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Abstract

This thesis addresses the problem of Image Based Time Synergy, where photos are

clustered in groups based on the events during which these photos were taken. Rather

than clustering the photos based on their timestamps, they are clustered based on their

visual content instead. Neural Networks are used to extract temporal information for

each individual image, and to predict the relative temporal order within each pair of

images. Then, the problem of image based time synergy for chronologically ordered

images is addressed. The boundaries between events are determined based on the

visual similarity between pairs of images. At first, photos are clustered on one level,

making every event boundary equally important. Next, a hierarchical event cluster tree

is created, where boundaries higher up in the tree represent the greatest dissimilarities

between images, and are thus the most important event boundaries. Boundaries in the

bottom of the tree help identify sub-events. The initial lists of boundaries as well as the

final trees are compared to the results of an existing method that creates time-based

hierarchical cluster trees using timestamps rather than the visual content. Several

experiments are carried out to determine the best settings for the image-based event

clustering algorithm.
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Chapter 1

Introduction

Photos are a means to capture and remember important parts of our lives. Rodden

[2002] notes that “the most important use of digital photographs is to record holidays

or other significant events, and then show the pictures to friends or family”. These

pictures capture one or more specific events, such as a wedding, a holiday, or a day to

the zoo. Some of these events, such as a holiday to France, contain multiple smaller

events. Someone could, for example, go to the beach on one day, and visit Paris the day

after. People tend to sort their photos in a chronological order, rather than mingling

photos of the Eiffel Tower with beach photos. Also, people prefer to group their photos

based on events, which is also shown in Rodden and Wood [2003].

But as it happens, people take a lot of pictures, as many as the storage on their

phone or camera allows. Manually arranging this enormous set of photos takes up too

much time, and so an algorithm was developed to take over. Such an algorithm should

work in a similar manner as the users themselves. Whatever algorithm replaces the

user, should also be able to group the photos per event and sort them chronologically.

As could be expected, it is much more difficult for a machine to guess which photos

belong to which events, or to guess how many different events there are to begin

with. Thus far, the machine is capable of determining events, as long as the photos

contain timestamps. Although most modern devices keep track of time, the timestamps

themselves are not always correct. Modern mobile phones often automatically adjust

to the current time and the current time zone, ensuring that the timestamps for your

photos are correct. However, not all photos are taken with modern devices, and several

major problems can mess up the timestamps for photos. Firstly, for many devices, the

default timestamp is the year 1970, based on the Unix time system1, which is not always

updated by the device itself or its user. Secondly, not every device automatically

updates the timestamp when travelling across timezones, which becomes a problem

when the user wants to merge photos from multiple different devices. Thirdly, iPhones

cause a loss of metadata when using photos in non-native applications. Finally, Social

Media platforms may cause problems. Many users upload their photos to Social Media

platforms such as Facebook, and then delete the original photos from their device. The

1Unix time system briefly explained: https://www.unixtimestamp.com/

1
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problem here is that the original timestamp could be lost after uploading, depending

on the specific Social Media platform.

It is indisputable that a new technique is desired, one that would be able to predict

the events to which the photos belong, even in the absence of temporal metadata.

This problem will be described as image based time synergy in this thesis. Image

based time synergy is about using visual content rather than metadata to determine

which events took place, and during which event each individual photo was taken. This

thesis will take a first step into solving this problem by trying to determine the events

in a chronologically ordered set of photos. A more detailed description can be found

in Section 2.3. This thesis attempts to answer the following research question:

RQ: To what extent is it possible for an algorithm to solve the problem of

image based time synergy for chronologically ordered images in the absence

of further temporal information?

This research question consists of multiple parts. The main question is if it is possible

for an algorithm to solve the problem of image based time synergy. This question is

reduced to chronologically ordered photo sequences, as will be explained in Section 2.3.

The algorithm developed in this thesis focusses on event clustering in the absence of

further temporal information, so the ordering of the images is the only temporal infor-

mation used by the algorithm. The approach taken to solve this problem is described

in Chapter 4.

The hypothesis is that it should be possible for an algorithm to solve this problem,

although the performance is expected to be lower than the performance of timestamp-

based approaches, since there is less information available to work with. Trying to

solve the problem for unordered images, which would be the logical next step, would

be even more difficult for the same reason. Within this thesis, the hypothesis will

be tested by developing a technique for image based time synergy for chronologically

ordered images, where photos are clustered per event, independent of further explicit

temporal information. As such, the term image based time synergy will be used to

describe the problem for chronologically ordered images only.

The work in this thesis is divided in two parts. First, an attempt is made to predict

temporal information based on visual content. This problem is divided in three parts.

At first, the problem of Season prediction is addressed, where a model is trained to

predict the season during which a photo was taken. Next is the problem of Part of Day

prediction, where a model is trained to determine the part of the day during which a

photo was taken. Finally, the relative order of two images is predicted, also called A

before B prediction. The question formulated for this part of the thesis is:

Q1: To what extent is it possible for an algorithm to predict temporal infor-

mation in terms of season, part of day and relative order, based on visual

content only?

The hypothesis is that a model should be able to predict both the season and the part

of day during which a photo was taken. Predicting the relative order of two images is

expected to be more difficult. The approach to solve each of these three problems is

explained in Chapter 3.
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The second part of this thesis addresses the problem of image based time synergy

itself, by clustering the photos per event based on the visual content. The question for

this second part is as follows:

Q2: To what extent can image similarity in combination with background

knowledge acquired from many photo sequences help identify which photos

belong to which event?

The background knowledge mentioned in this question ranges from the knowledge

about the temporal order of the photo sequences, to the use of the predictions about

the temporal information from Chapter 3. This question specificially addresses the use

of image similarity, where images are compared based on their visual content. The

hypothesis is that computing image similarity is a very suitable approach when using

visual content for the task of event clustering. The approach is further discussed in

Chapter 4.
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Chapter 2

Background

2.1 Related Work

This chapter describes some of the most relevant research done for the clustering of

photos for events. Most of this research was done for photo browser systems. Al-

though there is very little research done for event clustering in the absence of temporal

information, the papers desribed in this chapter give some interesting insights and

ideas.

Jaimes et al. [2000] have presented STELLA, to provide the user with clusters that

can be used to create digital albums. This may already be a step in the direction of

event clustering, although STELLA does not explicitly try to take temporal information

into account. For example, photos of flowers may be grouped into one cluster, simply

because they all contain flowers. It does not matter when each photo was taken,

they could even be taken years apart. They make use of the concept of Recurrent

Visual Semantics (RVS), where certain objects or scenes are present in multiple photos.

Bracketing is an example of RVS, where multiple images are exactly the same, although

with different exposure settings. Finally, photos are clustered based on content features

such as color and composition.

Rodden [2002] have investigated several visual features that may be useful for sort-

ing photos. They note that most photo browsers sort thumbnails – smaller versions of

the actual photos – in a default order, and that alternatives have not been investigated

much. Similar to textual documents, photos could be sorted based on some similar-

ity measure. For example, visual features such as color, could be used to determine

similarity between photographs. Visual content can be described on different levels,

namely based on colours and textures, on objects and activities, on places and people,

or on the feelings induced by the specific photo. They describe several features for

similarity measures, such as the average color, region summaries, and varying color

histograms. Again, this approach does not explicitly try to detect events, but their

idea to use similarity measures may be useful.

Graham et al. [2002] have taken a different approach, focussing on the time differ-

ence between sequential photos. They investigated the issue of current photo browsers,

5
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that have limited tools for organization of photos. Even though this approach may not

be useful in this research, given that it requires concrete temporal information, the

authors provide some interesting insights for event clustering. They have developed

two browsers for photo collections that exploit the time dimension of photos. Their

approach to event clustering is based on the assumption that photos from one event

are taken very close in time, and further away in time from photos from other events.

They describe the high number of images within an event as a burst, and they describe

sub-events as sub-bursts. These sub-bursts are also encoded in the cluster structure.

A tree of clusters is created, where each burst can consist of multiple sub-bursts. The

actual photos are stored at the leaf nodes. Such a tree is the end goal of this research

as well, although the concept of bursts cannot be used directly due to the absence of

temporal information.

Rodden and Wood [2003] investigated how people use photo browser systems, such

as Shoebox. Their research reveals how users prefer to have their photos ordered, and

what kind of retrieval tasks they perform. They reported that most albums created

by participants are classified by some event. Within such an event-related album,

photos are most often sorted chronologically. They also found three main arguments

for searches done by the participants. They were either looking for photos taken

during a certain event, for a single specific photo, or for a set of photos from different

events with for example a specific person present. For each of the three tasks, having

the photos grouped per event makes the search easier. This research emphasizes the

importance of event clustering in general.

There are several techniques that attempt to create event clusters, however most of

them rely on temporal information and possibly other metadata. For example, Cooper

et al. [2005] have developed multiple methods to cluster photos based on temporal

information and visual content. These methods either rely only on temporal informa-

tion or on both temporal information and visual content. Using only visual content or

visual similarity to discover events is rather difficult, given that photos within an event

can vary. For example, photos of the same place can vary depending on the time of

day, and a zoo often has both desert and tropical landscapes. The only useful feature

then seems to be the corresponding timestamps.

However, even with timestamps, it may be difficult to determine events. Both a

day at the zoo and a three week vacation can be seen as one large event, although

of different duration. While it makes sense that a three week vacation has multiple

sub-events, such as a day to the beach and a day to the mountains, a day to the zoo

also has sub-events. At the zoo, one could say that having lunch is an event, and that

visiting the zebras is an event as well. Different (sub-)events have different durations,

making it more difficult to determine when an event begins and when it ends. Cooper

et al. [2005] quantify similarity between timestamps by comparing them in a pairwise

fashion. The resulting similarity matrix shows higher similarities for photos that are

closer in time. Next, they use a checkerboard pattern to identify the event boundaries,

where the center of this pattern is the boundary between photos from two events.

To locate these boundaries, they compute a novelty score, where peaks indicate which

boundaries are likely. Taking into account that events can have very different durations,

they use multiple time scales to compute the similarity.
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The approach taken in this thesis is mostly based on the work of Loui et al. [2005].

They use foreground segmentations to find event clusters. For foreground segmen-

tation, they use a block-based technique to eventually obtain regions that are either

foreground or background. Once these regions have been established, successive images

are compared using a similarity measure. This measure then helps to determine if the

images are likely to be taken during the same event or not. The similarity measure is

based on features extracted from the regions, such as luminosity, color, position and

size. This approach only depends on timestamps to chronologically order the images,

but is otherwise independent of temporal information. For image based time synergy

for ordered images, this approach can be very useful. For undordered images, it might

be necessary to make pairwise comparisons across all images, rather than just com-

paring successive images. Using foreground segmentations for event clustering is an

interesting approach, given that the background within an event often remains the

same. Foreground objects, such as people, may also be present across a number of

images within an event.

Although Loui et al. [2005] have their own approach to foreground segmentation,

other techniques have been developed. Ang Lim and Yalim Keles [2018] have imple-

mented a triplet Convolutional Neural Network (CNN) combined with a transposed

CNN to obtain foreground segmentations as well. Convolutional Neural Networks, and

Neural Networks in general, will be explained in Section 2.2. More details on the work

done by Loui et al. [2005] and Ang Lim and Yalim Keles [2018] can be found in Section

2.3.

For evaluation of the technique developed in this thesis, an existing time-based

method is used. This method returns hierarchical event trees. From these trees,

event boundaries can be derived. More information on the similarity matrices and

hierarchical trees can be found in Section 2.3.2.

2.2 Neural Networks

Neural Networks can learn to recognize patterns in data, and can be used for classifi-

cation and regression tasks. Neural Networks can be used to learn complex non-linear

relationships and often turn out to generalize well to unseen data1. The basic archi-

tecture is explained in this section, as well as some more specific Neural Networks such

as the Convolutional Neural Network and Siamese Neural Network.

A basic neural network consists of inputs, hidden units and output units. An

example neural network is given in Figure 2.1. Each connection between two units

has a weight, and each unit has a bias. Bishop [2006] provides a detailed overview

and explanation of the architecture and equations involved. The hidden units compute

activations for the inputs, that are then fed to an activation function. The outputs of

this function are the inputs for the next layers. The activations are computed using

Equation 2.1.

1For some more general information on Neural Networks, visit https://towardsdatascience.com/
introduction-to-artificial-neural-networks-ac338f4154e5

https://towardsdatascience.com/introduction-to-artificial-neural-networks-ac338f4154e5
https://towardsdatascience.com/introduction-to-artificial-neural-networks-ac338f4154e5


8 CHAPTER 2. BACKGROUND

Figure 2.1: Example of a basic Neural Network with one hidden layer. This figure was
inspired by Bishop [2006] (p. 228)

aj =

D∑
i=1

w
(1)
ji xi + w

(1)
j0 (2.1)

The activation outputs are transformed using a nonlinear activation function h,

following eqation 2.2.

zj = h(aj) (2.2)

The superscript (1) denotes that the parameters belong to the first layer. j =

1, ...,M are the linear combinations of the input variables. i = 1, ..., D are the input

variables x. w
(1)
ji are weights, while w

(1)
j0 are biases. These activations are computed for

every hidden unit using the inputs, biases and the weights. For the output activations,

the equation is slightly adapted, as can be seen in Equation 2.3.

ak =

M∑
j=1

w
(2)
kj zj + w

(2)
k0 (2.3)

where the superscript (2) denotes that the parameters belong to the second layer.

k = 1, ...,K are the output units, and zj is the output of an activation function. The

final output of the neural network is often transformed using a sigmoid function for

binary classification, or using a softmax function for multiclass classification.

While the process of feeding the inputs through the network towards the output
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units is known as forward propagation, backpropagation distributes prediction errors

over the responsible units and adjusts weights and biases to minimize this error.

2.2.1 Convolutional Neural Networks

Bishop [2006] also gives an overview of Convolutional Neural Networks (CNNs). A

CNN consists of (one or more) sets of Convolutional and Sub-Sampling layers. Each

unit in the convolutional layer has a local receptive field of the input, based on the

concept of neighbouring pixels having a higher correlation than distant pixels. Each

convolutional layer may contain multiple feature maps, since multiple different features

should be detected.

Such networks are invariant to several input transformations. All units will treat

each part of the input in the exact same way, which provides the basis for the invariance

of the network. A Convolutional layer has fewer weights than fully connected layers,

and there are restrictions on the updating of these weights, reducing the number of

parameters to be trained.

The Sub-Sampling layers of the CNN further reduce the number of parameters.

This layer again has a receptive field, and may take the sum, average or maximum

value of the input within the receptive field. The receptive fields, in this case, do not

overlap. With a 2x2 size, the output will be half the width and height from the input.

In practice, the sub-sampling layer is a pooling layer, and is often a Max Pooling layer.

The Max Pooling layer takes the maximum value of each receptive field.

Finally, the output of the final Sub-Sampling layer is generally fed to a fully con-

nected layer. This layer is responsible for making the predictions based on the detected

features.

2.2.2 ResNet

A network that is used throughout this thesis is the Residual Network (ResNet).

ResNets contain Residual Blocks, where identity mapping is the most important part.

These Residual Blocks help training very deep neural networks, making them perform

better than smaller counterparts. Without Residual Blocks, the performance of deeper

networks seems to drop. One major problem is the vanishing gradient, where the gra-

dient of the loss function approaches zero when more layers are added to the model.

With identity mapping, the output of a previous layer is added to the output of a layer

further down. More details on these ResNets and the Residual Blocks can be found in

the works of He et al. [2016a] and He et al. [2016b] respectively.

Several variants of ResNet are available online, such as a model with 50 lay-

ers (ResNet50 ), as well as models with for example 18 or 152 layers (ResNet18 or

ResNet152 respectively). As will be explained in Chapter 3, a ResNet50 will be used,

pre-trained on existing datasets. The concept of pre-training is explained in Section

2.2.5.
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2.2.3 MobileNet

For the final sub-task of Chapter 3, a MobileNet is used instead. A MobileNet is

generally a smaller network that has been optimized on speed of inference. Rather than

combining all three channels (RGB), convolution is done on each channel separately.

Pointwise Convolution then combines the outputs of these convolutions. More detailed

information about MobileNets and their architecture can be found in the work of

Howard et al. [2017]. A MobileNet pre-trained on existing datasets will be used in this

research.

2.2.4 Siamese Neural Networks

Siamese Neural Networks consist of two or more identical sub-networks. They provide

a solution when there is very little or incomplete data available. First explained by

Bromley et al. [1993], this network structure enables the model to determine new

classes by computing the similarity between a single data point and the currently

existing classes. When this similarity is low, the model is able to create an entirely

new class, based on just this one data point. The model does not need to be retrained

on all data, which is the main advantage of this structure.

To determine if two images are similar, the data is split in pairs, creating a new label

describing the distance between each two images. Some pairs contain images belonging

to the same class, while other pairs contain images from different classes. The model

is trained to give two outputs, one for each image in a pair. The loss function is then

used to determine the distance between the outputs and to compare this distance to

the actual distance label. This loss function is also known as the contrastive loss.

For this research, a Siamese Neural Network seems suitable and hopefully useful to

determine the chronological order between images. The approach is further explained

in Section 3.4.

2.2.5 Pre-Training Models

The Neural Networks explained in the previous sections are used in this research,

although pre-trained on one or more existing datasets. The first dataset used for pre-

training is ImageNet, created by Deng et al. [2009]. The other main dataset used to

pre-train the models from this research on is Places365, the core set of the Places2

dataset created by Zhou et al. [2017]. While ImageNet contains images corresponding

to nouns, such as dog or chair, the Places365 contains images for different scenes, such

as bedrooms or streets. The final dataset used by the pre-trained models is Landmarks,

created by Noh et al. [2017]. This dataset contains images of landmarks around the

world, labeled with the names of these landmarks.

Pre-trained models are already trained on a dataset for a different problem. For

example, the ImageNet dataset can be used to pre-train a model. The model will have

learned important visual features for classifying these images with the corresponding

labels (nouns suchs as dog or chair). While these labels are useless for this thesis, the

features are not. Replacing the final prediction layer (where the model decides if the

image represents a dog or a chair), with a layer that makes the desired predictions,
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will work well assuming that the dataset used for pre-training is similar to the dataset

used for the actual problem. The same set of features will be extracted by the model

to make predictions for the new dataset. Using a pre-trained model also saves a lot of

time and resources, since most of the network parameters do not have to be trained

from scratch. The most important layer to be trained is the new prediction layer.

2.3 Image Based Time Synergy

The problem of image based time synergy can be split in two main components: for

chronologically ordered photos, and for unordered photos. Note that the latter will be

the most difficult problem and solving it would imply a solution for the first problem as

well. A solution to the first problem will already be highly valuable, considering that

the problem of event clustering itself will then have been solved for a common case of

ordered photo streams. A solution to the second problem is of course most desirable,

considering that uploaded photos cannot be assumed to be chronologically ordered. In

this thesis, however, the problem will be addressed for chronologically ordered images

only.

This section further analyses the research done for the main components that will

be used for image based time synergy. The approach taken by Loui et al. [2005] will

be explained in detail. However, since the approach for foreground segmentation is

replaced by the work of Ang Lim and Yalim Keles [2018], their work is explained first.

Finally, the relevant work for image based time synergy for an unordered set of images

is discussed.

2.3.1 Foreground and Background Segmentation

Ang Lim and Yalim Keles [2018] have created FgSegNet, a triplet CNN combined with

a transposed CNN, to obtain foreground and background segmentations. A triplet

CNN can be described as three CNNs, where the outputs of each CNN are combined.

These three CNNs are based on a pre-trained VGG-16 Net, although the final parts are

slightly adapted. For example, dropout regularization is applied to avoid overfitting.

The three CNNs consist of exactly the same blocks and share network weights. A

transposed CNN can be described as a CNN that works the other way around: it

performs decoding instead of encoding. More details on the triplet CNN and transposed

CNN can be read in the work of Ang Lim and Yalim Keles [2018].

Their network is trained on CDNet2014, created by Wang et al. [2014], which

containes pixel-based ground truth segmentations. Their method has been evaluated

on several challenging categories, such as bad weather and low frame rates, and has

outperformed all existing methods thus far. The dataset consists of frames obtained

from video feeds, which is the main difference from actual photographs.

Each photo is fed to the neural network with two duplicates. These duplicates are

the exact same image, but on a different scale. The different scales are obtained using

a Gaussian pyramid with a sigma based on a downscaling factor. The first part of the

network is the triplet CNN, as mentioned earlier. Each of the different scaled photos is

fed to one of the three CNNs, resulting in three feature embeddings. The embeddings
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are then combined by upscaling the downscaled embeddings to match the scale of the

embedding of the original photo. The combined feature map is fed into the final part

of the network, which is the transposed CNN. The resulting mask is exactly the size

of the original photo and shows the foreground and background segmentiations.

The output masks of the FgSegNet are passed on to determine events, explained in

the following section.

2.3.2 Event Clustering using Foreground Segmentation

Differences between Foreground and Background Regions

Loui et al. [2005] use multiple features to compute the distance between individual

regions in successive images. These features are computed first for foreground, and

then for background. The differences between the foreground and background regions

are computed to compare successive images.

For each region, the luminosity is computed. The luminosity formula for a specific

pixel is given in Equation 2.4. The mean luminosity is taken for each region separately.

Different regions can then be compared by taking the difference of the mean of the first

region and the mean of the second region.

y = 0.299R + 0.587G + 0.114B (2.4)

Next, several other features are computed. The computations of the intensity,

saturation and hue are given in Equations 2.5, 2.6 and 2.7.

Intensity (I) =
R + G + B

3
(2.5)

Saturation (S) = 1 − R + G + B

I
(2.6)

Hue (H) = cos−1(
1
2 (R−G) + (R−B)

((R−G)2 + (R−B)(G−B))
1
2

) (2.7)

The hue, intensity and saturation are combined into a color set component for each

region. These features are then used to compute the distance between two regions.

Loui et al. [2005] have provided the full equations, although some components remain

unclear. Every foreground region of one image is compared to every foreground region

of another image, and the same goes for the background regions.

Once individual regions from successive images have been compared in a pairwise

manner, a total distance between all regions in the images is computed. The harmonic

mean, given in Equation 2.8 is used to compute this total distance, where ai is the

distance between the individual regions.

harmonic mean (a1, a2, ..., an) =
1

1
a0

+ 1
a1

+ ... + 1
an

(2.8)
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Event Clustering

The total distances computed in Equation 2.8 are then used to determine the event

clusters. Loui et al. [2005] use a threshold, all distances above this threshold are taken

as the event boundaries. Distances below the threshold will not be taken as boundaries,

and the corresponding images thus belong to the same event. The threshold is to be

determined, and could be a function of the discovered distances (using for example the

average values and standard deviation).

To prevent a cluster from being split into two clusters based on a one-off image,

distances between chronologically more distant photos can also be used. Rather than

only taken the adjacent images, the model could also skip one or two images for every

comparison.

Precision, recall and the F1-score are used to evaluate the event clusters. The

equations are given in Equations 2.9, 2.10 and 2.11 respectively. The equations were

adapted from Cooper et al. [2005].

precision =
#correctly detected boundaries

#total number of detected boundaries
(2.9)

recall =
#correctly detected boundaries

#total number of ground truth boundaries
(2.10)

F1 = 2 · precision · recall
precision + recall

(2.11)

The approach for event clustering will be used for chronologically ordered sets

of images. Including the order in which images were taken is an interesting easier

step before solving the issue for unordered images. The algorithm will only need to

determine where the event boundaries are, and does not need to worry about the

timeline of the images. In Chapter 3, an attempt is made to predict some temporal

information based on visual content. Then in Chapter 4, the approach for image based

time synergy for chronologically ordered images is explained.

Ground Truth Event Clustering

To evaluate the algorithm developed in this thesis both quantitatively and qualitatively,

a ground truth is developed using an existing method. Using the chronologically or-

dered timestamps for each set of photos, hierarchical trees and the corresponding event

boundaries are obtained. These trees and boundaries are used as ground truth in the

experiments in Chapter 4. An example tree is given in Figure 2.2.

It should be noted that the ground truths used in this thesis are not 100% accurate.

The exact performance of the ground truth method on our dataset is unknown, since

there are no event labels are available.
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Figure 2.2: Full time-based hierarchical tree for a set of 160 photos.



Chapter 3

Predicting Temporal

Information

To get an intuition of the complexity of the final objective, image based time synergy,

a number of presumably simpler problems are explored. Based on the visual content,

an attempt will be made to predict temporal information in three steps: Season, Part

of Day, and A before B, in order of expected difficulty. Assuming that these problems

are solvable, the predictions may be useful to help solve the problem of image based

time synergy.

While this section explains in detail the data and approaches used to solve the prob-

lem of predicting temporal information, Chapter 4 explains the approach for solving

image based time synergy for chronologically ordered images.

3.1 Data

An existing dataset is downloaded and used for this research, which contains multiple

photos grouped per user. For Season prediction, Part of Day prediction, and A be-

fore B prediction, the timestamps are necessary to determine the labels. For Season

prediction, the geographic location is required as well, since seasons depend upon the

hemisphere where the photo was taken. Hence, the timestamps, longitudes, and lati-

tudes are downloaded along with the photos. The photos are also filtered based on the

exact metadata values, and based on the source of the photos. Only uploaded pho-

tos are allowed, preventing photos from sources such as Facebook to be downloaded.

As discussed earlier, photos from some sources, such as Social Media platforms, may

contain incorrect timestamps. Also, only photos taken after 1970 are allowed, to avoid

downloading photos that have a default timestamp. Finally, the photos are also filtered

on latitude and longitude. Any photo without geographic metadata is given a latitude

and longitude of 0.0 by default, so only photos with longitudes and latitudes greater or

smaller than 0.0 are allowed. It is worth noting that a lot of data is disregarded using

these filters, leaving some collections with as few as just one or two photos. In total,

267296 images are downloaded.

15
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Hemisphere Months Season
Northern December-February Winter

March-May Spring
June-August Summer
September-November Autumn

Southern December-February Summer
March-May Autumn
June-August Winter
September-November Spring

Table 3.1: Season labels based on month and hemisphere

After downloading, the labels are computed for the specific task. More details on

these labels can be found in the corresponding sections below. The data is split into

training, validation and testing of sizes 70%, 20% and 10% respectively. The split is

created in such a way that all photos from the same user stay together within one

of these three sets. Requiring photos of individual users to be kept together makes

it impossible to have an exact 70/20/10 split, but the effect of this minor deviation

is expected to be negligible. After the data has been split, the photos are shuffled,

preventing similar photos from staying together during training.

In a final procedure, the dataset is enlarged through data augmentation using image

flipping, rotation and zoom operations. Images are flipped horizontally, but not verti-

cally as the model is expected to base its predictions on for example the sky. Images

are rotated up to 15 degrees. Other augmentations are a zoom range of 0.1, a shear

range of 0.05, a width shift range of 0.05 and a height shift range of 0.05. Finally, the

data is balanced to avoid overfitting on a certain class.

Specific data preprocessing steps for each of the three tasks, as well as details on

the creation of labels, can be found in the corresponding sections below.

3.2 Season Prediction

3.2.1 Data

For this task, the data needs to be preprocessed even further. Any photo taken some-

where close to the equator cannot be used for Season prediction, since this area does

not have seasons. Photos taken in the Arctic or Antarctic Circle are also removed for

the same reason. The remaining photos are those taken at a latitude between 23 and

65 degrees, both on the Northern and Southern hemisphere.

Next, the labels for Season prediction are computed. The labels are 0 for spring, 1

for summer, 2 for autumn and 3 for winter. The label assignment based on the month

and hemisphere can be found in Table 3.1. This assignment is based on the meteo-

rological seasons rather than the astronomical seasons. The balanced data contains,

for a batch size of 32, 3657 batches for training, 1115 batches for validation and 584

batches for testing, equally spread across the four seasons.
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3.2.2 Training Procedure

For Season prediction, a ResNet50 is used. This ResNet contains 50 layers, and a

top layer is added for classification. This model is pre-trained on ImageNet and ex-

pects normalized data. For normalization, the input images are first converted to a

range of [0, 1], next they are normalized with the required values1. A linear classifica-

tion output layer is added, with four output units. The cross-entropy loss function is

used, combined with an L1 regularisation term. This regularisation term is multiplied

with 0.00001 and summed with the cross-entropy loss. For optimization, the standard

Stochastic Gradient Descent (SGD) is chosen, with a weight decay of 0.00001 for L2

regularization. The learning rate is set to 0.01, which is the usual starting point for

a learning rate for SGD, and the momentum is set to 0.9. SGD does not compute

the exact derivative of the loss function, but estimates the derivative based on a small

batch of data, meaning that the derivatives are slightly off. Momentum is used to

compute weighed averages, resulting in better estimates of the derivative, leading to

faster convergence during training2.

Finally, a learning rate scheduler is used as well, that reduces the learning rate

whenever the validation loss is stuck on a plateau. The learning rate is reduced with

a factor 10, with a patience of 5, meaning that the learning rate is not reduced earlier

than 5 epochs without improvement. The minimum learning rate is set to 0.00001.

During training, the model keeps track of the total number of epochs during which

the validation loss did not improve. When this counter reaches 15, the model stops

training. The model is trained for at most 100 epochs. Given that the model seems to

converge within 25 epochs, this is a safe maximum that will never be reached.

All parameter values chosen in this research are based on commonly used values

in similar models. For optimal predictions, these parameters have yet to be tuned.

Parameter optimalization is considered out of scope for this thesis.

Next, a second ResNet50 is trained. This second model is pre-trained on Places365

rather than ImageNet3. ImageNet is a dataset created for object recognition, which

does not match the type of photos typically taken by users. Places365, on the other

hand, contains photos of many types of scenes, and might match the data better. For

training, the same settings used before are used unchanged.

The reason why a ResNet50 is used rather than one of the other ResNet variants,

is because ResNet50 was the only freely available pre-trained ResNet for the Places365

dataset. Although the deeper variants generally perform better, this is not an option

for now. To allow fair comparison between Places365 and ImageNet, the model pre-

trained on ImageNet is also a ResNet50.

1Normalization was done based on https://pytorch.org/hub/pytorch_vision_resnet/
2For details on why using SGD with momentum is a good idea, visit https://towardsdatascience.

com/stochastic-gradient-descent-with-momentum-a84097641a5d
3The Pytorch ResNet50 pre-trained on Places365 was downloaded from https://github.com/

CSAILVision/places365

https://pytorch.org/hub/pytorch_vision_resnet/
https://towardsdatascience.com/stochastic-gradient-descent-with-momentum-a84097641a5d
https://towardsdatascience.com/stochastic-gradient-descent-with-momentum-a84097641a5d
https://github.com/CSAILVision/places365
https://github.com/CSAILVision/places365
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Model Name Model Type Pre-training Data Data
Season1 ResNet50 Places365 All
EasySeason1 ResNet50 Places365 Easy Season
Season2 ResNet50 ImageNet All
EasySeason2 ResNet50 ImageNet Easy Season
Partofday1 ResNet50 Places365 All
EasyPartofday1 ResNet50 Places365 Easy Part of Day
Partofday2 ResNet50 ImageNet All
EasyPartofday2 ResNet50 ImageNet Easy Part of Day
AbeforeB Siamese Imagenet, Places365,

Landmarks
All

Table 3.2: Overview of the different models for Season and Part of Day predictions.

3.2.3 Experiments

Both ResNets will be trained to determine which dataset is more suitable for pre-

training. The following question can be formulated:

Q1.1: Of ImageNet and Places365, which is more suitable for the prediction

of temporal information?

The hypothesis is that the ResNet pre-trained on Places365 will lead to better perfor-

mance. This question and the hypothesis do not just apply to Season prediction, but

also to Part of Day prediction.

For a second experiment, a second dataset is created manually. The main problem

with the original dataset is that the labels may be incorrect. These mistakes will cause

the model to struggle with the data. Only images that seem to actually match their

label are added to the smaller ’easy’ dataset. For each of the classes, 150 images are

selected. To prevent the model from only learning to classify snow as winter and the

beach as summer, a serious attempt was made to not only include the most obvious

photos. Photos that could belong to any season, or that have a clearly incorrect label,

are not allowed in this dataset. The expectation is that this model at least does

not make extreme mistakes, such as winter-summer mix-ups, when the visual content

clearly indicates the actual season. However, the model might not perform as well

as the model trained on all data, since there is only very little data available now.

Overfitting could cause problems, and the model may not be able to generalize to

more difficult data.

An overview of the different models for Season prediction is given in Table 3.2. For

each of these models, predictions are visualized to analyze the mistakes made.

3.2.4 Results

This section is available upon request.
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Hours Part of Day
00-06 Night
06-12 Morning
12-18 Afternoon
18-24 Evening

Table 3.3: Part of day labels

3.3 Part of Day Prediction

3.3.1 Data

For Part of Day prediction, the hours are divided in 4 classes. The model is trained to

predict 0 for morning, 1 for afternoon, 2 for evening and 3 for night. For Part of Day

prediction, no further preprocessing of the data is required.

The labels are computed using the timestamps retrieved from the metadata. Each

class has a duration of 6 hours, the distribution of the hours over the classes can be

seen in Table 3.3. The exact hours chosen for each class are based on the fact that

the morning ends at 12 PM. The data is again balanced to avoid overfitting. The

balanced data contains, for a batch size of 32, 4153 batches for training, 1001 batches

for validation and 625 batches for testing, equally spread across the four classes.

3.3.2 Training Procedure

The model used for Part of Day prediction is the same ResNet50 that is used for Season

prediction. At first, the ResNet50 pre-trained on ImageNet is used. Again, the images

are normalized4 before feeding them to the ResNet. Since there are still four output

classes, the same linear output layer is used as before. SGD is used, with the same

parameters (0.01 learning rate, 0.9 momentum, 0.00001 weight decay). The learning

rate scheduler is used with the exact same settings as before, and training is again

stopped when there is no improvement for 15 epochs.

Next, the ResNet50 pre-trained on Places365 for Season prediction is also used for

Part of Day prediction.

3.3.3 Experiments

Visual inspection of the data revealed many incorrect labels. The labels are mostly

incorrect for users who have traveled across timezones with a device that did not

automatically update to the local time. The most obvious mistakes are sunny photos

taken around midnight, or the other way around. It is difficult to estimate how many

images in the dataset have an incorrect label, since it seems impossible to find mistakes

in photos taken just one or two timezones away from the user’s home. One possible

solution is to only train on photos taken with mobile phones, since these devices most

often update automatically. However, this will result in a loss of data. Also, the

dataset does not contain device information that can be used to filter photos taken

4Normalization was done based on https://pytorch.org/hub/pytorch_vision_resnet/

https://pytorch.org/hub/pytorch_vision_resnet/
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with smartphones. iPhones could also still cause a loss of metadata, as explained

earlier.

So, rather than trying to filter out incorrect labels based on the device, a selection

of data has been made. This selection does not contain obvious mistakes or photos that

could have been taken during any part of the day. Similar to the Easy Season dataset

described before, this easy Part of Day dataset also contains 150 photos for each class.

The expectations are the same: the model will be less likely to make extreme mistakes,

but might not be performing as well given that there is only little data to train on.

Overfitting is a possible problem as well. Again, both ResNets are used to train on the

easy dataset, resulting in four different models for Part of Day prediction. An overview

of the different models for Part of Day prediction can be seen in Table 3.2.

3.3.4 Results

This section is available upon request.

3.4 A before B Prediction

3.4.1 Siamese Neural Network

To compare two photos on their relative temporal order, a Siamese Neural Network

is explored. Recall that a Siamese Network allows for multiple inputs, and is able

to determine some relationship between these inputs. While it is normally used to

determine if the input images belong to the same class, it will now be used to determine

which was taken earlier. Note that the label belonging to each pair depends on the

order of the images inside that pair. If A is the first image and B the second, the label

would be different from when A is the second image and B the first. This strategy

defies one of the two key properties described by Koch et al. [2015], as the model is no

longer symmetrical. For this model to be symmetrical, the output should be equal no

matter the order of the two images.

Another question can be formulated for the issue of A before B prediction:

Q1.2: How well suitable is a Siamese Neural Network to solve the issue of

A before B prediction?

The hypothesis is that this network is well suitable, given that Siamese Neural Networks

are specialized to compare images.

3.4.2 Data

The data is loaded as usual, but now chronologically ordered, and grouped per user.

Next, successive images are paired. The data is paired per user since this will be the

case for the end goal as well. Another reason for this is that the relative timestamps

will be correct: even if the device has the wrong time stamps, it will not have messed

up the order in which photos were taken (unless the photos were taken with different

devices). The images within each pair are swapped at random to obtain an equal
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Figure 3.1: Siamese Neural Network for A before B prediction. Image A and Image B are
each fed into an identical version of a MobileNet. The outputs are compared using a sigmoid
activation function to obtain one final output value between 0 and 1, where 0 is A ≤ B and
1 is B > A.

number of A before B and B before A pairs. If the second image, B, is taken before the

first image, A, the label is 1. Otherwise, the label is 0. So, if the images were somehow

taken at the exact same moment, the label will be 0 as well.

3.4.3 Training Procedure

A MobileNet, pre-trained on ImageNet, Places365 and Landmarks, is used as base

model for the Siamese Network. Feature vectors for both inputs are computed using

the MobileNet. Next, the distance between these feature vectors is computed in a

customized layer. The prediction output is obtained using a Dense layer with sigmoid

activation. The Siamese Network is visualized in Figure 3.1.

The images are now normalized in range [−1, 1], since this MobileNet was created

using Tensorflow. The Binary Crossentropy function is used for the loss. The optimizer

used is SGD, using a momentum and learning rate of 0.9 and 0.01 respectively.

Again, a learning rate scheduler is used, based on the same settings used for the

learning rate scheduler for Season and Part of Day prediction. Again, the model

keeps track of the validation loss during training and stops when there has been no

improvement during 15 epochs. The model weights that are saved, are those obtained

during the best epoch.

To avoid overfitting as much as possible, the data is balanced such that for each

batch, half of the photos belong to one class, and the other half to the other. At first,

each batch would first have only photos belonging to one class, and then only photos

belonging to the other class. So, the images within a batch are again shuffled, just

before being fed to the model.
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3.4.4 Results

This section is available upon request.



Chapter 4

Image Based Time Synergy

for Ordered Images

While the final goal is to solve the issue of event clustering for any set of randomly

ordered photos, this thesis attempts to solve the issue for a chronologically ordered set

of photos. This is an easier problem to solve, given that this orderering provides some

temporal information. For example, when the set of photos is chronologically ordered,

the algorithm cannot accidentally cluster photos into one event when they were taken

relatively long apart. The probability of being able to solve the problem for unordered

images seems dependent on the solvability of this slightly easier problem, making this a

logical first step. Although the photos are chronologically ordered, no further temporal

information is made available for the algorithm to cluster the photos into events. A

realistic example of when a set of photos can be chronologically ordered while they

have no temporal information present in the metadata, is when the filenames contain

a number. Most devices have some structured format for image filenames.

Evaluation is done by using the hierarchical cluster tree obtained using the existing

time-based approach as ground truth, and by visual inspection. The time-based event

clustering is not the actual ground truth, given that this approach itself is not perfect.

However, it is the best available set of event labels available. Visual inspection will

reveal the gravity of the mistakes made.

The approach is largely inspired by Loui et al. [2005], using background and fore-

ground segmentations. While Loui et al. [2005] used a block-based approach to com-

pute foreground and background regions, here the FgSegNet created by Ang Lim and

Yalim Keles [2018] will be used instead. The main reason to use this neural network

rather than the original segmentation approach from Loui et al. [2005], is that the

latter is only described in words, while the FgSegNet is publicly available. Also, the

FgSegNet scored best on the challenge it was created for, so it can be assumed to be

a suitable alternative1. The assumption is that it performs just as well or even better

than the segmentation algorithm from Loui et al. [2005]. While their approach was

1The results for the change detection challenge, for which the FgSegNet was used, can be found
on http://changedetection.net/. The FgSegNet scored best.

23
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block-based, the FgSegNet is not restricted to classifying blocks, and is pixel-based

instead. As explained by Loui et al. [2005], their algorithm would become too slow

when using a pixel-based approach. One major advantage of the work of Loui et al.

[2005] is that they compare different foreground regions separately, instead of treating

all foreground pixels as one whole. Their approach results in a higher similarity when

multiple different foreground regions from two different images match. Treating all

foreground pixels as one region does not allow for these precise comparisons, which

might lower the performance.

By combining the ideas of Loui et al. [2005] with the FgSegNet developed by

Ang Lim and Yalim Keles [2018], we try to obtain event clusters based on detected

event boundaries. The term event cluster is used to describe an event, consisting of one

or more images. The term event boundary is used to describe the boundaries between

successive event clusters.

4.1 Data

For event clustering, all images taken by one individual user are grouped together.

Next, a lower limit of 50 images per user is used to ensure that there are enough events

and sub-events to evaluate. Also, an upper limit of 125 is used, simply because a larger

number of events takes too much time to evaluate. The priority is to evaluate the event

clustering for multiple different users, rather than evaluating a few huge sets of photos.

25 sets of photos are used for evaluation, containing a total of 1990 images. These

photos will be referred to as User Photos.

A second, very small dataset is used as well, which is a private set of holiday photos.

These photos will be used in this thesis for visualization purposes. The dataset will

be referred to as My Holiday Photos and consists of 160 photos from a 7-day trip to

Poland. All timestamps for these photos are known to be correct, and the actual events

that took place are known as well. Any people present in these photos (other than

myself) will be covered by a colored square, for privacy reasons.

4.2 Foreground Segmentation

The model described in Section 2.3.1, the FgSegNet, will be used for foreground seg-

mentation. Ang Lim and Yalim Keles [2018] made their code freely available online,

and from the paper it seemed that they provided a fully trained model ready to be

used on our own data.

However, it turned out that separate models were trained on each sub-category of

the dataset, so there are actualy 53 models, each specialized on a single video feed.

The images within each feed only have some varying objects moving through, such as

a car or a person, while the main picture remains the same. Some small tests revealed

that these different models may not work well enough on the User Photos. The models

are too specialized on the video feeds and do not seem to generalize to different, unseen

data. It remains unclear if Ang Lim and Yalim Keles [2018] actually used one model

in their paper, or if they used these 53 specialized models.
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4.2.1 Training Procedure

As a solution, the training process for FgSegNet was adapted. Rather than creating a

new model for every video feed, one model is trained on all feeds sequentially. A batch

size of 16 is used, and the model is trained for just one epoch on each video feed. This

is done in a loop of 15, meaning that the model is trained 15 times for one epoch on

each feed. Althoug not ideal, the resulting segmentation masks were much better than

before.

Training on video feeds sequentially is expected to give some undesirable patterns.

To avoid such patterns, a different approach was tried. For this approach, the images

from the different feeds were all resized to the same size (the video feeds were of

different sizes), so that they can easily be mixed for training. However, the model

resulting from training on all 53 video feeds at once, resulted in a model that was not

able to generalize at all and segmentation masks that were either entirely foreground

or background. An attempt was made to find a more suitable foreground segmentation

model, but none were made publicly available. It is simply not in the scope of this

thesis to develop a segmentation model from scratch. A big issue here is that our user

data does not have ground truth foreground masks to train on.

Once a trained model has been obtained, it is visually tested on user photos to

ensure that it works well enough. These user photos do not have a ground truth for

foreground segmentation, so no proper evaluation metric will be applied. The obtained

masks will be used in the next step.

4.2.2 Results

Just to give an idea of the segmentation masks created by this model, a few examples

are created using My Holiday Photos. These examples can be seen in Table 4.1. These

examples were chosen to show the performance of the foreground segmentation model

for different types of photos, such as landscapes, buildings and people. The model

performs wel when there is a person present in the image. The photo of the horses

shows that the foreground mask may not always have a perfect outline, just like the

photo of the flowers. When there is no foreground available, such as in the photo of

the mountains, the model either returns an empty mask, or a mask of something that

is not actually the foreground. In this case, the model decided to use the clouds as

foreground. Photos of buildings are also difficult for the model. Since the FgSegNet

was trained for motion detection, buildings will never be detected as foreground, which

is usually correct. In the photo shown in Table 4.1, however, the buildings could be

considered to be foreground. The segmentation model decided to use parts of the

surrounding buildings as foreground. Overal, the segmentation network seems to do a

pretty good job, especially considering the problems with the training procedure and

limited training data, and it can thus be used in the computation of image similarity.

Given that the foreground segmentations are only used to compare multiple im-

ages, it may still work when the segmentations are consistent over multiple pictures

of the same building. For landscapes however, empty masks will be a problem: the

computations for image similarity will then have to rely on the other features for image
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Original Mask Original Mask

Table 4.1: Multiple example foreground segmentations for different types of photos. On the
left are the original photos, on the right are the corresponding foreground masks. The original
images are edited with a red square to remove people (other than myself) from the pictures,
to avoid privacy issues. These photos were taken from My Holiday Photos.

similarity. To make sure that this goes well, the algorithm developed by Loui et al.

[2005] needs to be adapted.

4.3 Computing Image Features

4.3.1 Features

Similar to Loui et al. [2005], the luminosity and a color feature is computed. They

are comparing regions across images, and not within one image. However, they also

seem to compare different ”levels”, i.e. possibly foreground and background regions as

well. Their equations are not entirely clear, they might have wanted to keep them a

little vague for the sake of their patent. In this thesis, a decision was made to try a

simplified approach for the luminosity and color feature instead.

For this simplified approach, the luminosity and color features are computed over

the entire image rather than per region. The luminosity is then simply the average

luminosity of all pixels within an image. Equation 2.4 is used unchanged. For every

pixel, y is computed using the R, G and B of that pixel. The resulting y is divided by

2.55 to obtain values in range [0, 100] rather than [0, 255]. This range makes it easier

later on to combine the different features into a final similarity score. After computing

the y for every individual pixel, the average y is computed and saved as luminosity

feature.
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For the color feature, more extensive changes are made. Rather than using the

equations provided by Loui et al. [2005], more general computations are used. Their

computation for the hue is able to deal with imaginary numbers, which was very difficult

to implement in Python, so the decision was made to follow a different computation

instead. Instead of computing the hue, saturation and intensity, the hue, saturation

and value (HSV) are computed according to Rapid Tables. For these computations,

R, G and B are first divided by 255, putting their values in a range of [0, 1]. Some

checks were done to make sure that the implementation of the new equation was

correct. Again, the computations are done for the full image, rather than comparing

the foreground and background in one image.

The new hue computation is given in Equation 4.2 and depends on the largest

color value: R, G or B. To compute the hue, the difference between the maximum

and minimum value needs to be computed first. This is shown in Equation 4.1, where

max = max(R,G,B) and min = min(R,G,B). The output of the equation for hue is

divided by 3.6 to obtain values in range [0, 100] rather than [0, 360].

df = max−min (4.1)

Hue =



0 if df == 0
60·(G−B

df mod 6)

3.6 if max == R
60·(B−R

df mod 2)

3.6 if max == G
60·(R−G

df mod 4)

3.6 if max == B

(4.2)

The saturation also depends on max and df and is given in Equation 4.3. The

output of this equation is in range [0, 100].

Saturation =

{
0 if max == 0
df

max · 100% otherwise
(4.3)

The value only depends on max and is shown in Equation 4.4. The output of this

equation is in range [0, 100].

V alue = max · 100% (4.4)

The hue, saturation and value are averaged over all pixels, multiplied with a coef-

ficient, and then summed to a total score. The equation is given in Equation 4.5. h, s

and v are the coefficients for hue, saturation and value respectively. The values chosen

for these coefficients are h = 0.34, s = 0.33, v = 0.33, so that the final ColorFeature

value is in range [0, 100] as well. A slight emphasis was put on the hue, based on a

personal assumption that the color shade is more important than the saturation of

value. The value is also partially covered by the luminosity. These coefficients are not

optimized yet, which should be done in the future to obtain optimal results. The hues,

saturations and values are the sets of hue, saturation and values for all pixels.
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ColorFeature = h ·mean(hues) + s ·mean(saturations) + v ·mean(values) (4.5)

As an experiment, Part of Day predictions and Color Histograms are also tested

as features. Recall that the Part of Day is either 0 for morning, 1 for afternoon, 2 for

evening and 3 for night. The model for Part of Day predictions is far from perfect,

so including these predictions in event clustering could potentially lead to mistakes.

Some measures will be taken to minimize the chance of mistakes being made, which is

explained in Section 4.4. The Color Histograms are computed for only the backgrounds

of the images, based on the hypothesis that the backgrounds within an event are similar

across the photos from that event. This idea is more in line with the work of Loui

et al. [2005], where regions of the same type (i.e. either foreground or background)

were compared across multiple images as well.

To visualize the features, a set of three successive images is compared in a pairwise

manner in Figure 4.1. The middle image (present in both Figure 4.1a and 4.1b) is

compared to both the first and the third image, while the first and third image are

only compared to the middle one, but not to each other. It should already be clear from

the images that the second and third images should be clustered together, separately

from the first image. The feature values for each of the images reveal that this would

indeed happen: the values of the middle image are much more similar to the values of

the third image than to the values of the first image.

4.4 Comparing Successive Images

4.4.1 Similarity Features

Next, the similarity between successive images is computed. For each pair of images,

multiple comparisons are made, before computing a mean similarity score. Firstly,

the luminosity and color features for the full images are compared. Secondly, the

foreground segmentation masks are compared using the Mean Squared Error (MSE )

and Structural Similarity Index (SSIM )2. SSIM was developed by Wang et al. [2004]

and is known to be better for image comparison than simply computing the MSE, the

full equations can be found in their paper. In this thesis, the specific parameters for

SSIM were set to match the original implementation3. Also, multichannel is set to

True, to deal with our images.

Given that the model for Part of Day prediction does not have a perfect perfor-

mance, only an extreme difference between two images has a high chance of being

reliable. If the prediction for the first image of a pair is two parts of day away from the

prediction for the second image, the Part of Day difference is set to 0.5. Otherwise, a

difference of 0 is used. So, when one image is presumably taken during the afternoon,

2The idea of using MSE and SSIM for image similarity was inspired by https://www.

pyimagesearch.com/2014/09/15/python-compare-two-images
3SSIM parameters taken from https://scikit-image.org/docs/dev/api/skimage.metrics.html#

skimage.metrics.structural_similarity

https://www.pyimagesearch.com/2014/09/15/python-compare-two-images
https://www.pyimagesearch.com/2014/09/15/python-compare-two-images
https://scikit-image.org/docs/dev/api/skimage.metrics.html#skimage.metrics.structural_similarity
https://scikit-image.org/docs/dev/api/skimage.metrics.html#skimage.metrics.structural_similarity
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(a) Features for two dissimilar images.

(b) Features for two similar images.

Figure 4.1: Examples of values for the luminosity and color features, as well as Part of Day
predictions. Again, red boxes are placed on people for privacy reasons.
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Feature Name Equation
dist luminosity abs(first luminosity − second luminosity)
dist color abs(first color − second color)
MSE MSE(first mask, second mask)
SSIM SSIM(first mask, second mask)
ColHist abs(first hist background, second hist background)
DayPart 0.5 if abs(first partofday − second partofday) == 2,

0 otherwise

Table 4.2: Equations for succesive image comparison. Note that first refers to the first of
two images, and second to the second image. mask refers to the corresponding foreground
mask.

and another at night, the value of the feature is 0.5. If one image was taken during the

morning, and the other during the afternoon, the value for the feature is 0. A max-

imum value of 0.5 was chosen, instead of 1.0, to make sure that this prediction does

not have too much impact on the mean similarity. These two measures were used to

prevent the algorithm from creating boundaries based solely on the possibly incorrect

Part of Day predictions. The feature for Part of Day difference will also be referred to

as DayPart.

The color histograms are used to compare the backgrounds of the two images. The

Color Histogram differences are computed according to Rosebrock [2014], where 3D

color histograms are created and normalized to finally be compared using the euclidean

distance function. The feature of Color Histogram difference will also be referred to as

ColHist.

Table 4.2 gives an overview of the features, where first and second refer to the first

and second image. mask refers to the foreground mask of the corresponding image and

background refers to the background obtained using the segmentation mask.

Although these similarity features were all placed in the same range ([0, 100]), they

resulted in very different distributions in practice. While some features would often

have values towards 1, others would hardly get close to 0.5. These differences lead to

one feature having more impact on the mean similarity than other features. To solve

this problem, several sets of photos were checked to determine logical maximum and

minimum values for each feature. Then, every feature value is first subtracted by the

minimum and then divided by its potential maximum. This normalization method

gives us a normal-like distribution for each feature that is a lot easier to compare. The

values would ideally lie between 0 and 1, but as this was a squewed distribution, some

outliers will be outside of this range, resulting in values smaller than 0 or greater than

1. This is however not a problem for the computation of the similarity. The DayPart

values are not adjusted and are still either 0 or 0.5.

Examples of the image similarities are visualized in Figure 4.2. Again, it is clear

that the bottom two images are much more similar than the top two.
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(a) Similarities for two dissimilar images.

(b) Similarities for two similar images.

Figure 4.2: Examples of similarities between two images for all features. Again, red boxes
are placed on people for privacy reasons.
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4.4.2 Computing the Mean Similarity

Next, the mean similarity between each two images is computed. While Loui et al.

[2005] computed the harmonic mean of the pairwise distances between regions in two

successive images, this thesis explores different computations of the mean based on

the equations from Table 4.2. The timewise computational complexity would have

skyrocketed when comparing all separate foreground regions in a pairwise manner,

since the segmentation model does not work well enough to obtain complete foreground

regions. The model often returns masks with many separate pieces, which can be seen

in the photo of the flowers in Table 4.1.

For each feature in Table 4.2, a higher value denotes a greater dissimilarity. Simi-

larly, a higher mean similarity score also denotes a greater dissimilarity.

First, a harmonic mean is computed according to Equation 4.6. Next, a basic mean

is computed according to Equation 4.7. Finally, a combined mean is computed as well,

according to Equation 4.8. Each of these means will be computed to see what works

best. The equations given here are based on the main set of features: MSE, SSIM,

dist luminosity and dist color. The equations are extented to include DayPart and

ColHist comparisons in some experiments. Given that the features are different from

those used by Loui et al. [2005], and most likely in different ranges, Equation 4.7 seems

the safest way to compute the mean similarity between two images.

Examples of mean similarities between images are given in Figure 4.3. All three

means show a clear difference between the first and second pair.

harmonic mean =
1

1
SSIM + 1

MSE + 1
dist luminosity + 1

dist color

(4.6)

mean =
MSE + SSIM + dist luminosity + dist color

4
(4.7)

combined mean =
harmonic mean + mean

2
(4.8)

4.5 Event Clustering

Loui et al. [2005] use one threshold for event clustering, either manually chosen, or

computed using for example some function based on the average and maximum dis-

tances in a set of images. A disadvantage here is that there will be just one layer

of events, disregarding sub-events. Another disadvantage is that this approach is in-

variant to local fluctuations in the similarity scores. As an alternative solution, the

similarity values themselves are used to determine the event boundaries at multiple

levels. The full set of event boundaries is detected first using the similarity between

each two successive images. For every two images, a boundary between them is created

if the similarity score is higher than for the previous two images. Next, these bound-

aries can be used to obtain the event clusters themselves, and to create image-based

hierarchical trees. Once all event boundaries have been detected, the corresponding

similarities are gathered in a list. To create a tree, this list is split in half based on



4.5. EVENT CLUSTERING 33

(a) Mean similarities for two dissimilar images.

(b) Mean similarities for two similar images.

Figure 4.3: Examples of mean similarities between two images. Again, red boxes are placed
on people for privacy reasons.
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the largest dissimilarity. This is repeated for both halves of the resulting lists until all

boundaries have been added to the tree. The hierarchy in the tree is thus determined

by the largest dissimilarities between two images. In this section, multiple experiments

are carried out to determine which method works best to detect event boundaries.

4.5.1 Experiments

Similarity Features and Mean Similarity

As mentioned before, three computations for the mean similarity between images are

tested: the mean (Eq. 4.7), harmonic mean (Eq. 4.6) and the combined mean (Eq.

4.8). Also, multiple sets of features are tested. The main set consists of SSIM, MSE,

dist luminosity and dist color. For the experiments, ColHist and DayPart are added

as well.

The different means and the different sets of features are tested on both My Holiday

Photos and User Photos. First, the best mean calculation will be picked based on the

performance on the User Photos. Then, the best set of features will be determined

using the best mean calculation. The expectation is that the main set of features,

together with the ColHist feature, will lead to the highest performance. Including

DayPart as a feature is expected to lower the performance, given that the Part of Day

model still makes many mistakes.

Applying a Threshold

Next, a threshold T is applied to the list of boundaries. Any detected boundary with a

similarity in the lowest 1%, 5%, 10% or 15% of the similarities is removed. This could

occasionally lead to a correctly detected boundary being removed, lowering the recall,

but it should mostly remove wrongly detected boundaries from the set (increasing the

precision). The experiments for the threshold are carried out using the best mean

calculation and best set of features found before.

Boundary Levels

So far, the focus was to find a set of events and the corresponding event boundaries.

This was done on one level, where every boundary is assumed to be equally important.

Similar to the time-based hierarchical trees, an attempt is made to create an image-

based hierarchical tree of event clusters as well. The importance of a boundary is

determined by the degree of dissimilarity between the two images corresponding to

this boundary, based on the assumption that events further away will have a larger

dissimilarity in successive image comparisons. An image-based tree will be created and

compared to the time-based tree for My Holiday Photos. Also, the boundaries detected

by the image-based approach will be matched to the time-based tree, to determine how

well the image-based method works for different levels of boundaries. Boundaries higher

up in the time-based tree are more important than boundaries further down. These

comparisons will be made for My Holiday Photos and two sets of User Photos. The

following question can be formulated:
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Q2.1: How well does image based time synergy detect higher levels of event

boundaries?

The hypothesis is that the algorithm is best at detecting the higher-level event bound-

aries. This is based on the assumption that photos from different main events will be

less similar than photos from different sub-events within the same main event. How-

ever, it is expected that the algorithm works fine for lower-level boundaries as well,

considering that the images within sub-events could still be very dissimilar.

Similarity Matrix

Finally, a first attempt to create and use a similarity matrix is made. This matrix

compares every two images rather than just successive pairs, using the same similarity

computation developed above. Using this matrix, a tree is created in the same way as

in the time-based approach. This tree, unlike the hierarchical trees, will have just one

level, where every boundary is equally important. This happens because, unlike the

time-based tree, this tree only uses one similarity matrix. The set of boundaries will

be extracted from this tree and compared to the time-based set of boundaries. This

experiment will only be done for My Holiday Photos.

The following question is formulated:

Q2.2: How well does the all-to-all image comparison method work when

compared to the successive image comparison method?

While for a chronological ordered set of images, it makes sense that the highest simi-

larities are around the diagonal, this may be very different for visual similarity. Photos

from the first event in a set of photos may have a high similarity with photos from later

events, so the similarity matrix is expected to be more chaotic. The resulting matrix-

based tree is also expected to be different from both the time-based and image-based

trees. However, the similarity matrix is expected to be less sensitive to the problem

of one-off photos. In the end, the hypothesis is that the all-to-all method and the

successive pairs method lead to similar performance.

Evaluation

To obtain ground truth event clusters, the time-based approach is used to create hier-

archical event trees. From these trees, the boundaries are extracted. These boundaries

are used to compute the precision, recall and F1-score. The performance is computed

over 25 sets of User Photos, and over My Holiday Photos.

Further evaluation of the resulting events and trees is done by visual inspection of

at most three sets of photos.

4.5.2 Results

This section is available upon request.
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Chapter 5

Discussion

5.1 Result Analysis

Foreground Segmentation

The FgSegNet was expected to have at least the same performance as the segmenta-

tion approach from Loui et al. [2005]. The pixel-based approach of this network was

expected to be more precise than the block-based approach used by Loui et al. [2005].

However, no evaluation of the foreground segmentation method used by Loui et al.

[2005] was provided. Their work only provides very few example segmentations, that

seem to be accurate, but might not be representable for the total set.

It turned out that the FgSegNet used in this paper was perhaps too specialized to

generalize to unseen data. The adapted training process was not ideal either, so the re-

sulting foreground segmentations, such as those seen in Table 4.1, are far from perfect.

However, they seem to cover most of the actual foreground, missing some and adding

other pieces. Quantitative evaluation of the foreground segmentations is impossible,

since no ground truth masks were available. It is clear that there is much room for im-

provement, but the segmentations are expected to be good enough for event clustering.

The rest of this section is available upon request.

5.2 Limitations

Incorrect Labels

For event clustering, it is important to include temporal information in the clustering

process. As explained before, images from separate events can be very similar. So, if

the predictions about the temporal information are not included in the computation

of the similarity measure, this can result in incorrect event clusters. The idea was to

include both Season and Part of Day predictions in the similarity measure, to make

sure that this does not happen. However, reliable networks are crucial to make reliable

predictions, and to train a reliable network, a reliable dataset is required.

37
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During the prediction of temporal information, it became clear that the labels were

not always correct. The model was thus trying to learn from a dataset with multiple

incorrect datapoints, leading to peculiar predictions during testing. Training the model

on easier datasets, where the labels were manually evaluated to at least be plausible,

revealed that it would be possible for a neural network to predict temporal information

based on visual content. This again stresses the importance of a reliable dataset.

The performances of the Season and Part of Day models were low, and so only Part

of Day predictions were included for now. If a more reliable dataset was available, the

prediction of temporal information could be more useful for event clustering.

Ground Truth Events

The ground truth used to evaluate the event clusters, is based on the time-based

approach. This is not the actual ground truth, and the performance scores are thus not

fully reliable. For a proper evaluation, a new dataset is required with actual annotations

of the events. The most reliable annotators are the photographers themselves, since

only they truly know what events took place. However, a few random annotators would

also be able to give annotations to the dataset. It should be noted that the problem

of event clustering is also more difficult for random annotators, since they obviously

have no memory about the events someone else experienced.

Size of Photo Sets

A final limitation for the data used for event clustering is the size of the sets of photos.

For evaluation purposes, the size of each set of photos was restricted to anywhere

between 50 and 125 photos. Larger datasets would be too much work to evaluate

and smaller sets may not contain enough different events. However, sets may contain

hundreds or even thousands of photos, and it is just as important to evaluate the

performance of the algorithm on these larger sets as well. Similarly, the algorithm

should also be able to deal with photo sequences that contain a minimal number of

photos.

Foreground Segmentations

Recall that the performance of the foreground segmentation model is limited, meaning

that the resulting foreground masks are not entirely correct. The model is found to

be best at detecting people. Other than that, the model tends to return noisy masks:

some detected pixels are actually background pixels, and vice versa. These masks

influence the computation of the features for image similarity.

Foreground segmentations of landscape photos are often close to empty, given that

these photos generally do not have any foreground objects. This would not have

been a problem for the goals of Ang Lim and Yalim Keles [2018], which was motion

detection. For event clustering, however, this leads to similar masks for completely

different landscapes. This is not incorrect, but comparing them will lead to a high

similarity. If successive images show different landscapes, while belonging to separate

events, they might be clustered into one event anyway. The MSE and SSIM for the
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successive masks will be really low. The other similarity measures, dist luminosity,

dist color, and DayPart are based on the full images and will still result in a higher

dissimilarity for different landscapes, partially making up for the very similar masks.

ColHist does not suffer from similar empty masks either, since it is based on the entire

background. It is unclear if these similarity measures are always enough to solve the

problem.

Evaluation

It is important to know the performance of each step in the algorithm. For Part of

Day predictions, the performance is known, but for the segmentation model, no scores

are available. The foreground segmentations should be evaluated as well, but there are

no ground truth masks available at this point. These ground truth masks should be

created by some human annotators, but this is again a very time-consuming process.

As mentioned before, for proper evaluation of the entire algorithm, actual ground

truth event clusters are required. Also, the visual inspection in this thesis is limited to

just three sets of photos. Visual inspection should be extended to include many more

photo sequences to get a decent sense of the performance of the algorithm.

Ordered Images

The algorithm developed in this thesis is only able to work with chronologically ordered

photo sequences. The problem is much more difficult when the algorithm also needs

to order the photos or the resulting event clusters. In reality, it cannot be assumed

that the images in a series of photos are always ordered, so the algorithm should be

extended to work with any unordered set of photos as well.

The rest of section is available upon request.

5.3 Future Work

Foreground Segmentation

Looking at the approach for foreground segmentation, there is a lot of room for im-

provement. The current model is trained on just 53 different video feeds and was

originally created for motion detection. The resulting foreground masks for the user

photos often include some random pixels classified as foreground. Replacing the cur-

rently used segmentation model with one that is better at generalizing to this data

would most likely improve the performance of the event clustering algorithm.

To be able to quantitatively determine the performance of the current segmentation

network (and its possible replacement), ground truth segmentation masks for the User

Photos are required. Creating these masks is a huge task, but it would definitely be

useful to see how well the segmentation model generalizes to out data. Or perhaps,

this dataset could also be used to train the segmentation model in the first place.

It would be interesting to explore a different computation of the mean similarity,

based on the size of the foreground segmentations. For images with no foreground, or
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just a very small foreground, it may be better to compute the mean similarity without

comparing the segmentation masks. Another possible solution, as implemented by Loui

et al. [2005], is to simply use a square in the middle of the image as foreground, if no

actual foreground is detected. Although this approach leads to incorrect foreground

segmentations, they found a slight improvement in performance. Both ideas could be

explored and might be able to solve the issue of comparing very similar empty masks.

Finally, Loui et al. [2005] were using a technique to obtain separate foreground

regions for separate foreground objects. These separate regions were all compared

individually to obtain a similarity score. In this thesis, all foreground pixels were

treated as one whole. It would be interesting to see if the performance increases

when implementing an algorithm to retrieve separate foreground regions and using

the individual regions for comparison as well. But, as stated before, the timewise

complexity is expected to explode for masks with many separate pieces.

Image Features

The features used for both individual images and the similarity between two images,

are different from those used by Loui et al. [2005]. It still may be a good idea to try to

follow their approach more strictly. However, this may be very difficult, given that not

all specifics of their method are described extensively. An example feature that was

not implemented in this thesis is the size of the foreground regions. This still seems

like an interesting feature for image similarity that should be tested. This size-based

similarity feature can be computed using a distance metric that compares the total

number of foreground pixels detected in both images.

In this thesis, several features for image comparisons were used, although there are

probably still many other similarity measures that could be explored as well.

Image Based Time Synergy for Unordered Images

This thesis has addressed the problem of image based time synergy for chronologically

ordered sets of photos. The most important step for future work is to translate the

algorithm developed in this thesis to also solve the problem of image based time syn-

ergy for unordered images. Season prediction and Part of Day prediction could be

useful, although these models first need to be trained on a reliable dataset. A before

B predictions could also be used here.

The rest of section is available upon request.
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Conclusion

This chapter is available upon request.
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Glossary

burst Large set of photos taken in a small interval of time. 6

color feature A feature computed using the hue, saturation and value of a

picture. 26

event Something that happens within a time interval, such as a birthday

party, Christmas dinner, or a vacation. 1

event boundary A boundary between two successive events. In a set of pictures,

the boundary is between two pictures, where the first belongs to

the event before the boundary, and the second belongs to the

event after the boundary. 6

hue The dominant color of a pixel. In this thesis, the average hue of

a picture is used. 12

intensity The lightness, or value, of the hue of a pixel. 12

iPhone Apple smartphone. 1

luminosity The brightness of a picture. 7

saturation The strength of the hue of a pixel. In this thesis, the average

saturation of a picture is used. 12

sub-burst Smaller peak of the number of photos taken during a smaller part

of the time interval of a burst. 6

sub-event Smaller part of an event, such as eating dessert during a Christ-

mas dinner. 6

value The lightness, or intensity, of the hue of a pixel. In this thesis,

the average value of a picture is used. 27

visual content Anything that can be found in the pixel values of a picture. 2

visual similarity Similarity between two pictures, based on their visual content. 6
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