
Master thesis

Computing Science
Digital Security

Radboud University

Proposal for a Pyramid scheme

Author:
Auke Zeilstra
s4751701

First supervisors/assessors:
prof. dr. Andreas Hülsing

a.t.huelsing@tue.nl

prof. dr. Peter Schwabe
p.schwabe@cs.ru.nl

dr. Bas Westerbaan
bas@westerbaan.name

Second assessor:
dr. Simona Samardjiska

simonas@cs.ru.nl

April 1, 2022

Abstract

Hash-based signatures are a conservative choice for a post-quantum digi-
tal signature scheme. In recent years, the stateless hash-based signature
framework SPHINCS+ has streamlined several aspects of hash-based signa-
tures [BHK+19]. The improvements from SPHINCS+ have not been applied
to stateful schemes in a manner that ensures compatibility with SPHINCS+.
In this work, we give a proposal for a stateful hash-based signature scheme
named Pyramid. In the proposal, we give a description of Pyramid, along
with an addressing scheme and hash-function instantiations. We include a
concrete way of achieving forward security.

We accompany the proposal with four implementations, which range
from naive to sophisticated, and regular to forward-secure. The sophisti-
cated implementations use the Simple algorithm/reference code [KT21a],
originally written for XMSS. We also attempt to restructure the signing
routine into manageable subroutines.

Last, we aim to ease the formal verification process of future Pyramid
implementations by including an implementation written in Jasmin. This
may also serve as an experiment, in which we establish the applicability of
the Jasmin language to the type of algorithm that we implement.

Contents

1 Introduction 4
1.1 This work . 5

2 Preliminaries 6
2.1 Historic background . 6
2.2 Stateful HBS: XMSS . 7
2.3 WOTS example . 8
2.4 Hypertree overview . 9

3 Pyramid description 11
3.1 Preliminaries . 11
3.2 Tweakable hash functions . 12
3.3 Tweak legend . 13
3.4 Pyramid building blocks . 14

3.4.1 WOTS-TW . 14
3.4.2 WOTS-TW compression 16
3.4.3 The hypertree . 18

3.5 Pyramid . 19
3.5.1 Pyramid key generation 19
3.5.2 Pyramid signature . 20
3.5.3 Pyramid verification 20

3.6 Pyramid proof status . 21
3.6.1 Preliminaries . 21
3.6.2 Partial SPHINCS+ proof summary 21
3.6.3 Pyramid proof implication 22

4 Pyramid instantiations 23
4.1 SHAKE256 instantiations . 23
4.2 SHA256 instantiations . 24
4.3 Haraka instantiations . 26
4.4 Discussion . 27

4.4.1 Function family independence 28
4.4.2 Address lengths . 28

1

4.4.3 Forward-secure instantiations 28
4.4.4 OptRand . 28
4.4.5 XOF WOTS-TW secret generation 29
4.4.6 Non-repudiation . 29

4.5 Addressing scheme . 29
4.6 Key format . 30

5 Pyramid implementations 31
5.1 Common . 31
5.2 External algorithm & format 33
5.3 Stepping stone implementations 34

5.3.1 NFS-Naive . 34
5.3.2 FS-StackRestore . 35

5.4 NFS-Simple & background . 37
5.4.1 BDS & HRB . 37
5.4.2 Simple . 38

5.5 FS-Simple . 39
5.5.1 Forward-secure BDS 39
5.5.2 Forward-secure MMT 40

6 Implementations in Jasmin 44
6.1 General design choices . 45
6.2 Directory structure . 46
6.3 NFS-Naive . 47

6.3.1 SHAKE256/FIPS 202 47
6.3.2 Treehash . 47
6.3.3 WOTS . 48
6.3.4 Root computation . 49
6.3.5 Parameters & compilation 50

6.4 FS-Simple . 50
6.4.1 Structures . 50

6.5 Performance evaluation . 51
6.5.1 System information 52
6.5.2 Results . 52

7 Related Work 54

8 Conclusions and Future Work 55

A Figures 60
A.1 Pyramid format . 60
A.2 Implementation key & state structures 61
A.3 MMT & BDS scheduling examples 62

A.3.1 MMT . 62

2

A.3.2 BDS . 63
A.4 Sign signature skeleton . 64

B Software rescources 65
B.1 Directory structure . 65
B.2 Jasmin build . 66

3

Chapter 1

Introduction

Digital signature schemes (DSS) are used to achieve integrity and non-
repudiation in the public-key setting. Integrity is achieved by verifying the
authenticity of a message when given a signature for the message and an
authentic public key. Examples of traditional digital signature schemes in-
clude RSA, DSA and ECDSA. Traditional digital signature schemes gener-
ally make at least two assumptions. First, a collision-resistant hash function
is assumed, which compresses a variable-length message to a fixed-length
digest. Second, a computational problem is assumed to be hard; exam-
ples include the integer factorization problem and DLP. In 1994, Shor pub-
lished algorithms that compute discrete logarithms and factor integers, on
a quantum computer, efficiently [Sho94]. This breaks the intractability as-
sumptions that most traditional schemes make. Alternative assumptions
for digital signature schemes in a post-quantum setting are found in certain
categories of NP-hard problems, examples of which include SVP, BDD, and
MQ. Other examples, and schemes based on these problems, can be found
in [oST21].

An alternative is hash-based signature schemes (HBS). Hash-based sig-
nature schemes can base their security argument solely on the existence
of a one-way function, which is a minimal assumption for a secure digital
signature scheme. Hash-based signature schemes do have to take into ac-
count the quadratic speedup achieved by Grover’s algorithm [Gro96] over
classical search algorithms. However, note that Grover’s algorithm does not
parallelize well [Flu17].

Hash-based signatures are thought to be relatively well-understood com-
pared to other post-quantum DSS alternatives, which has led to a recom-
mendation for stateful hash-based signature schemes by NIST [oST20a]. The
NIST-approved schemes include XMSS and LMS. Furthermore, SPHINCS+

is a stateless hash-based signature framework, which is listed as a third-
round alternative candidate algorithm for a DSS in the NIST PQC stan-
dardization process [oST21].

4

SPHINCS+ introduces the notion of tweakable hash functions. SPHINCS+

is based in part on XMSS, but includes further revisions that make it in-
compatible with previous stateful schemes. For this reason, we prepare a
first proposal for Pyramid: a stateful hash-based signature scheme that is
compatible with SPHINCS+. We include the first attempt at reference im-
plementations.

Implementations for (stateful) hash-based signature schemes can be com-
plex and the process of creating one is error-prone. This is a broader is-
sue in cryptography, which has led to frameworks for the formal verifica-
tion of cryptographic schemes and their implementations [Mei21a]. Easy-
Crypt [BDG+13] is a toolset that can be used for the construction and
verification of game-based cryptographic proofs. The Jasmin [ABB+17]
framework offers a language and a compiler for creating high-assurance and
high-speed cryptographic software. The Jasmin compiler is verified for func-
tional correctness: a safe Jasmin source program can be compiled into a safe-
and functionally equivalent assembly program [ABB+20a]. Furthermore, an
embedding of the Jasmin language into EasyCrypt is defined.

We will provide the first attempt for a reference implementation of Pyra-
mid in Jasmin, to take the first step towards formal verification of future
versions of Pyramid. Due to the relatively high-level language structures
that are used in stateful HBS implementations, this also provides an insight
into the applicability of Jasmin in this setting.

1.1 This work

In Chapter 2, we indicate advances that led to the current state of affairs
for stateful HBS. In Chapter 3, we provide a description of how we envision
Pyramid in this proposal. Chapter 4 lists instantiations that attempt to
achieve the properties that we desire in Chapter 3. Chapters 5 and 6 de-
scribe our approach to first implementations for Pyramid in C and Jasmin.
Chapter 7 briefly relates Pyramid to LMS. Finally, Chapter 8 summarizes
our results.

5

Chapter 2

Preliminaries

We provide a textual background on hash-based signatures; further details
may be found in the cited works. A more complete/in-depth history can
be found in [Rij19]. Because Pyramid is based on several schemes that we
reiterate partially in Chapter 3, we omit a formal description here.

2.1 Historic background

The core concept of Hash-based signatures dates back to 1979, with the
introduction of a One-Time Signature scheme (OTS) by Lamport [Lam79].
The security of the scheme solely relies on the existence of a one-way func-
tion. The number of bits that one can sign with a keypair is limited to
half the number of digests that are part of the public key. To prove the
authenticity of a message, one reveals preimages of digests in the public key.
Revealed secrets are unique to the message, but their intersection for a dif-
ferent message may be non-empty. Signing two different messages with the
same secret key reveals signatures for additional messages, thereby making
the scheme “one-time”.

Merkle improves the signature size by only revealing preimages for 1-
bits, an improvement that is made possible by also signing a negated check-
sum [Mer89]. The paper accompanies this approach with a technique that
allows decreasing signature- and public key size, even more, at the cost of
additional signing- and verification time. This technique, accredited to Win-
ternitz, is referred to as “WOTS”. WOTS authenticates groups of message
bits using just one secret/public element per group of bits, but multiple
invocations of a one-way function F. Grouping more bits together requires
the signer/verifier to compute longer hash chains, making this a time/space
trade-off.

In [Mer89], Merkle uses binary hashing trees to authenticate a finite
number of OTS instances, at the cost of having to include an authentication
path, along with the OTS index, in signatures. The hash function that one

6

uses to combine nodes in the tree is commonly denoted H. In combination
with WOTS, the public key can be reduced to just the tree root. A com-
mon procedure for generating (sub)roots is called “Treehash”. We include
Treehash in Algorithm 1. One gripe of the scheme is that it must keep track
of the OTS instances that have been used, by storing the OTS index in the
secret key. This is incompatible with traditional DSS APIs and vulnerable
to misuse [oST20a].

2.2 Stateful HBS: XMSS

In recent years, the hash-based signature scheme XMSS [BDH11] is intro-
duced. XMSS and its successors use a binary hashing tree, with compressed
WOTS+ instances as their leaves. WOTS+ does not need to rely on a
collision-resistant hash function for its security argument, unlike
WOTS [Rij19]. WOTS+ is collision-resilient: it is not vulnerable to collision
attacks against the used hash function. One has to attack WOTS-TW by
attacking either second preimage resistance, one-wayness, or undetectability
of the used function family [Hül13b].

XMSSMT [HRB13] uses XMSS trees to sign the roots of other XMSS
trees, similar to a (binary) authentication tree. OTS instances that are
authenticated by trees at the bottom are used to sign messages. XMSSMT

allows one to attain a high number of WOTS keypairs, without having to
generate all of the leaf nodes at once to obtain a tree root.

Whereas verification is one standard routine, signature generation for
XMSS and XMSSMT can freely choose tree-traversal algorithms to gener-
ate authentication paths. Amongst other things, tree-traversal algorithms
retain- and manage tree nodes to speed up computation of the authentication
path. We will sketch a background on two such algorithms, BDS [BDS08]
and Simple [KT21a], in Chapter 5.

Finally, XMSS-T [HRS16] recognizes that an attacker can gather a large
amount of images from the aforementioned XMSS scheme instance(s) to
mount a multi-target attack. To mitigate such attacks, XMSSMT uses a
user-specific function key and an invocation-specific nonce to make hash
function input unique.

At the time of writing, XMSSs “final form” is found in RFC 8391
[HBG+18]. RFC 8391 provides a great amount of detail on practical de-
tails, such as hash function- and addressing scheme instantiations. RFC
8391 was written after the proposal for the stateless SPHINCS. Inconve-
niently, advancements from SPHINCSs successor, SPHINCS+, are relevant
to stateful signature schemes, but postdate RFC 8391. The advancements,
combined with the fact that the other NIST-approved stateful HBS scheme
LMS is incompatible with the constructions in the SPHINCS+ framework,
are the main motivation for the proposal for Pyramid.

7

2.3 WOTS example

In Section 3.4.1, we reiterate the description of WOTS-TW, which is orig-
inally found in [HK21]. To prevent duplicate descriptions, we omit a de-
scription of WOTS. Instead of a description, we include a WOTS example
in Figure 2.1. Readers that are familiar with WOTS may prefer to skip this
section.

Figure 2.1 depicts a WOTS instance for w = 4; we clarify WOTS param-
eters further in Section 3.4.1. From here, we use binary representation for
the example by default. In the example, the WOTS instance signs a mes-
sage m = (00, 10, 11)w. Figure 2.1 highlights the hash chain values after mi

applications of the hash function. For example, m0 = 00, meaning that we
include sk0 in the WOTS signature. The values ski are commonly generated
from a shorter seed (using a PRG) to reduce the storage space required for
the secret key.

Without the inclusion of a signature over an inverted checksum, triv-
ial forgeries appear. Without the checksum, the only value that we can
authenticate for a message group mi is mi = 00.

The inverted checksum in the example is given by c =
∑2

i=0 ¬mi = 410 =
(01, 00)w. The number of chains for the checksum must be able to represent
the number 310 · 11 = 910 in base-w; the example requires two chains. Per-
haps the simplest forgery attempt is one in which an adversary forwards one
of the hash chains in an original signature. Thereby, the adversary hopes to
authenticate the original message with an increased mi. The checksum pre-
vents such an attack: some c′i < ci for the checksum value c′i in the forgery,
demanding the adversary to include an unrevealed secret.

sk0 sk1

pk0 pk1

sk2

pk2

m

00 10 11

sk3 sk4

pk3 pk4

01 00

c

Figure 2.1: A WOTS example, inspired by Figure 3.2 in [Rij19].

8

2.4 Hypertree overview

Figure 2.2 depicts the certification tree construction from XMSSMT, also
referred to as a hypertree. The figure depicts a “full tree height” of h = 6,
which we achieve using d = 2 layers of subtrees. We clarify these parameters
further in Section 3.4.3. In the construction that is depicted in Figure 2.2,
the OTS instances are used to sign messages at the bottom layer. At higher
layers, the OTS instances sign the roots of trees on lower layers. The public
keys of the OTS instances serve as the data blocks in the Merkle tree. A
compressed public key serves as a leaf node. A non-leaf node is referred to
as an inner nodes, or simply a node.

The highlighted nodes in Figure 2.2 depict authentication path nodes.
In each tree layer, the corresponding authentication path nodes serve as a
Merkle proof. The Merkle proof demonstrates the membership of an OTS
public key in the tree on the corresponding layer. In the example, we sign
a message m using an OTS instance. The OTS instance has a public key
that serves as a data block in the Merkle tree. We prove membership for the
public key in the bottom tree by including the nodes that are highlighted in
the bottom tree in a signature.

In a singular Merkle tree, or the top tree in the hypertree construction,
we then verify membership of a public key in the tree by “recomputing” the
root node, using the authentication path. We check the resulting root node
against the root node that we acquire from a trusted source.

On the lower layers of the hypertree, we do not directly compare the
supposed subtree root to an authenticated subtree root in the public key.
This would require a large number of roots in the public key. Instead, the
signer includes an OTS signature for the subtree root. The verifier uses the
OTS signature to recover a public key, for which one again checks the Merkle
proof in the (next) subtree. We repeat this process until the inclusion of the
root in the public key becomes feasible. In practice, and Figure 2.2, we only
include the absolute hypertree root (labelled “pk”) in the public key.

9

pk

m

h = 6

d = 2

inner node

leaf node

OTS (data block)

Figure 2.2: The hypertree construction, inspired by Figure 1 in [BHK+19].

10

Chapter 3

Pyramid description

In this chapter, we provide a description of Pyramid. We describe the build-
ing blocks for Pyramid in Section 3.4. These descriptions effectively serve
as a mixed restatement of the descriptions of [BDH11], [HRB13], [HRS16],
and [HK21]. Section 3.3 does not describe a building block per se, but
gives a first indication of the role of context in Pyramid. Then, we describe
Pyramid in Section 3.5 based on the building blocks.

3.1 Preliminaries

The Pyramid description includes an optional way of achieving forward secu-
rity. A forward-secure DSS evolves its secret key over time, using a one-way
function to update the secret key. If an adversary compromises the secret
key, then our degree of trust in the authenticity of previously signed mes-
sages remains unchanged, as long as these were signed with a prior secret
key [BM99]. The public key remains fixed.

Forward security of Pyramid is a result from generating WOTS secret
values using a forward-secure generator (FSG). A forward-secure (pseudo-
random bit) generator is a stateful generator. Informally, a pseudorandom
generator (PRG) efficiently transforms a uniform string into a longer pseu-
dorandom string. A PRG output must not be efficiently distinguishable
from a truly random string of equal length. We reiterate a slightly modified
definition of a PRG, from [Rij19], in Definition 3.1.1.

A stateful generator allows one to generate a finite number of pseudoran-
dom strings. Unlike a PRG, a stateful generator is a stateful object. Given a
state/seed, requesting output grants a pseudorandom string along with the
state for a successive request. Finally, an FSG ensures that a compromised
state does not allow an attacker to efficiently distinguish previous outputs
from truly random strings.

Definition 3.1.1 (Pseudorandom generator (PRG)). Let G be an efficient
algorithm implementing the function G : {0, 1}n → {0, 1}l, for l polynomial

11

in n. G is a pseudorandom generator if the following conditions hold:

1. For every n it holds that l > n.

2. For any probabilistic polynomial-time algorithm A, given U0 = G(x)

for x
$←− {0, 1}n, U1

$←− {0, 1}l, and b
$←− {0, 1}, the success probability

of running A(Ub) to find b differs negligibly from random guessing.

The FSG- and PRG constructions that we use in Pyramid can be found
in [HRB13] [Hül13a]. These use a construction from [BY03], titled “A [PRG]
construction based on PRFs”. The paper also includes a way of constructing
a (forward-secure) stateful generator from a standard PRG. We reiterate a
slightly modified definition of a length-preserving pseudorandom function
(PRF) from [Rij19] in Definition 3.1.2:

Definition 3.1.2 (Pseudorandom function (PRF)).
Let F : {0, 1}n×{0, 1}n → {0, 1}n be a family of efficient, length-preserving
functions. We say F is a pseudorandom function if, for any probabilistic

polynomial-time algorithm A and k
$←− {0, 1}n, the success probability of

running A(Fk) to distinguish between Fk and a truly random function f :
{0, 1}n → {0, 1}n differs negligibly from random guessing.

3.2 Tweakable hash functions

One of the main goals for Pyramid is to achieve verification routine compat-
ibility with SPHINCS+, with minimal additional scheme-specific code. In
part, Pyramid achieves this goal by including the abstraction of tweakable
hash functions from SPHINCS+. Generally, to be able to reuse most of the
proof of security of SPHINCS+ for Pyramid, we should embrace the same
abstractions when possible.

Section 2 references several versions of XMSS. SPHINCS+ recognizes
that node generation, in WOTS and the (hyper)tree construction, is the
primary variation between the XMSS versions. Still, each scheme includes a
separate security analysis. Contrarily, the description for SPHINCS+ leaves
the way in which it generates nodes open. The specification leaves node
generation up to tweakable hash functions. Enforcing a certain way of
computing nodes requires the specification of a tweakable hash function
construction. Other parts of the SPHINCS+ description can remain unal-
tered. Still, one must make sure that the construction for tweakable hash
functions achieves the properties that the SPHINCS+ specification requires
from tweakable hash functions. These property requirements arise from the
proof of security of SPHINCS+.

SPHINCS+ includes two constructions of tweakable hash functions, for
which it includes instantiations. In summary, tweakable hash functions allow

12

for separation between analysis of node computation strategies and the high-
level SPHINCS+ construction.

We repeat the definition of a tweakable hash function from SPHINCS+

[HK21] in Definition 3.2.1. In the definition, note that in practice n | m
holds: a tweakable hash function maps one or more nodes to a single one.
The public parameter and the tweak arguments allow SPHINCS+ to make
hash-function calls independent between different keypairs and hypertree
locations. The generic constructions of tweakable hash functions remain
unchanged in Pyramid, these can be found in the SPHINCS+ description
[BHK+19].

Definition 3.2.1 (Tweakable hash function). Let n,m ∈ N. P is the public
parameter space and T is the tweak space. A tweakable hash function is
an efficient function: Th : P × T × {0, 1}m → {0, 1}n. It maps an m-bit
message to an n-bit value, given a public parameter (function key) P ∈ P
and a tweak (nonce) T ∈ T .

We denote Th(P,T,M) as ThP,T(M). We use F,H,Thλ for Th with
input length m = n, 2n, ln, respectively. n is the security parameter for
Pyramid and l is the number of nodes that we include in a WOTS signature.
We clarify the parameters further in Section 3.4.1.

3.3 Tweak legend

The following sections describe the foundation of Pyramid. Most concepts
use a tuple C that contains context information; examples include a prefix
ADRS and a public parameter Seed. The prefix ADRS in C allows the
overarching structures to ensure that tweaks in its components differ. For
example, we grant a Merkle tree in Pyramid a dedicated address space,
which is unique in the entirety of the Pyramid structure. We define the
Pyramid construction/structure in Section 3.5. All node computations in
this Merkle tree use a unique address within this dedicated address space.
Finally, the public parameter (Seed) and hypertree root (Root) diversify
hash-function input between Pyramid instances.

Every section in Table 3.1 describes a construction. The column ADRS
shows the type of address space that we dedicate to these constructions. To
acquire a complete address, hereafter referred to as a tweak T, a construction
appends the fields that are listed in the T column to its given prefix. We omit
function symbol prefixes from here in ADRS; these follow from context. The
combination “tree.keypair” is synonymous with “index” in Section 3.4.2.

Note that usage of the legend is optional for understanding the Pyramid
building blocks. The main purpose of Table 3.1 is to provide an indicator
of the way in which we manage unique tweaks in Pyramid. Practical details
of the addressing scheme are found in Section 4.5.

13

Section ADRS (prefix) T

WOTS-TW (3.4.1) layer.tree.F.keypair chain.hash

WOTS-TW pk compression (3.4.2) layer.tree.Thλ keypair

Merkle tree (3.4.3) layer.tree.H height.index

Message hash (3.4.2) Hmsg tree.keypair

Message hash randomization (3.4.2) PRF tree.keypair

WOTS-TW sk expansion (3.4.1) layer.tree.PRFkg keypair

Forward-secure S generation (3.4.2) layer.tree.FSG.keypair direction

Table 3.1: Relation between ADRS and T for every building block.

3.4 Pyramid building blocks

3.4.1 WOTS-TW

Pyramid uses a variation of the WOTS scheme as its OTS, which is re-
ferred to as WOTS-TW. WOTS-TW is defined for SPHINCS+ in [HK21].
WOTS-TW specifies its chaining function in terms of tweakable hash func-
tions. This is unlike other WOTS versions.

For a WOTS-TW instance, this means that it must acquire a piece of
context information C = (Seed,ADRS). This allows the WOTS-TW in-
stance to achieve uniqueness between its Th calls, both between Pyramid
instances and within the Pyramid structure. The toy example that is shown
in Figure 3.1 may be of help. In Figure 3.1, we essentially “zoom out” from
the WOTS-TW instance on the left, thereby uncovering the structure built
around this WOTS-TW instance.

Our description of WOTS-TW is very close to that of [HK21]. We will
apply the same notation, with the addition of Ti,j := T[i, j]: a completed
tweak for hash j in chain i, according to 3.3. We use this notation because
we abstain from explicitly defining the chaining function, which is primarily
convenient in a proof that we do not give.

14

Thλ

H

H H 1

1

1

0
3

layer address tree address type
key pair
address

chain address hash address

-

- tree height tree index

layer 1

uses hypertree-wide

unique tweak:

0 3 F 1 0 0

0

0

1

Fi

PRF

F

WOTS-TW

pk compression

hash tree

Figure 3.1: Toy example that shows the tweak for the node marked “×”.

Parameters

WOTS-TW has the following parameters:

1. n ∈ N Security parameter;

2. w ∈ N, w > 1 Winternitz parameter;

3. m ∈ N Message length; m = n for Pyramid.
n represents the length of a secret key/public key/signature element in bits.
In practice, the m-bit “message” is an n-bit message digest of a variable-
length message. We further define:

l1 =

⌈
m

log(w)

⌉
, l2 =

⌊
log(l1(w − 1))

log(w)

⌋
+ 1, l = l1 + l2

l1 n-bit values represent the message limbs that we sign, and l2 n-bit values
represent the accompanying checksum limbs in the signature. We sign the
message and its checksum in identical fashion. We require a tweakable hash
function F : P × T × {0, 1}n → {0, 1}n. We require one pseudorandom
function:PRFkg : {0, 1}n × T → {0, 1}n Regular Pyramid

PRFkg : P × {0, 1}n × T → {0, 1}n Forward-secure Pyramid

15

Key generation: ((SK,PK)←WOTS.kg(C;S))

Given the pseudorandom secret seed S and Pyramid context information C =
(Seed,ADRS), we generate the WOTS-TW secret key sk = (sk1, . . . , skl)
following:

ski =

PRFkg(S,T[i, 0]) Regular Pyramid

PRFkg(Seed,S,T[i, 0]) Forward-secure Pyramid
for 1 ≤ i ≤ l

We compute the WOTS-TW verification key pk = (pk1, . . . ,pkl) as:

pki = (FSeed,T[i,w−2] ◦ · · · ◦ FSeed,T[i,0])(ski), 1 ≤ i ≤ l

We return SK = (S, C),PK = (pk, C). Unlike WOTS+/WOTS-T,
WOTS-TW enforces sk compression by returning S instead of sk.

Signing: (σ ←WOTS.sign(M,SK)

Given an m-bit message M and a secret key SK, we compute base-w repre-
sentations for the message M and the negated checksum C as follows:

M = (Ml1 , . . . ,M1)w, C =

l1∑
i=1

(w − 1−Mi), C = (Cl2 , . . . , C1)w

The concatenation B = (bl . . . b1)w = (M‖C) consists of l base-w values; bi
corresponds to the number of applications of F on ski while computing the
signature. We compute the signature σ = (σ1, . . . , σl) as:

σi = FSeed,T[i,bi−1] ◦ · · · ◦ FSeed,T[i,0](ski), 1 ≤ i ≤ l

Verification: (pk′ ←WOTS.vf(M,σ,PK))

Given an m-bit message M , a signature σ, and a public key PK, we compute
B as shown in Section 3.4.1. We compute pk′ = (pk′1, . . . ,pk′l) as follows:

pk′i = (FSeed,T[i,w−2] ◦ · · · ◦ FSeed,T[i,bi])(σi), 1 ≤ i ≤ l

If WOTS-TW were to be used as a standalone OTS, one would return 1
when pk′ equals pk, and 0 otherwise.

3.4.2 WOTS-TW compression

WOTS+ was commonly used alongside some form of secret key-, message-
and verification-key compression when part of another construction. This is
also the case in Pyramid, with secret key compression being the “default”
of WOTS-TW. We build upon parameters from Section 3.4.1 and follow
the tweak legend from Section 3.3. To avoid confusion between states and
seeds, we will refer to an FSG state as a reference.

16

Forward-secure S generation

We sample a starting FSG reference R0
$←− {0, 1}n. We use Pyramid context

information C = (Seed,ADRS). We require a pseudorandom function
PRF : P × {0, 1}n ×T → {0, 1}n. For forward-secure Pyramid, the value of
a WOTS-TW key pair seed Si from Section 3.4.1 follows from:

FSG(Seed,Ri, C) = (Ri+1 ‖ Si) = (PRFSeed,Ri(T[0]) ‖ PRFSeed,Ri(T[1]))

Message compression

We perform the initial message compression in line with the message com-
pression construction for XMSSMT [HBG+18]. We require one randomiza-
tion element r ∈ {0, 1}n and Pyramid context information
C = (Root,ADRS). Finally, we require a cryptographic hash function
Hmsg : {0, 1}n×P ′×T ×{0, 1}∗ → {0, 1}n. Compression MD of an arbitrary-
length message M that we compress for signing is given by

MD = Hmsg(r,Root,T,M),

where r randomizes the hash evaluation, while Root and T makes the hash
function call user- and position-dependent, respectively [HBG+18]. In Pyra-
mid, r is a pseudorandom value that we generate as follows. We require a
pseudorandom function PRF : {0, 1}n × T → {0, 1}n, along with Pyramid
context information C = ADRS and a secret value S ∈ {0, 1}n. We generate
r ∈ {0, 1}n following: r = PRFS(T).

Verification key compression

We require a WOTS-TW verification key pk = (pk1, . . . ,pkl) and Pyramid
context information C = (Seed,ADRS). Given a tweakable hash function
Thλ : P × T × {0, 1}ln → {0, 1}n, we compress the verification key to an
n-bit value N , later referred to as a leaf node, conform [BHK+19]:

N = Thλ(Seed,T, pk1‖ . . . ‖pkl)

17

3.4.3 The hypertree

Parameters

The two hypertree parameters are as follows:

1. h ∈ N Tree height;

2. d ∈ N, for d|n Number of intermediate layers.

Like SPHINCS+, we require a tweakable hash function
H : P × T × {0, 1}2n → {0, 1}n. We will start with a description of a
standalone tree, similar to what is shown in [Mer89] [DOTV08]. Note that
computation of the tree root and the authentication path (defined in Sec-
tion 3.4.3) may take advantage of optimized algorithms such as BDS [BDS08].
The descriptions that we give below aim to describe the Pyramid hypertree
structure, without specifying computation strategies. The first three sec-
tions assume one tree, i.e. d = 1, for clarity.

Pyramid tree

A Pyramid tree of height h ∈ N is a binary hash tree with h+ 1 levels. The
root node is located at level h and the leaf nodes at level 0. The jth node
on level i is denoted by Ni,j for 0 ≤ j < 2h−i, 0 ≤ i ≤ h. We compute node
Ni,j for 0 < i ≤ h as:

Ni,j = H(Seed,T[i, j], Ni−1,2j‖Ni−1,2j+1)

Note that we choose T[i, j], aligning with the node Ni,j we compute.

Pyramid tree root (Root← GenRoot(C,R))

We are given a secret R ∈ {0, 1}n, which is either an FSG reference or a reg-
ular secret. We also take Pyramid context information C = (Seed,ADRS).
We will denote C[i] := (Seed,ADRS[i]) as the context for the ith WOTS-TW
instance in this tree. If this is a forward-secure Pyramid instance, we com-
pute Si for 0 ≤ i < 2h conform Section 3.4.2 for R0 = R. We then compute:

(SKi,PKi)←

WOTS.kg(C[i],R) Regular Pyramid

WOTS.kg(C[i],Si) Forward-secure Pyramid
for 0 ≤ i < 2h

We then compress PKi into N0,i according to Section 3.4.2, in context C[i].
Finally, we compute Root = Nh,0 following Section 3.4.3.

Pyramid authentication path

Assume a set of base nodes N0,i for 0 ≤ i < 2h and the 2h− 1 combinations
following Section 3.4.3. To compute the authentication path Authk for node
N0,k, we return the nodes (N0,j0 , . . . , Nh−1,ji) for ji = b k

2i
c ⊕ 1, 0 ≤ i < h.

18

Now, given a root node Nh−1,0 and a leaf node N0,k, a Merkle proof Authk
demonstrates that N0,k is part of the root’s tree. A concrete computation
strategy for the authentication path is Treehash, found in Algorithm 1.

The hypertree

We use the “hypertree” construction from [HRB13]. The goal is to generate
a tree that allows for 2h signatures, but the cost of generating this tree is
computationally expensive. Instead, we define d layers of trees of height h/d.
A tree on the bottom layer d = 0 contains 2h/d WOTS-TW instances, used
to sign arbitrary-length messages chosen by the user. We use the following
notation:

idx = (bd . . . b1)2h/d , idxi = (bi+1 . . . b1)2h/d , idx′i = (bd . . . bi+2)2h/d

At hypertree layer i = 0, we use the b1th keypair in the idx′0th tree to sign
the idxth message. At hypertree layer 0 < i < d, we use the bi+1th keypair
in the idx′ith tree to sign the root of the idx′i−1th tree on layer i− 1.

3.5 Pyramid

Finally, we describe Pyramid using the previously introduced building blocks.
We use the notation that we established in Section 3.4.3 for idx.

3.5.1 Pyramid key generation ((SK,PK)← kg(1n))

Pyramid key generation is similar to the key generation of [HRS16]. We

start by sampling a public parameter Seed
$←− {0, 1}n. Next, we sample a

secret value R, or a secret reference Ri for every layer 0, . . . , d− 1:

R =

R∗
$←− {0, 1}n Regular Pyramid

(R0,0, . . . ,Rd−1,0),Ri,0
$←− {0, 1}n for 0 ≤ i < d FS Pyramid

We stress that using multiple seeds is a consequence of the forward-secure
property; a regular Pyramid instance with d > 1 samples one n-bit string.

Let ADRS be an empty address space. We denote ADRS[i, j] for the jth
address space at the ith hypertree layer, and C[i, j] := (Seed,ADRS[i, j]).
Next, we perform:

Root←

GenRoot(C[d− 1, 0],Rd−1,0) Regular Pyramid

GenRoot(C[d− 1, 0],R∗) Forward-secure Pyramid

We may now assemble the Pyramid public key: PK = (Root,Seed). For the

secret key, we sample an additional secret value SPRF
$←− {0, 1}n. We may

now assemble the Pyramid secret key: SK = (idx = 0,R, SPRF,PK).

19

3.5.2 Pyramid signature ((Σ, SK′)← sign(M, SK))

We are given a message M ∈ {0, 1}∗ and secret key SK = (idx,R, SPRF,PK).
Let ADRS be an empty address space. We denote ADRS[i, j, k] for the
kth keypair address space, located in the jth tree on hypertree layer i; let
C[i, j, k] := (Seed,ADRS[i, j, k]). Let MDidx = R0 be the compressed mes-
sage, generated conform Section 3.4.2, in context C[0, idx′0, b1]. We can now
start the iterative process of signing and computing authentication paths.
We start in context C[i, idx′i, bi+1]. We compute:

(SK,PK)←

WOTS.kg(C[i, idx′i, bi+1],R∗) Regular Pyramid

WOTS.kg(C[i, idx′i, bi+1],S0,idx) Forward-secure Pyramid

We compute S0,idx according to Section 3.4.2. We create a WOTS-TW
signature σi ← WOTS.sign(Ri,SKi) and obtain a leaf node by compress-
ing it per Section 3.4.2. We then compute the authentication path Authi
of the leaf node in accordance with 3.4.3. Finally, we generate the root
of the tree Rooti = Ri+1, which forms the message that we sign on the
(i + 1)th hypertree layer. We iterate this process for hypertree layers 0 ≤
i < d, following Section 3.4.3. We generate the Pyramid signature Σ =
(idx, r, σ0,Auth0, . . . , σd−1,Authd−1); r is the message randomization ele-
ment that we use for the initial message hash MDidx. Finally, we prepare
SK for the next signature. For a forward-secure Pyramid instance, we ad-
vance the FSG references. Note that idx−1 = 0. Starting from hypertree
layer i = 0, as long as idxi−1 = 2ih/d − 1 holds and i < d, we obtain a new
seed Ri,idx′i−1+1 for layer i using FSG. Intuitively, this is akin to an addition
idx + 1; we update seeds up to- and inluding the bi where the carry lands.
We now update idx = idx + 1 and return (Σ,SK′).

3.5.3 Pyramid verification (b← vf(M ′,Σ,PK))

We are given a message M ′ ∈ {0, 1}∗, a public key PK = (Root,Seed),
and a signature Σ. Using r from Σ, we compute a compressed message
MD′idx and interpret idx in base-2h/d words. We can now start the iterative
process of regenerating verification keys and calculating/verifying tree roots.
We perform WOTS.vf for the bi+1th node in the idx′ith tree on hypertree
layer i. We perform WOTS-TW verification either on a compressed message
MD′idx (i = 0) or a tree root Root′i−1 (i > 0). This grants a WOTS-TW
public key pk′i, which we then compress. We use the Merkle proof Authi
and the compressed public key to combine until we obtain the root Root′i.
We iterate this process for hypertree layers 0 ≤ i < d. Finally, we return 1

if PK.Root
?
= Root′d−1 and 0 otherwise.

20

3.6 Pyramid proof status

In this document, we do not give a formal proof for the security of the
Pyramid signature scheme. Instead, we will briefly discuss the state of
affairs for such a proof. Section 3.6.1 includes preliminaries for the summary
in Section 3.6.2. Finally, we describe the implications of the structure of the
proof of security for SPHINCS+, for Pyramid, in Section 3.6.3.

3.6.1 Preliminaries

We repeat the standard DSS security notion called existential unforgeability
under adaptive chosen message attacks (EU-CMA). We use the definition of
the EU-CMA experiment that is shown in [Hül13a]. For Experiment 3.6.1
(and 3.6.2), we consider a digital signature scheme Dss = (Kg, Sign,Vf), an
adversary A, and a security parameter n.

Experiment 3.6.1 (ExpEU−CMA
Dss(1n) (A)).

(sk, pk)← Kg(1n).
(M ′, σ′)← ASign(sk,·)(pk).
Let {(Mi, σi)}qi=1 be the query-answer pairs of Sign(sk, ·).
Return 1 iff Vf(pk,M ′, σ′)

?
= 1 and M ′ 6∈ {Mi}qi=1.

A signature scheme is said to be EU-CMA-secure if any adversary A,
running in time polynomial in the security parameter n, has negligible suc-
cess probability.

In [HK21], a related DSS security notion is considered, called EU-naCMA.
“na” stands for “non-adaptive”, referring to the way in which the adversary
A is forced to make its queries. Instead of being allowed to perform adap-
tive queries like in Experiment 3.6.1, the adversary A starts by specifying
all messages that it wants to query. Afterwards, A is granted the respective
signatures for the queries, along with pk. The EU-naCMA experiment from
[HK21] is shown in Experiment 3.6.2.

Experiment 3.6.2 (ExpEU−naCMA
Dss(1n) (A)).

(sk, pk)← Kg(1n)
{M1, . . . ,Mq} ← A().
Compute {(Mi, σi)}qi=1 using Sign(sk, ·).
(M ′, σ′)← A({(Mi, σi)}qi=1,pk)

Return 1 iff Vf(pk,M ′, σ′)
?
= 1 and M ′ 6∈ {Mi}qi=1.

3.6.2 Partial SPHINCS+ proof summary

First, we will try to give some insight into the difference between WOTS
and WOTS-TW. WOTS-TWs EU-naCMA insecurity is bounded by the
insecurity of PRF and Th for a number of properties.

21

The properties for tweakable hash functions share a prefix “SM”, mean-
ing “single function, multi-target”. In short, “multi-target” limits the ad-
versary A’s success event in these properties to instances in which A only
queried with distinct tweaks T. The prefix “single-function” limits A’s suc-
cess event in these properties to instances in which A achieves success for a
specific public parameter Seed. Regardless of a Th instantiation achieving
these properties, we need to enforce the assumptions in these properties, in
WOTS-TW, to “apply” for them.

In the case SPHINCS+ (and conceivably that of Pyramid), this line of
reasoning is extended to (1) multiple WOTS-TW instances and (2) the struc-
ture that efficiently connects those WOTS-TW instances. For Pyramid, we
would like to preserve the approach of SPHINCS+: enforce unique tweaks,
even between functions that are of a different purpose within the hypertree
structure. This paves the way for a bound solely in terms of Th, instead of
F, H, and Thλ seperately.

The WOTS-TW proof is extended to multiple instances. One uses
tweak (prefix) uniqueness between all WOTS-TW instances to make a sim-
ilar argument to that of single instance WOTS-TW. Finally, one uses the
WOTS-TW proof in the proof of security for SPHINCS+, resulting in a
modular proof.

3.6.3 Pyramid proof implication

As stated in [HK21], the strategy of proving EU-naCMA for an OTS like
WOTS-TW, instead of a property like EU-CMA, is not trivial to reproduce
in the case of stateful signature schemes. Intuitively, this is because the EU-
naCMA model does not encompass both usage scenarios of WOTS-TW in
stateful schemes. The OTS at the bottom layer in schemes like Pyramid sign
the output of (randomized) message hash function calls, which may be in-
fluenced by an adversary. Therefore, an adversary should be able to base his
message query on the public key at the bottom layer. If the reduction is not
able to base its public key on the message query like in EU-naCMA, then it
needs to guess the positions of signature elements in the chain, to plant the
same challenges that it does currently. This guessing is an important con-
sideration for WOTS+ [Hül13b], which introduces randomization elements
to insert (PRE) challenges. This mode “enables the tight security proof
without requiring the used hash function family to be collision-resistant”.

22

Chapter 4

Pyramid instantiations

In this Chapter, we will propose instantiations for the functions that we
require in Section 3.4. The instantiations are largely based on two consider-
ations. We first consider constructions that were used previously in stateful
schemes, which are included in RFC 8391 [HBG+18]. The second consider-
ation is alignment with the verification procedure of SPHINCS+. By keep-
ing the verification subroutines of Pyramid similar to those of SPHINCS+,
verification interoperability may be preserved without a great amount of
additional code. The functions that are relevant for the verification routine
are Hmsg and Th∗. Alignment between the two is manifested in both the
choices of hash functions and the input constructions that are used for these
functions. Furthermore, we adapt to the inclusion of PK.Seed in PRF by
SPHINCS+.

For a sponge-based construction F , we will denote F (M,d) as the ap-
plication of F on M to obtain an output of d bits. Details on the Haraka
sponge instantiations are found in the SPHINCS+ draft [ABB+20b].

In previous schemes, the forward-secure pseudorandom generator re-
ceived a byte b ∈ {0, 1} as input. In Pyramid, we incorporate this byte
into the ADRS input, called the direction. We denote Seed for a temporal
secret value (not in SK), generated by FSG via direction = 0. We denote
SK.Seedi for a temporary secret reference (in SK at some stage), generated
by FSG via direction = 1. We generate R using PRF. n and m are the
Pyramid security parameter and the message digest length, in bytes.

4.1 SHAKE256 instantiations

For Pyramid-SHAKE256, we arrange ADRS at byte-position n. We shorten
“SHAKE256” to “SHAKE” purely for formatting purposes. For regular

23

Pyramid-SHAKE256 we define:

Hmsg(PK.Root,ADRS, R,M) = SHAKE(R‖ADRS‖PK.Root‖M, 8m)

PRF(SK.PRF,PK.Seed,ADRS) = SHAKE(SK.PRF‖ADRS‖PK.Seed, 8n)

PRFkg(SK.Seed,PK.Seed,ADRS) = SHAKE(SK.Seed‖ADRS‖PK.Seed, 8n)

For forward-secure Pyramid-SHAKE256 we define:

PRFkg(Seed,ADRS) = SHAKE(Seed‖ADRS, 8n)

FSG(SK.Seedi,PK.Seed,ADRS) = SHAKE(SK.Seedi‖ADRS‖PK.Seed, 8n)

The tweakable hash functions are defined exactly like those of SPHINCS+.
The robust instantiations are as follows:

F(PK.Seed,ADRS,M) = SHAKE256(PK.Seed‖ADRS‖M⊕, 8n)

H(PK.Seed,ADRS,M1‖M2) = SHAKE256(PK.Seed‖ADRS‖M⊕1 ‖M
⊕
2 , 8n)

Thλ(PK.Seed,ADRS,M) = SHAKE256(PK.Seed‖ADRS‖M⊕, 8n)

The simple instantiations are as follows:

F(PK.Seed,ADRS,M) = SHAKE256(PK.Seed‖ADRS‖M, 8n)

H(PK.Seed,ADRS,M1‖M2) = SHAKE256(PK.Seed‖ADRS‖M1‖M2, 8n)

Thλ(PK.Seed,ADRS,M) = SHAKE256(PK.Seed‖ADRS‖M, 8n)

We generate the bitmasks for the robust instantiations of tweakable hash
functions following SPHINCS+:

M⊕ = M ⊕ SHAKE256(PK.Seed‖ADRS, l) for M ∈ {0, 1}l

4.2 SHA256 instantiations

First, we will set SPK.Seed := PK.Seed‖toByte(0, 64−n). We always take the
first 8n bits of SHA256 output and discard the rest. For Pyramid-SHA256,
we arrange ADRSC at byte-position 64. For regular Pyramid-SHA256 we
define:

Hmsg(PK.Root,ADRS, R,M)

= SHA256(R‖PK.Root‖toByte(0, 64− 2n)‖ADRSC‖M)

PRF(SK.PRF,PK.Seed,ADRS) = SHA256(SPK.Seed‖ADRSC‖SK.PRF)

PRFkg(SK.Seed,PK.Seed,ADRS) = SHA256(SPK.Seed‖ADRSC‖SK.Seed)

24

For forward-secure Pyramid-SHA256 we define:

PRFkg(Seed,ADRS) = SHA256(Seed‖ADRSC)

FSG(SK.Seedi,PK.Seed,ADRS) = SHA256(SPK.Seed‖ADRSC‖SK.Seedi)

The tweakable hash functions are defined exactly like those of SPHINCS+.
The robust instantiations are as follows:

F(SPK.Seed,ADRSC ,M) = SHA256(SPK.Seed‖ADRSC‖M⊕)

H(SPK.Seed,ADRSC ,M1‖M2) = SHA256(SPK.Seed‖ADRSC‖M⊕1 ‖M
⊕
2)

Thλ(SPK.Seed,ADRSC ,M) = SHA256(SPK.Seed‖ADRSC‖M⊕)

The simple instantiations are as follows:

F(SPK.Seed,ADRSC ,M) = SHA256(SPK.Seed‖ADRSC‖M)

H(SPK.Seed,ADRSC ,M1‖M2) = SHA256(SPK.Seed‖ADRSC‖M1‖M2)

Thλ(SPK.Seed,ADRSC ,M) = SHA256(SPK.Seed‖ADRSC‖M)

We generate the bitmasks for the robust instantiations of tweakable hash
functions following SPHINCS+:

M⊕ = M ⊕MGF1-SHA256(PK.Seed‖ADRSC , l) for M ∈ {0, 1}l

The SHA256 instantiations are the result of a number of considerations.

Intermediate state We use the intermediate SHA256 state SPK.Seed.
SPHINCS+ also uses this optimization. Instead of adding an n-bit string to
functions that require PK.Seed, the function starts from a state that only
needs to be computed once, without having to process PK.Seed thereafter.

We currently start from SPK.Seed in functions that require PK.Seed. How-
ever, a future Pyramid proposal could consider doing so for every SHA256
instantiation, as it does not hurt security and could reduce code size. We
have applied this simplification in Chapter 5.

PRF construction Pyramid defines the PRF instantiations PRF and
PRFkg. Inputs are of a fixed length and the functions are keyed on the
chaining value, allowing for a relatively simple PRF construction compared
to HMAC-SHA256. RFC 8391 also employs this PRF construction. More
detail can be found in [Hül13a]. Note that constructions that use two keys,
like PRF, do not apply for this proof to preserve speed. This is because we do
not pad and compress the secondary key, i.e. SK.Seed, before compressing
the input.

We explicitly note that we do not enforce the padding for SHA256 in the
instantiations of the other constructions (RFC 8391).

25

PRG construction The PRG construction that we use to achieve forward-
secure Pyramid can be found in [HRB13] [Hül13a]. However, like PRF, the
current instantiation does not perform the padding step from the afore-
mentioned PRF constructions for fixed-length MD hash functions for the
secondary key. FSG is not proven to be a (forward-secure) PRG when using
SHA256. The benefit of the construction is that we only process a single
SHA256 input block for every FSG call.

A perk of the compressed SHA256 address in SPHINCS+ is that it solves a
previous concern for the PRG construction in stateful schemes. An example
of this is the PRG construction that is implemented in [HKS20]. The PRG
construction uses a byte b ∈ {0, 1} to diversify inputs for the generation
of OTS seeds and FSG references. That is, the byte b would sometimes
require an entire additional block to be processed if one includes ADRS in
its entirety. The solution would be to include only address parts that enforce
uniqueness: the tree layer/index, the keypair index, and a value to ensure
the independence of the different function families.

4.3 Haraka instantiations

Haraka is a dedicated short-input hash function. SPHINCS+ includes Haraka
to give a “demonstration” of the possible speedup that such a function may
provide. This section proposes instantiations that closely resemble those
of SPHINCS+. We always take the first 8n bits of Haraka256/Haraka512
output and discard the rest.

For Pyramid-Haraka, we arrange ADRS at byte-position 0 for HarakaS,
Haraka256, and Haraka512. For regular Pyramid-Haraka we define:

Hmsg(PK.Root,ADRS, R,M) = HarakaSPK.Seed(ADRS‖R‖PK.Root‖M, 8m)

PRF(SK.PRF,PK.Seed,ADRS) = Haraka512PK.Seed(ADRS‖SK.PRF, 8n)

PRFkg(SK.Seed,PK.Seed,ADRS) = Haraka512PK.Seed(ADRS‖SK.Seed, 8n)

For forward-secure Pyramid-Haraka we define:

PRFkg(Seed,ADRS) = Haraka256Seed(ADRS)

FSG(SK.Seedi,PK.Seed,ADRS) = Haraka512PK.Seed(ADRS‖SK.Seedi, 8n)

The tweakable hash functions are defined exactly like those of SPHINCS+.
The robust instantiations are as follows:

F(PK.Seed,ADRS,M) = Haraka512PK.Seed(ADRS‖M⊕)

H(PK.Seed,ADRS,M1‖M2) = HarakaSPK.Seed(ADRS‖M⊕1 ‖M
⊕
2 , 8n)

Thλ(PK.Seed,ADRS,M) = HarakaSPK.Seed(ADRS‖M⊕, 8n)

26

The simple instantiations are as follows:

F(PK.Seed,ADRS,M) = Haraka512PK.Seed(ADRS‖M)

H(PK.Seed,ADRS,M1‖M2) = HarakaSPK.Seed(ADRS‖M1‖M2, 8n)

Thλ(PK.Seed,ADRS,M) = HarakaSPK.Seed(ADRS‖M, 8n)

We generate the bitmasks for the robust instantiations of tweakable hash
functions following SPHINCS+:

For F: M⊕ = M ⊕Haraka256PK.Seed(ADRS) for M ∈ {0, 1}8n

else: M⊕ = M ⊕HarakaSPK.Seed(ADRS, l) for M ∈ {0, 1}8l

PRG construction An initial position of concern for our Haraka instan-
tiations was the FSG. The problem with ADRS was that, for n = 32, the
one-byte value b ∈ {0, 1} is pushed to a third input block of the sponge. The
FSG construction uses a byte b ∈ {0, 1} to diversify inputs for the genera-
tion of OTS seeds and FSG references. The one-byte value prohibits usage
of Haraka512PK.Seed. We provide a solution by including b in the addressing
scheme. Compressing the address like SHA256 is not an option, because
this requires changes from SPHINCS+.

Round constants We copy the construction of SPHINCS+ for inclusion
of PK.Seed in the HarakaS round constants. The PRF constructions that
result from this should be considered “experimental”.

The forward-secure construction for PRFkg requires recalculation of the
round constants when switching Seeds. This may happen repeatedly while
calculating a keypair/signature.

The regular construction for PRF requires invocation of Haraka512PK.Seed.
This is because we only use PRF once per signature, for the calculation
of the message randomization element. A regular Pyramid implementation
may therefore want to leave out code for Haraka256Seed, if one decides to
use the above construction for PRF.

The PRF instantiation comes at the cost of a slower PRF call. Hence, the
following (perhaps counterintuitive) construction could be considered:
PRFkg(Seed,ADRS) = Haraka256SK.PRF(ADRS)

4.4 Discussion

Finally, we will provide some generic discussion that applies to all instanti-
ations.

27

4.4.1 Function family independence

When comparing Pyramid instantiations to RFC 8391, perhaps the most
striking difference is the lack of the unique value field that RFC 8391 uses
to achieve independence of the different function families. An example is as
follows: H : SHAKE256(toByte(1, 64)|| . . .). In SPHINCS+, the method of
achieving independence is by ensuring that ADRS is unique, while appending
ADRS at a fixed position within input buffers.

Because we would like to attain verification interoperability between
SPHINCS+ and Pyramid, the method of achieving independence of the dif-
ferent function families is tied to that of SPHINCS+. We note that this is
likely for the better; constructions that use both a precomputed state and
such values become somewhat chaotic. Furthermore, including these values
in the short-input hash function buffers requires additional changes as well.

4.4.2 Address lengths

We previously noted that FSG could compress ADRS to shorten its input
length. This applies to Hmsg as well. Hmsg implements what RFC 8391
refers to as “index randomized hashing” [HBG+18]. The Hmsg construction
is also featured in [BHRvV21]; our approach should therefore also apply for
the optimization that is shown in RapidXMSS. The combination of ADRS
fields tree index and keypair index correspond to one WOTS-TW instance
at the bottom layer. The index construction of RFC 8391 is at least as short.
However, the independence of the different function families must again be
taken into account.

4.4.3 Forward-secure instantiations

For forward-secure Pyramid instances, FSG generates seeds Seed. PRFkg

expands Seed into WOTS-TW secret-key values. Because FSG incorporates
PK.Seed into the calculation of Seed, PRFkg should not require PK.Seed
for multi-target protection, in contrast to the regular Pyramid PRFkg. The
PRFkg for regular Pyramid is derived from a modification to XMSS in re-
sponse to a comment by “TC CYBER WG QSC” in [oST20b].

4.4.4 OptRand

In SPHINCS+, calculation of the hash randomization value R is as follows:
R = PRF(SK.prf, OptRand,M). OptRand is an n-byte value that allows
one to make signing nondeterministic. The reason for including OptRand

in SPHINCS+ is to counteract side-channel attacks, which would ”collect
several traces for the exact same computation by asking for a signature
on the same message multiple times.” [ABB+20b]. The attack in question
does not apply to Pyramid, because the signature index is either unique or

28

invalid for every signature. For this reason, we do not currently incorporate
OptRand in PRF.

4.4.5 XOF WOTS-TW secret generation

We left the discussion open on the topic of starting all SHA256 computations
from the intermediate state. We do the same for the efficient generation of
WOTS-TW secrets using an XOF. That is, given a function that can produce
an output of arbitrary length, the following construction may be of interest:

(Ri‖sk1‖ . . . ‖skl) = XOF(Seed‖ADRS‖Ri−1, (l + 1) · 8n)

Generating Ri first allows forwarding references at the same rate that we
do currently, by not squeezing for ski. Alternatively, one may consider a
straightforward alternative, which expands sk from Si conform WOTS-TW:

(Ri‖Si) = XOF(Seed‖ADRS‖Ri−1, 16n)

The first construction refrains from setting the chain address or the direction
in ADRS; the second one refrains from setting the direction in ADRS. The
FSG type field should be enforced.

4.4.6 Non-repudiation

We refrain from specifying parameter sets. However, we include a note that
we exemplify using Hmsg for the case that n = 16. Note that RFC 8391 does
not support this value for n, neither for SHA2 nor SHAKE. SPHINCS+ does
include example parameter sets in which n = 16.

As noted in errata EID 6024, incorporated in RFC 8391 [HBG+18]:
“SHAKE with an internal state of n bits and an output length of n bits
achieves n/2 bit security against classical preimage, second-preimage and
collision attacks”. Therefore, when n = 16, a signer is able to find a collision
in Hmsg in 264 work in the classical setting. When we sign colliding mes-
sages using the same bottom OTS keypair, these lead to identical Pyramid
signatures. In SPHINCS+, this is less of a concern, because the FTS in-
stance that one signs a message digest with is based on the residual message
digest produced by Hmsg. Therefore, finding a collision for Hmsg that results
in identical SPHINCS+ signatures, requires additional work compared to
Pyramid.

4.5 Addressing scheme

The instantiations of hash functions consistently arrange ADRS at a specific
location in input buffers. When ADRS is built correctly, this forces an
attacker to target a specific function instantiation, at a specific “location”

29

within the hypertree. We will now describe the proposed addressing scheme
for Pyramid.

tree address

key pair

address

hash address
-

- tree index

key pair

address

-

0
-

layer address

0

layer address

Thλ

H

F

PRF
PRFkeygen

FSG

Hmsg

chain address

tree height

chain address
direction

1 13 1 1 1

Figure 4.1: The Pyramid address scheme.

In Figure 4.1 we portray the Pyramid addressing scheme. The numbers
at the bottom specify the number of 32-bit words that are allocated to each
of the address fields. Note that addressing is byte-oriented; 32-bit words are
however useful to describe integer limits for implementations. The address
scheme depicted in Figure 4.1 is derived from- and compatible with that of
SPHINCS+. The upper three address spaces for F, H, and Thλ are shared
with SPHINCS+. The other four are an extension of these. Please note that
- and 0 both characterize zero-padding. We write the value 0 when this is
intuitive in light of the other address spaces.

We have verified that the addressing scheme from SPHINCS+ is compat-
ible with that of RFC 8391 [HBG+18]. The only notable difference between
the two is that RFC 8391 allocates two 32-bit fields for a tree address. RFC
8391 refers to the remaining 32-bit field as “keyAndMask” and uses the field
to diversify one address for the generation of both keys- and bitmasks. The
robust instantiation of tweakable hash functions in SPHINCS+ only pro-
cesses one (non-bitmasked) address per tweakable hash function call, mak-
ing the field obsolete for SPHINCS+ and Pyramid. In conclusion, we can
attain similar parameter sets to RFC 8391, while maintaining compatibility
with SPHINCS+ by using three 32-bit fields for a tree address. We forgo
defining concrete parameter sets due to the lack of a formal proof.

4.6 Key format

We include the format of the Pyramid signature, public key, and secret key
in Appendix A.1. These are the exact same as the formats that are used in
RFC 8391 [HBG+18].

30

Chapter 5

Pyramid implementations

As part of the Pyramid proposal, we provide a total of four C implementa-
tions, which aim to give insight into how they perform- and what they look
like when instantiated. We will implement two of these in Jasmin, a frame-
work for developing high-speed and high-assurance cryptographic software.
The C implementations will be used to test the Jasmin implementations
for functional correctness. We note that the C- and Jasmin implementa-
tions should be treated with care. Stateful schemes use complex algorithms
and generalizations. At a bare minimum, a formal proof for the security
of Pyramid, a proof of functional correctness, and a second, independent
implementation, are obligatory for achieving trust in the implementations.
We refer to the implementations as follows; we also provide references to
similar implementations that they are inspired by:

Regular Forward-Secure

Naive NFS-Naive [HRCW21] FS-StackRestore

Algorithmic NFS-Simple [KT21a] FS-Simple [HKS20]

The implementations directly use the SPHINCS+ and XMSS reference code
from [RWW+21] and [HRCW21]. The Simple implementations use the code
located at [KT21b], created by the authors of [KT21a]. We leave complex
parts of their implementation, such as scheduling, untouched. We solely shift
their implementation from XMSS to Pyramid, and adapt the tree-traversal
algorithms BDS/MMT to the use of FSG for forward-secure implementa-
tions. BDS and MMT are the tree-traversal algorithms that Simple uses;
we explain these in Section 5.4.

5.1 Common

The four implementations have a great number of features in common. Files
that implement such features are contained in common/. We will describe

31

notable ones in the following list, before moving to the specific implementa-
tions.

Pseudorandom function In Chapter 4 we make a distinction between
the functions PRF and PRFkg. The distinction shows that PRFkg does
not always require a PK.Seed argument, and highlights usage of different
keys between the two functions. In the reference implementation, we choose
not to make the distinction; we implement one function prf that takes
an argument pub seed. The function prf copies pub seed into the input
buffer for the hash function unconditionally. However, we guarantee unique
addresses between prf purposes, by letting its caller set the type field of
its addr argument. This modification aligns with the proposed SPHINCS+

PRF implementation and simplifies our implementation a great amount1.

Hash function initialization As mentioned in Sections 4.2 and 4.3, the
SHA256- and Haraka implementations perform preprocessing, either by pre-
computing an intermediate state or by tweaking round constants. This
is realized by the function initialize hash function, in the exact same
manner as shown in [RWW+21]. Taking SHA256 as an example, functions
in the files hash sha256.c and thash sha256 *.c utilize the precomputed
state.

Because we resort to one PRF implementation, there is no reason to perform
tweak constants with a secret input; therefore Haraka256 remains unused
in this function.

Forward-secure generator The function FSG is currently the only hash-
function instantiation that does not require a fully completed address addr.
Instead, we copy the relevant fields directly into the buffer buf, by treating
it as a uint32 t[8]. The caller’s address remains unmodified. The function
signature of fsg is inspired by that of hash prg in [HKS20] and FsGen in
literature.

SHA256 hashing We define the h msg function for SHA256 in
hash sha256.c in terms of shaX, which expands to sha512 when PYR N is
32. This is a feature that is currently included in the SPHINCS+ repository.
We preserve the construction, but note that it is not part of the proposal
for Hmsg in Pyramid.

We also point out that ADDR POS 256 PRE is the byte-position of the com-
pressed address having already processed the intermediate state. We only
preserve SHA512 for h msg, which does not use PK.Seed. Therefore we do
not define the macro for SHA512.

1We use a macro FORWARD SECURE. This is not available in common/ due to the project
structure.

32

Addressing scheme The implementation maintains the basic addressing
scheme from SPHINCS+, located in address.c. We enlarge the the maxi-
mum subtree size from 216 to 224, which was previously limited by the 2-byte
maximum of set keypair addr.

We extend address.c with adapted getter/setters that are used by the
Simple algorithm, along with utility functions. The file address.h contains
the four additional types that Pyramid defines over SPHINCS+.

Root computation The file merkle.c contains a generic implementation
for compute root. The verification routine of Pyramid does not differ be-
tween implementations. Hence, we include it in common/. We intention-
ally chose to include the routine that permits offset- and height arguments.
While not strictly necessary for verification, this allows external signature
algorithms to reuse the implementation to compute roots at custom heights.

We do not share the verification routine between implementations, but it is
currently the same for all implementations. This way, we keep the possibility
of reverting to a less flexible compute root function within the individual
implementations open.

5.2 External algorithm & format

We introduce two files that aim to improve the structure of the implemen-
tations, called format.* and ext algo.*.

External algorithm The implementations that use Simple, dubbed an
“external algorithm”, use a file called ext algo.h. Its usage is twofold.

First, ext algo.h defines the functions that sign.c requires to finalize a
secret key, finalize a signature, and update the state. It is up to the exter-
nal algorithm to implement these routines. In Appendix A.4, we show the
simplicity of the crypto sign signature skeleton from FS-SIMPLE as a
result of these changes.

Traditionally, ext finalize sig and ext update state are merged into a
single function. The two are not intertwined and have different purposes.
We separate them to make the code more manageable. This also allows us
to guard an sk update behind a check for the last signature. Finally, we
perform forget seeds when the external algorithm is done, which forwards
the reference for FSG. Note that the external algorithm could still somehow
erroneously cache an expired reference; we merely forward the references,
when appropriate, inside the core of the secret key.

In ext algo.h, the external algorithm declares whether it is forward-secure,
the number of bytes that its state occupies, and a bound on the maximum
index that it can process. This bound is a safeguard for implementations

33

that may not want to process a tree that crosses the 64-bit index boundary
(which should never be reached in practice).

While using format.h is convenient, we will note that this is not a rec-
ommended approach for a final Pyramid implementation: The file api.h

includes format.h, thereby exposing it. A final implementation (which com-
mits to one external algorithm) should set all values for api.h manually.

Format The file format.h defines the format of the public- and secret key,
the signature, and bounds concerning the aforementioned. Note that the size
of the secret key depends on the external algorithm being forward-secure.
We admit that this is counterintuitive. Future work could consider including
“FS” or “REG” into the parameter string of the Makefile.

The file format.h defines LAST VALID IDX. To enumerate all valid indices,
we require dh8 e bytes in the signature/secret key. When 8 - h, the 2hth secret
key update spills onto the leftover bits, which tells us that the secret key is
invalid. Then, deletion of the key occurs, which ensures that the “spillage”
bits remain set. When 8 | h, we can either prepend a byte to detect spillage
or end one iteration in advance. We do the latter for simplicity, leading to
a single definition of PYR IDX BYTES. A potential critique of this approach
is that there now exists an index, for which we do not produce a signature,
yet the signature itself is verifiable in the implementation.

In format.c we implement basic Pyramid functions that are consistent,
regardless of an external algorithm. The function forget seeds has com-
monalities with big integer addition.

5.3 Stepping stone implementations

5.3.1 NFS-Naive

Our first implementation is NFS-Naive, which shows a basic implementation
of Pyramid without additional optimizations, nor does it include a way of
achieving forward security. The implementation is kept relatively straight-
forward on purpose. Apart from the treehash function, we implement the
signature routine directly into sign.c. To increase readability, we perform
the handling of special cases via predicates. We include pseudocode for the
Treehash algorithm in Algorithm 1.

In Algorithm 1, note that a forward-secure Treehash algorithm differs
only in line 3, possibly also returning Rϕ+2h/d , as shown in:
Noderight,Ri+1 ← GenLeaf(i,Ri).

Also, while we denote the active node Noderight, it is only a right node
for τ iterations. When storing Noderight in line 12, it is either a left node or
the root of the tree.

34

Algorithm 1 Treehash

1: procedure Treehash(ϕ)
2: for i = 0 to 2h/d do
3: Noderight ← GenLeaf(i)
4: if i⊕ 1 = ϕ then . Check: is leaf i the sibling of leaf ϕ?
5: Auth0 ← Noderight

6: τ ← get tau(i) . Number of trailing ones
7: for j = 0 to τ do
8: Nodeleft ← Arrj
9: Noderight ← H(Nodeleft,Noderight)

10: if bi/2j+1c ⊕ 1 = bϕ/2j+1c then
11: Authj+1 ← Noderight

12: Arrτ ← Noderight

13: Root← Arrh/d
14: return Root,Auth

5.3.2 FS-StackRestore

The second implementation is FS-StackRestore. The implementation aims
to show a naive method of implementing Pyramid in a forward-secure man-
ner. An alternative naive implementation that attains forward security that
we considered, is one that caches all nodes in a tree. Both implementations
do not scale well with large subtrees.

We base FS-StackRestore upon a basic observation concerning the Tree-
hash algorithm. We first note that Treehash can always generate nodes to
the right of the current idx, as expensive as these may be. Now, let Si
denote the Treehash stack that includes and/or is combined up to leaf i.
For example: S−1 = ∅, S0 = {N0,0} contains the first leaf node, S1 = {N1,0}
contains the first combined node on layer 1, etc. We observe that the left
authentication path nodes, for leaf i, are a subset of Si−1.

By restoring the Treehash state, and storing it again after a single it-
eration, we can continuously (1) take left authentication path nodes from
the state, and (2) compute right nodes by finishing the Treehash instance
from the state. The Treehash intermediate state contains nodes, these are
not considered secret, and we can safely forward the FSG references. We
include pseudocode for the modified Treehash algorithm in Algorithm 2.

In Algorithm 2, we highlight the different approaches that we take for
obtaining left nodes (lines 3-5), right nodes (lines 6-13), and the current leaf
node (line 7, i = idx).

35

Algorithm 2 Treehash StackRestore

1: procedure Treehash(ϕ,Arrϕ−1,Rϕ)
2: Arr← Arrϕ−1 . Restore the stack of ϕ− 1
3: for j = 0 to h/d do
4: if bϕ/2jc& 1 = 1 then . Restore left Auth nodes
5: Authj ← Arrj

6: for i = ϕ to 2h/d do . Start from the current leaf.
7: Noderight,Ri+1 ← GenLeaf(i,Ri)
8: if i⊕ 1 = ϕ then
9: Auth0 ← Noderight

10: τ ← get tau(i) . Number of trailing ones
11: for j = 0 to τ do
12: Nodeleft ← Arrj
13: Noderight ← H(Nodeleft,Noderight)
14: if bi/2j+1c ⊕ 1 = bϕ/2j+1c then
15: Authj+1 ← Noderight

16: Arrτ ← Noderight
17: if i = ϕ then
18: Arrϕ ← Arr . Store the stack of ϕ after 1 iteration

19: Root← Arrh/d
20: return Root,Auth,Arrϕ,Rϕ+1

36

5.4 NFS-Simple & background

Simple is the algorithm presented in [KT21a] by Kosuge and Tanaka. The
third implementation uses the implementation from [KT21b] as its external
algorithm. We adapt the implementation from XMSS to Pyramid, and sep-
arate concerns like we noted in Section 5.2. We leave scheduling untouched.
We will now give an informal overview of the Simple algorithm, covering
the notions that we require for the last implementation, which is FS-Simple.
We will first cover the BDS algorithm, a component of Simple. We describe
BDS in its original context of XMSS, but the description also applies to
Pyramid.

5.4.1 BDS & HRB

An XMSS signature includes an unique authentication path for every signa-
ture. The authentication path consists of a node on every height 0, . . . , h−1.
A tree-traversal algorithm aims to store a limited amount of nodes, to pre-
vent recomputation at a later point in time. Another aim is to balance
computation time, regardless of the index of the node that we compute the
authentication path for.

One could review the FS-StackRestore implementation in Section 5.3.2
for an extreme example of why computation time may vary. Because this
naive implementation recomputes the entire tree to the right for every sig-
nature (“right nodes”), the average signature time should improve when
moving further to the right.

BDS is a tree-traversal algorithm that is presented in [BDS08], in the con-
text of XMSS; it is a construction for d = 1, a single tree. We quote: “[BDS]
balances the number of leaves that are computed in each round.”[BDS08].

Right nodes BDS computation balancing is a consequence of how it com-
putes right nodes. BDS defines TreeHash “instances” for several heights.
We task a Treehash instance TreeHashh with the computation of a right
node on layer h. For every signature computation, BDS schedules some
of these TreeHash instances to “update”. A TreeHash instance updates
by computing one leaf, combining the nodes like regular Treehash, and in-
crementing a value pointing to the next leaf that it should compute. The
algorithm ensures that it performs the right amount of updates, on spe-
cific layers, to ensure that an inner node is present when required for the
authentication path.

Scheduling unit A crucial detail is that the scheduling unit is the cre-
ation of one leaf (via update). BDS aims to balance leaf node generation
because inner node computation (H) is insignificant compared to leaf node
computation (OTS public key generation, F).

37

Left nodes Left nodes result from saving previous authentication path
nodes, in a fashion similar to that of FS-StackRestore.

State initialization BDS initializes its state during key generation. Be-
cause we have to compute the root node during key generation, all nodes
are available at this time. We retain expensive upper right nodes, save the
first authentication path, and TreeHash instances store their “first” targets.

Finally, BDS is extended to the hypertree setting as mentioned in RFC
8391 [HBG+18]; the Simple paper refers to this adaptation as “HRB”. The
strategy is implementated in xmss core fast.c in [HRCW21]. Vertically,
HRB grants every layer 0, . . . , d− 1 a BDS instance. The instances update
normally, i.e. whenever one requires a new authentication path. Horizon-
tally, HRB prepares a second BDS state for the next tree in the layer. This
time, the BDS state does not follow “for free” from root computation during
XMSS key generation. However, balancing computation of the next BDS
state is easily attainable. The current tree performs 2h/d signatures and
initializing the state for the next tree takes 2h/d leaf computations. Thus,
instead of h/2−1 updates [BDS08] on a layer that changes its authentication
path, we require h/2 [HRCW21].

5.4.2 Simple

The Simple algorithm is a (hyper)tree-traversal algorithm that is specified
for XMSSMT. Its performance is comparable to that of HRB, but the state
size is cut in half. Simple uses a modified BDS algorithm on the bottom
hypertree layer, which contains two major changes compared to BDS:

• Scheduling for right nodes continues beyond tree borders;

• The usage of nodes from XMSS key generation is recognized as a spe-
cial case for the first tree. BDS did not require TreeHash instances on
layers h− 1, h− 2 because of reuse. Simple does use these additional
TreeHash instances.

Modified BDS schedules h/(2d) updates every round.
Finally, on the upper d − 1 layers, Simple proposes a tree-traversal al-

gorithm called MMT. MMT is based around recomputing every node that
changes in the authentication path, therefore requiring at most 2h/d− 1 up-
dates for one leaf hop. Because Simple defines MMT on hypertree layers
greater than 0, MMT can disperse these updates over 2h/d − 1 updates in
the tree below it, similar to HRB (but vertically). We include pseudocode
for MMT in Algorithm 3.

In Algorithm 3, note that we take min{τ, h/d − 1} for readability; im-
plementations may mask ϕ before get tau to achieve the same result.

38

Algorithm 3 MMT.update

1: procedure MMT.update(ϕ,Auth,State)
2: τ ← get tau(ϕ)
3: for j = min{τ, h/d− 1} to −1 do
4: if j = τ then
5: ρ← ϕ− 2j + 1 . Left target
6: else
7: ρ← ϕ+ 2j + 1 . Right target

8: for i = 0 to 2j do
9: Noderight ← GenLeaf(ρ)

10: ρ = ρ+ 1
11: while height(S.top) = height(Noderight) do
12: Noderight ← H(S.pop‖Noderight)

13: S.push(Noderight)

14: for j = 0 to min{τ, h/d− 1} do
15: Authj ← S.pop

16: return Auth . Updated Auth for leaf ϕ+ 1

Unless ϕ ≡ −1 mod 2h/d, the next authentication path requires one left
node and τ right ones. These are scheduled in lines 4-7.

The computation in lines 8-13 is normally dispersed over updates in lower
layers, and performed by a TreeHash instance. ρ denotes the leaf index that
the TreeHash instance is working at, within the layer of this MMT instance.
S is the stack that is shared between MMT instances; the stack keeps track
of the height of nodes.

5.5 FS-Simple

5.5.1 Forward-secure BDS

The original paper on BDS features a strategy for computing leaves using a
forward-secure PRG. The strategy follows from the fact that on layer i, every
2i+1 leaf hops, we initialize TreeHashi at a fixed distance from the current
leaf ϕ. The distance d(i) = 3 · 2i depends on the layer. Let Rϕ be the cur-
rent FSG reference. We keep h forwarded references Rϕ+d(0), . . . ,Rϕ+d(h−1)
around, which we forward once for every signature, just like Rϕ. These are
referred to as SeedActive by BDS. Then, when we initialize a Treehash
instance TreeHashi, it is given a copy of Rϕ+d(i), referred to as SeedNext by
BDS. TreeHashi computes 2i leaf nodes from this and overwrites the refer-
ence afterwards. The modifications to BDS in Simple do not clash with the
above construction. Notice that creating a forward-secure version for BDS
is relatively easy because it never needs to recompute a left leaf.

39

5.5.2 Forward-secure MMT

In contrast to BDS, MMT does recompute left leaf nodes, i.e. once for every
authentication path change. We will split our strategy into two parts.

Left nodes

MMT recomputes any node that we require for the next authentication path.
This change may be visualized by incrementing ϕ+1 = (bh/d−1, . . . , b0)2+1:
bitflips bi = 1→ bi = 0 require a new right node on layer i. The carry lands
on bj = 0→ bj = 1; layer j requires a new left node. This recomputation is
impossible while using FSG.

Luckily, we can easily work around the issue with some minor modifica-
tions to MMT. We describe our approach using Figure 5.5.2.

-

0 1

00

000 001

01

010 011

10

100 101

11

110 111

τ2 1 0 2 0 1 0 3 0

τ2
 | 0 1 2 3
0 | +1

1 | +3 0

2 | +3 +4 -2

3 | +3 +4 +6 -6

Current
Auth

Targets

layer

φφ-1 φ+1 φ+2

-

0 1

00

000 001

01

010 011

10

100 101

11

110 111

Node requirement adjusted to authentication path & the current node.

Original (left) node requirement for node 0.

φφ-1 φ+1 φ+2

Figure 5.1: A FS MMT scheduling example of leaf hop 011→ 100.

40

The upper tree in Figure 5.5.2 depicts the dependence on nodes
000, . . . , 011 to compute node 0 in regular MMT. The lower tree depicts
the dependence on nodes 00, 010, 011 to compute node 0 in forward-secure
MMT; we have forwarded the “current” node to highlight leaf availability.
Note that we schedule the authentication path change for leaf hop 011→ 100
right before we perform hop 010→ 011. We disperse leaf computation over
updates on lower layers, while we reside at leaf 011.

τ denotes the height of the first left parent of leaf ϕ = 0102 or the carry
position in our analogy. τ2 is defined analogously for the next leaf ϕ + 1.
The value τ2 is equal to the number of authentication path changes after the
upcoming leaf. One must schedule τ2 TreeHash instances before leaving leaf
ϕ. These complete over the course of staying at leaf ϕ+ 1, thereby ensuring
that the authentication path for leaf ϕ + 2 is ready when leaving leaf node
ϕ+1. In an authentication path update from index ϕ−1 to index ϕ, MMT:

• Collects the nodes that it scheduled at transition ϕ− 2→ ϕ− 1;

• Schedules the 2τ2+1 nodes for transition ϕ+ 1→ ϕ+ 2.

The target node at height τ2 is depicted in green; this is a left authentication
node that we require for transition ϕ + 1 to ϕ + 2. Now we observe that
the target node also follows from current authentication nodes on height
0, . . . , τ2 − 1 and node ϕ+ 1.

The most straightforward approach to computing the target node on
heights τ2, is to compute it just before we change the authentication path.
One computes leaf ϕ + 1 and combines it with the current authentication
path, to then update the authentication path. The problem with this ap-
proach is that this changes the worst-case signing time for MMT: a leaf may
already be scheduled. Also, disabling the TreeHash instance that originally
computes the node may be problematic, because of the shared stack.

We circumvent these issues simply by simulating the problematic
TreeHash instance that we task with generating a left node. When the orig-
inal TreeHash instance would have combined a node that is readily available
in our authentication path, we push the node directly from there. For any
other push/pop operation, we supply empty values. We leave the final up-
date that would lead to the creation of the target node untouched. The
result is our goal node and shared stack usage consistent with vanilla MMT.
We compute at most as many leaves as vanilla MMT, at the cost of slightly
more complex code. We include updated MMT pseudocode in Algorithm 4.

In line 8 of Algorithm 4, we test whether a left node is scheduled, which
we do not have the FSG references for. If this is the case, we simulate a
TreeHash instance w.r.t. its stack usage. Treehash combines τρ stack leaves
after generating a leaf at position ρ, simulated in lines 11-12. We push the
result back onto the stack. We only care about reducing Auth nodes after
the loop at line 9; when H would not have produced an Auth node, we push

41

Algorithm 4 Forward-secure MMT.update

1: procedure MMT.update(ϕ,Auth,State)
2: τ ← get tau(ϕ)
3: for j = min{τ, h/d− 1} to −1 do
4: if j = τ then
5: ρ← ϕ− 2j + 1
6: else
7: ρ← ϕ+ 2j + 1

8: if j = τ then
9: for i = 0 to 2j − 1 do

10: τρ ← get tau(ρ)
11: for k = 0 to τρ do
12: S.pop . Pop a placeholder

13: if bρ/2τρc ⊕ 1 = bϕ/2τρc then
14: S.push(Authτρ) . Push a valid Auth node
15: else
16: S.push(0n) . Push a placeholder

17: ρ = ρ+ 1

18: Now ρ = ϕ; perform GenLeaf(ϕ,Rϕ) and combine with the
19: Auth nodes that we pushed. Rϕ is in SK (current reference).
20: else
21: for i = 0 to 2j do
22: Noderight,Rjρ+1 ← GenLeaf(ρ,Rjρ)
23: ρ = ρ+ 1
24: while height(S.top) = height(Noderight) do
25: Noderight ← H(S.pop‖Noderight)

26: S.push(Noderight)

27: for j = 0 to min{τ, h/d− 1} do
28: Authj ← S.pop

29: return Auth . Updated Auth for leaf ϕ+ 1

42

a garbage value in line 16. We omit the code that assures references are
consistent between GenLeaf calls.

Right nodes & seeds

Without the exceptional case in MMT for left nodes, a TreeHashi instance
in MMT remains at a fixed distance d(i) = 2i from current index ϕ. Each
TreeHashi instance calculates every second right root on height i.

Our strategy is as follows. First, we grant every TreeHashi instance a
forwarded reference Rϕ+d(i), akin to SeedActive in BDS. Then, when we
transition from leaf ϕ to ϕ + 1, MMT schedules the right nodes that we
need for the authentication path of leaf ϕ + 2. We compute these while at
leaf ϕ + 1, per vanilla MMT. When we arrive at leaf ϕ + 2, we then have
Rϕ+d(i)+2i in TreeHashi, if we required a new right authentication node on

layer i. The seed reference has advanced 2i positions. Now, notice that we
have until leaf ϕ + 2i+1 before we schedule another right node on layer i.
The next node requires the reference Rϕ+d(i)+2i+1 . This gives us 2i+1 leaf

steps to advance the reference the remaining 2i times on layer i.
With this, we achieve the goal of keeping reference forwarding dispersed

over subtrees. We choose to “freeze” an instance TreeHashi whenever it is
in a forwarded state. Upon reaching leaf ϕ+ d(i), we unfreeze the instance
and it receives one update per leaf hop, like in BDS. This keeps the reference
synchronized until one uses TreeHashi again. This is the simplest approach;
one could also attempt to further disperse the freezing scheduling.

In conclusion, we only require one additional seed for every TreeHash

instance, which is not the case in forward-secure (modified) BDS. The mod-
ified MMT pseudocode may be found in Algorithm 4. We give two visu-
alizations in Appendix A.3. Appendix A.3.1 depicts an example of MMT
node scheduling. Appendix A.3.2 gives a counterexample, showing why we
require an additional SeedNext per TreeHash instance in BDS, in contrast
with MMT.

43

Chapter 6

Implementations in Jasmin

We previously mentioned that the C implementations should be treated
with care. We can currently only cross-verify the signature output of im-
plementations against each other. Even then, the implementations could
accidentally veer from the specification, which may be pointed out by an
independent reference implementation. Ideally, we implement Pyramid in
a language that can achieve a good performance, while (1) verifying that
the implementation computes according to the Pyramid specification (func-
tional correctness) and (2) verifying that the implementation computes its
results safely (constant-time, memory safety). Jasmin is a framework for de-
veloping high-speed and high-assurance cryptographic software, which can
achieve the above when combined with EasyCrypt [Mei21a]. It is presented
in [ABB+17] and currently being prepared for a first release.

In this work, our goal is to provide Jasmin counterparts to the Pyramid
C implementations NFS-Naive and FS-Simple. We will not leverage the
Jasmin/EasyCrypt framework further; no proof of functional correctness or
memory safety is given. We hope to achieve two results:

1. Provide two Jasmin implementations for Pyramid that one can expand
upon, with both having been tested for functional correctness;

2. Provide implementational notes pointing to constructions that could
be of interest, e.g., to the designers of Jasmin. To the best of our
knowledge, this is the first attempt for an implementation of a hash-
based signature scheme in Jasmin.

Please consider the fact that the development of Jasmin is ongoing at
the time of writing. We hope that we have considered all language features
at the time of implementation. However, parts of the implementation could
already be dated, due to the rapid development of Jasmin.

We stress that our implementation is not optimized for speed. As the fol-
lowing sections will point out, overcoming certain hindrances was of greater
concern than speed. Also, we expect the speed of the implementation to be

44

heavily dependent on the speed of the underlying hash function, along with
the tree traversal algorithm that we use.

Our current implementation compiles for commit aa031ef of the branch
“glob array3” of Jasmin. During development, several changes to register
allocation in the Jasmin compiler were made. These can break implementa-
tions that do not maximally spill. To avoid this, all functions spill all active
registers onto the stack when calling another function that involves hash-
ing. This allows the SHAKE256 implementation to use a maximum amount
of registers. The speed of the hashing algorithm (e.g. SHAKE256) should
heavily influence the performance of a Pyramid implementation.

We will now enumerate the constructions that may be of interest. Note
that we use a Jasmin branch titled “glob array3” [LGS+21]. A concise
tutorial on setting up Jasmin can be found on [Sch21]. Apart from the
“Further resources” listed in the tutorial, one may find Jasmin repository
directories compiler/examples/ and compiler/tests/ helpful, along with
the Jasmin Wiki [LKG22].

6.1 General design choices

Typing Throughout the two implementations, our main aim is to take full
advantage of the Jasmin typing system, which eases verification of the im-
plementation and improves readability. An example is that we always prefer
reg ptr u8[PYR N] foo over reg u64 foop when we know the size of the
region that we want to access through the pointer foo. The former con-
struction is required to use Jasmin stack arrays. We prefer the most specific
typing possible.

Looping In Jasmin, we have two looping constructs: for loops and while

loops. for loops are always unrolled. When looping bounds are determined
at runtime, the natural choice is a while loop. When looping bounds are
available at compile-time, one must choose between the two constructs.

The file utils.jahh contains implementations for commonly used routines,
like copying PYR N bytes. These are currently all inline functions and fully
unrolled. This is infeasible for a realistic implementation; in the future these
can be tweaked on a function-by-function basis.

In general, we use for loops in most places, combined with noinline func-
tions. This is partially a consequence of our aim to achieve appropriate
typing, combined with sub-arrays requiring a constant starting index; ex-
amples of such cases will follow.

Functions In Jasmin, we have three types of functions. export fn func-
tions can be used outside of Jasmin. We use these functions for unit testing
and for exposing the three main signing/verification functions to C:

45

https://github.com/jasmin-lang/jasmin/commit/aa031efa5c73f742443847fd19516baceaf753d4

crypto sign seed keypair, crypto sign signature, and
crypto sign verify.

inline fn functions are inlined in the callers code. We use these functions
when calling them once (outside of a for loop), or when the functions are
only a conceptual abstraction (e.g. a setter) that we would have written out
in full, had we not cared about code structure.

fn functions compile to one sequence of assembly instructions, similar to a
regular function in C. We regularly use these for functions with many in-
structions that are repeated in a for loop due to typing restrictions. We
often couple this with the annotation #[returnaddress="stack"]. With-
out the annotation, the return address is kept in a register that we are
not able to access/spill. Before calling fn functions, we spill active register
values onto the stack most of the time.

Exit points In Jasmin, a function ends with a return statement. This is
the only exit point. Returning from another location requires conditional
statements; a statement like goto in C is not available. While this hurts
readability in some cases (e.g. in crypto sign signature), this is not a
problem for most functions. However, we did omit the translation of the
treehashx1 Treehash implementation from [RWW+21] into Jasmin, due to
its control flow statements. The treehashx1 function is written in C. The
conditional return- and break statements inside of the while loop do not
seem to translate to an elegant Jasmin implementation.

Compilation termination In C, we can use the #error directive to ter-
minate compilation. In implementations that specify parameters at compile-
time, this allows us to refuse compilation for certain parameter choices. We
have not found an alternative for this in Jasmin as of yet, meaning that
parameter sets have to be implemented with additional care compared to C.

6.2 Directory structure

The directory for the Jasmin implementations Simple-Jasmin/ (FS-Simple)
and Naive-Jasmin/ (NFS-Naive) is as follows:

ref/ Contains the C reference implementation that we test against. Header
files include function declarations for Jasmin export functions (suffix jazz).
Header files also expose static functions from the C implementation, so we
can perform tests for functional correctness against these.

ref2/ Contains a C skeleton that uses the three main Jasmin export func-
tions for key generation, signature generation, and signature verification.

src/ Contains Jasmin source files. .jahh files contain internal Jasmin func-
tions. .jazz files contain the Jasmin export functions. We use most export

46

functions to test the functional correctness of internal Jasmin functions. The
file export.jazz contains the three export functions that we use in ref2/.

test/ Contains tests for functional correctness.

6.3 NFS-Naive

6.3.1 SHAKE256/FIPS 202

We limit the hash function instantiations to those of SHAKE256. This is
primarily because at the time of implementation, FIPS 202 was the only
hashing standard that was implemented in Jasmin and supported by Pyra-
mid. SHAKE256 in Jasmin is part of the Saber implementation in Jas-
min [Mei21b]. We reuse the SHAKE256 implementation with minor mod-
ifications. In general, the Saber Jasmin implementation has been a source
of inspiration for the Pyramid Jasmin implementation, showing off several
features of the glob array3 branch.

Like the Saber implementation, we include one function for every ab-
sorb/squeeze with a different constant input/output length. This also im-
plies one function for every SHAKE256 call that uses these functions, along
with three similar implementations for F, H and Thλ. This allows us to pre-
serve the most specific typing possible, at the cost of a (prohibitive) increase
in code size. A language construct similar to the generic size argument in
C++ could be of help for this problem.

We will note that, specifically for this implementation, we could reduce
the amount of boilerplate code. Notice that in pyramid params.jahh, the
input lengths for PRF, the Hmsg constant part, and F are the same. Thus,
one could remove two absorption lengths. However, this being a first imple-
mentation, paired with the simplification for PRF in our C implementation,
we have chosen not to make this change.

6.3.2 Treehash

Our second point of interest is the Treehash function from NFS-Naive, shown
in ref/treehash.c and mimicked in src/pyramid treehash.jahh. The
Treehash function generates- and combines 2h/d leaves. In C, we implement
Treehash using a for loop that generates one leaf per loop iteration. Because
this requires an exponential number of iterations, for most values of h/d this
loop should not be unrolled. In Jasmin, this means that a while loop is
appropriate; for loops are always unrolled.

Our loop variable in C and Jasmin is called idx. The Treehash im-
plementation in C is based on the Treehash implementation in the XMSS
reference implementation [HRCW21]. During the node combining phase,
the Treehash implementation in C “slides” over the buffer stack to com-
bine pairs of adjacent nodes. The result is directly put back into the buffer

47

to continue combining, therefore spending a minimal amount of time moving
nodes around.

In Jasmin, performing this same strategy elegantly seems unattainable.
This is because it is currently impossible to compile a sub-array that has a
non-constant start index. Therefore, we cannot mirror the following C call:

thash(stack + (offset-2)*PYR_N, stack + (offset-2)*PYR_N,

2, pub_seed, hashtree_addr);

offset is based on idx, which is a runtime variable. Because we cannot
perform the Treehash strategy that we use in the C reference code, we revert
to copying nodes from the stack into a dedicated hashing buffer current.
Note that any reading/writing from/to the stack still uses an offset that is
based on idx. Luckily, Jasmin does allow non-constant indexing as shown
in the following code segment.

for i = 0 to PYR_N {

a = current[PYR_N+i]; /* result at offset PYR_N */

th_stack[i + (int) offset] = a;

}

This allows one to copy the object from a non-constant offset to a temporary
location for which the offset is known at compile time. This way, we do
not have to alter functions that use the object, which keeps the “badness”
contained to the problematic location.

Finally, we give three implementations of nto, the number of trailing
ones. Through these, we give a minimal example of the possibilities of the
intrinsic operators that are available in Jasmin. Please note that optimiza-
tion of this function is by no means imperative.

6.3.3 WOTS

Seed expansion The function expand seed expands the WOTS-TW se-
cret key into the first chain elements. The number of output seeds is known
at compile-time. This is an example of a case where we use a for loop to
take advantage of sub-arrays.

Because we chose to use a for loop, the chain address is known at compile-
time. To emphasize that this is the case, we define additional getters/set-
ters in pyramid address.jahh that accept an inline integer argument, as
opposed to an argument that we pass through a register. Such functions
end with an underscore. Note that the type field is naturally known at
compile-time. We omit the underscore in this case.

Also, please consider that even though we implement these getters/setters
with compile-time arguments in several places, we do not necessarily think
that the loops that use them should be unrolled in the first place.

48

Chain generation The function gen chain applies F steps times. steps
and start are determined by the message that is signed/verified. The bound
is determined at runtime. This is an example of a scenario in which we are
required to use a while loop.

Address returns A problem in the previous WOTS C implementations
is that it was not always clear whether a function would alter the addr

argument. In Jasmin, this is not a concern: address alterations through a
pointer are reflected by the function signature.

Jasmin warnings While compiling pyramid wots.jahh, we currently
encounter warnings of the form:

"src/pyramid_wots.jahh", line 227 (4-7):

warning: cannot ensure that the type u8[PYR_WOTS_PK_BYTES] is

compatible with u8[PYR_WOTS_BYTES]

In XMSS, it is tradition to define the byte-length of a WOTS public key and
a WOTS signature separately, even though they are equal. The distinction
emphasizes the intention of the code. However, there seems to be no obvious
way to inform the compiler that the two are equal.

6.3.4 Root computation

In the file pyramid compute root.jahh, we encounter a situation similar to
that of Treehash in Section 6.3.2. Depending on the node that we are creat-
ing being a left/right node, we would like to generate it in the appropriate
location of buffer, in preparation for the next H call. Intuitively, one may
define H as follows:

fn thash2(reg ptr u8[PYR_N] out, reg ptr u8[2*PYR_N] in,

reg ptr u8[PYR_N] pub_seed, reg ptr u32[8] addr)

-> reg ptr u8[PYR_N]

Then, for lr being 0 or 1, we call the function via:

buffer = thash2(buffer[lr*PYR_N:PYR_N], buffer, pub_seed, hashtree_addr);

This construction is not possible, because thash2 does not specify that it
modifies the region that is pointed to by its second argument. The writable
register pointer out is not disjoint from at least one non-writable register
pointer. This is a concern within several locations of the implementations
in Jasmin. We currently solve this by defining a compound version for
functions in which the above occurs. In the case of thash2, we define:

inline fn thash2_comp(reg ptr u8 [2*PYR_N] inout,

reg ptr u8 [PYR_N] pub_seed, reg ptr u32[8] addr,

inline int lr) -> reg ptr u8[2*PYR_N]

49

6.3.5 Parameters & compilation

Test parameter sets are located in src/params/. The files in src/ require a
file called pyramid params.jahh. This file is a symbolic link that we create
before compilation. The symbolic link allows one to compile against different
parameter sets, without making changes to the source files. We employ a
similar mechanism for the requirement of pyramid thash shake256. This
is a symbolic link that either points to the robust Th instantiations, or to
the simple Th instantiations that are both located in src/.

6.4 FS-Simple

Most of the points of interest from NFS-Naive are relevant for FS-Simple
too. However, the C implementation for Simple uses one additional language
construct that we would like to comment on.

6.4.1 Structures

The C implementations for Simple defines three structure types:
treehash type, stack type, and state type. These consist mostly of
pointers, which we direct towards the appropriate parts of the secret key
in state deserialize. TreeHash instances are stored in a “columnar”
fashion, i.e. h/d nodes for layers 0, . . . , h/d − 1, followed by h/d boolean
values, etc.

Jasmin does not specify an abstraction like structures. Instead, we pass
around a pointer reg ptr u8[MMT SIZE] state, and define getters/setters
for this object. The getters/setters are found in simple * state.jahh; the
offsets (columnar) that are used by these are found in
simple * state format.jahh. Note that we do this for BDS and MMT
separately, because the states do not follow the same format, nor are they of
equal size. As a consequence, functions that take an argument state type

*state in C, require two implementations in Jasmin. Luckily, these are of
limited amount.

Finally, we can observe another artefact of the approach in
simple MMT update treehash.jahh. In C, we could directly use the struct
pointers as an argument in function calls. However, the TreeHash instances
that we update are known at runtime. In Jasmin, this means that some
members of the state, such as nodes, must be copied out of the state before
we can use them in functions that expect array pointers for constant size
regions. Again, this is due to sub-arrays requiring a constant starting index.
When the index is known only at runtime, we must copy the object from
the state into an array of the object’s real size. Listing 1 gives a concrete
example.

50

Listing 1 MMT th get sda requires a runtime index.
/* From simple_MMT_state.jahh: */

inline fn MMT_th_get_sda(reg ptr u8[PYR_N] sda, reg ptr u8[MMT_SIZE] state,

reg u64 i)

-> reg ptr u8[PYR_N]

{

reg u64 offset j;

offset = MMT_TREE + MMT_TH_SDA;

j = i;

j *= PYR_N;

offset += j;

/* Copy with a runtime offset (in[i + (int) offset]). */

sda = MMT_cpy_N(sda, state, offset);

return sda;

}

/* From simple_MMT_update_treehash.jahh: */

/* The following copy is not required in C. */

sda = MMT_th_get_sda(sda, state, index);

/* treehash_comp expects sda to be typed: reg ptr u8[PYR_N] */

current[PYR_N:PYR_N], sda = treehash_comp(current[PYR_N:PYR_N], sda, sk_psd,

idx_leaf, t, hashtree_addr);

6.5 Performance evaluation

To get an impression of the performance of the FS-Simple Jasmin imple-
mentation, we compare its speed, measured in CPU time, against its coun-
terpart in C. We measure performance for two parameter sets from RFC
8391 [HBG+18]:

Name n h d w

XMSS-SHAKE 10 512 64 10 1 16

XMSSMT-SHAKE 60/12 512 64 60 12 16

While testing the Pyramid implementations, we test for one XMSS- and
one XMSSMT parameter set; the latter allows one to get an indication of
the performance difference between the C- and Jasmin implementations for
MMT. The former only uses BDS, because d = 1.

For the tests, we perform one key generation and 10.000 signing/ver-
ification iterations. To obtain accurate measurements, we first time the
generation of 10.000 signatures in succession. Then, we time the verification
of the produced 10.000 signatures in succession. Because signing- and verifi-
cation speed depends on the message, we randomize every message. We fix
the message length at 32 bytes. We note that we do not deploy a CSPRG

51

for this test. We iterate each test three times and we use the average time
in the results.

6.5.1 System information

We use the following platform for the performance evaluation:

Kernel: Linux

Version (partial): 20.04.1-Ubuntu

HW platform: x86_64

OS: GNU/Linux

We use the following gcc version for the performance evaluation:

gcc (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0

Copyright (C) 2019 Free Software Foundation, Inc.

We use Jasmin commit aa031ef of the branch “glob array3” for compi-
lation; this is the same Jasmin version that we use to test for functional
correctness.

6.5.2 Results

We summarize the performance test results in Table 6.1. In Table 6.1, the
performance of the Jasmin implementation for the parameter set
XMSSMT-SHAKE 60/12 512 is missing. We were unable to compile the code
for this parameter set. The error that is thrown during compilation is shown
in Listing 2.

This compilation error is expected, given the fact that a large amount
of unnecessary unrolling takes place in the implementation. We have not
experienced this error for the test parameter sets that we use to test for
functional correctness for d > 1. Again, we note that our usage of for loops
aims to preserve code reusability through typing correctness. As shown by
the test results in Table 6.1, excessive unrolling slows down the code, and
may even prevent compilation of the code.

In general, the performance of the Jasmin implementation is about 1.7
times worse than that of the C implementation, using SHAKE256. This is
purely based on computation performed by the BDS algorithm, and for a
relatively large value of n.

52

https://github.com/jasmin-lang/jasmin/commit/aa031efa5c73f742443847fd19516baceaf753d4

Name C (s) C (r) Jasmin (s) Jasmin (r)

XMSS-SHAKE 10 512 X X X X

- keygen 200.18 319.87 339.28 530.81

- sign 213.9 341.25 362.63 579.63

- verify 14.85 24.45 25.55 41.52

XMSSMT-SHAKE 60/12 512 X X × ×
- keygen 1.19 1.84 - -

- sign 451.77 699.30 - -

- verify 176.44 281.56 - -

Table 6.1: Performance of the C and Jasmin implementations for simple (s)
& robust (r) Th strategies in seconds.

Listing 2 Stack overflow during Jasmin compilation for parameter set
XMSSMT-SHAKE 60/12 512.
jasminc -lea -pasm ../src/export.jazz -o jexport.s

"../src/pyramid_wots.jahh", line 232 (4-7):

warning: cannot ensure that the type u8[PYR_WOTS_PK_BYTES]

is compatible with u8[PYR_WOTS_BYTES]

(we have redacted 5 more param int compatibility warnings)

Fatal error: exception Stack overflow

make: *** [Makefile:20: jexport.s] Error 2

53

Chapter 7

Related Work

We have already pointed to several related (stateful) hash-based signature
schemes that we have considered for this proposal. Therefore, we will use
this section solely for a brief comment on LMS.

The second NIST-approved stateful hash-based signature scheme is LMS,
a description may be found in RFC 8554 [MCF19]. LMS uses the WOTS-
like LM-OTS as its OTS: its security argument relies on the random oracle
model. The security of LMS is proven in the quantum random oracle model
in the multi-user setting [Eat17]. SPHINCS+’s “simple” tweakable hash
function instantiations are inspired by the constructions that are used in
LMS.

To make hash-function calls unique for every user and instance, LM-OTS
appends a string like s = I‖Q‖i to its hash function input. I is similar in
purpose to Seed, Q identifies the OTS (similar to the combination of layer,
tree, and keypair in SPHINCS+), and i identifies the chain in the OTS. The
chaining function definition then appends a string b‖00; b specifies the chain
position and “00” is akin to the type field in Pyramid, or the padding for
the independence of the different function families in RFC 8391.

Inconveniently, even though the construction of LMS is much like that of
XMSS and SPHINCS+, a code-size optimized verification implementation
for LMS and SPHINCS+ needs to be larger than strictly necessary, only to
achieve the same properties in two distinct ways. This is the main argument
behind the proposal for Pyramid, or a stateless signature scheme that is (out
of the box) compatible with LMS.

54

Chapter 8

Conclusions and Future
Work

We have provided a first proposal for the stateful hash-based signature
scheme Pyramid. The proposal is compatible with the addressing scheme
and the hash-function instantiations of SPHINCS+. As such, including
Pyramid support in a verification routine for SPHINCS+ signatures should
result in a relatively small increase in code size. Additionally, we extend
the addressing scheme and provide constructions that take advantage of
the optimizations in SPHINCS+. This being the first proposal, we include
discussion for potential improvements when we deem a construction exper-
imental to some degree.

We provide four reference implementations, which gradually introduce
optimizations and use known tree-traversal algorithms that were defined
in the context of XMSS. These implementations indicate what a forward-
secure implementation encompasses, provide a baseline for future implemen-
tations, and show how one could keep a signature routine structured. Again,
we warn that these are the first implementations for Pyramid, and should
therefore be treated with care.

Finally, we implement a naive regular implementation of Pyramid in Jas-
min, along with a space-optimized forward-secure Simple implementation.
We point out minor hurdles for these implementations. We hope that parts
of these implementations may be of future use in the verification process of
Pyramid and SPHINCS+.

55

Bibliography

[ABB+17] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur
Blot, Benjamin Grégoire, Vincent Laporte, Tiago Oliveira,
Hugo Pacheco, Benedikt Schmidt, and Pierre-Yves Strub. Jas-
min: High-Assurance and High-Speed Cryptography. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pages 1807–1823, 2017.

[ABB+20a] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Ben-
jamin Grégoire, Adrien Koutsos, Vincent Laporte, Tiago
Oliveira, and Pierre-Yves Strub. The Last Mile: High-
Assurance and High-Speed Cryptographic Implementations. In
2020 IEEE Symposium on Security and Privacy (SP), pages
965–982. IEEE, 2020.

[ABB+20b] Jean-Philippe Aumasson, Daniel J. Bernstein, Ward Beullens,
Christoph Dobraunig, Maria Eichlseder, Scott Fluhrer, Stefan-
Lukas Gazdag, Andreas Hülsing, Panos Kampanakis, Stefan
Kölbl, Tanja Lange, Martin M. Lauridsen, Florian Mendel,
Ruben Niederhagen, Christian Rechberger, Joost Rijneveld, Pe-
ter Schwabe, and Bas Westerbaan. SPHINCS+: Submission to
the NIST post-quantum project, v.3. October 2020.

[BDG+13] Gilles Barthe, François Dupressoir, Benjamin Grégoire, César
Kunz, Benedikt Schmidt, and Pierre-Yves Strub. EasyCrypt:
A tutorial. In Foundations of security analysis and design vii,
pages 146–166. Springer, 2013.

[BDH11] Johannes Buchmann, Erik Dahmen, and Andreas Hülsing.
XMSS – Practical Forward Secure Signature Scheme based on
Minimal Security Assumptions. In International Workshop on
Post-Quantum Cryptography, pages 117–129. Springer, 2011.

[BDS08] Johannes Buchmann, Erik Dahmen, and Michael Schneider.
Merkle Tree Traversal Revisited. In International Workshop
on Post-Quantum Cryptography, pages 63–78. Springer, 2008.

56

[BHK+19] Daniel J. Bernstein, Andreas Hülsing, Stefan Kölbl, Ruben
Niederhagen, Joost Rijneveld, and Peter Schwabe. The
SPHINCS+ Signature Framework. In Proceedings of the 2019
ACM SIGSAC conference on computer and communications se-
curity, pages 2129–2146, 2019.

[BHRvV21] Joppe W. Bos, Andreas Hülsing, Joost Renes, and Christine
van Vredendaal. Rapidly Verifiable XMSS Signatures. IACR
Transactions on Cryptographic Hardware and Embedded Sys-
tems, pages 137–168, 2021.

[BM99] Mihir Bellare and Sara K Miner. A Forward-Secure Digital Sig-
nature Scheme. In Annual international cryptology conference,
pages 431–448. Springer, 1999.

[BY03] Mihir Bellare and Bennet Yee. Forward-Security in Private-Key
Cryptography. In Cryptographers’ Track at the RSA Confer-
ence, pages 1–18. Springer, 2003.

[DOTV08] Erik Dahmen, Katsuyuki Okeya, Tsuyoshi Takagi, and Camille
Vuillaume. Digital Signatures Out of Second-Preimage Re-
sistant Hash Functions. In International Workshop on Post-
Quantum Cryptography, pages 109–123. Springer, 2008.

[Eat17] Edward Eaton. Leighton-Micali Hash-Based Signatures in the
Quantum Random-Oracle Model. In International Conference
on Selected Areas in Cryptography, pages 263–280. Springer,
2017.

[Flu17] Scott Fluhrer. Reassessing Grover’s Algorithm. Cryptology
ePrint Archive, 2017.

[Gro96] Lov K. Grover. A Fast Quantum Mechanical Algorithm for
Database Search. In Proceedings of the Twenty-Eighth Annual
ACM Symposium on Theory of Computing, STOC ’96, page
212–219, New York, NY, USA, 1996. Association for Computing
Machinery.

[HBG+18] Andreas Huelsing, Denis Butin, Stefan-Lukas Gazdag, Joost Ri-
jneveld, and Aziz Mohaisen. XMSS: eXtended Merkle Signature
Scheme. RFC 8391, May 2018.

[HK21] Andreas Hülsing and Mikhail Kudinov. Security of WOTS-
TW scheme with a weak adversary. In pqc-forum.
2021. https://groups.google.com/a/list.nist.gov/g/

pqc-forum/c/91GRrrnXBuY/m/QnGMM9fKBgAJ, accessed 18-02-
2022.

57

https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/91GRrrnXBuY/m/QnGMM9fKBgAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/91GRrrnXBuY/m/QnGMM9fKBgAJ

[HKS20] Andreas Hülsing, Matthias Kannwischer, and Peter Schwabe.
Forward-secure XMSS based on RFC 8391, 2020. https://

github.com/mkannwischer/xmssfs, accessed 18-02-2022.

[HRB13] Andreas Hülsing, Lea Rausch, and Johannes Buchmann. Opti-
mal Parameters for XMSSMT. In International Conference on
Availability, Reliability, and Security, pages 194–208. Springer,
2013.

[HRCW21] Andreas Hülsing, Joost Rijneveld, David Cooper, and Bas West-
erbaan. XMSS reference code, 2021. https://github.com/

XMSS/xmss-reference, accessed 18-02-2022.

[HRS16] Andreas Hülsing, Joost Rijneveld, and Fang Song. Mitigating
Multi-target Attacks in Hash-Based Signatures. In Public-Key
Cryptography–PKC 2016, pages 387–416. Springer, 2016.

[Hül13a] Andreas Hülsing. Practical Forward Secure Signatures using
Minimal Security Assumptions. PhD thesis, Technische Uni-
versität, Darmstadt, August 2013. http://tuprints.ulb.tu-
darmstadt.de/3651/.

[Hül13b] Andreas Hülsing. W-OTS+ – Shorter Signatures for Hash-Based
Signature Schemes. In International Conference on Cryptology
in Africa, pages 173–188. Springer, 2013.

[KT21a] Haruhisa Kosuge and Hidema Tanaka. Simple and Memory-
efficient Signature Generation of XMSSMT. In Selected Areas
in Cryptography, 2021.

[KT21b] Haruhisa Kosuge and Hidema Tanaka. Simple and Memory-
efficient Signature Generation of XMSSMT, 2021. https:

//github.com/HaruCrypto54/xmss_simple, accessed 18-02-
2022.

[Lam79] Leslie Lamport. Constructing Digital Signatures from a One
Way Function. Technical report, Citeseer, October 1979.

[LGS+21] Vincent Laporte, Benjamin Grégoire, Pierre-Yves Strub, Adrien
Koutsos, Manuel Barbosa, Tiago Oliveira, Benôıt Viguier, Jean-
Christophe Léchenet, José Bacelar Almeida, Peter Schwabe,
Jan Gilcher, artart78, Simoncd89, and jba-uminho. Jas-
min: glob array3. 2021. https://github.com/jasmin-lang/

jasmin/tree/glob_array3, accessed 18-02-2022.

[LKG22] Vincent Laporte, Adrien Koutsos, and Benjamin Grégoire. Jas-
min Wiki. 2022. https://github.com/jasmin-lang/jasmin/
wiki, accessed 22-03-2022.

58

https://github.com/mkannwischer/xmssfs
https://github.com/mkannwischer/xmssfs
https://github.com/XMSS/xmss-reference
https://github.com/XMSS/xmss-reference
http://tuprints.ulb.tu-darmstadt.de/3651/
http://tuprints.ulb.tu-darmstadt.de/3651/
https://github.com/HaruCrypto54/xmss_simple
https://github.com/HaruCrypto54/xmss_simple
https://github.com/jasmin-lang/jasmin/tree/glob_array3
https://github.com/jasmin-lang/jasmin/tree/glob_array3
https://github.com/jasmin-lang/jasmin/wiki
https://github.com/jasmin-lang/jasmin/wiki

[MCF19] David McGrew, Michael Curcio, and Scott Fluhrer. Leighton-
Micali Hash-Based Signatures. RFC 8554, April 2019.

[Mei21a] Matthias Meijers. Formal Verification of Post-Quantum
Cryptography. 2021. https://csrc.nist.gov/

Presentations/2021/formal-verifcation-of-post-

quantum-cryptography, accessed 18-02-2022.

[Mei21b] Matthias Meijers. SABER-Jasmin. 2021. https://github.

com/MM45/SABER-Jasmin, accessed 18-02-2022.

[Mer89] Ralph C. Merkle. A Certified Digital Signature. In Conference
on the Theory and Application of Cryptology, pages 218–238.
Springer, 1989.

[oST20a] National Institute of Standards and Technology. Stateful Hash-
Based Signatures. 2020. https://csrc.nist.gov/Projects/

stateful-hash-based-signatures, accessed 18-02-2022.

[oST20b] National Institute of Standards and Technology. Stateful
Hash-Based Signatures: Public Comments on Draft SP
800-208. 2020. https://csrc.nist.gov/CSRC/media/

Publications/sp/800-208/draft/documents/sp800-208-

draft-comments-received.pdf, accessed 18-02-2022.

[oST21] National Institute of Standards and Technology. PQC: Round 3
Submissions. 2021. https://csrc.nist.gov/Projects/post-
quantum-cryptography/round-3-submissions, accessed 18-
02-2022.

[Rij19] Joost Rijneveld. Practical Post-Quantum Cryptography. PhD
thesis, Radboud University Nijmegen, 2019. https://

joostrijneveld.nl/thesis/.

[RWW+21] Joost Rijneveld, Bas Westerbaan, Thom Wiggers, Peter
Schwabe, Scott Fluhrer, Ruben Niederhagen, Stefan Kölbl, and
MrPugh. SPHINCS+, 2021. https://github.com/sphincs/

sphincsplus, accessed 18-02-2022.

[Sch21] Peter Schwabe. Getting started with Jasmin. 2021. https:

//cryptojedi.org/programming/jasmin.shtml, accessed 18-
02-2022.

[Sho94] P.W. Shor. Algorithms for Quantum Computation: Discrete
Logarithms and Factoring. In Proceedings 35th Annual Sym-
posium on Foundations of Computer Science, pages 124–134,
1994.

59

https://csrc.nist.gov/Presentations/2021/formal-verifcation-of-post-quantum-cryptography
https://csrc.nist.gov/Presentations/2021/formal-verifcation-of-post-quantum-cryptography
https://csrc.nist.gov/Presentations/2021/formal-verifcation-of-post-quantum-cryptography
https://github.com/MM45/SABER-Jasmin
https://github.com/MM45/SABER-Jasmin
https://csrc.nist.gov/Projects/stateful-hash-based-signatures
https://csrc.nist.gov/Projects/stateful-hash-based-signatures
https://csrc.nist.gov/CSRC/media/Publications/sp/800-208/draft/documents/sp800-208-draft-comments-received.pdf
https://csrc.nist.gov/CSRC/media/Publications/sp/800-208/draft/documents/sp800-208-draft-comments-received.pdf
https://csrc.nist.gov/CSRC/media/Publications/sp/800-208/draft/documents/sp800-208-draft-comments-received.pdf
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://joostrijneveld.nl/thesis/
https://joostrijneveld.nl/thesis/
https://github.com/sphincs/sphincsplus
https://github.com/sphincs/sphincsplus
https://cryptojedi.org/programming/jasmin.shtml
https://cryptojedi.org/programming/jasmin.shtml

Appendix A

Figures

A.1 Pyramid format

PK.Root (n bytes)

PK.Seed (n bytes)

Public Key

Algorithm OID

index (ceil(h/8) bytes)

SK.Seed
(d * n bytes)

Secret key

SK.PRF (n bytes)

PK.Root (n bytes)

PK.Seed (n bytes)

External state (Optional)

SK.Seed
(n bytes) FSREG

index (ceil(h/8) bytes)

randomness r (n bytes)

Authentication path on

hypertree layer 0

((h/d) * n bytes)

WOTS-TW signature on

hypertree layer 0

(l * n bytes)

Signature

...

Authentication path on

hypertree layer (d - 1)

((h/d) * n bytes)

WOTS-TW signature on

hypertree layer (d - 1)

(l * n bytes)

Figure A.1: The Pyramid signature, public key, and secret key format.

60

A.2 Implementation key & state structures

Auth
((h/d) * n bytes)

Stack

(1 + (h/d - 1) * (n + 1) bytes)

Treehash

((h/d) * (n + 1 + ceil(h/8) + 2n) bytes)

Keep
(floor(h/2) * n bytes)

BDS
(modified)

Auth
((h/d) * n bytes)

Stack

(1 + (h/d) * (n + 1) bytes)

Treehash

((h/d) * (1 + ceil(h/8) + n) bytes)

MMT

index (ceil(h/8) bytes)

SK_SSD (d * n bytes)

Secret key

SK_PRF (n bytes)

SK_PRT (n bytes)

SK_PSD (n bytes)

BDS (bottom layer)

MMT (layers above)

PK_PRT

PK_PSD

Public Key

Algorithm OID

(not implemented yet)

Figure A.2: Key- and state structures for Pyramid and FS simple.

Figure A.2 shows the public- and secret key structures, using the names
of the offsets that we use in the implementation. SK SSD is n bytes (1
seed) for regular Pyramid; we use d references in forward-secure Pyramid.
The BDS/MMT states are optional; these can be disregarded or substituted
for other tree-traversal algorithm states. The additional references that
are stored by TreeHash instances in forward-secure BDS/MMT have their
storage cost depicted in bold. We have not added the algorithm OID to our
public key in our implementations, but a finalized implementation/proposal
should include these at all costs. A consideration for the future could be
to re-organize the secret key in categories “secret-state”, “secret-constant”,
“public-state” and “public-constant”.

61

A.3 MMT & BDS scheduling examples

A.3.1 MMT

5

7

6

9

11

10

15

14

13

12

13

15

14

17

19

18

23

22

21

20

31

30

29

28

27

26

25

24

21

23

22

7 11 15 19

gap

adv

Treehash[0]

Treehash[1]

Treehash[2]

Treehash[3]

96 160 224 288 352 416 480 544 608

64
iterations

672

priority (highest unfinished instance first)

Synchronized

Instance:

h: 10, d: 2

Figure A.3: MMT seed forwarding example.

Figure A.3.1 provides an additional example of MMT scheduling. Every
second 2h/d global updates, a TreeHash instance is scheduled. TreeHash

updates advance the active reference beyond a fixed distance (adv). In gap,
we ensure that we forward a reference (e.g. from leaf 15) to the one that
we require next (e.g. to leaf 23), taking into account adv.

62

A.3.2 BDS

Treehash[0]

Treehash[1]

Treehash[2]

Treehash[3]

15Iterations

Instance: h: 8, d: 2

5

16 17 18 19 20 21 22 23 24

19

22 23

21

29

26 27

40

25 27

42,

43

28 30,

31

23

41

30

44

5

(no updates) 46,

47 45

28 29 30 31 36...

56

...

Lower instances
separate higher

ones

fin ¬fin

5

(req. 8 updates)

Figure A.4: BDS seed forwarding counterexample.

Figure A.3.2 provides an additional example of BDS scheduling. In
forward-secure BDS, we keep two references for every TreeHash instance.
In forward-secure MMT, we only need one reference for every TreeHash

instance. The above Figure shows a counterexample of using one reference
per TreeHash instance in modified BDS while maintaining evenly distributed
FSG calls.

Because lower TreeHash instances interrupt the higher ones, one must
retain an active reference for longer in higher instances. An example is the 5
update gap in rounds 23-28. When the higher TreeHash instance finishes,
it must then make up for the interruption by performing undispersed up-
dates. For example, TreeHash3 required 8 updates in just 5 rounds after it
completed its first target node.

Note that it may be worth exploring whether/when the additional ref-
erence in TreeHash0 is required, given that this instance should not be in-
terrupted.

63

A.4 Sign signature skeleton

/**

* Returns an array containing a detached signature.

*/

int crypto_sign_signature(uint8_t *sig, size_t *siglen,

const uint8_t *m,

size_t mlen, uint8_t *sk) {

const unsigned char * const sk_prf = sk + SK_PRF;

const unsigned char * const sk_psd = sk + SK_PSD;

unsigned char mhash[PYR_N];

unsigned char r[PYR_N];

uint64_t idx;

int retval = 0;

idx = bytes_to_ull(sk, PYR_IDX_BYTES);

if(invalid_idxp(idx)){

*siglen = 0;

return -2;

}

initialize_hash_function(sk_psd, sk_prf);

sig_mhash(mhash, r, sk, m, mlen);

sig_base(sig, siglen, r, idx);

retval = ext_finalize_sig(sk, sig, siglen, mhash);

if(last_idxp(idx)){

delete_sk(sk);

return -1;

} else {

/* Algo-specific state update. */

retval |= ext_update_state(sk);

/* Forward-secure state update. */

#ifdef FORWARD_SECURE

forget_seeds(sk);

#endif

/* Post-algo: increment sk index by one. */

ull_to_bytes(sk, PYR_IDX_BYTES, idx + 1);

}

return retval;

}

64

Appendix B

Software rescources

We accompany this document with C- and Jasmin implementations. These
are available in the repository Pyramid proposal.

The C implementation directories are FS-Simple, FS-StackRestore,
NFS-Simple, and NFS-Naive. The C implementations share the common

directory. The directories that contain Jasmin implementations are
Simple-Jasmin and Naive-Jasmin. We accompany the implementations
with README.md files; these include instructions for building the software,
along with other practical details that may be of use. We reiterate in-
structions for building the Jasmin project in Section B.2. The instructions
describe the build process for Simple-Jasmin, which is similar to that of
Naive-Jasmin. We use Jasmin commit aa031ef of the branch “glob array3”
for compilation.

From here, we omit the (active) directory name Simple-Jasmin/.

B.1 Directory structure

The directory Simple-Jasmin is structured as follows:

asm/ contains Jasmin-generated assembly files produced by Makefile.

Makefile specifies recipes for tests for functional correctness.

ref/ contains the Pyramid FS-Simple C reference implementation, mod-
ified to test for the functional correctness of the Simple-Jasmin im-
plementation.

ref2/ contains the Pyramid FS-Simple Jasmin-based implementation. More
precisely, the directory contains a C skeleton to call the functions
crypto sign seed keypair, crypto sign signature, and
crypto sign verify. These functions are implemented in Jasmin.
These are exposed by src/export.jazz. Furthermore, the implemen-
tation contains its own minimal ref2/Makefile.

65

https://github.com/pyramidproposal/pyramid
https://github.com/jasmin-lang/jasmin/commit/aa031efa5c73f742443847fd19516baceaf753d4

src/ contains the .jazz and .jahh source files.

params/ contains .jahh files that specify test parameter sets. A symbolic
link in src/ is used to compile against one of these.

test/ contains randomized tests for functional correctness, along with test-
ing utilities.

The files in src/ use the following prefix convention:

fips202 files implement a part of FIPS 202, the SHA-3 standard. Most
of these are a slightly modified version of the ones provided by the
Saber implementation in Jasmin [Mei21b].

pyramid files implement core constructions like WOTS, addressing, etc.
These are more or less the same, regardless of the tree-traversal algo-
rithm that we use.

simple files implement the components of the Simple algorithm; examples
include implementations of BDS and MMT.

crypto files implement Pyramid key generation, signing, and verification.

Finally, the prefixes are also conforming the prefixes that are used in the
Saber implementation in Jasmin [Mei21b]:

.jazz files contain Jasmin export functions. Except for src/export.jazz,
these provide a wrapper around functions in .jahh files, used for test-
ing. Functions in .jazz files, suffixed jazz, are exposed to C. Their
function declaration is found in the analogous header files in ref/.

.jahh files implement the logic from the C implementation in ref/ in Jas-
min.

B.2 Jasmin build

Makefile’s primary goal is to build tests for functional correctness, i.e.
every target test/bin/test *. Example usage scenarios, including those
for ref2/Makefile, are as follows. Instead of manually setting the variables
PARAMS and THASH in Makefile, one may also choose to include variable
assignments directly from the command-line:

make THASH=simple PARAMS=pyramid-shake256-test target.

Listings 3, 4, and 5 show examples of building parts of the Simple-Jasmin

project.

66

Listing 3 Testing all individual Jasmin functions for parameter set
test d 3, using the “simple” tweakable hash function instantiations.
Set PARAMS = pyramid-shake256-test_d_3 in Makefile

Set THASH = simple in Makefile

make clean # Clear the previous tests.

make prep # Create symbolic links for (PARAMS, THASH) choice.

make test # Build every target in TESTS.

Listing 4 Testing Jasmin-based Pyramid FS-Simple for test parameter set
test n 32, using the “robust” tweakable hash function instantiations.
Set "PARAMS = pyramid-shake256-test_n_32" in Makefile

Set "THASH = robust" in Makefile

make clean # Clear the previous symbolic links.

make prep # Create symbolic links for (PARAMS, THASH) choice.

cd ref2

make test

Listing 5 Testing the functional correctness of crypto sign verify located
in crypto sign verify.jahh, which is exposed by crypto.jazz. Before-
hand, we ensure that there are no basic discrepancies between
src/pyramid params.jahh and ref/params.h, using the sanity check.
Assume a clean environment with symbolic links prepared.

make test/bin/test_sanity_check

Output on stderr if accidental parameter mismatch.

./test/bin/test_sanity_check

make test/bin/test_crypto_sign_verify

./test/bin/test_crypto_sign_verify

67

	Introduction
	This work

	Preliminaries
	Historic background
	Stateful HBS: XMSS
	WOTS example
	Hypertree overview

	Pyramid description
	Preliminaries
	Tweakable hash functions
	Tweak legend
	Pyramid building blocks
	WOTS-TW
	WOTS-TW compression
	The hypertree

	Pyramid
	Pyramid key generation
	Pyramid signature
	Pyramid verification

	Pyramid proof status
	Preliminaries
	Partial SPHINCS+ proof summary
	Pyramid proof implication

	Pyramid instantiations
	SHAKE256 instantiations
	SHA256 instantiations
	Haraka instantiations
	Discussion
	Function family independence
	Address lengths
	Forward-secure instantiations
	OptRand
	XOF WOTS-TW secret generation
	Non-repudiation

	Addressing scheme
	Key format

	Pyramid implementations
	Common
	External algorithm & format
	Stepping stone implementations
	NFS-Naive
	FS-StackRestore

	NFS-Simple & background
	BDS & HRB
	Simple

	FS-Simple
	Forward-secure BDS
	Forward-secure MMT

	Implementations in Jasmin
	General design choices
	Directory structure
	NFS-Naive
	SHAKE256/FIPS 202
	Treehash
	WOTS
	Root computation
	Parameters & compilation

	FS-Simple
	Structures

	Performance evaluation
	System information
	Results

	Related Work
	Conclusions and Future Work
	Figures
	Pyramid format
	Implementation key & state structures
	MMT & BDS scheduling examples
	MMT
	BDS

	Sign signature skeleton

	Software rescources
	Directory structure
	Jasmin build

