.

From there we use our obtained knowledge to investigate self-interpreters for strongly
normalizing typed lambda calculi. However there is a problem, it is common knowledge
that this is impossible, the so called Normalization Barrier Conjecture. To defeat this
barrier we first needed to know what it meant. In the analysis of the conjecture we
find that Brown and Palsberg has broken this barrier down and we answered an open
question of them, as we find that a self-evaluators are possible in a strongly normalizing
calculus.

We end with an investigation of the Brown-Palsberg self-interpreter itself and confirm
some of the strong structural properties it has.

The result is a comprehensive study of self-interpreters which includes a novel way
to investigate self-interpreters and generalisations of previous results. It can be used in
further research to answer open questions like:

� What is a good definition for a self-interpreter such that it has strong structural
properties?

� Are all self-evaluators for strongly normalizing languages trivial?

And with that we conclude that while the normalization barrier may be death, we may
end up saying long live the normalization barrier.

Aknowledgements
I would like to thank my father Dick Verkleij for proof-reading english in record times
with strict deadlines without complaining. I would like to thank Freek Wiedijk for ac-
cepting to be the second reader. And I would like to thank Herman Geuvers for having
the patients for supervising a difficult student like me.

102

References

[1] Thorsten Altenkirch and Ambrus Kaposi. “Type Theory in Type Theory Using
Quotient Inductive Types”. In: SIGPLAN Not. 51.1 (Jan. 2016), pp. 18–29. issn:
0362-1340. doi: 10.1145/2914770.2837638. url: https://doi.org/10.1145/
2914770.2837638.

[2] H. P. Barendregt. “Functional programming and lambda calculus”. In: J. van
Leeuwen (ed.), Handbook of Theoretical Computer Science B (1990), pp. 323–363.
url: http://hdl.handle.net/2066/17230.

[3] H. P. Barendregt. Lambda calculi with types. Onbepaald. 1992. url: http://hdl.
handle.net/2066/17231.

[4] Henk Barendregt. “Introduction to generalized type systems”. In: Journal of func-
tional programming 1.2 (1991), pp. 125–154.

[5] Henk Barendregt. “Reflection: a powerfull and ubiquitous logical mechanism”. In:
(2007).

[6] Henk Barendregt and Erik Barendsen. “Introduction to lambda calculus”. In:
(2000).

[7] Henk P Barendregt. “Self-interpretation in lambda calculus”. In: (1991).

[8] Henk P Barendregt et al. The Lambda Calculus: its syntax and semantics, volume
103 of Studies in Logic. North Holland, 1984.

[9] Andrej Bauer. On Self-Interpreters for System T And Other Typed λ-Calculi.
2016. url: http://math.andrej.com/wp-content/uploads/2016/01/self-
interpreter-for-T.pdf.

[10] Matt Brown and Jens Palsberg. “Breaking through the normalization barrier: a
self-interpreter for f-omega”. In: Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. 2016, pp. 5–17.

[11] Matt Brown and Jens Palsberg. “Typed self-evaluation via intensional type func-
tions”. In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages. 2017, pp. 415–428.

[12] James Chapman. “Type Theory Should Eat Itself”. In: Electr. Notes Theor. Com-
put. Sci. 228 (Jan. 2009), pp. 21–36. doi: 10.1016/j.entcs.2008.12.114.

[13] Chiyan Chen and Hongwei Xi. “Meta-Programming through Typeful Code Repre-
sentation”. In: SIGPLAN Not. 38.9 (Aug. 2003), pp. 275–286. issn: 0362-1340. doi:
10.1145/944746.944730. url: https://doi.org/10.1145/944746.944730.

[14] Alonzo Church. “An Unsolvable Problem of Elementary Number Theory”. In:
American Journal of Mathematics 58.2 (1936), pp. 345–363. issn: 00029327, 10806377.
url: http://www.jstor.org/stable/2371045.

[15] Alonzo Church and J. B. Rosser. “Some Properties of Conversion”. In: Trans-
actions of the American Mathematical Society 39.3 (1936), pp. 472–482. issn:
00029947. url: http://www.jstor.org/stable/1989762.

[16] Nicolaas Govert De Bruijn. “Lambda calculus notation with nameless dummies, a
tool for automatic formula manipulation, with application to the Church-Rosser
theorem”. In: Indagationes Mathematicae (Proceedings). Vol. 75. 5. Elsevier. 1972,
pp. 381–392.

[17] Herman Geuvers. “A short and flexible proof of strong normalization for the cal-
culus of constructions”. In: International Workshop on Types for Proofs and Pro-
grams. Springer. 1994, pp. 14–38.

103

https://doi.org/10.1145/2914770.2837638
https://doi.org/10.1145/2914770.2837638
https://doi.org/10.1145/2914770.2837638
http://hdl.handle.net/2066/17230
http://hdl.handle.net/2066/17231
http://hdl.handle.net/2066/17231
http://math.andrej.com/wp-content/uploads/2016/01/self-interpreter-for-T.pdf
http://math.andrej.com/wp-content/uploads/2016/01/self-interpreter-for-T.pdf
https://doi.org/10.1016/j.entcs.2008.12.114
https://doi.org/10.1145/944746.944730
https://doi.org/10.1145/944746.944730
http://www.jstor.org/stable/2371045
http://www.jstor.org/stable/1989762

[18] Herman Geuvers. “Self-interpretation in Lambda Calculus”. 2015. url: http:

//www.cs.ru.nl/~herman/onderwijs/%202015Reflection/lecture6.pdf.

[19] Dave Herman. Narcissus. url: https://wiki.mozilla.org/Narcissus (visited
on 08/24/2021).

[20] Barry Jay and Jens Palsberg. “Typed Self-Interpretation by Pattern Matching”.
In: SIGPLAN Not. 46.9 (Sept. 2011), pp. 247–258. issn: 0362-1340. doi: 10.1145/
2034574.2034808. url: https://doi.org/10.1145/2034574.2034808.

[21] S. C. Kleene. “λ-definability and recursiveness”. In: Duke Mathematical Journal
2.2 (1936), pp. 340–353. doi: 10.1215/S0012-7094-36-00227-2. url: https:
//doi.org/10.1215/S0012-7094-36-00227-2.

[22] Stephen Cole Kleene et al. Introduction to metamathematics. Vol. 483. van Nos-
trand New York, 1952.

[23] Ben Lynn. Apr. 2017. url: https://benlynn.blogspot.com/2017/04/much-
time-has-passed-since-my-last-entry.html (visited on 05/31/2021).

[24] Meta-circular evaluator. May 2021. url: https://en.wikipedia.org/wiki/
Meta-circular_evaluator (visited on 08/21/2021).

[25] Torben Mogensen. “Efficient Self-Interpretation in Lambda Calculus”. In: Journal
of Functional Programming 2 (Oct. 1994). doi: 10.1017/S0956796800000423.

[26] Matthew Naylor. “Evaluating Haskell in Haskell”. In: The Monad.Reader 10 (2008),
pp. 25–32.

[27] Normalization property (abstract rewriting). Jan. 2021. url: https://en.wikipedia.
org/wiki/Normalization_property_(abstract_rewriting) (visited on 05/31/2021).

[28] Christine Paulin-Mohring. Introduction to the calculus of inductive constructions.
2015.

[29] Frank Pfenning and Peter Lee. “Metacircularity in the polymorphic λ-calculus”.
In: Theoretical Computer Science 89.1 (1991), pp. 137–159.

[30] Tillmann Rendel, Klaus Ostermann, and Christian Hofer. “Typed Self-Representation”.
In: SIGPLAN Not. 44.6 (June 2009), pp. 293–303. issn: 0362-1340. doi: 10.1145/
1543135 . 1542509. url: https : / / doi - org . ru . idm . oclc . org / 10 . 1145 /

1543135.1542509.

[31] Tillmann Rendel, Klaus Ostermann, and Christian Hofer. “Typed Self-Representation”.
In: vol. 44. May 2009, pp. 293–303. doi: 10.1145/1543135.1542509.

[32] Armin Rigo and Samuele Pedroni. “PyPy’s approach to virtual machine construc-
tion”. In: Companion to the 21st ACM SIGPLAN symposium on Object-oriented
programming systems, languages, and applications. 2006, pp. 944–953.

[33] Raúl Rojas. “A tutorial introduction to the lambda calculus”. In: arXiv preprint
arXiv:1503.09060 (2015).

[34] Carsten Schürmann, Dachuan Yu, and Zhaozhong Ni. “A Representation of Fω
in LF”. In: Electronic Notes in Theoretical Computer Science - ENTCS 58 (Nov.
2001), pp. 79–96. doi: 10.1016/S1571-0661(04)00280-4.

[35] Morten Heine Sørensen. “Strong Normalization from Weak Normalization in Typedλ-
Calculi”. In: Information and Computation 133.1 (1997), pp. 35–71.

[36] Tom Stuart. Understanding Computation: Impossible Code and the Meaning of
Programs. O’Reilly, 2013.

[37] William W Tait. “Intensional interpretations of functionals of finite type I”. In:
The journal of symbolic logic 32.2 (1967), pp. 198–212.

104

http://www.cs.ru.nl/~herman/onderwijs/%202015Reflection/lecture6.pdf
http://www.cs.ru.nl/~herman/onderwijs/%202015Reflection/lecture6.pdf
https://wiki.mozilla.org/Narcissus
https://doi.org/10.1145/2034574.2034808
https://doi.org/10.1145/2034574.2034808
https://doi.org/10.1145/2034574.2034808
https://doi.org/10.1215/S0012-7094-36-00227-2
https://doi.org/10.1215/S0012-7094-36-00227-2
https://doi.org/10.1215/S0012-7094-36-00227-2
https://benlynn.blogspot.com/2017/04/much-time-has-passed-since-my-last-entry.html
https://benlynn.blogspot.com/2017/04/much-time-has-passed-since-my-last-entry.html
https://en.wikipedia.org/wiki/Meta-circular_evaluator
https://en.wikipedia.org/wiki/Meta-circular_evaluator
https://doi.org/10.1017/S0956796800000423
https://en.wikipedia.org/wiki/Normalization_property_(abstract_rewriting)
https://en.wikipedia.org/wiki/Normalization_property_(abstract_rewriting)
https://doi.org/10.1145/1543135.1542509
https://doi.org/10.1145/1543135.1542509
https://doi-org.ru.idm.oclc.org/10.1145/1543135.1542509
https://doi-org.ru.idm.oclc.org/10.1145/1543135.1542509
https://doi.org/10.1145/1543135.1542509
https://doi.org/10.1016/S1571-0661(04)00280-4

[38] David A Turner. “Total Functional Programming.” In: J. Univers. Comput. Sci.
10.7 (2004), pp. 751–768.

[39] Philip Wadler. “Theorems for free!” In: Proceedings of the fourth international
conference on Functional programming languages and computer architecture. 1989,
pp. 347–359.

[40] Mateusz Zakrzewski. “Definable functions in the simply typed lambda-calculus”.
In: CoRR abs/cs/0701022 (2007). arXiv: cs/0701022. url: http://arxiv.org/
abs/cs/0701022.

105

https://arxiv.org/abs/cs/0701022
http://arxiv.org/abs/cs/0701022
http://arxiv.org/abs/cs/0701022

	Introduction
	Preliminaries
	Untyped Lambda Calculus
	Evaluation
	Church Encoding

	Typed Lambda Calculus
	Church Encoding
	Normalization

	System F
	Adding Polymorphism
	Adding Type Operators
	Normalization
	Church Encoding

	Self Interpreters
	Self-Interpreters For Untyped Lambda Calculus
	Quote as a term
	Recursive function definition scheme
	Self-Evaluator

	A Trivial Self-Recognizer
	Mogensen Self-Interpreter
	Function Definition Scheme
	double quote property

	Closed Term Self-Interpreters
	Closed-Term Function Definition Schemes

	Barendregt Self-Interpreter
	Function Definition Scheme

	Self-Interpreters For Typed Calculi
	Self-interpreters For Normalizing Calculi
	Computability Theory and Breaking The Self-Recognizer Normalization Barrier
	Bauer's Normalization Barrier
	Complexity of
	Self-Evaluator

	System F Self-Recognizers
	Trivial Self-Recognizer
	Brown-Palsberg Self-Recognizer
	Representing Types
	Properties & Proofs

	Coding Terms Lower-Order terms
	Properties & Proofs

	Coding Higher-Order Terms
	Constructor Abstraction Term
	Constructor Application Term

	The Final encoding Function
	Proofs

	Function Definition Scheme
	Applications
	Term Type Tester
	Normal Form Checker
	Term Type Counter

	Restrictions
	Type Recognition

	Discussion
	Related Work
	Conclusion

