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Abstract

Structure learning provides insight on the relations among variables in a dataset. The learned
structures become more reliable as the amount of available data increases. In order to perform structure
learning on big data, three conditional independence (CI) tests are implemented in PySpark. The three
CI tests implemented are: Pearson’s chi-squared test, Monte Carlo permutation test and Random Forest
test. This thesis describes the performance of different CI tests in structure learning for binary data.
Performance is measured for each of the three CI tests in terms of calibration, power and runtime. Since
each of those CI tests has its own strengths and weaknesses, a hybrid approach is proposed. This hybrid
approach can switch between several CI tests, in order to get the best results in feasible runtime. The
proposed hybrid approach is based on calibration, power and runtime of each CI test. Performance of
the structure learning algorithm is measured using precision, recall, F1-score and runtime. The Random
Forest test is the best test to use when only interested in the F1-score. Pearson’s chi-squared test is by
far the fastest test and the only feasible test for big data. The hybrid approach consists of Pearson’s
chi-squared test and the Random Forest test. This approach is significantly faster compared to using
only the Random Forest test and it achieves a higher F1-score than the chi-squared test if the true graph
is dense. This way of structure learning can lead to a better final result in feasible runtime, compared
to the use of a single test.

Keywords: Causal inference, big data, Pearson’s chi-squared test, Monte Carlo Permutation test, Random Forest
test, PySpark, nominal data
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1 Introduction

Over the past few decades, the world has become more and more digitalized. Therefore, nearly every company has
to deal with datasets. They come in any form or shape. When companies have datasets, they would like to extract
information from them. This information can be a simple query, like “does person A work here?”, or “was product
B sold last month?”. Even more interesting are the relations among the variables in the dataset. For example, “if
I change A, will this have an effect on B?”. This process is an example of structure learning in causal inference.
Say we have a dataset with a fixed amount of variables. The more data available for each of the variables, the more
reliable the conclusions we draw, since we have more data to back it up. In other words, if variable A is a cause of
variable B, we are more likely to detect this if we have more data on both variable A and B, since the probability
that the detected relation is due to chance becomes smaller as the sample size increases. To illustrate this, we make
use of the Asia dataset [17][6], a synthetic dataset often used for structure learning. The ground truth is illustrated
in a directed acyclic graph (DAG) in Figure 1.

Figure 1: The DAG representing the ground truth of the structure in the Asia dataset. An edge between two variables implies
that those variables are dependent on one another. If there is no edge connecting two variables, then those variables are
(conditionally) independent.

A structure learning algorithm, called PC-stable [9][3], is applied to this dataset. The amount of taken samples n is
varied, with n ∈ {100, 1000, 10 000}. The quality of the resulting DAG is measured using the F1-score, which can
obtain values in [0, 1]. The higher the F1-score is, the better. The resulting DAGs and the corresponding F1-scores
are depicted in Figures 2, 3 and 4.
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Figure 2: Resulting DAG for the Asia
dataset, with n = 100, α = 0.01.
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Figure 3: Resulting DAG for the Asia
dataset, with n = 1000, α = 0.01.
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Figure 4: Resulting DAG for the Asia
dataset, with n = 10 000, α = 0.01.

As can be concluded by the increasing F1-scores in figures 2, 3 and 4 respectively, the more samples available, the
closer we get to the true DAG. Since more data is not only beneficial to structure learning but to performing statistics
in general, both the amount of datasets, as well as the size of datasets, continues to grow. Nowadays, some datasets
are so large or complex that it is difficult or impossible to process using traditional methods [15]. This is what is
called big data [15]. Big data can allow us to draw conclusions about the relations among variables which we were
not able to draw before. This is indicated by the DAGs found for the Asia example, where an increasing sample size
leads to more correctly detected independencies. To find those relations, conditional independence (CI) tests are
utilized. More specifically, constraint-based algorithms use CI tests to detect relations. An often used constraint-
based algorithm for causal inference is the PC algorithm [9][29][30], or variants thereof [10][26][14][18][35]. The PC
algorithm returns a directed acyclic graph (DAG), in which an arrow from A to B indicates that it is assumed that
a relation exists between A and B. We say assumed, because initially all variables are assumed to be dependent
on one another, until proven otherwise. This process of trying to prove independence is done with CI tests. There
is a variety of CI tests. Each of which has an advantage over the others. Unfortunately, not many CI tests are
implemented yet to handle big data, since causal inference from observational big data is a relatively new research
area, compared to the timespan in which causal inference has been researched. The main difference between big
data and “normal” data, is that big data is stored in a distributed manner, because it is too big to be stored in local
memory. Therefore, we turn to PySpark [25]. PySpark allows us to write Python code while using Apache Spark
[5], an engine specifically designed to handle large-scale data processing.

In this thesis, we implement and compare three already existing CI tests in PySpark, in order to handle big data.
The three CI tests used are: Pearson’s chi-squared test [13][34] (from now on referred to as chi-squared test), the
Monte Carlo permutation test [34] (MCPT) and the Random Forest test [31] (RFT), of which the latter two did
not yet have an implementation to handle big data, to the best of our knowledge. We substitute those CI tests
in the PC-stable algorithm [3], which is already implemented in a Python package designed to create probabilistic
graphical models, called pgmpy [4]. We show the strengths and weaknesses of each CI test. Based on those strengths
and weaknesses, we propose a hybrid approach in which several CI tests are used to learn a network structure. This
allows us to to use each CI test when we expect it to perform best, given a certain situation.

The three mentioned CI tests are applicable when the data is categorical. Hence, we only consider datasets consisting
of nominal variables in this paper. Given the scope of the thesis and the time it takes to obtain sufficient results,
only binary variables are considered. Furthermore, we assume that no dataset has missing values.

1.1 Research Question

The research question we try to answer is as follows: How does an increasing amount of available data influence the
performance of different CI tests in structure learning for binary data? We evaluate the conditional independence
tests in terms of calibration, power and runtime. The performance of the structure learning algorithm is measured
using the F1-score.
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1.2 Hypotheses

As we gather more data, we can obtain a more accurate representation of the true relations among the variables
via structure learning. Each of the CI tests has its own strengths and weaknesses. Therefore, we expect to observe
a shift in performance as we increase the sample size or the amount of variables that we condition on. We expect
the chi-squared test and the MCPT to lose power as we increase the size of our conditioning set, since those CI
tests compute statistics for each unique combination of states in the conditioning set. This results in a summation
of multiple statistics, each of which has been computed on a subsample of the provided data. We expect the chi-
squared test to outperform the MCPT and the RFT in terms of runtime in all scenarios. We expect the MCPT
to outperform the chi-squared test and the RFT in terms of calibration and power in small sample cases, but to
become infeasible for larger sample sizes. We expect the RFT to outperform the chi-squared test and the MCPT in
terms of calibration and power, when there is a low ratio between sample size and size of the conditioning set, due
to its assumed characteristic that it is robust to noise [31]. We expect that using a hybrid approach leads to a better
F1-score, compared to using the fastest CI test, while maintaining feasible runtime. Furthermore, we expect that
using a hybrid approach performs significantly faster compared to the CI test that leads to the highest F1-score,
while preserving comparable F1-scores.

1.3 Thesis Structure

This paper is structured as follows: We first provide relevant background information, where some definitions are
explained (Section 2.1) and related literature is discussed (Section 2.2). We then provide intuition on the workings
and result of the PC algorithm (Section 2.3). Afterwards, we go into the workings of each of the CI tests used, by
providing low-level mathematical information (Section 2.4). Then our experimental setup is explained (Section 3),
i.e., the network structures of our datasets we used to validate our CI tests (Sections 3.1, 3.2 and 3.3). We then state
the necessary specifications to reproduce the results (Section 3.4). The following section (Section 4) is dedicated to
providing empirical evidence that our implementations are valid as CI tests, by showing the calibration and power
of each CI test in various situations. Here we also show the runtimes for each CI test in various scenarios in order to
check if a CI test has feasible runtime. This section also contains the structure learning results, for each of the CI
tests. A hybrid approach is proposed based on those results (Section 5). Here we immediately show the performance
of the hybrid approach compared to the CI tests that make up the hybrid approach. We then conclude with our
conclusions and discussion (Section 6).

2 Background

Before we can go into the theory, we first state relevant definitions, in order to avoid ambiguity.

2.1 Definitions

Two variables X and Y are said to be independent (notation: X ⊥⊥ Y ), if P (x)·P (y) = P (x, y). Two variables X and
Y are said to be conditionally independent (notation: X ⊥⊥ Y |Z), if P (x|Z = z)·P (y|Z = z) = P (x, y|Z = z), for all
z with P (z) > 0 [12]. A k-level variable is a categorical variable which can obtain k different states. T (X,Y |Z) is the
statistical test, if X is independent of Y , given observations in Z. If Z = ∅, then it is a test of independence, rather
than a test of conditional independence. A contingency table is a table containing the observed frequencies of certain
combinations of states for multiple categorical variables. When we talk about a stratum, we refer to a “layer” of the
contingency table. So, if we have a contingency table of 3 variables X, Y and Z, then we split the 3-dimensional
contingency table in seperate 2-dimensional contingency tables, one for each state in Z. Each of those 2-dimensional
contingency tables is then called a stratum of the 3-dimensional contingency table. A graph G = (V ,E) consists of
a set of vertices V and a set of edges E. A path is a sequence of vertices, which are connected by edges. A directed
edge is an edge between vertices that is oriented towards exactly one of those vertices (notation: Xi → Xj for a
directed edge from vertex Xi to vertex Xj). A directed path is a path which follows the direction of directed edges.
A cycle is a directed path in which a variable can reach itself, by following outgoing directed edges. A skeleton graph
is a graph of which the edges are undirected. A partially directed acyclic graph (PDAG) is a graph which contains
directed edges and undirected edges, in which there is no path forming a cycle. A directed acyclic graph (DAG) is a
graph where all edges are directed, in which there is no path which forms a cycle. If Xi → Xj ← Xk and vertices Xi

and Xk are not directly connected by an edge, Xj is a collider of Xi and Xk. The next two definitions are identical
to the way Colombo et al. defined them [10]. Three vertices 〈Xi, Xj , Xk〉 are called an unshielded triple, if Xi and
Xj are adjacent, Xj and Xk are adjacent, but Xi and Xk are not adjacent [10]. An unshielded triple 〈Xi, Xj , Xk〉

3



is called a v-structure, if Xj is a collider on the path 〈Xi, Xj , Xk〉 [10]. Our null hypothesis (H0) for T (X,Y |Z) is
that X and Y are independent given Z. A significance level is a cut-off value for which we decide if a p-value is
significant. Throughout this paper, a significance level will be denoted by the greek symbol α. If p-value < α, we
will reject H0. Two vertices Xi and Xj are said to be d-separated by a subset of vertices in V \{Xi, Xj}, if there is
not an edge directly between Xi and Xj in the graph G = (V ,E). The power of a CI test is the probability that H0
is correctly rejected. A calibrated test incorrectly rejects H0 with a ratio equal to the significance level. Selection
variables are variables that determine whether or not a measured unit is included in the data [10].

2.2 Shoulders of Giants

In this thesis, we heavily rely on former research. The constraint-based PC algorithm introduced in 1993 by Spirtes
et al. [30] and the PC-stable variant thereof, presented by Colombo et al. [9] in 2014, form the very foundation
of this thesis. The working and intuition behind it is elaborated in the next subsection, Section 2.3. We make use
of three different existing CI tests: Pearson’s chi-squared test, the Monte Carlo Permutation test and the Random
forest test. The chi-squared test, introduced in 1900 by Karl Pearson [13], is often used as a test of independence
when categorical data is considered. The test statistic of the chi-squared test asymptotically approaches the X 2

distribution [34], hence it is correct for an infinite sample size. Even for big data the amount of samples is limited.
Therefore, we will also consider other CI tests, which provide reliable results with a smaller sample size. One
approach could be exact testing, but as pointed out by Agrasti, this quickly becomes infeasible as the runtime
increases exponentially with the sample size [1]. Instead, a Monte Carlo based approach is used. The Monte Carlo
Permutation test was introduced in the late 1940s by Ulam et al. [21]. The third CI test, called the Random Forest
test, was first presented in 2021 by Textor et al. [31]. This test was shown to be effective in small sample cases
when conditioning on multiple variables. The calibration and power of the RFT seem unperturbed by an increasing
amount of variables that is conditioned on. Hence, it seems robust to noise. There is no reason to assume that RFT’s
property to discard irrelevant information diminishes as we increase the available sample size. Therefore, the RFT
is expected to be a good alternative to the chi-squared test, when there are multiple variables in the conditioning
set. Each of those CI tests is substituted in the PC-stable algorithm. This algorithm is already implemented in a
Python package called pgmpy [4], which is written by Ankur Ankan and was first published in 2015. The way it
is implemented allows us to easily substitute our CI tests. In this thesis, we create numerous synthetic datasets.
The structures of the datasets to measure calibration and power are identical to the structures proposed by Textor
et al. [31]. The synthetic datasets used to measure the quality of our DAGs after structure learning are simulated
with Dagitty [32]. The research performed in this thesis is inspired by, and built upon, the knowledge provided by
formerly mentioned publications.

2.3 PC Algorithm

In order to create a DAG which represents the relations among variables in a dataset, we need to detect the indepen-
dencies among the variables. For this, we make use of a variation of the constraint-based algorithm called the PC
algorithm [30], namely PC-stable [9], as implemented in pgmpy [4][3]. The stable variant, PC-stable, is used to get
more robust results [9], in the sense that the resulting skeleton graph is independent of the ordering of the CI tests.
We substitute pgmpy’s CI tests with our custom CI tests; chi-squared test [34], Monte Carlo Permutation test [34],
and Random Forest test [31]. Note that pgmpy already contains the chi-squared test. However, this implementation
does not work for big data, since it relies on dataframes stored in local memory. The Random Forest test is valid
for T (X,Y |Z) if Z 6= ∅, while the chi-squared test and Monte Carlo Permutation test are valid both as a test of
independence as well as a test of conditional independence. The pseudocode of the PC-stable algorithm implemented
in pgmpy is as follows:
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Algorithm 1: PC-stable [3]

Result: DAG
Start with the fully connected undirected graph G = (V,E) on all variables;
l = 0;
/* Step 1, obtain the skeleton graph and the separating sets */

while l ≤ d and ∃v∈V : |N(v)| ≥ l do
Compute the set of neighbours N(v) for each v ∈ V ;
for (u, v) ∈ E do

for Z ⊂ {N(v) \ {u} : |Z| = l} or Z ⊂ {N(u) \ {v} : |Z| = l} do
obtain p(u, v|Z) from T (u, v|Z);
if p(u, v|Z) ≥ α then

Remove edge (u, v) from graph G;
Store the separating set Z in S;
break;

end

end

end
l = l + 1;

end
/* By now, G is a skeleton graph */

/* Step 2, skeleton to pdag by orienting the edges */

Direct all edges in the skeleton both ways;
for each X ↔ Z ↔ Y , if Z not in the separating set of X,Y, then orient edges as X → Z ← Y ;
progress = True;
while progress do

num edges = amount of edges in G;
for each X → Z ↔ Y , orient edges to X → Z → Y ;
for each X ↔ Y with a directed path from X to Y, orient edges to X → Y ;
for each X ↔ Z ↔ Y with X →W , Y →W , and Z ↔W , orient edges to Z →W ;
progress = num edges > amount of edges in G;

end
/* By now, G is a PDAG */

/* Step 3, PDAG to DAG by orienting remaining undirected edges */

if A faithful extension exists then
Orient edges in PDAG such that the resulting DAG has the same v-structures as the PDAG;

else
Orient remaining undirected edges arbitrarily;

end
/* Step 4, return the DAG */

Return DAG

where

• V ⊂ G is the set of variables of the provided dataset.

• d is the maximum allowed size of sets to condition on.

• S is the set of separating sets.

• p(u, v|Z) is the p-value of the independence test, which tests if u and v are independent conditioned on Z.

• α is the significance level.

• N(v) is the set of neighbours for v ∈ V .

The quality of the resulting DAG relies both on the chosen significance level α as well as on the quality of the used
CI test. For a predetermined significance level α, an edge A - B will be removed if the p-value of T (A,B|Z) ≥ α.
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This implies that as long as we can reject our null hypothesis of independence, i.e., we find a p-value < α, then we
still assume dependence. As soon as we do not find enough evidence to reject H0, the edge will be removed and
the variables are said to be independent. For this to work, we need a CI test that is well calibrated and has high
power. If a dependency exists, we need to detect it, since once an edge is removed, it will not come back. Incorrectly
removing an edge is therefore an irreversible error. On the other hand, if two variables are indeed independent, so
the null hypothesis is true, we expect to find uniformly distributed p-values, for a well calibrated test. This means
that for two independent variables, we correctly remove the edge with probability 1 - α. Failing to remove an edge
is not as bad as incorrectly removing an edge. This is due to the fact that an edge is tested multiple times, since
the conditioning sets vary. Furthermore, when we increase d, we perform the same test with an extra variable in the
conditioning set. Therefore, it is very likely that the edge will be rejected in one of the next tests performed, and
the mistake will be rectified.

When all necessary CI tests are performed, the skeleton graph consists of vertices and undirected edges. The edges
are then directed in such a way that the detected independencies in the data are equal to the dependencies implied by
the DAG via d-separation, if such a DAG exists. See “Learning Bayesian Networks” by Neapolitan et al., Algorithm
10.2 (page 550) [22] for a more elaborate description.

The PC-stable algorithm returns a DAG. Multiple DAGs can fit the same data. To provide some intuition for this,
imagine the DAG

A
f−→ B

f−→ C, where f(x) = 2x

If this fits the data, then a DAG

A
g←− B g←− C, where g(x) =

1

2
x

fits the data equally well. Therefore we only focus on the first step of the PC-stable algorithm, i.e., finding the
skeleton graph.

2.3.1 Assumptions

The PC(-stable) algorithm assumes acyclicity and that the provided dataset contains independent and identically
distributed samples. Furthermore, the PC(-stable) algorithm is sound and complete under the assumptions of causal
sufficiency and faithfulness [10].

• Acyclicity : The resulting DAG does not contain cycles.

• Causal faithfulness: The conditional independence relations among the variables are exactly equal to those
implied by the DAG via d-separation [10][9].

• Causal sufficiency : There are no unmeasured common causes and no unmeasured selection variables [10].

In real datasets, causal sufficiency rarely holds. Therefore, for real data, PC(-stable) is not guaranteed to be sound
and complete. However, we will show empirically that learning the structure of the skeleton graph still works when
the assumption of causal sufficiency does not hold.

2.3.2 Measuring the Quality of the DAG

In order to determine the quality of a DAG, we make use of the F1-score, which is based on precision and recall.
Only the presence or the absence of an edge is considered. Hence, the direction of the edges is irrelevant. If an edge
is present in the DAG, we consider this the “positive” case. Likewise, if an edge is absent in the DAG, we consider
this the “negative” case. The formulas for precision and recall are as follows:

precision =
Number of True Positives

Number of True Positives + Number of False Positives

recall =
Number of True Positives

Number of True Positives + Number of False Negatives

Which now allows us to define the F1-score

F1-score =
2 · precision · recall

precision + recall

Each of those metrics returns values in [0, 1], in which 1 is a perfect score and 0 is the worst possible outcome.

6



2.4 Conditional Independence Tests

Three CI tests are considered. The well known and widely used chi-squared test [13][34], a Monte Carlo permutation
based approach to the chi-squared test [34] and a novel test called the Random Forest test recently proposed by
Textor et al. [31].

Each test returns a p-value with which we determine whether we reject the null hypothesis or not. This p-value can
lead to 4 different situations.

• True positive: An edge is present where it should be present. (H0 correctly rejected)

• False positive: An edge is present where it should be absent. (H0 incorrectly rejected)

• False negative: An edge is absent where it should be present. (H0 incorrectly not rejected)

• True negative: An edge is absent where it should be absent. (H0 correctly not rejected)

Remember that at the start of the PC algorithm we start with a fully connected graph. So initially our graph is full
of true and false positives and our main aim is to remove as many false positives as possible (i.e., find true negatives),
while leaving the true positives intact (i.e., avoid false negatives).

2.4.1 Chi-squared test

The chi-squared test makes use of a contingency table, and is valid as a test of independence as well as a test
of conditional independence. The contingency table is used to compute a X 2 value and the degrees of freedom
(dof).

For an independence test T (X,Y ), the contingency table for any two categorical variables X and Y takes the
following form:

Y
Y1 Y.. Yc Total

X X1 x1,1 x1,.. x1,c x1,total
X.. x..,1 x..,.. x..,c x..,total
Xr xr,1 xr,.. xr,c xr,total

Total xtotal,1 xtotal,.. xtotal,c xtotal,total

Table 1: Contingency table of an r-level variable X and c-level variable Y . The value for total is obtained by summing over
the corresponding axis.

Say we have the following test T (X,Y |Z). Then we do not merely get a 2-dimensional contingency table, but a
multidimensional contingency table. The amount of dimensions is equal to the amount of variables that is conditioned
on plus two. So if we condition on 4 variables, we get a 6-dimensional contingency table, and if we condition on
0 variables, we get a 2-dimensional contingency table (as expected, since this is the simple independence case).
Luckily, this multidimensional contingency table can be split up into t 2-dimensional contingency tables, stratified
on Z, where t =

∏
Z∈Z |Z|, with |Z| the amount of different states variable Z ∈ Z obtains.

For each of the t obtained contingency tables, the rows and colums are removed which only contain zeroes. If one of
the resulting contingency tables does not have both length and width at least two, that specific contingency table
will not be considered, i.e., for those tables a 0 is added to the total X 2 and 0 is added to the total (dof).

Define
Oi,j,k = xi,j in contingency table k

and
Ei,j,k =

xtotal,j · xi,total
xtotal,total

in contingency table k for i ∈ {1, ..., r}, j ∈ {1, ..., c} and k ∈ {1, ..., t}.
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To compute the p-value for T (X,Y |Z), we compute the X 2 value and the dof for each contingency table and then
sum those values over all of the contingency tables.

X 2 =
∑
k

∑
i,j

(Oi,j,k − Ei,j,k)2

Ei,j,k

The degrees of freedom dof is also required to compute the p-value.

dof =
∑
k

(|Xk| − 1) · (|Yk| − 1)

where |Xk| and |Yk| represent the length and width of the contingency table k respectively. Then the p-value for
T (X,Y |Z) is computed as follows:

p = 1− Fdof (X 2)

where Fdof is the cumulative distribution function of the X 2 distribution, with dof degrees of freedom.

If the p-value is greater than or equal to a previously chosen significance level, independence is assumed. Otherwise,
we can reject H0 and still assume dependence until proven otherwise. The chi-squared test becomes more reliable
as the sample size increases while other attributes remain the same, i.e., it is asymptotically correct. When the
sample size is low, it can provide unreliable results, as is shown in Section 4. In this case, another test might be
more appropriate.

An important aspect of the chi-squared test is that the more we stratify our data, the more power the chi-squared
test loses when the effect remains the same. See the example below, where we show the power of the test X ⊥⊥ Y
and X ⊥⊥ Y |Z, where Z is a uniformly distributed binary variable.

Y
Y1 Y2 Total

X X1 12 6 18
X2 6 12 18

Total 18 18 36

Table 2: Contingency table of a bi-
nary variable X and a binary variable
Y

Y
Z1 Y1 Y2 Total

X X1 6 3 9
X2 3 6 9

Total 9 9 18

Table 3: Contingency table of a bi-
nary variable X and a binary variable
Y conditioned on Z = Z1

Y
Z2 Y1 Y2 Total

X X1 6 3 9
X2 3 6 9

Total 9 9 18

Table 4: Contingency table of a bi-
nary variable X and a binary variable
Y conditioned on Z = Z2

The X 2 values of Tables 2, 3 and 4 are 4, 2 and 2 respectively. The degrees of freedom are 1 in each table.

In each of the tables,
2

3
of the entries match for X and Y . For the first table, Table 2, we obtain a p-value of

1 − F1(4) ≈ 0.0455, while combining the information in Table 3 and Table 4 gives a p-value of 1 − F2(4) ≈ 0.1353,
where Fdof (X 2) is the cumulative distribution function of the X 2 distribution, with dof degrees of freedom. If
we have a significance level α = 0.05, then we would reject H0 based on the non-stratified test and still assume
dependence, while based on the stratified data we would not reject H0 and assume independence. Hence, we lose
power by stratifying.

2.4.2 Monte Carlo Permutation test

Rather than merely having reliable results for large sample sizes, it is also possible to compute the exact p-value
which is correct for any sample size, if the assumptions under the null hypothesis hold.

Say we have a contingency table like Table 1. The marginals, present in the row and column called Total, are
known. Under the null hypothesis, which states that X and Y are independent, each possible contingency table with
those marginals is equally likely. To compute the exact p-value, one needs to sum the multivariate hypergeometric
probabilities of all tables that have X 2 at least as large as the one observed [1], for all contingency tables with the
same marginals. This is feasible for small sample sizes and small contingency tables, but as the total sample size
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increases, the amount of possible permutations grows exponentially [2]. If n is fixed, but the width or length of
the contingency table increases, the amount of possible permutations again grows rapidly [2]. See table 5 for a few
examples Agrasti [2] provided.

Sample size n
20 100

Size of the 4 by 4 4.0 · 104 7.2 · 109

contingency table 5 by 5 2.1 · 106 9.2 · 1014

Table 5: Maximum cardinality [2]

As depicted in table 5, for a 5 by 5 contingency table with only a 100 samples, we can already obtain nearly a
quadrillion (!!!) tables with the same margins. To ensure that each test we perform is tractable, we can use Monte
Carlo sampling to take a subset of contingency tables out of all the possible contingency tables with those fixed
marginals. For each of those permutations, a X 2 statistic is computed. This approach is no longer exact, but merely
another way to approximate the p-values.

Following the pseudocode presented by Tsamardinos et al. in Algorithm 1 (page 327) [34], the p-value that results
from the MCPT can be obtained as follows:

p =

nperm∑
i

1{X 2
observed≤X

2
i }

nperm

where X 2
observed is the X 2 value of our original contingency table, X 2

i is the X 2 value of permutation i, 1 is the
indicator function and nperm is the total amount of permutations.

To save runtime for easy to determine cases, we use the same heuristic as presented by Tsamardinos et al. [34],
where we accept independence if the p-value of the chi-squared test for X 2

observed and the observed degrees of freedom
is greater than or equal to 0.5. The intuition behind this is that the chi-squared test often returns small p-values,
i.e., < 0.1. If the chi-squared test returns a p-value ≥ 0.5, it is often safe to assume independence. This leads to
the chi-squared test and MCPT to be equal when the chi-squared test returns a p-value greater than or equal to
0.5.

If the p-value is greater than or equal to a previously determined significance level, independence is assumed.
Otherwise, we still assume dependence until proven otherwise.

Like the chi-squared test, the Monte Carlo permutation test (MCPT) is also valid both as a test of independence as
well as a test of conditional independence.

2.4.3 Random Forest test

The implementation of the Random Forest test is entirely based on the description in the original paper by Textor
et al. [31] and their implemented R code.

Unlike the previously mentioned tests, the Random Forest test (RFT) is only valid as a conditional independence
test. This is due to the fact that the forests used in the RFT are trained on the observations in the conditioning set.
If there is no conditioning set, there is no data to train any forests.

For a test of conditional independence T (X,Y |Z), the RFT works as follows: Train two random forests using only
the features in Z. One forest to predict X given Z, and one forest to predict Y given Z. Each forest is trained
on all samples. Then a sample probability distribution p̂ is computed for both forests, by predicting all samples.
Since training and testing is performed on the same samples, one might worry about overfitting. But since we are
trying to find the sample distribution, rather than creating a forest that is generalizable to new data, this does not
matter.

In order to get the test statistic, we first need to perform a lot of computations.

First, define the conditional residual Rxi|zi as follows [19][31]:

Rxi|zi = p̂(X < xi|Z = zi)− p̂(X > xi|Z = zi)

9



Since we will merely use this on indicator variables, which are binary, this can be simplified to

Rxi|zi = xi − p̂(X = 1|Z = zi)

where xi = 1↔ xi is the true label.

To illustrate the calculations, let us assume we have a small dataset consisting of three variables: X, Y and Z, with
just 5 entries.

X Y Z

1 2 small
2 1 big
1 1 big
3 2 small
4 3 small

Table 6: Small dataset for illustrative purposes.

Assume we want to test T (X,Y |Z). We start by dummy encoding [8] each dependent variable. So X becomes (1,
0, 1, 0, 0), (0, 1, 0, 0, 0) and (0, 0, 0, 1, 0), and Y becomes (0, 1, 1, 0, 0), (1, 0, 0, 1, 0). Notice that there is no
vector representing the indices where the original vector X has value 4, nor where Y has value 3. This is because
that information is already incorperated in the combination of the other vectors.

In order to compute our test statistic, we first need a vector d, which is the pairwise dot product of our residuals. In
order to obtain d, we take the dummy encoded labels of X and Y and substract the probabilities for each outcome
of those vectors, given by p̂. For brevity, only a calculation to obtain the first row will be shown here. Say that by
conditioning on Z we found these probability distributions:

p̂X|Z=small = (0.2, 0.1, 0.3, 0.4)

p̂X|Z=big = (0.3, 0.4, 0.2, 0.1)

p̂Y |Z=small = (0.2, 0.5, 0.3)

p̂Y |Z=big = (0.7, 0.2, 0.1)

Then the first row of d will be the pairwise dot product of RX1
and RY1

, where

RX1
= (1, 0, 0)− (0.2, 0.1, 0.3) = (0.8,−0.1,−0.3)

and
RY1

= (0, 1)− (0.2, 0.5) = (−0.2, 0.5)

Again, note that we do not need the probabilities of obtaining value 4 and 3 for X and Y respectively. This is due
to the fact that the residuals should add up to 1, and therefore all information is captured by this vector.

The first row of d then becomes

(0.8 · −0.2, 0.8 · 0.5,−0.1 · −0.2,−0.1 · 0.5,−0.3 · −0.2,−0.3 · 0.5)

= (−0.16, 0.4,−0.02,−0.05, 0.06,−0.15)

This is done for each sample in our dataset, so we end up with a matrix d of shape (n, (r − 1) · (c − 1)), where n
is the amount of samples in our dataset, and r and c are the amount of levels of our dependent variables. In our
running example, we would end up with a shape of (5, 6) for d.

Finally, the test statistic S is defined as

S(X,Y ) =
d · Σ̂−1d · dT

n

where Σ̂d is the estimated covariance matrix of d [31].
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S(X,Y ) is X 2 distributed with (c− 1) · (r − 1) degrees of freedom, as is shown by Textor et al. [31]. As it was for
the chi-squared test, the p-value for T (X,Y |Z) is computed as follows:

p = 1− Fdof (S(X,Y ))

where Fdof is the cumulative distribution function of the X 2 distribution, with dof degrees of freedom and S(X,Y )
is the test statistic.

If the p-value is greater than or equal to a previously determined significance level, independence is assumed.
Otherwise, we still assume dependence until proven otherwise.
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3 Experimental Setup

We now have a total of three CI tests, of which only the RFT is unusable if we have no observed variables. So in
the case of T (X,Y ), we need to determine whether we want to perform the chi-squared test, or the MCPT or no
test at all. If we have a CI test T (X,Y |Z), we need to determine whether it is best to perform the chi-squared test,
the MCPT or the RFT.

Before using any CI tests, it is important to know if those CI tests even work. Two important notions of CI tests
are calibration and power. The calibration of a test represents the amount of null hypotheses that are wrongfully
rejected, which should be equal to the significance level by definition of the p-value, when the test is well-calibrated.
The power of a test represents the ratio of correctly rejected null hypotheses. In order to measure calibration or
power, a ground truth has to be known. Therefore, synthetic datasets are constructed in which the ground truths
are known.

The network structures used to generate synthetic datasets for calibration and power are equal to the network
structures proposed by Textor et al. [31].

3.1 Synthetic Dataset Calibration

In order to show how well the tests are calibrated in different scenarios, we will show 16 distinct cases. For each of
those cases, 400 datasets are generated using the structure depicted in Figure 5.

X

Z1

Y Z2 Z... Zm

Figure 5: Network structure used for calibration. Values generated for X and Y depend on values in Z1. All other variables
are independent of one another.

For the calibration plots, only binary variables are considered. For each Zi, we draw n samples from the discrete
uniform distribution on the interval [1, 2]. X and Y are both generated using only the values in Z1. For each xi ∈ X,
with i ∈ {1, ..., n}, we draw from the Bernoulli distribution Bernoulli(Z1i/3) and 1 is added to this value. The same

holds for each yi ∈ Y . With those initialisations, X and Y are expected to match Z1 in
2

3
of the entries.

For our calibration plots, we will both vary the amount of samples n present in the dataset (n ∈ {20, 50, 200, 10 000}),
as well as the amount of variables k that is conditioned on (k ∈ {0, 1, 3, 5}). Remember that the RFT is only valid
when k ≥ 1, so in the case k = 0, the RFT will not be performed. Furthermore, when n = 10 000 and k = 0,
a MCPT of 5000 simulations takes about 12 minutes per test. This runtime is obtained using the specifications
specified in the upcoming section, Section 3.4, with the only difference that 2 executor instances were used instead
of 4. Performing 400 tests is not feasible, and therefore it will not be performed. Note that since the MCPT takes
about 12 minutes in such cases, we will not perform it in real world applications. Hence, how well it is calibrated is
not interesting for practical reasons. The same holds for performing the MCPT when n = 10 000 and k ∈ {1, 3, 5},
where a single MCPT takes about 10 minutes in each case.

The conditional independence test T (X,Y |Z) is performed on different combinations of nodes when the amount of
variables k in Z varies, see Table 7. Note that X and Y are only dependent on Z1, so X and Y are independent
when we condition on Z1. When we add Zi with i ∈ {2, ..., k} to the conditioning set, the independence still holds,
since Z1 is still in the conditioning set, but it will be harder to detect due to the noise introduced by the irrelevant
variables.
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k X Y Z

0 Z1 Z2 ∅
1 X Y {Z1}
3 X Y {Z1, Z2, Z3}
5 X Y {Z1, Z2, Z3, Z4, Z5}

Table 7: Variables used for the test T (X,Y |Z) for various levels of k.

3.2 Synthetic Dataset Power

To measure the power of the tests, a network structure similar to the one used for calibration is used. The only
difference is that there is an edge from X to Y , see figure 6. Again, this structure is identical to the one Textor et
al. used [31].

X

Z1

Y Z2 Z... Zm

Figure 6: Network structure used for power. Values generated for X are dependent on values in Z1. Values generated for Y
depend both on values in X as well as values in Z1. All other variables are independent of one another.

The values present in the datasets to measure power do differ from the values present in the datasets to measure
calibration. Again, only binary values are considered, but now the entries for each Zi are from the set {0, 1}, rather
than {1, 2}. For each Zi, we draw from the discrete uniform distribution on the interval [0, 1], which is the same as

flipping a fair coin or sampling from the Bernoulli distribution with p =
1

2
. We then first generate values for X,

using the values of Z1, by employing the logistic function with an integrated effect size, again based on the paper
introducing the Random Forest test [31].

P (Xi = 1) =
eβ·Z1i

eβ·Z1i + 1

This way, the effect size β can be controlled. If β = 0, the values in X are expected to match the values in Z1 in
e0

e0 + 1
=

1

2
of the cases. Similarly put, it is completely random (no effect).

If β = 1

P (Xi = 1|Z1i = 1) =
e

e+ 1
≈ 0.73

and

P (Xi = 1|Z1i = 0) =
e0

e0 + 1
=

1

2

This means that for entry i in Z1 where Z1i = 1, the entry i in X is expected to match with probability approximately
0.73, while for entry j where Z1j = 0, Xj still is randomly generated.

After X is generated, Y is generated, which depends both on X and Z1. Y is generated in the same fashion as X,
however it now both depends on the values present in X and Z1.

P (Yi = 1) =
eβ·(Z1i

+Xi)

eβ·(Z1i
+Xi) + 1

Since Z1i and X only contain values in the set {0, 1}, Z1i +Xi has values in {0, 1, 2}.
If Z1i +Xi = 0:

P (Yi = 1|Z1i +Xi = 0) =
eβ·0

eβ·0 + 1
=

1

2

If Z1i +Xi = 1:

P (Yi = 1|Z1i +Xi = 1) =
eβ·1

eβ·1 + 1
=

eβ

eβ + 1
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If Z1i +Xi = 2:

P (Yi = 1|Z1i +Xi = 2) =
eβ·2

eβ·2 + 1
=

e2β

e2β + 1

For our power plots, we used β ∈ {0, 14 ,
1
2 ,

3
4 , 1}, where β = 0 represents no effect and β = 1 represents a strong effect.

We perform the conditional independence testX ⊥⊥ Y |Z with Z ∈ {∅, {Z1}, {Z1, Z2, Z3}, {Z1, Z2, Z3, Z4, Z5}}.

3.3 Synthetic Datasets Structure Learning

After the performance for each of the three CI tests is known in terms of calibration, power and runtime, we also
put the CI tests to practice. We substitute each of the CI tests in the PC-stable algorithm, as implemented in pgmpy

[3]. We will use two synthetic datasets for structure learning. The first synthetic dataset is described by Schipf et al.
[27]. The true network structure of this dataset consists of 7 nodes and 14 edges and is depicted in Figure 7. Our
generated data which follows this network structure will be referred to as dataset A. The second synthetic dataset
is described by Polzer et al. [16]. The original network structure consists of 14 nodes and 69 edges. However, after
generating the data, we removed the last 5 variables when lexicographically sorted. By removing those 5 variables,
we purposely violated the causal sufficiency assumption, since we know that there are exactly 5 hidden variables.
The network structure we worked with consists of 9 nodes and 24 edges and is depicted in Figure 8. We will refer
to this generated dataset as dataset B.

For both dataset A and B with its original structure we generated 10 million samples using Dagitty’s simulateLogistic
[11]. For dataset A, we used an effect size b.default ∈ {0.1, 0.4}. For dataset B, we used an effect size b.default

of 0.1. For each of those three situations, we only generated a single dataset with 10 million rows. When performing
structure learning on a subset of the dataset, we used a random sample of this dataset of size n.

Figure 7: True DAG of dataset A.
Figure 8: True DAG for the first 9 lexicographically sorted
variables of dataset B.

Both graphs have the same density:
14(
7
2

) =
14

21
=

2

3
for dataset A and

24(
9
2

) =
24

36
=

2

3
for dataset B. However, the

graph of dataset B contains a very dense subgraph. If “Caries” is removed, the graph consists of 8 nodes and 23

edges, which results in a density of
23(
8
2

) =
23

28
≈ 0.82. Therefore, the graph of dataset B is considered to be denser

than the graph of dataset A. Since the graph of dataset B contains a dense subgraph on more variables than the
total amount of variables in dataset A, we expect the PC-algorithm to reach a deeper depth d, which in turn leads
to a loss in power for stratified CI tests like the chi-squared test and the MCPT.

14



3.4 Specifications

All simulations were performed using a PySpark session, which was instantiated with the same resources available
every time. Below some information on the available resources, relevant hardware and versions for reproducibil-
ity:

• 4 executor instances

• 2 cores per executor

• 8G memory per executor

• Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz

• DDR4 32GB 2400MHz

• SUSE Linux Enterprise Server 12 SP2

• Python version 3.6.13

• RStudio version 1.2.1335

• R version 3.6.1

• Spark version 2.4.3

• Pgmpy version 0.1.13

• Dagitty version 0.3-1
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4 Results and Analysis

4.1 Calibration

The plots present in Figure 9 were created using the network structure explained in Section 3.1.
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Figure 9: Calibration plots on log-log scale for the chi-squared test, MCPT and RFT, when applicable. All plots are
based on 400 simulated datasets, with varying sample sizes n and conditioned set size k. n varies from left to right with
n ∈ {20, 50, 200, 10 000}. k varies from top to bottom with k ∈ {0, 1, 3, 5}. A 95% confidence interval is present in the plots
to statistically substantiate our conclusions.1

1Note that the plots are on a log-log scale. This scale better represents the calibration on the interval of interest. Conditional
independence tests are often performed with significance levels≤ 0.1, therefore it is most interesting how the tests are calibrated
for those values. On the x-axis, values of -2.0 and -1.0 represent significance levels of 0.01 and 0.1 respectively.
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In the calibration plots, depicted in Figure 9, the ratio of Type 1 errors is plotted against various levels of significance,
for certain combinations of sample sizes and conditioning set sizes. A Type 1 error occurs when the null hypothesis,
i.e., independence, is wrongfully rejected. If a test is perfectly calibrated, we expect the distribution of p-values to
be uniform, hence they should form or approach the diagonal. For reference, the diagonal is also plotted.

The following statements are made with 95% certainty, since 95% confidence intervals are plotted. From the cali-
bration plots, it can be deduced that the chi-squared test becomes less calibrated as the conditioned size k increases
if n stays the same, while the RFT seems unperturbed by the amount of variables that is conditioned on, hence it
is more robust to noise (i.e., irrelevant variables in the conditioned set). Since the RFT is on the right hand side
of the diagonal when n = 20 or n = 50, it is slightly more conservative than the other two tests when the sample
size is low. For n = 20, the MCPT seems to reject the null hypothesis too often, given the 95% confidence interval
around α = 0.05. None of the tests are calibrated when n = 20 and k = 5. This is no surprise, since conditioning
on 5 binary variables leads to 32 contingency tables of which at least 32− 20 = 12 are completely empty, while the
remaining 20 contingency tables contain 1 entry on average. Hence, there is little to no information on dependence
available. For the other cases, the chi-squared test seems to be calibrated, with the exception of the two center plots
in the last row (n ∈ {50, 200} and k = 5). When inspecting those two plots, we see that when n = 50 and k = 5,
the RFT seems better calibrated compared to the chi-squared test and the MCPT. When n = 200 and k = 5, both
the MCPT and the RFT are well calibrated.

If calibration was the only important aspect, we could use any of the three CI tests when there is a high ratio
between sample size and the amount of combinations of states in the conditioning set. The chi-squared test seems
best calibrated for low sample cases when conditioned on little to no variables. The RFT seems better calibrated
for low sample cases, where the conditioning set contains multiple variables.

Apart from finding different situations each test might be better calibrated than the other tests, the main goal was
to show that all tests are well calibrated in situations where they should work. This is the case, as can be concluded
from the 4 center plots in Figure 9, where n ∈ {50, 200} and k ∈ {1, 3}.

Calibration is not the only important aspect of a test, since randomly drawing from the uniform distribution on the
interval [0, 1] will also lead to a diagonal line in those plots. Another important attribute we are interested in is
power.
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4.2 Power

Since the calibration plot depicted in figure 9 shows that each of the CI tests is well calibrated for n = 50 and
n = 200 for all of the cases except when k = 5, we are interested in the power for those cases.
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Figure 10: Various power plots for n ∈ {50, 200} and k ∈ {0, 1, 3, 5}. The 95% confidence interval is also depicted. 200
datasets were simulated per scenario.

Note that for each power plot there also is an effect size of 0. In this case, there is no relation to detect, hence “Ratio
Correctly Rejected H0” does not apply here. The reason to include this effect size in the power plots is to again
emphasize the calibration of the CI tests. Since no relation is present, we hope to see that we incorrectly reject H0
with a ratio equal to the significance level. A significance level of 0.05 was used to generate these power plots, so
each line indicating power should start at around 0.05, for well calibrated tests. For k = 5, the chi-squared graph
does not start around 0.05, but signficantly higher. This does not mean that it is better to use. On the contrary, it
means that the chi-squared test is not calibrated in this case, hence should not be used, or at least not be preferred
when other calibrated tests are available. This is emphasized by the use of a dashed line, rather than a solid line.
The reason to still plot the power of the chi-squared test when it is not well calibrated is to show that, even in that
situation, a well calibrated test like the RFT still achieves a higher power.

As can be deduced from Figure 10, the CI tests have similar power for low effect sizes when k ∈ {0, 1}. But as
the effect size increases, the power of the RFT starts to distinguish from the powers of the chi-squared test and the
MCPT, especially in the cases where there are multiple noisy variables. This is due to the fact that the power of
the chi-squared test and the MCPT decrease as noise is introduced, while the RFT again seems unperturbed by
irrelevant variables in the conditioning set, much like it was for the calibration plots. Hence, the power of the RFT
mostly relies on the effect size of the relation to detect and the sample size. The power of both the chi-squared test
and the MCPT rely on effect size, sample size and the amount of combinations of states present in the conditioning
set.

The observation that the power of the chi-squared test and the MCPT seem to rely on the amount of unique states
in the conditioning set, while again the RFT seems unperturbed, is no surprise. The chi-squared test and the
MCPT both use stratifications of the data. Since a strata of sample size n can provide more evidence against a null
hypothesis than 4 strata of sample size n

4 , it is only logical that the power decreases as we increase the amount of
strata, while retaining the total sample size, i.e., the combined sample size of all strata. This was already illustrated
with an example in Section 2.4.1.
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Furthermore, the power of the CI tests grows with
√
n [33], as is clearly visible in Figure 10 for an effect size of

1.

If only the effect size would be known beforehand, we could now predict what test is best to use given the calibration
and power of the CI test in a similar situation.

However, say one of our CI tests takes one second to perform, while another one takes an entire day to perform in
the same situation, we would rather take the first mentioned CI test if the difference in power is not too big and it
is still calibrated. This brings us to the last attribute of our CI tests.

4.3 Runtime

If a CI test is perfectly calibrated and has high power, the only thing left that we are interested in is the runtime.
Since a CI test which is well calibrated and has high power but has infeasible runtime is completely useless. In order
to measure our runtimes, we ran the tests at night. The cluster of De Volksbank, on which we ran all of our Spark
sessions, had more jobs to schedule during the day than at nighttime. Since important processes of De Volksbank
have a higher priority on the server than our tests, we wanted to make sure that enough resources were available.
The runtime plots were created using the resources stated in Section 3.4.

An important note on our runtimes is that the chi-squared test and the MCPT are implemented in such a way
that the frequencies present in the contingency table are gathered before the testing begins. This is depicted in our
runtime plots as “Obtaining Counts”. The RFT does not require these counts, so if the graph of the RFT lies above
the one of the chi-squared test or the MCPT, it does not directly imply that only using the chi-squared test and
MCPT results in faster runtimes, compared to only using the RFT.

We varied our sample size n ∈ {100, 1000, 10 000, 100 000, 1 000 000, 10 000 000, 100 000 000} and our conditioning
set size k ∈ {0, 1, 3, 5}. The structure used to generate our data is the same one we used for our calibration plots,
see Figure 5. The variables we conditioned on are also the same ones as for our calibration plots, see Table 7.
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Figure 11: Runtimes to obtain necessary statistics to perform
our CI tests. The sample size is on a log scale. Obtaining
States refers to detecting the different states all of our vari-
ables obtain. Obtaining Counts refers to the instantiation of a
dictionary, where the frequency for each combination of states
relevant to the CI tests we are expected to perform, is stored.
Each graph is based on 20 runs. The 95% confidence interval
is also plotted.
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Figure 12: Runtimes of the chi-squared test, MCPT and
RFT depicted on a log-log scale. Only tests with feasible
runtime are performed. Each graph is based on 20 runs. The
95% confidence interval is also plotted.
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When we obtained the runtimes, we only provided dataframes with the relevant columns. So, when we did not
condition on any variables, our dataframe contains 2 columns. If we condition on 5 variables, our dataframe contains
7 columns. Due to time constraints, we were unable to obtain a sufficient amount of results for the runtimes when
n = 100 000 000 and k = 5. The first results indicated that obtaining counts takes 4 times as long for k = 5 as
it did for k = 3. This follows the trend that for every binary variable added to the conditioning set, the runtime
doubles.

Note again that the RFT is not present in the runtime plot, Figure 12, when we condition on the empty set. This is
again due to the fact that the RFT is not applicable when there are no variables in the conditioning set. Furthermore,
we only computed runtimes for the MCPT when k ∈ {100, 1000}, due to the fact that we observed long runtimes
for the small sample cases combined with the observation that the MCPT does not outperform the chi-squared test
and the RFT in terms of calibration and power. It was therefore decided not to measure the runtimes of the MCPT
for bigger sample sizes.

In Figure 11, the runtimes to obtain the various states for each variable are depicted. Obtaining these various states
is required for all of our CI tests and is only required to be done once, since the set of states each variable can obtain
is immutable. Note that this step only takes a matter of seconds, even for a sample size of 1 000 000. The other
graph, representing the runtimes to obtain the relevant counts, is the more interesting one. At first sight, the plots
look very similar. However, note that the values on the y-axis differ. Figure 11 depicts that each time a variable
is added to the dataset, the runtime increases by a factor of 2. This is in line with our expectations, since these
synthethic datasets consist of binary variables.

From Figure 12, it can be deduced that the chi-squared test is by far the fastest CI test, if all of the frequencies are
already stored locally, since a single test takes only several milliseconds. The MCPT is the only test for which the
95% confidence interval is clearly visible. This is due to the heuristic presented in Section 2.4.2. A single test either
takes a lot of time, or is performed in a matter of milliseconds, since it is then based on a single chi-squared test.
Even with this heuristic applied, it still resulted in the longest runtimes. Unlike the two previously mentioned tests,
the RFT does not require the counts of each combination of states, so the total runtime of the RFT can directly be
deduced from Figure 12.
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4.4 Structure Learning

As was shown in Section 4.3, for an increasing sample size the MCPT and the RFT eventually end up with infeasible
runtimes. Therefore, we had to limit the sample size of our datasets in structure learning. Various statistics are
gathered to measure the performance for the use of a single CI test in the PC-stable algorithm.
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Figure 13: Several metrics are used to measure the performance for structure learning using a single CI test. The metrics
precision, recall and F1-score are defined in 2.3.2. Runtime is the total runtime of the PC-stable algorithm, using only that
CI test.

Due to time constraints, each dot in the graph is based on a single run of the PC-stable algorithm on the synthetic
dataset A, of which the true network structure is depicted in Figure 7. Therefore, any observations based on these
plots are merely indications.
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For the chi-squared test, we used sample sizes {100, 250, 500, 1000, 2500, 5000, 10 000, 25 000, 50 000}. For MCPT
sample sizes {100, 250, 500} were used. For RFT we used sample sizes {100, 250, 500, 1000, 2500, 5000, 10 000, 25 000}.

Note that the chi-squared test and the MCPT have identical performance in terms of precision, recall and F1-score,
while the runtime of the MCPT is, as we already concluded before, much higher than the runtime of chi-squared.
These observations are substantiated by our findings in sections 4.1, 4.2 and 4.3. Therefore, from now on we will
focus on the analysis of the comparison of the chi-squared test and the Random Forest test.

Each of the tests has perfect precision in each case, except for two cases for the RFT. For a sample size of 5000 and
10 000, the Random Forest test failed to remove a single edge, which should have been removed. This resulted in a
single false positive for both cases.

It can be deduced that for 8 different sample sizes, the plot indicates that the RFT does not have a worse recall than
the chi-squared test. It is even better in 7 out of 8 cases. However, we want to stress again that these remarks are
merely indications. Nonetheless, these observations are in line with our expectations, since the RFT was shown to
be a more powerful test than the chi-squared test in Figure 10. The higher the power of a CI test, the more often it
detects a relation, which in turn results in less removed edges.

Due to the distinctive performance of the RFT in terms of recall, the F1-score also favours the RFT over the
chi-squared test for 7 out of 8 sample sizes.

Unfortunately, even though using only the RFT obtains an F1-score of 1 for sample sizes 10 000 and 25 000, the
runtimes were 3 hours 12 minutes and 7 hours 8 minutes respectively, with the specifications noted in 3.4, with
the only difference that there were 2 executor instances instead of 4. For those same sample sizes, using only the
chi-squared test resulted in runtimes of 25.6 and 14.0 seconds respectively.2

Besides stating metrics which are only relevant to the final result, it is also important to know what happens during
the execution of the algorithm. Therefore, we show for each CI test what types of edges were removed at a certain
depth d of the PC-stable algorithm. The types of edges can be true negatives (TN) and false negatives (FN). Again,
if an edge is incorrectly removed, it is a false negative, and if an edge is correctly removed, it is a true negative.
Figure 14 depicts an overview of the removed edges.

2593 and 597 (conditional) independence tests were performed, respectively. Therefore, the descending runtime is most
likely due to the occupation of the cluster.
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Figure 14: The amount and types of edges removed by each CI test, at each depth d of the PC-stable algorithm.

When inspecting the first 4 bar plots, i.e., the bar plots for sample sizes {100, 250, 500, 1000}, it can be deduced that
for the chi-squared test the first false negatives seem to occur following a trend, see Table 8.

Sample Size 100 250 500 1000

Max. Strata Sizes No Error - 250
1 = 250 500

21
= 250 1000

22
= 250

Strata Sizes First Error 100
1 = 100 250

21
= 125 500

22
= 125 1000

23
= 125

Table 8: Trend in first occurrences of false negatives for the chi-squared test.
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Unfortunately, this trend does not only depend on the size of each stratum, but also on the effect size. Since in real
world settings the effect size is not known beforehand, this is not enough to draw up criteria to be certain which CI
test is best in a specific case for real world data. However, in Figure 10, it is illustrated that RFT does have more
power than the chi-squared test. Therefore, if the RFT is calibrated and has feasible runtime, switching from the
chi-squared test to the RFT can result in less false negatives in the final DAG. From Figure 9 it can be deduced that
the RFT is calibrated, for binary variables, if the sample size is at least 50. If a runtime is feasible highly depends on
your personal definition of feasible. Given the scope of this thesis, we interpret feasible as a maximum of 30 seconds
per CI test. Therefore, the RFT will only be performed for a maximum sample size of 100 000.

5 Hybrid Approach

Given the observed trend in Table 8, combined with the observation that the RFT outperforms the chi-squared test
in terms of power and is well calibrated if the sample size is greater than or equal to 50, we propose the following
hybrid approach.

If the expected sample size of each stratum is less than 1000, we apply the Random Forest test, otherwise the chi-
squared test is applied. The choice of the threshold 1000 is based on the observed trend that, for our specific dataset
in which we knew the effect size, the chi-squared test performed well if the expected size of the biggest stratum was
at least 250. As illustrated in figure 10, the power decreases as the effect size decreases. We take a threshold of 1000,
to still get a reliable result for slighty lower effect sizes. However, it must be noted that this threshold for the hybrid
approach is not a criterium that should hold for every situation. We mostly want to show that a hybrid approach
can be a good alternative to the use of a single CI test.

5.1 Performance on Dataset A

We first present structure learning results on the dataset A. See Figure 7 for the correct network structure. We
vary our sample sizes n ∈ {2500, 5000} and the effect size β ∈ {0.1, 0.4} used to generate the data using Dagitty’s
simulateLogistic [32][11]. Each beeswarm boxplot presented is based on 10 runs.

n = 2500 n = 5000

Figure 15: Precision, recall, F1-score and runtimes of structure learning using PC-stable are depicted. Either only the chi-
squared test was used, or only the Random Forest test, or the hybrid approach. The dataset was generated with Dagitty’s
simulateLogistic [32][11] with an effect size β = 0.4. Sample sizes were varied with n ∈ {2500, 5000}.
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n = 2500 n = 5000

Figure 16: Precision, recall, F1-score and runtimes of structure learning using PC-stable are depicted. Either only the chi-
squared test was used, or only the Random Forest test, or the hybrid approach. The dataset was generated with Dagitty’s
simulateLogistic [32][11] with an effect size β = 0.1. Sample sizes were varied with n ∈ {2500, 5000}.

Sample Size Effect Size CI Test Precision Recall F1-score Runtime (s)

Chi2 0.9923 0.8071 0.8880 13.95
n = 2500 β = 0.4 RFT 1.0 0.8286 0.9031 3404.49

Hybrid 0.9917 0.8214 0.8964 2181.61

Chi2 1.0 0.85 0.9162 12.68
n = 5000 β = 0.4 RFT 0.9933 0.9357 0.9602 5578.71

Hybrid 1.0 0.9 0.9454 1369.34

Chi2 0.9 0.2786 0.4172 8.85
n = 2500 β = 0.1 RFT 1.0 0.4071 0.5663 771.46

Hybrid 0.8 0.2143 0.3303 122.52

Chi2 1.0 0.2357 0.3618 16.32
n = 5000 β = 0.1 RFT 0.99 0.3929 0.5536 2707.37

Hybrid 1.0 0.2786 0.4259 225.86

Table 9: Means for each metric for each CI test on samples of dataset A.
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Sample Size Effect Size Compared Tests Precision Recall F1-score Runtime

Chi2 vs. RFT 0.3434 0.6010 0.5509 1.1 · 10−9

n = 2500 β = 0.4 Chi2 vs. Hybrid 0.9555 0.6946 0.7241 2.8 · 10−8

RFT vs. Hybrid 0.3434 0.8665 0.8013 2.7 · 10−6

Chi2 vs. RFT 0.3434 0.0807 0.1111 4.7 · 10−10

n = 5000 β = 0.4 Chi2 vs. Hybrid 1.0 0.2361 0.2303 2.1 · 10−6

RFT vs. Hybrid 0.3434 0.4225 0.5574 1.2 · 10−11

Chi2 vs. RFT 0.3434 0.0515 0.0641 8.1 · 10−5

n = 2500 β = 0.1 Chi2 vs. Hybrid 0.5566 0.3306 0.3427 0.0104
RFT vs. Hybrid 0.1679 0.0068 0.0098 0.0002

Chi2 vs. RFT 0.3434 0.0146 0.0117 7.4 · 10−8

n = 5000 β = 0.1 Chi2 vs. Hybrid 1.0 0.4690 0.3810 0.0063
RFT vs. Hybrid 0.3434 0.0298 0.0228 2.5 · 10−8

Table 10: p-values of the two-tailed Welch’s t-test [20] whether the observed difference is significant. Bold values are significant
p-values, with a significance level α = 0.05. The p-values are not corrected for multiple testing.

From Figures 15, 16 and Table 10, it can be deduced that using the chi-squared test is significantly faster than both
the RFT and the hybrid approach. The hybrid approach is significantly faster than using only the RFT. When
the effect size is relatively high, e.g., β = 0.4, we do not see any significant difference in performance in terms of
precision, recall and F1-score. For a lower effect size, β = 0.1, using only the RFT is shown to perform significantly
better than the hybrid approach for both sample sizes in terms of recall and F1-score. Furthermore, when n = 2500
and β = 0.1, the RFT performs significantly better than the hybrid approach in terms of recall and F1-score, while
the difference with the chi-squared test is not significant.

If these were the only results, we would conclude that it is best to perform either only the chi-squared test or only
the Random Forest test. However, the structure we tried to learn has relatively few variables. This favours the
chi-squared test, since conditioning on extra variables leads to another stratification of the contingency tables, which
in turn leads to a lower power for the chi-squared test. The lower power will in turn lead to extra removal of edges.
Therefore, we are also interested in the performance of the chi-squared test, the hybrid approach and the Random
Forest test of learning a denser structure on more variables.

5.2 Performance on Dataset B

The Polzer dataset [16] originally has 14 variables. Due to the exponential increase in runtime of the PC algorithm
for each additional variable in a dataset, we removed 5 variables. The 5 variables removed were the last variables
when sorted lexicographically. The variables were removed after the dataset was generated, which means that causal
sufficiency does not hold, since we know that there are exactly 5 hidden variables. The resulting dataset is named
dataset B. In order to get our results, we upscaled our resources mentioned in Section 3.4. We now have 4 executor
instances, with 8 cores each. The other specifications remain the same.
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Figure 17: Precision, recall, F1-score and runtimes of structure learning using PC-stable are depicted. Either only the
chi-squared test was used, or only the Random Forest test, or the hybrid approach.3

CI Test Precision Recall F1-score Runtime (s)

Chi2 1.0 0.6417 0.7789 111.47
RFT 0.9436 0.9444 0.9428 21785.59
Hybrid 0.9904 0.8917 0.9334 5316.12

Table 11: Means for each metric for each CI test on samples of dataset B.

Compared Tests Precision Recall F1-score Runtime

Chi2 vs. RFT 0.0007 6.2 · 10−7 1.5 · 10−5 2.2 · 10−7

Chi2 vs. Hybrid 0.1741 0.0002 0.0002 2.2 · 10−6

RFT vs. Hybrid 0.0021 0.3272 0.7737 4.1 · 10−7

Table 12: p-values of the two-tailed Welch’s t-test [20] whether the observed difference is significant. Bold values are significant
p-values. The p-values are not corrected for multiple testing.

From Figure 17 and Table 12, we can deduce that the RFT performs significantly worse compared to the chi-squared
test and hybrid approach in terms of precision. When inspecting the recall, the chi-squared test performs significantly

3Only 9 datasets were generated for the Random Forest test.
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worse than the hybrid approach and the RFT. This poor performance in recall also leads to the chi-squared test being
significantly worse than the hybrid approach and the RFT in terms of the F1-score. As always, structure learning
with the chi-squared test is significantly faster than the hybrid approach or the RFT and the hybrid approach is
significantly faster than the RFT.

Here, the hybrid approach has better precision than the RFT, better recall than the chi-squared test and a better
F1-score than the chi-squared test. Even though the runtime of the hybrid approach is significantly worse than the
chi-squared test, it still has feasible runtime, even when we would not have such a massive cluster available.
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6 Conclusion

We investigated the performance of Pearson’s chi-squared test, the Monte Carlo Permutation test and the Random
Forest test for an increasing sample size. Therefore, each of the three CI tests is implemented to be able to handle
big data. The chi-squared test already had an implementation for big data, but the Monte Carlo based approach
and the RFT did not, to the best of our knowledge. Nonetheless, we used our own custom implementation of
the chi-squared test. The reason for the lacking implementation of the Monte Carlo based approach is most likely
that the available hardware is not even close to handle a MCPT on a large amount of data. This is due to the
computationally expensive complexity of obtaining permutations of contingency tables for big data that follow the
hypergeometric distribution. So, even though the MCPT works for big data in theory, its runtime is not feasible
and will therefore not be used for big data since other CI tests, like the chi-squared test, perform equally well, or
better, in terms of calibration or power in such cases. The reason that the Random Forest test did not yet have an
implementation for big data, was that 1) it was only introduced this year, and 2) the authors were mostly interested
in small sample size cases with multiple variables in the conditioning set. This is due to the property that the
RFT is effective at discarding irrelevant information from high-dimensional conditioning sets [31]. For big data, this
becomes interesting when conditioning on a large amount of variables, which at this time is not yet feasible due to
the resulting runtimes.

The Monte Carlo Permutation test with the extra heuristic does not show promising results in terms of calibration,
power or runtime. Furthermore, the Monte Carlo Permutation test quickly becomes infeasible as the sample size
increases. The poor performance of the Monte Carlo Permutation test might be due to the heuristic we used. The
Monte Carlo Permutation test was considered as an alternative to the chi-squared test, when we expect the chi-square
test to be unreliable. However, we now accept independence for the Monte Carlo Permutation test if the p-value of
the chi-squared test is > 0.5. This possibly negates the benefits the Monte Carlo Permutation test might bring along,
compared to the chi-squared test. Unfortunately, there was not enough time to get new results when removing this
heuristic.

Pearson’s chi-squared test is the fastest CI test out of the three considered CI tests. The more variables we condition
on, the less powerful the chi-squared test becomes, as is depicted in Figure 10. This leads to sparser DAGs compared
to the use of a conditional independence test which does not lose power when conditioning on more variables. Given
the high scores on precision after structure learning, see Figures 15, 16 and 17, we can conclude that it is best to use
the chi-squared test if one wants to learn a network structure which does not contain false positives. Minimalizing the
amount of false positives is especially important when each edge in the resulting DAG will extensively be researched.
Research costs both time and money, so it is best to avoid investigating a relation which does not exist.

The Random Forest test is a more powerful test than both the chi-squared test and the Monte Carlo Permutation
test. It does not lose power as we increase the amount of variables in our conditioning set, in contrast to the other two
CI tests, see Figure 10. Since the Random Forest test has more power, it rejects the null hypothesis of independence
more often, which in turn leads to less false negatives in the resulting DAG. This is substantiated by the high observed
recalls in our experiments, see Figures 15, 16 and 17. The Random Forest test should be used if minimalizing the
amount of false negatives in the final DAG is most important. Minimalizing the amount of false negatives is always
desirable for a structure learning algorithm, since the resulting DAG is an independence map. That is, if in the
DAG an edge is not present between two variables, those variables are (conditionally) independent. False negatives
are especially detrimental in fields like the medical field. Say, we learn a DAG of a dataset that includes whether
someone smokes and if that person has cancer. If there is a false negative between smoker and cancer, i.e., there is
no edge directly connecting those variables, one could conclude that smoking is independent of cancer given some
other variables. One could incorrectly attribute the correlation of smoking and cancer to confounding variables like
age or weekly alcohol consumption. A mistake like this can pose a health risk.

The proposed hybrid approach provides the option to achieve higher precision than the Random Forest test alone
and higher recall than the chi-squared test alone, see Figure 17 and Table 12. It provides the fast and still powerful
use of the chi-squared test in the early stage of the PC-algorithm, while switching to the slower, yet more reliable,
Random Forest test later on.

For big data, the chi-squared test is the only conditional independence test which results in feasible runtimes out of
the three conditional independence tests considered.
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7 Future Research

Unlike the chi-squared test and the Random Forest test, the Monte Carlo Permutation test can be implemented
in several ways. Our conclusions might not hold for other implementations of the Monte Carlo Permutation test.
The bnlearn package [28], which is an R package for learning Bayesian networks, already contains 3 Monte Carlo
based implementations for several tests [7]; The basic Monte Carlo permutation test, the sequential Monte Carlo
permutation test and the semiparametric test. Further research should be performed to check the calibration, power
and runtimes for those implementations of the Monte Carlo based approach. Alternative implementations might
outperform the approach we used throughout this thesis. This could lead to a hybrid approach which would include
some sort of permutation based approach.

We tried our best to implement the Random Forest test as efficient as possible for big data. However, I am convinced
that there is still room left for improvement. This can result in faster runtimes. Furthermore, we only used multiple
CPUs to generate our results. Using GPUs might also improve the runtimes of the Random Forest test significantly,
due to the large matrices which are multiplied.

The hybrid approach has a hard threshold of 1000 at this time. This approach now still has an unpredictable runtime.
We propose the following variation to our hybrid approach. For this approach an acceptable runtime is provided.
Start with a threshold of 250. So when the largest stratum has at least 250 samples, perform the chi-squared test,
otherwise perform the RFT. At the end, return the result. If there is time left, increase this threshold by a factor, of
say, 2. Again, perform structure learning. This will increase the amount of performed Random Forest tests, which
in turn leads to an increase in runtime, while getting a more reliable result. As long as there is runtime left, keep
increasing the threshold and perform structure learning.

The chi-squared test loses power as we increase the size of the conditioning set, while the Random Forest test seems
unperturbed by this, see Figure 10. The Random Forest test with its current implementation eventually results in
infeasible runtimes if the sample size becomes too large, see Figure 12. Another solution to tackle this problem
with a hybrid approach can be to provide a subsample of the data to the Random Forest test, in order to still get
feasible runtimes, while outperforming the chi-squared test in terms of power. Further research can provide insight
if there exists a direct link between the power of the chi-squared test and the power of the Random forest test.
Where the power of the chi-squared test is dependent on the sample size of the data and the amount of strata in the
conditional independence test and the power of the Random Forest test is dependent on the size or the ratio of the
subsample.

It is important to remember that we only used our implementations which can handle big data. If it is known
beforehand that the dataset is relatively small, it might be better not to use PySpark which distributes the data.
For relatively small datasets, it is better to use datastructures which are based on in-memory analytics like Pandas
DataFrames [23][24]. This most likely improves the runtimes significantly.

Due to the scope of this thesis and the time it took to obtain all the data for the calibration plots, power plots,
runtime plots and structure learning plots, it was not possible to test every situation we wanted. Therefore, we
focused on binary variables, both for the conditioning set as well as the variables we tested independence of. The
conclusion that an increasing sample size will lead to infeasible runtimes for the Random Forest test and the Monte
Carlo Permutation test will still apply for k-level categorical variables. For the conditioning set, we are confident that
this translates to multi-level categorical variables, since stratifying to 4 strata can be done by 2 binary variables,
or by the use of a single 4-level variable, i.e., a categorical variable which can obtain 4 different states. But for
the variables we test for independence, multiple levels were not taken into account, so it is not possible to directly
transfer our findings to the multi-level case. Additional research should be performed to see whether this is the
case.

In this thesis we focused on three CI tests: Pearson’s chi-squared test, Monte Carlo Permutation test with an
heuristic and the Random Forest test. The proposed hybrid approach shows promosing results compared to the use
of a single CI test. Research on the performance of other CI tests can lead to a new hybrid approach consisting of
multiple CI tests, which in turn can outperform the hybrid approach proposed here.
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