MASTER THESIS
SOFTWARE SCIENCE

$ D
=4 E
o) o
1, v

YiNe S

RADBOUD UNIVERSITY

A Lens-Based Formalisation of View-Based Editing
for Variant-Rich Software Systems

Author: First supervisor/assessor:
Bob Ruiken Daniel Striiber
54721306 d.strueberQcs.ru.nl

Second assessor:
Thorsten Berger
thorsten.berger@chalmers.se

November 26, 2022

Abstract

Software systems typically become increasingly customizable over time. For
instance, organizations need to tailor their systems towards specific customer
requirements, including runtime environments, hardware, or performance
and energy consumption. Organizations then typically start maintaining
different cloned variants of the system—a process called clone & own—which
is cheap and agile, but does not scale with the number of cloned variants
and causes substantial maintenance overheads. Then, organizations often
integrate the variants into a configurable (‘variational’) platform. Using
variational code, for instance using #ifdef preprocessor directives, optional
features can be implemented in the same codebase. However, configurable
platforms are complex systems, since developers need to work on many differ-
ent variants at the same time. #ifdef statements easily clutter the source
code, challenging program comprehension and making development error-
prone. We advocate view-based editing of variational source code. Ideally,
a developer can choose the subset of features to work on. Previous work in-
troduced a first conceptual investigation of view-based editing of variational
code, but, in absence of a more rigorous description of supported operations
and underlying assumptions, fell short to give any soundness guarantees.

We address this gap by formalizing and implementing view-based editing
for variational source code in a framework we call Variational Lenses. We
map out conditions under which soundness can be guaranteed, and give a
soundness proof. Our formalisation relies on lenses—a solution to the view-
update problem typically considered for bidirectional transformations. We
formalise two functions, one to obtain a restricted view from the source code
set, and one to update the source code given changes made to this restricted
view.

We evaluate the framework by showing how it can be applied to common
edit operations, which were previously identified from a real-world system.
With this evaluation, we show that the new method can do at least as much
as the previous system, plus adding more flexibility in the meanwhile. This
flexibility is added by enabling developers to create and edit independent
features in a view where other features are hidden.

Contents

1 Introduction

2 Background

2.1
2.2
2.3
24
2.5

Software Product Lines
Virtual Platform
Lenses
Current State of Research
Running Example o000

3 Formalisation

3.1
3.2
3.3
3.4
3.5

Main Data Structures
Parent Functions
Restrictions
Get Operator L
Put Operator

4 YVariational Lenses

4.1
4.2
4.3

Configuration L
Virtual Platform 0oL
Proving thelenslaws

5 Implementation

5.1
0.2
5.3

Get Operator
Put Operatoro
Implementation Remarks

6 Evaluation

6.1
6.2
6.3
6.4
6.5
6.6

Context and Methodology
Code-Adding Patterns0
Code-Removing Patterns
Other Patternso
Comparison
Put Limitation 0.

13
13
16
17
18
22

31
31
32
34

38
38
41
44

7 Related Work
7.1 View-Based Editing
7.2 Lenses

8 Conclusion
8.1 Future Work

List of Figures

21
2.2
2.3

3.1
3.2
3.3
3.4

4.1
4.2

0.1

6.1
6.2
6.3
6.4

6.5

Overview of a standard lens. 9
Different representations of variational source code. 10
Running example source code. 12
The example system in the form of an asset tree. 15
Applications of the get operator on the running example. . . . 20
Example of how an alignment conflict might arise. 28
Example application of the put operator. 29
Overview of operator relationships. 32
Example of relationships between lens operators on the Vir-

tual Platform showing why we need a restriction on the am-

bition expresion. oo 34
Example 3.4 recreated using the Virtual Platform. 45
Workflow for adding a new asset, relevant for patterns P1
through P3. 47
Workflow for wrapping assets with presence conditions, rele-
vant for patterns P4 and P5. L. 48

Workflow for removing assets, relevant for patterns P8 and P9. 49
Workflow for giving an asset a non-trivial presence condition,
relevant for pattern P71. In this case, we want to give ao a
presence condition of A. 50
Example showing how the system in [29] does not adhere to
the PUTGET law. The edited view (bottom-right) does not
follow from the red edge coming from the edited source (top-
right). Note that this same limitation applies to our systerm,
hence the restriction we applied on the put operator. 53

Chapter 1

Introduction

Almost any software needs to exist in different variants. Organizations build
software variants to address variable customer requirements. Two main
strategies exist for building such software systems. First, with clone & own 7],
a complete system is cloned and altered to customer-specific needs. This
strategy is cheap, flexible and well supported by tools such as GIT. Second,
an opposing strategy, which scales well with many variants, is to integrate
all variants into a configurable and integrated platform [30], also known as a
software product line. A common example of such a platform is the Linux
kernel [27], which has over 15000 features nowadays and can be customized
to run on small embedded devices or large supercomputer clusters. How-
ever, creating a configurable and integrated platform is costly, while it is a
complex software system that can be difficult to maintain.

Integrated platforms rely on variability mechanisms—implementation tech-
niques to realize variation points. The most common mechanisms are static
compile-time statements such as #ifdef preprocessor directives in C or C+-+.
While these mechanisms are popular, they negatively influence the ease of
writing, maintaining and evolving of code [9, 28|, since the preprocessor
directives clutter source code, and the developer needs to work on many dif-
ferent variants at the same time. To reduce the complexity of developing an
integrated platform, the developer could work on a view (or projection) of
the system. Based on a configuration certain features are activated or deac-
tivated, leading to irrelevant parts of the code being removed. This king of
code editing has been proposed as view-based editing or projectional editing
of variational software before [33, 20, 18].

A more recent example is a method created by Stanciulescu et al. [29],
which, together with previous methods it is based on, make use of so-called
lenses. Lenses present a solution for the view-update problem, which origi-

nates from databases and are a form of bidirectional programming [11]. The
idea of lenses is to define two functions that map between two sets of data.
We usually talk about these sets being the Source (S) and the View (V): a
lens then consists of two functions get : S — V and put : V — S. Together
with these functions, a lens has to fulfil a number of lens laws to guarantee
soundness in the context of a round-trip: of retrieving a particular view,
modifying it and feeding it back into the source. One can see how lenses
are applicable here, as we have a source set of variational software and a
view containing a subset of the code. However the work of Stanciulescu has
two limitations. First, the lens laws have not been proven for the method
described in it. As we will show, even one of the lens laws does not hold for
it. The second limitation is in one of their functions of the lens: it is not
possible to feed the changes back into the source that should not influence
the retrieved projection. Intuitively, when a developer creates a view based
on a configuration and then modifies the view (i.e., evolves the source code),
it is not possible to let the change apply to more variants than are in the
view.

In the present work, we aim to overcome these limitations by presenting
Variational Lenses, a framework for view-based editing of variational code.
We provide definitions for the get and a put functions with as few limita-
tions as possible. As we will demonstrate with a counterexample, support
for completely unrestricted editing is not possible without losing soundness
guarantees. Furthermore, we will give a specific and realistic condition to
enable soundness guarantees, which we will formally prove. We will also see
that while the previous method does not have this restriction, it should have
it in order to adhere to the same law.

To provide our definition and proofs, we rely on a variability manage-
ment framework called Virtual Platform. The Virtual Platform is a devel-
opment system that aims to bridge the gap between the opposing strategies
clone & own and an integrated platform [22]. We chose to build our defi-
nitions on the Virtual Platform, since it provides a suitable abstraction of
variational code, with conceptual structures and operations supporting sev-
eral different programming languages. To formalise the operators, we first
needed to formalise the relevant parts of the Virtual Platform. After formal-
ising the operators, we developed a definition of Variational Lenses. This
type of lens is able to carry configuration data with it to support the func-
tions we created. This new type of lens is needed, as existing lenses are not
able to carry configuration information with them. The functions we created
are then proved to comply with the lens laws of this new lens. Lastly, we
evaluate our new formalisation and implementation of view-based editing
based on a real-world version history from [29]. In this evaluation, we will
see that the new method can do at least as much as the previous method

while complying with the lens laws.

Note here that we are differentiating between an “old” and a “new”
method. It should be noted that this is not exactly the case. We do not
principally create a new method, we offer the notion of view-based editing
with choices and ambitions in the same way as the previous work. Our “new”
method differs from the previous work in the formalisation, implementation
and the proofs that we supply for our formalisation.

In summary, we contribute:

1. A formalisation of a part of the Virtual Platform, as a foundation for
generically describing variational lenses.

2. A formalisation of view-based editing in terms of the formalisation of
the Virtual Platform that allows for more flexibility than the previous
method.

3. A formalisation of Variational Lenses together with the relevant lens
laws.

4. A proof that the view-based editing adheres to the lens laws.

5. An evaluation of the method using real-world data extracted from, and
a comparison to the method by, Stanciulescu et al. [29].

6. An implementation of the operators in the Virtual Platform®.

'https://bitbucket.org/easelab/vp/src/master/

https://bitbucket.org/easelab/vp/src/master/

Chapter 2

Background

2.1 Software Product Lines

We will first give a brief introduction to Software Product Lines. More back-
ground details can be found in for example [31, 2, 5]. Software Product Lines
use the same idea as age-old industrial product lines. The idea behind them
is that variants of products can be easily created when multiple products use
the same general parts. If these parts can be created in the same factory,
we only need to combine these in different ways to create multiple products.
This idea can be read in the context of industrial manufacturing, where we
can for example create different aeroplanes that have great overlap in their
parts. We can also read this in the context of software, this is where we talk
about Software Product Lines.

Concepts used in software product lines include features, configurations,
variants and products. Since we will also use these concepts throughout this
work, let us look at them in more detail. Features are “a logical unit of
behaviour that is specified by a set of functional and quality requirements”,
according to [5]. This means that features implement the requirements of a
system, an example would be sending messages in an e-mail system. These
features can be toggled on and off, they are binary. In source code, features
can be implemented for example using #ifdef statements. Configurations
can be seen as a list of all features with all of them either enabled or disabled.
Configurations can be deemed valid with the use of Feature Models, which
describe relations between features. One could see how features such as
Linuz and Windows should not occur simultaneously. Variants or products
are configurations applied to full systems. By applying them, certain parts
in the source code can be removed, whilst others should stay, decided by the
variability mechanism (i.e. the #ifdef statements).

2.2 Virtual Platform

In this section, we will go more in-depth into some specifics of the Virtual
Platform [22]. We do this because we want to formally define the framework.
Besides that, we want to extend the framework with two accompanying
operators, which will of course be formalised in the created formalisation.

The Virtual Platform consists of several conceptual structures on which
the operators within it work. These structures are especially important to us
as we will formalise them in Chapter 3. The most important structure is the
assets, making up the Asset Tree (AT), an abstraction of software repositories
with their included assets. Assets make up the complete structure of the
software product line. They can be anything from folders to methods. The
asset tree is a hierarchical, non-cyclic tree where the nodes are all assets.
Each asset has a specific asset type, a version, a presence condition and a
number of possible child assets. Each asset may also have a Feature Model
(FM) attached. Certain asset types may only be in children of certain other
asset types, for example, we do not want a folder asset type to reside in a
file asset type. Features have names and two parameters, being optional and
incomplete. Optionality describes whether or not the feature is mandatory,
incompleteness describes whether the feature is fully implemented or not.
Since we want to have feature models, features can also have subfeatures. A
feature model can then consist of just a root feature and a special feature
called “unassigned”. This last feature can be used to mount features resulting
from clone operations which were previously not mounted in the model at
all. The Virtual Platform uses a Trace Database, which keeps track of clones
of assets through the asset tree, this together with the versions of assets and
features can be used to propagate changes between clones.

The Virtual Platform already contains numerous operators to work on
the internal structures. The two operators we will add, work alongside the
existing operators. This means that we do not have to keep in mind how they
might interact with the internal structures. Our new operators are special
in the way that they have a necessary order in which they can be used, the
put must be used after the get, and the get operator can only be used while
there is no ‘active’ clone in progress.

For this work, the most important structures are the assets and the fea-
tures. We do not need to formalise the notion of the trace database or the
versions as our new operators will not use these. In our formalisation, we also
abstract the feature models such that they are described using an expression.
This simplifies the formalisation of features as they can then consist of just
a name.

Derived edit

Manual edit

Figure 2.1: Overview of a standard lens.

2.3 Lenses

A lens [is a mapping between a set C' of “concrete” structures (also called
sources) and a set A of “abstract” structures (also called views), consisting
of three functions get, put and create [11]. The get function takes a concrete
structure and yields an abstract structure. The put function does the reverse:
it takes an abstract structure combined with the original concrete structure
and gives back a new concrete structure. Finally, the create function is
much like the put function, but lacks the original concrete part. The create
function can thus create a concrete structure from just an abstract structure.
Formally, we get:

get : C—= A
put : AxC—=C
create : A — C

For a set of these three functions to be called a lens, they have to satisfy
some lens laws. These lens laws ensure so-called acceptability (PUTGET)
and stability (GETPUT):

put (get ¢) ¢c=c GETPUT
get (put a ¢) =a PUTGET
get (create a) = a CREATEGET

How all of these definitions work together can best be seen in the form of the
schema shown in Figure 2.1. Here we can see two concrete structures s and
s', connected by the get and put functions. The abstract structure v is the
result of applying get to the source s and v’ is the view that results from the
edits made to v. We see a dashed line back to s from v, this represents the
GETPUT law. A similar dashed line can be seen from s’ to v/, this represents
the PUTGET law. We of course also have an arrow from v’ to s’, showing
how to finish the loop towards the new concrete structure.

#ifdef F

a
#else
b
#endif Fa,b)
(a) Source code (b) Choice calculus

Figure 2.2: Different representations of variational source code.

2.4 Current State of Research

The most closely related work to ours is by Stdnciulescu et al., which is
a view-based editing method [29] as well. Their system is defined in the
formalisation of variational software called Choice Calculus |33] and also
uses the concept of lenses. Choice calculus abstracts away the notation of
#ifdef statements into a more formal syntax to simplify the definitions.
Our work will not be based on choice calculus, but rather on the conceptual
structures of the Virtual Platform. We will still take a closer look at how
this method works because we are going to compare to this method in the
evaluation (Section 6).

Choice Calculus is a way to abstract variational source code into a more
consise format [8]. Figures 2.2a and 2.2b show how a piece of variational
source code is represented using choice calculus. In the first subfigure, we
see the source code, where a is guarded by the feature F. If F does not hold,
then we want b to be active. In the second subfigure we see this represented
in the choice calculus. We again see the feature F' and the codes a and b.
The representation means that if F' is true, we pick a, otherwise we pick b.
If an #ifdef does not contain an #else statement, the second argument of
the choice can be replaced by an empty line of code. For example, removing
the else clause from our example would give us F(a,t). The b line is now
removed and replaced by ¢.

In the previous work which was also based on lenses, the get operator
requires a choice. With this choice, the programmer determines the set of
variants included in the view (expressed in terms of activated and deactivated
features). In our example of Figure 2.2b, a choice of F' would yield just a,
instead of the full choice. The negation of F' (—F) would give just b. If F'is
not decided on by the choice, the choice block remains in full.

The put operator requires another expression, called the ambition. The
ambition is a way for the programmer to determine the set of variants to
which the changes should be applied. The way the put operator deals with
this ambition, is by creating a new top-level choice (a representation of an

10

#ifdef) in the form of (¢ Aa)(v',s). Here, ¢ and a are the chosen choice
and ambition in the get and put operators, v’ is the edited view and s is
the source from which the view originated. This top-level choice is then
minimised such that the common parts are extracted from both branches.
Let us take for example the choice calculus expression from Figure 2.2b and
apply the get operator with as choice F. We already know this results in
just a as the source code. We as the programmer now decide to change this
to ¢. To push these changes back into the original source code, we use the
put operator. As the ambition, we again choose F, resulting in the choice
calculus expression of (F' A F){c, F(a,b)). We can simplify this expression
in two ways: firstly, we can simplify the first choice expression by replacing
F A F to just F. Secondly, we can replace the F'(a,b) by b, since we know
that F' does not hold in this part of the first choice level.

The limitations of the previous work, as mentioned before, are twofold.
Firstly, the method is not proven to be correct with the lens laws. This means
that we cannot strictly say that the method uses lenses. More importantly,
we cannot ensure the round-tripping properties that lenses want to ensure.
Moreover, we will later give a counterexample that disproves one of the lens
laws for the previous work. The second limitation of the previous work is
the way the put operator works. It does not allow changes to be propagated
to a scope beyond the choice expression from the get operator. This was
a deliberate design choice as it holds to the Edit Isolation Principle, where
changes can only be made to what is visible in the view. To see how this
works, let us look at Figure 2.2a. If we create a view with only feature F, we
result in a view with just a. Now the Edit Isolation Principle says that we
cannot make any edits such that any of the left out code can be changed.
In this case this means that we cannot make changes to the code in b. This
work aims to lift the above two limitations, we want to create a method in
which the Edit Isolation Principle is lifted and for which we can prove the
lens laws.

2.5 Running Example

In this work, we will generally use the sample example system to show the
workings of the formalisations. This is a simple application that initially has
three classes embedded in one file. Our system has two features, namely an
optional CLI and logging. We have that logging can only be enabled when
CLI is enabled, guarded by a feature model. In the end, we want to be able
for a developer to work only on a part of the file, and then be able to also
push these changes back into the full source file.

11

public class Base

{
}
#ifdef CLI
public class CLI
{

public class Base
i {
#endif .

}

#ifdef logging
public class logging public class CLI
{ {
} 3
#endif (b) Example view of example source

(a) Original example source code. code.

Figure 2.3: Running example source code.

An example of how this source code might look can be found in Figure 2.3.
We first what the entire source code looks like in Figure 2.3a. As explained
before, we have one base class that is not locked behind a feature and two
classes that are locked behind the CLI and logging feature, respectively. To
show why projectional editing can be beneficial, see Figure 2.3b. In this view
we have left out the logging feature and have selected the CLI feature. We
can see this, as the CLI feature is not surrounded by #ifdef statements,
and the logging feature is left out altogether. The view is easier to edit for a
developer, as there is fewer code. The benefits seem marginal here, but one
can imagine that within the classes Base and CLI, there might be specific
code for the other features as well, which would also become less complex in
the view.

12

Chapter 3

Formalisation

In this chapter, we formally define the conceptual structures that comprise
the Virtual Platform. After we have formally defined the structures, we
define the lens functions on top of this formalisation.

3.1 Main Data Structures

We have a set of features F, which contain the names of the features. We
also define a set C, containing all possible contents of assets. In our case, the
contents are strings, so C can be seen as the set of all possible strings. Then
we have a set Z to denote all identities of assets (we will use these identifiers
to identify assets.)

We create a notion of Optional types, this notation is used to extend a set
with the “no value” (L) value:

[t ={L}ut

Exp (F) are expressions over features defined using the following grammar:
ex=f| —e|True|False |eNe|eVe|e=e

Here we have that f € F. The operators are logical conjunctions, logical
disjunctions and logical implications.

Asset types are needed to correctly specify different types of assets in the
Virtual Platform:

Types = {Root, Repository, Folder, File, Class, Method, Field, Block}

13

For now, we define feature models or feature trees as a single expression
of type Exzp(F). Actual feature models are usually defined using trees to
visualise the hierarchy in them. In the virtual platform, every asset is allowed
to have its own feature model.

The set of all assets is denoted using A. Each element a € A is a tuple of
the following type:

a €T x Types x P(A) x [Exp (F)] x Exzp(F) xC

If (n,t, ch, fm, pc,c) € A, then n is the name, ¢ is the type of asset, ch are
the children of the asset, fm is the optional feature model, pc is the presence
condition binding the asset to a feature model and c is the content of the
asset.

Note that the children of assets are defined using a set of assets. The
reason for putting the actual assets in them instead of the identities of the
assets is solely to ease the definitions we will create later.

Another more important point is that we need some way to order the
children of assets. For this, we use a partial ordering on the assets. If we
were to not have any ordering, the children of an asset could appear in any
order. This means that the contents of those assets (code) will not have a
certain order. We do not want an asset that uses some variable to appear
before the asset that defines that variable. For this reason, we need an
ordering of the set of assets.

If we were to put a full ordering on all assets, we would order too much.
For instance, we do not need to compare children of two distinct assets.
Instead, we could introduce a full ordering, but only between the children of
assets. That is, every set of children is ordered. But even this is too strong.
We can restrict the ordering to just children of assets with certain asset
types. The reason for this is that we do not need ordering of children of for
example folder types. It does not matter to us if some file or folder precedes
another file or folder. Following this logic, we only need to place an ordering
on the children of the following asset types: File, Class, Method and Block.
We define the ordering relation on the assets as an irreflexive, asymmetric
and transitive strict partial order < 4.

To more easily access the properties of assets we define the following

14

root

repo

Ao
/ ‘ C logging
C1 Cc2

C3

Figure 3.1: The example system in the form of an asset tree.

functions:
Name: A —> 7 Type : A — Types
Name((n, , , , ,))=n Type((_,t, _, , ,)=t
Children : A — P (A) FM: A — [Exp (F)]
Children((_, ,ch, , ,))=ch|FM((_, , ,fm, ,))=fm
PC: A— Ezp(F) Content: A — C
PC((_, , , ,pc,))=pc Content((_, , , , ,c)=c

A full system in the Virtual Platform is defined as a tuple:
V = <‘A’ f? Z? C’ <A>

This tuple thus contains the assets, the features, the identities and the con-
tents in the platform, together with a partial order on the assets.

Example 3.1. In this example, we will create the running example as de-
scribed in the background (Section 2.5) in terms of the formalisation de-
scribed above. To this end, we need to fill out the tuple that describes a
system (V). This tuple consists of the assets, the features, the identities and
the contents.

First, we define the set of features, identities and contents. Our codebase
will consist of six assets, so we get six identities and six contents. We only
have two features in our system. For the features, we get F = {logging, CLI},
for the identities, we have Z = {t1,r1, f1,c1, c2, c3} and finally for the asset
contents we have C = {s1, s2,...,86}. It can be imagined that these contents
are made up off lines of code. Contents may also be empty in case of for
example root, repository, folder of file assets.

Remember that we want the logging feature to only be available when
the CLI feature is activated, so we create a feature model, defined by fm =

15

logging = CLI. With this last piece of information we can create the actual
assets of the system:
a; = (¢1,Class, (0, L, True, s1)
(¢2,Class, (), L, CLI, s)
(3, Class, 0, L, logging, s3)
(
(

fi1,File,{a1,a2,as}, L, True, s4)
as = (r1, Repository, {as} , L, True, s5)
ae = (tl, Root, {a5} 7fm7 True, 86)

We can see that there are only two non-trivial presence conditions, namely
in ag and a3, which are for the CLI and logging features, respectively. We
can also see that the feature model (fm) is located in the root of the tree
(ag). The last part we need to define to complete the system is the ordering
of the assets. There is only one asset whose children need to be ordered,
that is a4. We define the classes to be ordered such that a; <4 as <4 as.

The asset tree can also be seen in Figure 3.1. This format is what we will
use throughout this work. We have the identities of the assets as nodes, and
the children of these nodes are connected using edges. The edges are labelled
with the presence conditions of the children, but only if there is a non-trivial
presence condition (if it is not True). We can easily see the hierarchy in this
format, we first have the root, then the repository, followed by the file, which
contains three classes. We see the two non-trivial presence conditions in the
labels of the edges from fi to c2 and fi to ¢3. One thing to note is that
feature models are not present in this representation.

3.2 Parent Functions

Next, we will define a number of functions to find the parent of an asset. We
will need these definitions later to define the restrictions of the platform and
in the definitions of the new operators. To create this function, we first define
a function to retrieve all the parents of an asset and then define that this
function may give back at most one element. So we first define a function to
find the parents of an asset:

FindParents : A — P (A)
FindParents (a) = {a’ | a € Children(a’) A d’ € A}

With this definition, we can create the parent function that actually
returns one parent (or none):

Parent : A — [A]

16

a’ if FindParents(a) = {a'}
L otherwise

Parent (a) = {

Example 3.2 (Continutation of Example 3.1). Let us take a look at how
the parent functions work in terms of the example system we defined before.

FindParents (a1) = {a4} Parent(a1) = ay4
FindParents (a4) = {as} Parent (a4) = as;
FindParents (ag) = () Parent (ag) = L

As we can see, the FindParents should always give back either an empty
set, or a singleton set. Otherwise, the Parent cannot give a sensible singular
asset. We still create these two function separately, as we can handily use
the first function in the restrictions we will define next.

3.3 Restrictions

In this section, we introduce several restrictions to a Virtual Platform system
such that we see it as correct. These restrictions include but are not limited
to, setting up a correct (connected) asset tree.

For a system V = (A, F,Z,C), we first limit how trees are supposed to be
structured. This means that we want any asset to have at most one parent:

Vaea |[FindParents (a)| < 1

Note that we say that the number of parents has to be less than or equal to
one because an asset might have no parent at all (the root asset). We can
now also define that we have only one root asset (the asset tree is connected):

|{a | |FindParents (a)| =0Aa € A} =1
Finally, we also want to limit the type of assets, some asset types can

only be children of certain other asset types. We start with the root type,
which can only be found at the top of a tree:

VacaType(a) = Root <= Parent(a) = L

Note that we do not specify that the root of the tree must be an asset with
the Root type. This is because the tree may be cut up by the get operator
that we define later.

The other assets are ordered as follows:

17

VacaType(a) = Root <= VecChildren(a) TYPE(C) = Repository

VaeaType(a) = Repository —> VceCh”dren(a)Type(c) € {Folder, File}

VaeaType(a) = Folder == VecChildren(a) TYPe(c) € {Folder, File}

VacaType(a) = File = Veechildren(a) TYPe(c) € {Class, Field, Method, Block}
VacAType(a) = Class = V.cChildren(a) TYPE(c) € {Field, Method, Block}
VacaType(a) = Method == Veechildren(a) TYPE(c) = Block

VaeaType(a) = Field — Children(a) =0

3.4 Get Operator

We are now ready to define the get operator in terms of the formalisation
of the Virtual Platform. Before that let us first look at what the operator
wants to achieve.

The get operator wants to create a new asset tree that is a projection of
an input asset tree, the resulting asset tree is created by a choice expression.
This choice should be seen as some combination of features that the user
wants to edit. By choosing some combination of features, some code (read:
assets) may not be relevant anymore and thus will not be in the resulting
asset tree.

We first give the type of the function as follows:
Get: A x Exp (F) — [A]

The first argument is the asset on which we want to apply the operator,
note that this does not necessarily have to be the root asset. The second
argument of this function is the so-called choice. With this expression, we
“choose” which features we want to see in the result. Note that the resulting
asset is optional (can be 1). This is because the target asset might not
satisfy the given choice, we then result in no asset at all.

The high-level workings of this operator in the Virtual Platform are as
follows. We want to check for each asset if it is relevant for our choice. We do
this by checking if the conjunction between an asset its presence condition
and feature model together with the choice is satisfiable. We can do this
satisfiability check using a SAT solver. If this satisfiability check results as
unsatisfiable, the asset is not relevant in our result. We then do not have
to check its children as they are gated by the conditions of their parents. If
it is satisfiable, we include it into our result and recursively apply the same
strategy to its children.

Because the asset we apply the operator on might not be the root node of

18

the tree, we have to be careful of the feature models and presence conditions
higher up in the tree. These conditions might have an impact on the branch
our asset is on. To account for this, we concatenate all feature models and
presence conditions higher up in the tree. We only have to go through this
process for the asset we apply the operator on, since this impacts all assets
further down in the tree. In the end, the asset we apply the operator on has
four parts in the feature model: the original feature model, the conjunction
of all parent feature models, the conjunction of all the presence ancestral
presence conditions and finally the choice.

The recipe described above is for one asset. To make it work for an asset
tree, we apply this function to the children of an asset as well. We only do
this when the satisfiability check was positive. That is, we do not want to
check the children of an asset that we do not want in the first place.

First, we create two functions to “fold” all ancestor feature models and
presence conditions. We need these to store them in the target asset its
feature model.

FoldFMs : A — [Exp (F)]

FoldFMs (a) — FM(a) if Parent(a) = L
FM(a)[A]FoldFMs (Parent(a)) otherwise

FoldPCs : A — Exp (F)

PC(a) if Parent(a) = L

FoldPCs (a) =
PC(a) A FoldPCs (Parent(a)) otherwise

As we can see the above two definitions are quite similar, the only difference
is that presence conditions are not optional where feature models are. So
in the case of feature models we use a “optional logical conjunction” ([A]),
which is a simple structure which with we can conjunct optional expressions:

€9 if €1 = 1
ei[Alea =14 ¢ ifeg=_1

e1 N\ eo otherwise

With these definitions, we can create the full definition for the get opera-
tor. We create two definitions, the first of which describes the full operator.
The second definition (Prune) is used as a helper function that applies the
same general idea but it works on a set of assets.

19

root root

repo repo

| |
fi . fi .
/ ‘Cf\i\loggmg / ‘CL logging
C1 C2 C3 Cc1 C2

C3
get (fl,True)l get (fl,ﬂCLI)l
fi ‘ fi
/ Ieis logging |
Cc1 Co c3 &1
(a) Choice = True (b) Choice = ~CLI

Figure 3.2: Applications of the get operator on the running example.

(Name(a), Type(a), Prune(a, e A fm'), fm’, PC(a), Content(a)) if e A fm’ € SAT
L otherwise
where fm’ = FoldPCs (a) [A]FoldFMs (a)

Get (a,e) = {

Prune : A x Exp (F) = P (A)
Prune(a, e) = {(n,t, Prune(c, check), fm,pc,c) | check € SAT A ¢ € Children(a)}
where check = PC(d)Ae AFM (),

and a = (n,t, _, fm,pc,c)

We see that, on the asset that the operator is applied, we change the
feature model to include all of the ancestor presence conditions and feature
models. We do not have to do this in the Prune because we know that the
assets we are working with here are not root assets in the resulting asset
tree.

Another observation is that we include the feature model and presence
condition of an asset in the recursive calls. That is, we include the feature
models and the presence conditions in the second argument in calls of the
Prune. We do this because we know when going into recursive calls, that
these presence conditions and feature models must be satisfiable, otherwise
the current asset would not be in the result.

Example 3.3 (Continutation of Example 3.1). We keep working on the
previous example, now we will apply the get operator on the then defined
asset tree. We will look at two applications, where our choice are firstly the

20

trivial choice, and secondly the negation of the CLI feature. For simplicity,
this get operations will not be called on the root of the tree (ag) but on the
file asset (a4). Asset as and ag are not as interesting, as they both only have
one child.

We start with the application where we use the trivial choice. This
example can be seen in Figure 3.2a. As expected, we see the result is equal
to the tree that we apply the operator on, except that our file asset is now
called f{ instead of fi. The reason for this is that this asset now contains
its previously ancestral feature models and presence conditions. These are
added by the operator using the FoldFMs and FoldPCs functions. Since
there are no presence conditions in the tree above fi, FoldPCs(as) = True.
There is a feature model in the tree, however. This means that we get that
FoldFMs (a4) = fm. This means that we already know that f] differs from
f1 by the feature model fm. Let us now look into what checks are done by
the get operator to decide which assets should be in the result:

e For a4 (labelled by f1): fm € SAT. The check should contain the
choice conjucted with the feature model and presence condition of the
asset. The choice is trivial and can thus be omitted, the feature model
is equal to fm.

e For a; (labelled by ¢;1): fm € SAT. The same holds here as for ay4, as
a1 does not have any presence condition or feature model attached to
it.

e For as (labelled by ¢2): CLI A fm € SAT. The inclusion of the feature
model has the same reason as above. This time we also have included
the CLI feature, as it is the presence condition of as.

e For ag (labelled by c¢3): logging A fm € SAT. Similarly to ag, except
that we have a different presence condition (logging instead of CLI).

Since all of these checks succeed, all of the assets from a4 downwards are
included in the result.

For our second example, we apply the get operator with a non-trivial
choice, it being the negation of the CLI feature (—mCLI). We again apply it
on a4, the result can be seen in Figure 3.2b. Since we apply the operator on
the same asset as before, we can copy over the results of the FoldFMs and
FoldPCs functions. This time, we see that we are missing both ¢o and c3 in
the result. The first one seems obvious: its presence condition is CLI, and we
have the negation of that as our choice. The second one is actually missing
because of our feature model, which says that logging can only co-exist with

21

the CLI feature. The checks done by the get operator then look as follows
(remember that fm is defined by logging = CLI):

e For a4 (labelled by f1): =CLI A fm € SAT. The check should contain
the choice conjucted with the feature model and presence condition
of the asset. The choice is the negation of the CL/ feature, and the
feature model is equal to fm.

e For a; (labelled by ¢1): =CLI A fm € SAT. The same holds here as
for a4, as a; does not have any presence condition or feature model
attached to it.

e For ay (labelled by c9): =CLI A CLI A fm ¢ SAT. The inclusion of the
feature model has the same reason as above. This time we also have
included the CLI feature, as it is the presence condition of ay. This
leads to a problem as CLI and —CLI cannot be satisfied.

e For az (labelled by c3): = CLI A logging A fm ¢ SAT. Similarly to
ag, except that we have a different presence condition (logging instead
of CLI). This also leads to an unsatisfiable situation, as our feature
model says that CLI is implied by logging. In this case, logging holds
yet CLI does not.

Because of the unsatisfiability of the presence conditions of assets as and as,
they are not present in the result.

3.5 Put Operator

In this section, we will introduce the semantics for the put operator for the
Virtual Platform. We first introduce the idea of the operator, then some
new notation, and finally give the formalisation of the put operator. The
formalisation of the final operator will be given in terms of pseudocode,
where the helper functions will be defined as well have seen previously.

The put operator, in a way, does the opposite of the get operator. We
want this operator to include the retrieved asset tree of the get operator back
into the original tree on which we applied the get operator. Of course, this
tree may have been changed between applying the two operators, we will
even see that if there are no changes, the put operator is trivial.

22

3.5.1 Distinguishing Assets

We first create a way to distinguish between the assets in the “original” asset
tree and the asset tree created after the get operator (we will also refer to
this as the “new” tree.) This new and old tree have assets in common, but we
know that the get operator might have hidden assets, and the programmer
might have added or deleted assets after applying the get operator as well.
When we talk about the assets which were there just before applying the
get operator, we denote is using Ay, knowing A,g € A. To denote the
assets that we want to put back using the put operator, we use Ay, again
with Apew € A. These two sets make up all the assets in the system:
-Aold U Anew = A

Uniquely identifying assets should be done using their identifier. How-
ever, when we clone (part of) the asset tree using the get operator, the
identifiers do not change. In the put operator we can handily use this to our
advantage. With this identifier, we can match “old” assets with their “new”
new counterpart. Thus far we have not put limitations on the identities of
assets, since we did not use them. Now we want to limit the identities such
that they are unique in the old and new asset sets:

[Apew| = |[{Name(a) | a € Apew}
| Ama| = [{Name(a) | a € Ayq}|

This limitation ensures that any existing asset in the new set will map to
exactly one asset in the old set.

3.5.2 Put By Diff

Applying the put operator means that we apply the changed assets to the
existing asset tree. One way to do this is by applying a “diff” of the tree
much like we have diffs for code in versioning contexts. We identify three
actions that we can apply to assets: we can add, edit and remove them. For
each of these actions we have to make changes to the presence conditions to
correctly apply them when applying the put operator:

¢ Adding an asset: Add the ambition to the PC of the new asset.

e Editing an asset: Add the ambition to the PC of the new asset, and
add the negation of the ambition to the old asset.

e Removing an asset: Add the negation of the ambition to the old
asset.

23

| Added Edited Removed
New asset | PCAa PCAa
Old asset PC A—a PC A-a

Table 3.1: The difference between the result of different actions on assets, a
being the ambition

At this point, we should realise that there is no difference between the
actions, this is easily visualised in table form, see Table 3.1. In this table,
we can see that the action does not have an effect on what we do with the
presence condition of assets. The only difference is whether we talk about
old or new assets. We do note the “holes” in the table, but these raise no
problems. The first hole is when we remove an asset, we have nothing to
do with the new asset. This makes sense as the new asset does not exist
anymore. The way to solve this is by simply “trying” to add the ambition to
the presence condition, if this cannot be done, it means that the asset was
removed. Following the same logic, we can simply “try” to add the negation
of the ambition to the old asset (we look it up using the unique identifier.)
If this works, we know that the asset was either edited or removed, if this
does not work, the asset was added. If we can work with this, we only need
a set of changed assets for a diff. The combination of this set and the asset
trees makes it possible to correctly apply the put operator. This does mean
that we need to record actions taken on the asset tree after the get operator
is applied. This is the least amount of work we can do, however. We need at
least some form of diff. Another option would be to calculate the diff using
the old and new asset trees. This would cost a lot of computing power as we
would need to compare every asset and its contents.

3.5.3 Formalisation

Now that we have the idea of the put laid down, we can create the actual
formalisation.

In Algorithm 1 we can see how the operator works in the form of an
algorithm. We should note the types of the input: first, we have the new
information, that being the new asset tree (newAssets) and the set of changed
assets changedAssets, these have the types [A] and P (Z) respectively. Then
we see the arguments we also had for the get operator, being the original
asset tree oldAssets, being an element of A and the choice expression choice,
having type Exp (F). The new expression we have is the ambition, having
the same type as the first expression. Finally, as the output of the algorithm,
we have the new asset tree, which we will see, is an altered version of the

24

old asset tree. The broad idea of the algorithm is as follows. We first find
out which assets we actually need to apply to the old tree, then for each of
these assets, we add the negation of the ambition to the old asset and the
ambition to the new asset. Finally, if there is a new asset (it is not a remove
action), we add it to the old tree.

To complete these actions we need a number of functions. First up, we
need a function to filter the assets that we actually need to apply, this is the
FiLTERASSETS function. To find the old and new assets using its identity, we
have the FindOriginal and FindNew functions respectively. Finally, we have
the INSERTNEWASSET function to insert the new asset into the old tree.

The FILTERASSETS function is a function that filters all assets from a set,
which are already children of other assets in that same set. The reason we
want to filter these assets is that we do not need to do anything with them in
the old asset tree. If we have two assets a; and ag, where ag € Children(a;)
and both of these assets are in the changed assets, then adding the negation
of the ambition to the old version of a; also impacts the old version of as
since it is a child of that asset. The implementation of the function can
be found in Algorithm 2. The function takes two arguments, one being the
asset we are currently looking at (the identity of it, so its type is Z.) The
other argument is of the same type as the argument we have seen in the
put operator: the list of changed assets is a set of identities (P (Z)). The
function results in a simplified set of the same type. The function itself works
by checking if the current asset is in the changed assets, if this is the case,
all the children are removed from the changed assets. If it is not the case,
the function is recursively applied to all children of this asset.

The FindOriginal and FindNew functions are very similar, the goal of both
of these functions is to find the asset with the given identity. The difference
is that, as the names suggest, the FindOriginal function looks in the original
(old) set of assets (Ayq) and the FindNew function looks in the new set of
assets (Apew). The formalisation of these functions is as follows:

FindAssets.(7) = {a | Name(a) =i A a € ¢}

FindOriginal : Z — [A]
a if FindAssets 4, (1) = {a}

FindOriginal(i) =
(@ 1 otherwise

FindNew : Z — [A]
a if FindAssetsy,,, (i) = {a}

FindNew(7) =
1 otherwise

Lastly, we need one more helper function, FlattenChildren does what its

25

name suggests, it takes an asset and flattens all children within it into a set.
The function is recursively called on the children of the children as well, such
that the result consists of all the assets until the leaves of the tree.

FlattenChildren : A — P (A)
FlattenChildren (a) = |J {{c} U FlattenChildren (¢) | ¢ € Children (a)}

Algorithm 1 Pur

input newAssets: New asset tree ([A])

input changedAssets: Set of changed assets (P (7))
input oldAssets: Original asset tree (A)

input choice: Choice expression (Exp (F))

input ambition: Ambition expression (Exp (F))
output New asset tree (A)

toApply < FILTERASSETS(changedAssets, Name(asset))
for all a € toApply do
origAsset <— FindOriginal(a)
if origAsset # 1 then
origAsset.PC + origAsset. PC A—ambition
end if
newAsset <— FindNew(a)
if newAsset # 1 then
newAsset.PC « newAsset.PC A ambition
INSERTNEWASSET (newAsset, origAsset)
11: end if
12: end for
13: return oldAssets

© 00 N O O = W N

—
o

The last function we have yet to define is the INSERTNEWASSET function.
This function is only called when we have either added or edited some asset.
In case of a deletion, we do not have a new asset. Adding an asset can lead to
problems. For example, in Figure 3.3, we start with an asset tree containing
two child assets, of which one is hidden by applying the get operator with
—C' as the choice. The tree is augmented by the programmer by adding a
new asset ag, after a;. Now when the put operator is applied on this new
tree, together with the original tree and B as the ambition, which leads to an
Alignment Conflict. The reason is that we cannot know whether we want to
add the new asset a3 either before or after aq, since as was hidden when we
added the new asset. The problem in this case would not be relevant if the
new asset and the hidden asset could not occur simultaneously: if the final
presence condition of the new asset combined with the presence condition of
the hidden asset is not satisfiable, it does not matter whether we add the new

26

Algorithm 2 FILTERASSETS

input changedAssets: Set of changed assets (P (7))
input asset: Root asset ()
output Set of assets (P (7))

1: result < changedAssets

2: if asset € changedAssets then

3: newAsset < FindNew (asset)

4: if newAsset = L then

5: return result

6: end if

7. for all ¢ € FlattenChildren (newAsset) do
8: result < result \Name (c)

9: end for

10: else

11: for all ¢ € Children(FindNew(asset)) do
12: result <— Prune (result, c)

13: end for

14: end if

15: return result

asset before or after the hidden asset. We also do not have to worry about
alignment conflicts when we are working with changes to existing assets.
When we edit an asset, we always want the “new” asset to be right next
to the old asset, since that is the exact location where it was before it was
edited. The “old” and the “new” assets in case of an edit can never occur at
the same time, this is by definition of their presence conditions.

The positioning of children in assets is decided by the partially ordered
set < 4. In tree forms such as in Figure 3.3, we can visually see the ordering.
So we know that a1 <4 ao and later that a; <4 as. The problem is that
these two combined can lead to two different full orders. We can get a1 <y
as <4 a2, as in the left variant, or a; <4 a2 <4 as, as seen in the right
version. In our algorithm, the programmer must make sure that this full
order ultimately is defined. As hinted before, this ordering is only relevant
for a subset of the asset types, we do not want to order assets such as files.

In the end, we want our function to first check the type of the parent
asset. If the ordering of that parent is not relevant, we can simply add the
asset to the “new” tree without a problem. Otherwise, we need to check if
the action performed on the given asset is an edit of an asset or an addition
of a completely new asset. In the case of an edit, we can automatically
restore the ordering of the children (we simply add the new asset right next

27

1] Tll
4/ ¢ 47 BN A7 oD
aq a9 aq

az a2 ay a2 az

get(r1,C) put (rh,{as},r1,C, B)
) r
A A/ N
ay Add as ai as

Figure 3.3: Example of how an alignment conflict might arise.

to the “old” variant.) In the other case, the programmer manually needs to
restore the ordering of the children. This procedure is shown in the form of
an algorithm in Algorithm 3.

Algorithm 3 INSERTNEWASSET

input newAsset: The asset to insert (A)
input oldAsset: Optional “old” asset ([A])

1: newParent <— FindOriginal(Parent(newAsset))

2: Children(newParent) <— Children(newParent) U {newAsset}

3: if Type(Parent(newAsset)) € {Class, Method, Block, File} then
4. if oldAsset = 1 then

5: Manually repair full ordering of children of newParent
6: else

7: for all a € Children(newParent) do

8: if oldAsset <4 a then

9: define newAsset <4 a

10: end if

11: end for

12: end if

13: end if

In the algorithm we first see the new asset getting added to the “old”
asset tree (lines 1 and 2). In case the ordering is irrelevant, the function
ends here. Otherwise, we need to manually repair the full ordering in case of
a completely new asset (line 5), or we programmatically set the new ordering
in case of an edit action (lines 7 until 11).

A final remark on the process of the put operator is that we do not do
anything with the folded feature models and presence conditions that were
put in the feature model of the resulting root asset of the get operator. We
do not process this change after applying the put operator because these

28

/
1
|

fi
SeNE 28T ek

C1 Cq4 (6] C3
\
my
get (fla_‘c)
pU’t (fév {Cla C47m1} 3 fla _'Cv G)
f2 f5
| — / \
e1 Actual Edit & ¢4
\
mi

Figure 3.4: Example application of the put operator.

changes are not fundamentally incorrect, even when they are copied over to
the original tree. Note that this copying over can only happen when the
root of the new tree is changed, which will most definitely be an uncommon
occurrence. The copying over is not fundamentally wrong since, at this
point of the asset tree, we already know that the conditions in this feature
model must hold (they came from ancestors.) It is valid to simplify a feature
model at some point in an asset tree if (part of) it can already be concluded
from feature models and presence conditions higher up in the tree. If this
simplification is always attempted at all assets in the tree, the “not cleaning
up” of the feature models is irrelevant.

Example 3.4 (Continuation of Example 3.3). We continue the example in
which we applied the get operator to the system we introduced even before
that. Specifically, we will continue the second example where we applied the
get operator with as choice expression ~CLI. An overview can be seen in
Figure 3.4. Note that we shortened the names of the features to their first
letters (C stands for CLI and L stands for logging). The actual edit this
time is to add a new feature called GUI (in the figure shortened to just G).
To do this, we have to edit a; (identified by ¢;) and we have to add two new
assets identified by ¢4 and m; respectively. The latter addition is a child
of the first one. Now when we apply the put operator, we apply it with
as ambition @G, since we want these changes to apply to the GUI feature.
The operator first filters the changed assets set to only contain the relevant
assets. This filter removes mq from the set since it is a child of ¢4. We can do
this becauase this child asset will be automatically applied when applying its
parent (cq). We first apply ¢1, which is simple as it is just an edit action. The
old asset from the original tree used to have the trivial presence condition,
this becomes the negation of the ambition. The new version of ¢, in the
result identified as ¢}, gets as presence condition the ambition. Lastly, we

29

need to apply ¢4, this leads to an alignment conflict as we do not know if we
should add it before co, after co or after cg. We do not know this because co
and c3 were hidden in the view. The programmer did not see these classes
when they created the new class. Since this process now requires a human
in the loop, we magically decide to put it right after ¢j. This new asset also
gets the ambition as its presence condition. Note that the Figure resembles
the same shape as the figure showing the lens overview before (Figure 2.1).
In that figure, we also displayed the arrows in reverse and showed that they
corresponded with the lens laws. How the lens laws work for our work is
explained in the following section.

30

Chapter 4

Variational Lenses

In this chapter we present a new lens definition building on the formalisations
of the put and get operators we have created in the previous section. We
will expand on the lenses we have introduced in Section 2.3.

4.1 Configuration

If we want to constrain our get and put operators from Sections 3.4 and 3.5
into a lens, we need to create a new kind of lens. The reason is that the
typing of the standard lenses constrain us too much in terms of the types
they have. Our new arguments cannot fit into this old definition.

To allow for this new lens to be applicable beyond the scope of the Vir-
tual Platform, we extract more general types from our formalisations of the
operators:

get : CxE—A
put : D(A)xCxExE—C

create : AXxE —=C

The get function now takes two arguments, first we see the concrete structure
as we have seen it before, but now it comes with an E: this part carries the
configuration information (in our case, the expression or choice.) The result
of the get function still is the abstract structure as before. Note that we
will show the definitions of the create functions here, but we will not go into
the implementation of this function. This implementation would involve the
creation of a new system in the Virtual Platform starting from an existing
codebase.

31

Derived edit

\ et(s',e®@a)/
get (s.0) [! gL e @Al (). s.c00)
: put (empty (v),s,¢,¢)
U/ v
Actual edit, giving d(-)

Figure 4.1: Overview of operator relationships.

The put function changes similarly, we still see the concrete argument,
and we have again added configuration arguments. We both have the con-
figuration argument that was applied to the get operator (the choice) and
the configuration used in the put operator, which for us is the ambition. The
most important change here is that the abstract argument has changed into
D(A). This D stands for diff, as we need the abstract argument combined
with some sort of diffing structure. This can be seen as a list of changes
made to the view. What is important is that we need to have a function
empty : A — D(A) that can transform an abstract structure into a diffing
structure. This function should, as the name suggests, deliver an empty diff
structure. We will use this function in new lens laws.

Finally, we have the create function, this function has changed from the
original in the same way the get function changed, we have only added a
configuration argument E to it.

Since we have changed the signature of the lens functions, we also have
to adapt the lens laws accordingly:

put (empty (get ce)) cee=c GETPUT
get (put(d(a) ceqge)) (e®ey) =a PUTGET
get (create a €) e =a CREATEGET

Here, we have that e, is the configuration used to get to the view, which is
put back using the put function. How the first two laws interact with the
system as a whole can also be seen in Figure 4.1.

4.2 Virtual Platform

We want to work towards proving the defined lens laws for our instance of
the lens. Before we start working on that, let us first look at how we should

32

fill in the abstract types in order to fit our get and put functions:

C=A
E = Exp(F)
A= [A]

D(A)=[A] xP(T)
Indeed, if we fill in these types for the different functions we get:

get : AX Exp(F) — [A]
put : [A]| xP(Z)x Ax Exp(F) x Exp(F) = A
create @ [A]| X Exp(F) — A

We want to minimise the restrictions put on the ambition in the put
operator. But if we want to stay true to the lens laws defined just above,
we need at least some limitation, to illustrate the issue, see Figure 4.2. This
example is structured much like in Figure 4.1, where we start in the top-left
corner and work our way to the top-right corner. We start with an asset tree
with three children, with A, =B and —A as presence conditions respectively.
To get our view, we take the entire tree and get it using A as our choice
expression. This leads to the removal of the third child as ~A A A ¢ SAT.
Next, we edit our view such that a; is changed and a4 is added. Finally,
we want to put our new asset tree back into the original asset tree. To do
this, we choose as ambition expression just B. Note that the changed asset
set contains a1 and a4, for now, we assume that the identities of the assets
a1 and a4 have the same name. The result of our operation is as expected,
we now have two versions of aj, one is the original (a;) and the new one
is the edited version (a}). We also see that a4 now has B as its presence
condition and that it is placed after the previously hidden a3. Now, we run
into the following problem: the PUTGET law says that we need to have
some expression e such that get(rs,e) = r,. Currently, this is not possible,
as we want both a’l, as and a4 in our result. In other words, we do not want
a1 and az. The way to do this is to choose e = AA B. This does not work for
us though, as it would lead to 5 without ag, as =B would not hold anymore.

The example shows that we need some limitation in terms of what ex-
pression you can choose for the ambition. To satisfy the lens laws we restrict
the ambition in the put operator in the following way: for every asset a in
Anew, with am being the ambition and ch being the choice expression:

ch A am AN PC(a) € SAT

This says that the choice expression, together with the ambition and any
asset presence condition must be satisfiable. We will now show that this
limitation indeed makes our definition of put adhere to the lens laws.

33

1 T3
SN B BB
ap az ag ap adf a2 a3 a4

7
7

get(rlaA) get(rg,?) :: pUt(r/27{a17a4}7T17A7 B)

|

72 T4
A/ _|B Edit aq, add a4 Iy ‘ﬁé\
al az al a2 a4

Figure 4.2: Example of relationships between lens operators on the Virtual
Platform showing why we need a restriction on the ambition expresion.

4.3 Proving the lens laws

We want to show that the proposed lens laws hold for the formalisation
of the operators created for the virtual platform. We will start with the
GETPUT law and then prove the PUTGET law.

Theorem 4.1. The formalisations of get and put in Sections 3.4 and 3.5
adhere to the GETPUT law.

Proof. As we know, the GETPUT law says that when we use the put operator
directly after the get operator, we should result in the same asset tree. Our
law uses an empty function that needs to be defined on the D(A) type. So
in our case we need a function empty : [A] — [A] x P (Z). This is a simple
function that takes an optional asset and returns that asset in combination
with an empty set. So empty x = x,(. By definition, the put operator only
makes changes to assets in the set of changed assets. Our empty function
always creates an empty set of changes and thus no changes will be applied.
This ultimately means that the result of the put operator, when applied
with an empty change set, will always be the concrete argument given to it.
This is even stronger than the lens law we need to prove: in our method,
the “ambition” argument to the function may even differ from the “choice”
argument:
put (get ce1) D cep ea =c

This proves that the GETPUT law is always satisfied. O

Theorem 4.2. The formalisations of get and put in Sections 3.4 and 3.5
adhere to the PUTGET law.

Proof. The PUTGET law states that we should be able to get back to a
possibly edited view from the result of the put operator applied on that

34

edited view. We of course know the typing of the operators on the Virtual
Platform and thus can fill in our definitions of d(a) and ®. The d(a) we
can replace with two arguments, one for the asset (a) and one for the set of
changed assets (P (Z)). The binary operator combining the configurations
is replaced with the conjunction operator (A):

get (put(aicege)) (eNeg) =a

We start off by stating that all assets a’ in the tree of a have a presence
condition such that:
eq ANPC(a’) € SAT (4.1)

We know this since that is what the get operator used to retrieve the assets.
And by the restriction we introduced earlier, we also know that all assets a’
in the tree of a have that just before applying the put operator:

eg Ne NPC(d') € SAT (4.2)

If this does not hold for any of the assets in the tree, we cannot apply the
operator. Note that this second equation is a stronger version of the first
one. Also note that this second equation contains ey A e, which is exactly
what the gef operator in the law uses to obtain the result. This means that
all the assets that are visible in a will also be obtained after applying the
get operator. But since the put operator can change the presence conditions
of the assets, we have to look at the possible changes it can make before we
can conclude that the law holds.

1. If an asset was edited, we want that after the get operator, the edited
version is visible, not the original version of that asset. We are sure
that this will happen since:

e The “old” asset used to satisfy (4.1), but will be changed such
that the presence condition of it is combined with the negation of
the ambition (—e), that means that the new presence condition
can never satisfy the choice expression of the final get operator.

e The “new” asset already satisfied (4.2) before applying the put
operator, and it will only be changed such that the ambition is
combined with the ambition (e), this means that (4.2) will keep
holding.

2. If an asset was added, it satisfied (4.2) before the put operator, and it
will only get the ambition (e) added to its presence condition, so similar
to what we have seen before, (4.2) will keep holding. This means that
the added asset will indeed be in the result of the get operator.

35

3. If an asset was deleted, the “old” asset used to satisfy (4.1), but sim-
ilarly to what we have seen before, this asset cannot be in the result
of the get operator, since it gets the negation of the ambition (—e)
appended to its presence condition.

This means that any changes in the asset tree cannot lead to the assets not
being in the result of the get operator. We now still have to show that any
assets that did not show up after the initial get operator, will also not be
in the result of the get operator as seen in the lens law. We know that
this is the case as these “hidden” assets did not satisfy (4.1) and the choice
expression used in the get operator in the lens law uses a stronger version,
namely (4.2). That means the initially hidden assets will stay hidden as their
presence conditions have not been affected (the put operator only changes
the presence conditions of visible assets.)

At this point, we know that all the assets in the view will stay in the
view after applying the final get operator. We can also conclude that the
(vertical) order does not change (the parent-child relationships), since the
put operator does not change those relationships. One final thing we should
show is that alignment conflicts cannot lead to problems with this law.

As we know, alignment issues can happen when we create new assets as
siblings of assets that have their siblings hidden by the get operator. It does
not matter where the programmer decides to place this new asset, however.
This is because as we have already seen, the hidden assets will stay hidden
after the final get operator application. This means that the location of the
new asset does not change relatively from the other shown assets.

With this final knowledge, we can say for sure that the asset tree in the
view does not change if we apply the get operator after a put operator if
we choose the ambition as elaborated on, proving that the PUTGET law
holds. O

Example 4.1 (Continuation of Example 3.4). In the previous example,
where we have shown how the put operator works, we already hinted on
that the figure visualising the example (Figure 3.4) resembles the figure vi-
sualising how a lens works (now Figure 4.1). Let us now exemplify the arrows
defining the lens laws by applying the laws. We start with the easiest, the
GETPUT law. This one is eagy, because our put operator works by looping
through all the changes, of which we have none. The empty function that is
applied on the result simply gives back an empty set of changes. Because of
this, we result in the original view f;.

The PUTGET law is somewhat more involved. We want to go from f]
to f4 using an application of the get operator. The choice in this case, is a

36

combination of the original choice and the ambition. We have also already
figured out that this combination is a conjunction operator (A). Since our
original choice was = C and the ambition was G, our new choice is ~C A G
and the full application of the get operator looks like get (f{,—C A G). We
know that the asset labelled by fi will pass through the get operator as it
does not have a presence condition (and we know that the feature model is
valid with our new choice). We can look at every child of this local root
asset and see which ones are valid for the get operator:

e The asset labelled by ¢; does not pass the operator, as its presence
condition is =G. This presence condition is not satisfiable with our
choice.

e The asset labelled by ¢} does pass the checks, as its presence condition
(@) is satisfiable with our choice (and the feature model).

e The asset labelled by ¢4 has the same presence condition as ¢} and will
thus also be in the result of the get operator. We already know that
the child of this asset (mq) will also be in the result set as it does not
have any further presence conditions or feature models.

e The asset labelled by cy will not be in the result set as its presence
condition contradicts the choice.

e The asset labelled by c3 will also not be in the result set. Its presence
condition contradicts the choice in combination with the feature model
of the system.

As is clear, we end up with f{, ¢} and c4. These are exactly the assets that
are also present in the edited view fJ.

37

Chapter 5

Implementation

In this chapter, we will present the implementation of the operators in the
Virtual Platform. The implementation of the Virtual Platform is not a one-
to-one match of the formalisation created in this work, our formalisation
abstracts away some details that are present in the implementation. We aim
to give an overview of our implementation. After the overview, we go into
more detail of selected, particularly interesting parts of the implementation.

The implementation itself is written in Scala' and can be found in the
source code of the Virtual Platform?, which is open source. The Virtual
Platform contains many different operators, the get and put functions are
thus added as two new operators.

5.1 Get Operator

In Listing 1, we can see the source code for the get operator. The first
check in the operator is the availability of a feature model somewhere in the
ancestors of the asset that the operator is applied on. We need this to save
the folded feature models and presence conditions. This is also a difference
between the implementation and the formalisation: the formalisation sees the
feature model as an expression, while the implementation sees the feature
model as a tree of features, together with a list of expressions that can be
used as cross tree constraints. We want to access the cross-tree constraints
and thus need some feature model to save them into. This check can be
found in lines 2-5.

"https://www.scala-lang.org/
*https://bitbucket.org/easelab/vp/src/master/

38

https://www.scala-lang.org/
https://bitbucket.org/easelab/vp/src/master/

w N

00 ~J O Ut

11
12
13
14

15
16
17
18
19
20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Listing 1 Implementation of the get operator

override def perform(): Boolean = {

if (getImmediateAncestorFeatureModel (Some(asset)).isEmpty) {
log.error ("Cannot apply operator on an asset without a

feature model")
return false

}

val assetClone = asset.doClone()

var parentFM: Option|[FeatureModel] = None
if (assetClone.parent.isDefined) {
parentFM = assetClone.parent.get.foldFeatureModels ()

if (assetClone.featureModel.isDefined && parentFM.isDefined) {
assetClone .featureModel . get.crossTreeConstraints :4=

parentFM . get . asExpression

} else if (assetClone.featureModel.isEmpty) {
assetClone.featureModel = parentFM

}

if (assetClone.parent.isDefined) {
assetClone .featureModel . get.crossTreeConstraints :4=
assetClone . parent.get.foldPresenceConditions ()

}

assetClone . featureModel.get.crossTreeConstraints :+= choice

val result = applyChoice(assetClone)

if (result.isEmpty) {

log.warn("The given choice resulted in an empty asset tree")

false

} else {
val root = asset.getRoot ()
if (root.isDefined) {

}

true

root.get.unassignedAssets :+= result.get

39

O O 00O UkWN

To continue, we first clone the target asset, such that we can use it to
change it without changing the original asset. This cloning is done using the
.doClone{) method in line 7.

Next, we fold the parent feature models using the .foldFeatureModels()
method, this method results in an optional new feature model. We want to
save this folded feature model in either the cross tree constraints of the fea-
ture model of the current asset, or as the feature model of the current asset
in general. This is depending on if the current asset already has a feature
model. This is done in lines 9-17. The same is then done for the presence
conditions in the ancestors of the current asset. This time we do not have to
check if the current asset has a feature model, as we already know this from
the previous step. The folded presence conditions are saved in lines 19-23.

Lastly, the actual pruning of the assets is done using the applyChoice()
method. We will cover this in more detail next, assume for now that this
method results in an optional asset (line 25). Then in lines 27-36 the result
is parsed. If there is no result (the target asset was not included in the
result), the user is warned about this. Otherwise, we save the new asset in
the unassignedAssets of the root asset. This is another difference between
the implementation and the formalisation, we want to keep the full tree
connected in the implementation. To do this, we have to include the cloned
asset in the original asset tree. This is done by attaching the cloned assets
to the unassignedAssets.

Listing 2 Implementation of the applyChoice method

private def applyChoice(localAsset: Asset): Option[Asset] = {
var expression = localAsset.presenceCondition & choice
if (localAsset.featureModel.isDefined) {
expression &= localAsset.featureModel. get.asExpression

}
if (SATSolver.solve(expression) = UNSAT()) {

None
} else {
val cloneAsset = localAsset.doClone()
cloneAsset.children = localAsset.children . flatMap (
applyChoice)
Some (cloneAsset)

5.1.1 The applyChoice Method

The workings of the get operator have been explained in the previous section,
but this explanation skips over the most important function of the operator.

40

N OO W N

10
11
12
13
14
15
16

17
18
19

This function actually does the filtering of the assets to decide which ones
should end up in the result. It is called applyChoice and its implementation
can be found in Listing 2.

The function takes one argument, which is the asset that we are currently
looking at (localAsset). We first want to create the expression which we
want to check for satisfiability, we do this by creating a conjunction with
the choice, the local presence condition, and the local feature model. The
feature model is optional, so we have to do an extra check before using it.
This expression is built in lines 2-5.

Next, we actually apply a SAT solver to check the expression for satis-
fiability, for this, we use the SAT solver available in the Virtual Platform.
If this is not satisfiable (the result is UNSAT), we return None to indicate
that the asset should not appear in the result asset set. If the expression
was satisfiable, we want to return the asset. Before returning it however, we
want to apply the filtering function on the children of the asset.

5.2 Put Operator

Listing 3 Implementation of the put operator

override def perform (): Boolean = {
if (!doSanityChecks()) return false
filterChangedAssets ()

for (changedAsset <— changedAssets) {
if (targetAssetMap.contains(changedAsset)) {
target AssetMap (changedAsset). presenceCondition &= !
ambition

if (sourceAssetMap.contains(changedAsset)) {
sourceAssetMap (changedAsset) . presenceCondition &= ambition
insertNewAsset (sourceAssetMap (changedAsset))

}
}
val targetRoot = targetAsset.getRoot().get
targetRoot . unassignedAssets = targetRoot.unassignedAssets
filterNot { .name — asset.name}
true

The main function of the implementation of the Put operator closely
matches the definition we gave in pseudocode in Algorithm 1. The operator

41

starts by doing a number of sanity checks on the assets on which the operator
was applied. These checks make sure that the changed assets are valid, the
target asset is actually the source of the new asset, if the new asset is correctly
created using the get operator, and finally if the new asset tree satisfies the
limitation we created for the put operator. This is done in line 2.

In the next line, we filter the changed assets, such that changed assets
that are children of another changed asset are removed from the list (line
3). The following for loop enumerates the changed assets and applies the
necessary changes to the original asset tree. At this point it should be noted
that even before calling the put operator, two maps are created to easily
access the old and new assets from their respective asset trees. These are
called the targetAssetMap for the original asset tree and sourceAssetMap for
the new asset tree. These maps can be used to check if the changed assets are
edited, created or deleted. The necessary changed are made to the presence
conditions (adding the ambition or the negation of the ambition) and the
new asset is inserted in the asset tree using the insertNewAsset method in
case this is needed. We will go into more detail of this function later. This
process can be found in lines 5-13. Lastly, we remove the cloned asset tree
from the unassignedAssets field of the target asset tree, as the get-put cycle
is now complete (lines 15-16).

5.2.1 The tnsertNewAsset Method

Before, we have seen the general structure of how the put operator is imple-
mented. Let us now look at the most important function of the implemen-
tation, namely the one that actually inserts the new assets into the source
asset tree. This function is called insertNewAsset, it takes as an argument
the asset to add (called newAsset). Its implementation can be found in
Listing 4.

The method is mainly split up into three cases: the first case is an edit
operation, in which we already know where to place the new asset (lines 2-5).
The second case is the case where it is an addition of a new asset, where the
ordering is important (lines 6-20). The last case is a new asset where the
ordering does not matter (lines 21-24).

Edit Operation

The first case is an edit operation of an asset. We have a new asset to add,
and we want to place it right beside the asset that was edited. An asset can
be added using the insertInList method, for which we only need the new

42

B> W N =

10
11
12
13
14
15
16

17
18
19
20

21
22
23

24
25

Listing 4 Implementation of the insertNewAsset method

private def insertNewAsset(newAsset: Asset): Unit = {
if (targetAssetMap.contains(newAsset.name)) {
val oldAsset = targetAssetMap (newAsset.name)
val oldAssetIndex = oldAsset.parent.get.children.indexOf(
oldAsset)
oldAsset .parent.get.children = Put.insertInList (oldAsset.
parent.get.children , newAsset, oldAssetIndex + 1)
} else if (Put.childrenAreOrdered (newAsset.parent.get.
assetType)) {
val targetParent = targetAssetMap (newAsset.parent.get.name)

val lowerBound =
val upperBound =

var newldx = —1

if (lowerBound — upperBound) {
newldx = lowerBound

} else {
do {

print (f"Please select an index for asset ${newAsset.name
")
newldx = scala.io.StdIn.readInt ()
} while (newldx > upperBound || newldx < lowerBound)
}
targetParent . children = Put.insertInList (targetParent.
children , newAsset, newldx)
} else {
val targetParent — targetAssetMap (newAsset.parent.get.name)
targetParent . children = Put.insertInList (targetParent.
children , newAsset, idx = 0)

43

index of the asset. To get the index, we first get the original of the edited
asset in line 3. With this asset, we can decide the index using the index0f
method in line 4. The insertion in the list of children is then done in line 5.

Ordered Addition Operation

As mentioned in the formalisation, when an asset is added and we have
multiple choices for the new location, we have to ask the programmer where
they want to place the new asset. We first decide the lower- and upper
bounds for the location in lines 7-11. If these bounds are equal, we have
only one possible location and do not have to ask the programmer for help
(lines 12-13). Otherwise, we ask the programmer for help (lines 14-19). Note
that the message the programmer gets is simplified in the listing shown here.
Lastly, we insert the new asset in the chosen location in line 20.

Unordered Addition Operation

Lastly, we have the unordered addition operation. This is used for assets
that do not have to be ordered (such as files). Here, we simply add the new
asset to the first position of the list of children. This is the simplest variant
as no index calculation has to be done. We can simply get the target parent
and add the new child to it (lines 21-24).

5.3 Implementation Remarks

In this chapter, we have seen the major parts of the implementation of
the operators. One last remark that should be made is the shortcoming of
the current implementation. The Virtual Platform of course does not work
without serialisation and deserialisation of the code that is represented using
the asset trees. Without these steps, editing the code is near impossible. We
have not implemented the (de)serialisation of the cloned asset trees, because
the Virtual Platform currently cannot (de)serialise presence conditions that
are not disjunctions of features. We need more complex presence conditions
to support our operators. Before support is created for (de)serialisation of
presence conditions in the shape of any expressions, our created operators
are not fully finished. The core logic is still implemented and it can still be
used as a proof of concept, simply without actually having the source files
generated.

Example 5.1 (Continuation of Example 3.4). In this example, we will recre-

44

Root ()
Root) R§§i§i>
Repo () cl ['GUI]
Fi‘é)() c1 [GUI]
o e tou
c3 [logging] 2 [CLI]
c3 [logging]
get (-, ~CLI) put(-,{cl,04,m1},~,—|CLI,GUI/
Repo ()
Repo) File(Q
File() _ - c1O
c10) Manual edit ca Q)
mi()

Figure 5.1: Example 3.4 recreated using the Virtual Platform.

ate the example of the put operator in the implementation in the Virtual
Platform. The result of the previous example of the put operator can be
found in Figure 3.4. The visualisation that the Virtual Platform gives is
seen in Figure 5.1. Here, a tree structure is shown of how the assets relate to
each other. An identation means that the asset is a child asset of the asset
above. The name of the asset is shown together with an optional presence
condition between square braces. It can be seen that this represents the
same structure as seen in the previous example using the put operator from
the formalisation. The ounly thing that the Virtual Platform asked of us is
that we have to give a location for ¢4, as it can be put it multiple places:
this is the alignment conflict. The way the Virtual Platform asks this is as
follows:

An alignment conflict has occurred!
1-> ¢l <-2-> ¢2 <-3
Please select an index for asset c4 (within the range [1, 3]):

This represents the children of the File asset, we see ¢ and ¢o together with
numbers pointing to them. We can now choose either 1, 2 or 3 to select a
location: 1 to place the new asset before c1, 2 to place it after c1, and 3 to
place it after co. We choose 2 here, to adhere to the example.

45

Chapter 6

Evaluation

This chapter will cover the evaluation of the operators we designed and
formalised in Chapter 3. We will perform this evaluation by looking at
common editing operations in software systems and seeing how well our
system applies to these operations.

Note that we only referred to Chapter 3 as to what this chapter will cover.
This is because we only cover the formalisation of the operators here, not
the implementation (from Chapter 5). The implementation is not evaluated
at large, given the scale of the thesis. The evaluation that is in place for the
implementation are the unit tests created for it.

6.1 Context and Methodology

The editing operations we will look into are a collection of fourteen editing
operations, structured into three groups (code-adding, code-removing and
other), that have been identified in [29]. These editing operations have been
extracted from commit data from the Marlin 3D printer firmware!. This
was a suitable repository as it is highly configurable and large (more than
140 features and 40,000 lines of code). The code-adding patterns are for
adding variability (P1-P3), partly wrapping existing code with variability
(P4 and P5), adding code without variability (P6), and repairing annotations
(P7). Code-removing patterns exist for removing non annotated code (P8),
removing code with variability (P9), and for repairing annotations (P10).
The other patterns include wrapping and unwrapping code with and from
their variability (P11 and P12), changing presence conditions of code (P13),

"https://github.com/MarlinFirmware/

46

https://github.com/MarlinFirmware/

|

3
| /A
aq a9

ay
get (rq, true) l Wput (rh, {a2} 1, true, A)
) s
—_—
a1 Manual edit a1/ \a2

Figure 6.1: Workflow for adding a new asset, relevant for patterns PI
through P3.

and moving code between different variability blocks (P14). Our evaluation
is structured along the groups.

In this evaluation, we follow the same process as Sténciulescu et al.: we
take a look at every edit operation and see how our method supports them.
Supporting in this context means that we can fulfill the edit operation with
our definitions of the get and put operators. We will see that this comes
down to picking suitable choices and ambitions. We keep the same naming
scheme for the edit operations from the previous work, even though they are
centred around #ifdef statements. This is acceptable, because our presence
conditions can be seen as #ifdef statements and vice versa. This naming
scheme also eases comparability, which we will do after applying the edit
operations. For our system to be usable, we want to be able to support all of
the operations. We will also take a closer look at the restriction we placed on
the put operator, as we do not want it to restrict us from using any common
edit pattern.

6.2 Code-Adding Patterns

P1 AddIfdef, P2 AddIfdef*, P3 AddIfdefElse

The first three patterns are all grouped since they have a common goal:
adding new code with a presence condition. They were previously split up
because a distinction was made between adding one and multiple assets, and
adding just an #ifdef and adding an #ifdef combined with a #else clause.
For us, adding new code always means adding a new asset. To do this, we
can get the tree with a trivial choice (True) and put the tree back with as
ambition the desired presence condition. We have to take care however, there
is a limitation on the put operator. We cannot have any asset in the editing

47

|

| VAN,

ai ar a)
get (r1, true)l Wput (rh,{a1},r1, true, A)
) s

—_—
a Manual edit 61‘1

Figure 6.2: Workflow for wrapping assets with presence conditions, relevant
for patterns P4 and P4.

view that has a presence condition which is not satisfiable with the ambition.
In particular, this means that we cannot have any asset a in our view such
that PC(a) A ambition ¢ SAT. This process can be seen in Figure 6.1.

P4 AddIfdefWrapElse, P5 AddIfdefWrapThen

These edit operations are for the cases where an existing asset without a
presence condition needs to get a presence condition, and another asset is
created with the negation of that presence condition. As with the previ-
ous system, we can support this workflow by applying get with the trivial
expression True, to then edit that asset and apply the put operator with
the ambition set to the desired presence condition of the edited line. This
process can also be seen in Figure 6.2.

P6 AddNormalCode

In this edit operation, no changes are made to variability. In this case, we
should use the get operator with as choice the presence condition of the
code we want to edit (this might be the trivial choice.) After editing we
should again use the same ambition as choice to ensure we do not change
any presence conditions.

P7 AddAnnotation

This edit operation is not relevant to us, it is about repairing broken prepro-
cessor annotations. We do not work with #ifdef statements, however.

48

1 T3
A/ \B Al
al a9 al
get (r1, true)l Wput (rh, {a2} 1, true, true)
r

A/\ Al

Manual edit

Figure 6.3: Workflow for removing assets, relevant for patterns P§ and P9.
6.3 Code-Removing Patterns

P8 RemNormalCode, P9 RemlIfdef

These patterns cover removing normal code, and code with preprocessor
annotations. For us, there is no difference, as the presence conditions are
embedded in the assets. To cover this pattern, we can apply the get operator
with any choice that is satisfiable with the presence condition of the target
asset. Then we can delete the asset to finally apply the put operator with
any ambition such that the old presence condition in conjunction with the
negation of the ambition is not satisfiable. Using as ambition True always
works. A visualisation of this pattern can be seen in Figure 6.3.

P10 RemAnnotation

Similarly to P7, this is not a relevant operation for us. This edit operation
is about removing annotations that were unintentionally left by removing
some other code. These ill-formed annotations cannot occur in our system
as the presence conditions are embedded in the assets.

6.4 Other Patterns

P11 WrapCode

This pattern wraps non-variational code (with a trivial presence condition)
with some presence condition. The way we can do this is by obtaining the
asset with some choice (for example, the trivial choice), removing the asset,
to then put the changes back using an ambition equal to the negation of the

49

1 T3
4/ N\ 4/ \A
aq a9 al a9
get (1, true) l Wput (rh, {a2} 1, true, 2 A)

A/ N ——a|

—— A \
a9 Manual edit

Figure 6.4: Workflow for giving an asset a non-trivial presence condition,
relevant for pattern P11. In this case, we want to give ag a presence condition
of A.

desired presence condition. Deleting an asset makes the presence condition
of the original asset a conjunction with the negation of the ambition. This
pattern can be seen in Figure 6.4.

P12 UnwrapCode

In contrast to the previous pattern, this pattern removes the presence condi-
tion from an asset. That is, we want to change the presence condition such
that it becomes the trivial one. We can do this by trying to add a new asset
with the negation of the asset its presence condition. But the better way
to support this is to remove the presence condition from the asset manually,
since adding an asset with the negation of the presence condition requires
copying and pasting the same code twice.

P13 ChangePC

Changing the presence condition is an operation that is limited in our system.
It can be like P11, where we “added” onto the old presence condition, then
we can delete the asset and use the negation of what we want to add to the
presence condition as the ambition. But we cannot remove any parts of a
presence condition by applying the put operator.

P14 MoveElse

Moving the else part of a preprocessor annotation is not a sensible action to
us. Since we are not working with literal #ifdef annotations. For us, moving

20

the else part is nothing more than changing multiple presence conditions.
Which we have covered in the previous edit operations.

6.5 Comparison

We will now compare the applicabilities of the edit operations above to the
previous method. The previous method uses the exact same choices and
ambitions as we did to “implement” these operations. This means that even
with the restriction of the put operator, we can still support all of the edit
patterns. The first conclusion we can thus draw is that our method has at
least the level of applicability of the previous method. The fact that we can
apply the same choices and ambitions to reach the same goals should not
be surprising. As we noted on before, we do not principally create a new
method. The current work and the work that this is based on have operators
with equal goals and (nearly) equal parameters. We want them to do the
same, but we aimed to loosen restrictions of the previous work.

A specific goal of this work is to loosen the restriction of the ambition
expression, in comparison to the previous method. To do this, we needed
the put operator to not be reliant on the choice expression. We know that
this is not possible, hence the need for the restriction on the put operator.
But we still see an improvement in terms of applicability, which was already
visible in Figure 3.4. The idea is that our definition of puf only uses the
choice expression in internal checks. When applying changes, it only uses
the ambition expression. This is in contrast to the previous system, where
new #ifdef statements were created with both the choice and the ambition.
In particular, this means that we can create a new feature while hiding
certain other features from the view, as seen in the figure. If we were to
apply the same strategy in the previous method, the new code would be
added with as presence condition GUI A —~CLI. This means that the new
feature can only be enabled given that the CLI feature is not. This same
idea can be used in other editing patterns, which leads to the fact that the
choice used to obtain the views in the patterns PI1-P5, P8, P9 and P11-P13
are completely free to the user, as long as the needed assets are obtained
by them (their presence condition is satisfiable with the choice). Of course,
the edit operations still have to admit to the restriction in the put operator.
We will discuss the effects of this limitation in greater detail in the next
subsection.

The biggest limitations we came across are most noticeable in patterns
P12 through P14, which were equally limited in the previous system. We
should note that when working with the Virtual Platform, a separate opera-

ol

tor to change the presence condition would be able to tackle these patterns.
A final important difference with the previous system is that the new sys-
tem is not (always) fully automatic: the user sometimes needs to choose the
location of a new asset when an Alignment Conflict has occurred. This can
happen when certain assets are not present in the view.

6.6 Put Limitation

The limitation we introduced for the put operator in Section 4.2 ensures that
the PUTGET law is satisfied. In all operations we do with the put operator,
we have to make sure that this limitation is met. This of course limits the
operations we can do. We now discuss the severity of this limitation.

Again, the limitation is as follows, for every asset a in the view, the
following must hold:

choice A\ ambition A PC(a) € SAT

Some parts of this limitation already logically follow from the get operator.
We already know that for every asset a in the view, choice A PC(a) € SAT.
This is by definition of the get operator — if this would not hold, the asset
would not be in the view. At this point we can split the limitation up into two
parts. Firstly, we must make sure that choice Aambition € SAT, secondly, we
must make sure that for every asset a in the view, ambition APC (a) € SAT.
The first part is a single expression that we must satisfy. It limits us in such
a way that we cannot have an ambition that is the negation of the choice.
We can still solve those situations, however. By deleting or editing existing
assets, the existing assets get the negation of the ambition added to their
presence conditions. So if we were to choose the ambition equal to the choice,
then the negation of the choice is — in a way — used as the ambition. The
second limitation then is that every asset has to be satisfiable with the chosen
ambition. This can lead to some difficulties, we might get the view with the
trivial choice (True) and edit some assets. If we want to put these changes
back with some ambition, all assets, even those not edited, must satisfy that
their presence condition is satisfiable with this ambition. In other words: the
presence conditions of the assets in the view must all be satisfiable with the
ambition expression. There are two ways to avoid this: we can either apply
the get operator to an asset such that the assets breaking this limitation are
out of the view, or we can choose a choice in the get operator such that it
already includes the ambition.

Since this last restriction seems rather strict, we wonder how the previous
method in [29] managed to overcome this issue. In this process, we figured

92

#ifdef A #ifdef A
do_something() do_something_different()
#else #else
do_something_else() do_something_else()
#endif #endif
get (-, true) get(344)£ put (-, -, true, A)
k!

#ifdef A #ifdef A

do_something() do_something_different ()
#telse —> #else

do_something_else() Manual edit do_something_else ()
#endif #endif

Figure 6.5: Example showing how the system in [29] does not adhere to
the PUTGET law. The edited view (bottom-right) does not follow from the
red edge coming from the edited source (top-right). Note that this same
limitation applies to our system, hence the restriction we applied on the put
operator.

that their method does not satisfy the PUTGET law. With our ambition
restriction applied to their method, this problem is solved. An example
showing how the previous method does not adhere to the PUTGET law can
be found in Figure 6.5. Here, we have two preprocessor annotations, which
we check out using the trivial choice true. We then edit the line covered
by the first annotation to finally recombine the changes with as ambition
A. After minimisation, we get to the code shown in the top-right. Now the
PurGET law says that we should be able to go back to this view using
the get operator with the initial expression and the ambition as the choice
expression. In this case, this is just A. But then we get to the problem.
When we apply the get operator with as choice A, we do not get this view,
but rather just the line that we have edited.

A final note on the limitation in terms of the implementation in the
Virtual Platform is that it is not a necessary limitation in terms of usability.
The restriction is purely there for the PUTGET law. If the user wants to
ignore this law, they could still apply the put operator without satisfying
the law. It just might not be possible to extract that exact view from the
source again. In the implementation in the Virtual Platform, this is done
using an error that can be configured to be a warning instead.

23

Chapter 7

Related Work

7.1 View-Based Editing

As noted above, the most closely related work is that of Stanciulescu et
al., where a projection-based variation control system is designed [29]. For
this, they use so-called Choice Calculus |32] to define the system, a formal
language to model variation in software. This work relieved the restrictions
on the put operator from previous work of Walkingshaw and Ostermann [33]
by using a looser definition of the Edit-Isolation Principle. The principle
says that the put operator cannot affect code outside of the view given by
the get operator. The work of Walkingshaw and Ostermann did not make
use of an ambition operator yet, which avoids the complications that we deal
with in our work. For this setup, they proved the lense laws, as the present
work does for the broader scope of view-based editing with ambitions.

There is a lot of research into easing programming in variant-rich soft-
ware. In the work of Késtner et al., an IDE is created to visualise software
variabilities in the source code. To this end, they use a tool called CIDE
which was created in earlier work [18, 17]. They aim to help developers to un-
derstand and explore individual features. Another visualisation tool similar
to CIDE is created by Heidenreich et al.. MappingViews is a tool that visu-
alises different views of variational software to the programmer [13]. Nestor
et al. present more work on visualisation which scales better to medium and
large software product lines [24]. These tools are limited to visualisation,
they do not deal with the view-update problem.

Kersten and Murphy created an Eclipse plugin called Mylar that uses
task contexts to improve programmer productivity [19]. Their plugin stores
structural relationships of programs in so-called task contexts. Programmers

o4

can then use these contexts to quickly swap between contexts. This tool is
more of a tracing tool and does not work on the view-update problem.

This research direction has roots in earlier research on software main-
tainability. Weiser has shown in 1984 how Slicing can help understand pro-
grams [34]. With this approach, it is possible to select several variables and
see the flow of the data in this program. In the same year, Linton created a
way to store programs in a database such that different views, cross-sections
or slices could easily be extracted or updated [21]. These tools are also for
visualisations.

Chu-Caroll et al. created a system called VSC, which stands for visual
separation of concerns, this system can provide certain views of the source
code in terms of features [6]. VSC, like the Virtual Platform, stores programs
using finer-grained artefacts. They do this on a storage-based level, such that
it becomes language independent. Hofer et al. try to tackle the problem of
multiple views at the filesystem level using the Leviathan filesystem [14]. The
idea is that other tools all need special development environments, by having
variant views at the filesystem level, other tools can be used without issues.
While VSC does not work with write-back (the view-update problem), the
Leviathan filesystem can do this. It is however limited to changing only
non-variational code. Aside from that, it sometimes uses heuristics to decide
where changed code should go in the source.

More in terms of variability management, we of course have the Virtual
Platform, which aims to bridge the gap between Clone & Own and a full In-
tegrated Platform [22]. The Virtual Platform is relevant to us, as we created
our implementation onto it. Similar to the Virtual Platform, research has
also been done on tools to transition from Clone & Own to an integrated
platform, for example by Schwégerl et al. in SuperMod [26]. ECCO is a
framework and tool for easing the work on variational software created by
Fischer et al.. It can find common parts and create new software variants
using those parts [10].

7.2 Lenses

Lenses were introduced by Foster et al. as a solution to the view-update
problem that originates from databases [11]. Here, lenses were formalised
and lens laws were created.

Many different types and classes of lenses have been created in the mean-
while. All of the lenses noted here differ from the first definition of lenses but
are not able to carry configuration data. Hence the need for us to create Vari-

29

ational Lenses. There is a distinction between Symmetric and Asymmetric
lenses [15]. Asymmetric lenses usually have a source and a view, where the
view contains a subset of the information of the source. Symmetric lenses,
on the other hand, have two sets that both contain some information that
the other set does not have.

Boomerang, a language created by Bohannon et al., can create lenses that
work between string data [4]. The user creates a lens by writing it in the
specification of Boomerang and can then use it to transform strings. The
language is based on regular expressions. Boomerang also contains logic
to deal with alignment problems within the data. To this end, Matching
Lenses were created [3| by Barbosa et al.. Matching lenses expand on the
earlier definition of Dictionary Lenses which were also included in Boomerang
in [4]. These lenses make use of extra data structures to save the ordering
of the data, this data structure can then be used in the definition of the
put operator. Miltner et al. have created a way to synthesise Bijective
Lenses from examples of in- and output. The resulting lens is defined in the
Boomerang language [23]. Bijective lenses differ from the standard lenses in
that they do not hide data going from the source to the view, rather they
only change the structure of it. Another extension to Boomerang is Quotient
Lenses, created by Foster et al.. Quotient lenses can contain extra functions
to normalise input or output data [12]. This way, spacing or newlines can
be normalised before going through the get and put functions.

Monadic Lenses deal with the fact that most lenses are pure, while most
programming languages have side effects. In [1], different monadic lenses are
discussed.

A more applied version of a lens is for example Lenses for Web Data [25].
Here, lenses are implemented to create forms for web pages and to obtain
the data from them. This is implemented in Haskell.

An example of symmetric lenses are Edit Lenses, created by Hofmann et
al.. Edit lenses work by transforming between representations using descrip-
tions of changes instead of the entire views [16].

Our new Variational Lenses can be seen as asymmetric lenses, as we
only hide data in one direction (from the source to the view). We also take
some inspiration from edit lenses, however, as we use a “diff” structure in
the put operator. This structure can be seen as the descriptions of changes
made, but in contrast to edit lenses, these structures by themselves are not
sufficient to make the operator work.

26

Chapter 8

Conclusion

In this work, we created and formalised a lens for view-based editing. From
this formalisation specifically for the Virtual Platform, we derived a more
general type of lens, which we call Variational Lenses. This lens differs from
other lenses since it can carry configuration with it and enables it to be a
framework for view-based editing. In the evaluation, we have shown that the
system can comply with all common edit operations that were previously
established. We have also shown that this new definition allows for more
general use than the most closely related previous work. In particular, we
can create and edit independent features in a limited view, which was not
possible in the previous work. The downside of the system is that we had
to include a limitation to the put operator of the lens, since without it, one
of the lens laws would not hold. We also established that this lens law does
not hold in the previous system without this new restriction. Finally, we
implemented the lens in the Virtual Platform as two new operators.

The definition of the Variational Lenses was extracted from the formali-
sation of the get and put operators. With this new formalisation, we had to
adapt the existing lens laws for our new lens and we have proven that our
implementation of the lens adheres to these adapted lens laws.

8.1 Future Work

There are several possible directions for future work. First, it would be
worthwhile to study the usability of our proposed operations using a user
study, in which developers could solve some program evolution tasks in a
certain view and use our framework to keep the view synchronized with the
overall platform. Second, while we achieved our results in the context of

o7

a specific variability management system (Virtual Platform), it would be
interesting to further increase the scope of our contribution by investigating
alternative program representations.

Another direction for future work could be done in terms of an editor
that better supports view-based editing. It is currently challenging to save
the mapping of features to lines of code, as code files are merely text files.
To save mappings, we need either some form of comment (that would be
visible to the developer), or an external file with the mapping. The latter of
the two methods comes with the benefit that it is not visible to the user, but
maintaining this line mapping is difficult when the file is edited. An editor
that can save the line mappings internally, thus keeping the feature-to-line
information, may improve the usability of view-based editing. We expect
that it might even remove the need for ambitions in certain editing cases.

28

Bibliography

1]

2]

3]

4]

[5]

(6]

[7]

8]

Faris Abou-Saleh, James Cheney, Jeremy Gibbons, James McKinna,
and Perdita Stevens. Reflections on monadic lenses. A List of Successes
that can Change the World, pages 1-31, 2016.

Sven Apel, Don Batory, Christian Késtner, and Gunter Saake. Software
product lines. In Feature-oriented software product lines, pages 3—15.
Springer, 2013.

Davi MJ Barbosa, Julien Cretin, Nate Foster, Michael Greenberg, and
Benjamin C Pierce. Matching lenses: alignment and view update. In
Proceedings of the 15th ACM SIGPLAN international conference on
Functional programmaing, pages 193-204, 2010.

Aaron Bohannon, J Nathan Foster, Benjamin C Pierce, Alexandre
Pilkiewicz, and Alan Schmitt. Boomerang: resourceful lenses for string
data. In Proceedings of the 35th annual ACM SIGPLAN-SIGACT sym-
postum on Principles of programming languages, pages 407-419, 2008.

Jan Bosch. Design and use of software architectures: adopting and
evolving a product-line approach. Pearson Education, 2000.

Mark C Chu-Carroll, James Wright, and Annie T'T Ying. Visual sepa-
ration of concerns through multidimensional program storage. In Pro-
ceedings of the 2nd international conference on Aspect-oriented software
development, pages 188-197, 2003.

Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski,
Martin Becker, and Krzysztof Czarnecki. An exploratory study of
cloning in industrial software product lines. In 2018 17th European
Conference on Software Maintenance and Reengineering, pages 25-34.
IEEE, 2013.

Martin Erwig and Eric Walkingshaw. The choice calculus: A representa-
tion for software variation. ACM Transactions on Software Engineering
and Methodology (TOSEM), 21(1):1-27, 2011.

29

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

J-M Favre. Preprocessors from an abstract point of view. In Proceedings
of WCRE’96: 4rd Working Conference on Reverse Engineering, pages
287-296. IEEE, 1996.

Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and
Alexander Egyed. Enhancing clone-and-own with systematic reuse for
developing software variants. In 201 IEEE International conference on
software maintenance and evolution, pages 391-400. IEEE, 2014.

J Nathan Foster, Michael B Greenwald, Jonathan T Moore, Ben-
jamin C Pierce, and Alan Schmitt. Combinators for bidirectional
tree transformations: A linguistic approach to the view-update prob-
lem. ACM Transactions on Programming Languages and Systems

(TOPLAS), 29(3):17—es, 2007.

J Nathan Foster, Alexandre Pilkiewicz, and Benjamin C Pierce. Quo-
tient lenses. ACM Sigplan Notices, 43(9):383-396, 2008.

Florian Heidenreich, Ilie Savga, and Christian Wende. On controlled
visualisations in software product line engineering. In SPLC' (2), pages
335-341, 2008.

Wanja Hofer, Christoph Elsner, Frank Blendinger, Wolfgang Schréder-
Preikschat, and Daniel Lohmann. Toolchain-independent variant man-
agement with the leviathan filesystem. In Proceedings of the 2nd Inter-
national Workshop on Feature-Oriented Software Development, pages
18-24, 2010.

Martin Hofmann, Benjamin Pierce, and Daniel Wagner. Symmetric
lenses. ACM SIGPLAN Notices, 46(1):371-384, 2011.

Martin Hofmann, Benjamin Pierce, and Daniel Wagner. Edit lenses. In
Proceedings of the 39th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 495-508, 2012.

Christian Késtner, Sven Apel, and Martin Kuhlemann. Granularity in
software product lines. In 2008 ACM/IEEE 30th International Confer-
ence on Software Engineering, pages 311-320. IEEE, 2008.

Christian Kistner, Salvador Trujillo, and Sven Apel. Visualizing soft-
ware product line variabilities in source code. In SPLC (2), pages 303—
312, 2008.

Mik Kersten and Gail C Murphy. Using task context to improve pro-
grammer productivity. In Proceedings of the 14th ACM SIGSOFT in-
ternational symposium on Foundations of software engineering, pages
1-11, 2006.

60

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

Duc Le, Eric Walkingshaw, and Martin Erwig. # ifdef confirmed
harmful: Promoting understandable software variation. In 2011

IEEE Symposium on Visual Languages and Human-Centric Comput-
ing (VL/HCC), pages 143-150. IEEE, 2011.

Mark A Linton. Implementing relational views of programs. ACM
SIGSOFT Software Engineering Notes, 9(3):132-140, 1984.

Wardah Mahmood, Daniel Striiber, Thorsten Berger, Ralf Lammel, and
Mukelabai Mukelabai. Seamless variability management with the vir-
tual platform. In 2021 IEEE/ACM }3rd International Conference on
Software Engineering (ICSE), pages 1658-1670. IEEE, 2021.

Anders Miltner, Kathleen Fisher, Benjamin C Pierce, David Walker,
and Steve Zdancewic. Synthesizing bijective lenses. Proceedings of the
ACM on Programming Languages, 2(POPL):1-30, 2017.

Daren Nestor, Luke O’Malley, Aaron Quigley, Ernst Sikora, and Steffen
Thiel. Visualisation of variability in software product line engineering.
2007.

Raghu Rajkumar, Nate Foster, Sam Lindley, and James Cheney. Lenses
for web data. FElectronic Communications of the EASST, 57, 2014.

Felix Schwigerl, Thomas Buchmann, and Bernhard Westfechtel. Super-
mod—a model-driven tool that combines version control and software
product line engineering. In 2015 10th International Joint Conference
on Software Technologies (ICSOFT), volume 2, pages 1-14. IEEE, 2015.

Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, and

Krzysztof Czarnecki. The variability model of the linux kernel. VaMoS,
10(10):45-51, 2010.

Henry Spencer and Geoff Collyer. #ifdef considered harmful, or porta-
bility experience with ¢ news. In USENIX Summer 1992 Technical
Conference (USENIX Summer 1992 Technical Conference), San Anto-
nio, TX, June 1992. USENIX Association.

Stefan Stinciulescu, Thorsten Berger, Eric Walkingshaw, and Andrzej
Wasowski. Concepts, operations, and feasibility of a projection-based
variation control system. In 2016 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 323-333. IEEE,
2016.

Frank J Van der Linden, Klaus Schmid, and Eelco Rommes. Software
product lines in action: the best industrial practice in product line engi-
neering. Springer Science & Business Media, 2007.

61

[31] Jilles Van Gurp, Jan Bosch, and Mikael Svahnberg. On the notion of
variability in software product lines. In Proceedings Working IEEE/IFIP
Conference on Software Architecture, pages 45-54. IEEE, 2001.

[32] Eric Walkingshaw and Martin Erwig. A calculus for modeling and imple-
menting variation. In Proceedings of the 11th International Conference
on Generative Programming and Component Engineering, GPCE 12,
pages 132-140, New York, NY, USA, 2012. Association for Computing
Machinery.

[33] Eric Walkingshaw and Klaus Ostermann. Projectional editing of varia-
tional software. ACM SIGPLAN Notices, 50(3):29-38, 2014.

[34] Mark Weiser. Program slicing. IEEE Transactions on software engi-
neering, (4):352-357, 1984.

62

	Introduction
	Background
	Software Product Lines
	Virtual Platform
	Lenses
	Current State of Research
	Running Example

	Formalisation
	Main Data Structures
	Parent Functions
	Restrictions
	Get Operator
	Put Operator

	Variational Lenses
	Configuration
	Virtual Platform
	Proving the lens laws

	Implementation
	Get Operator
	Put Operator
	Implementation Remarks

	Evaluation
	Context and Methodology
	Code-Adding Patterns
	Code-Removing Patterns
	Other Patterns
	Comparison
	Put Limitation

	Related Work
	View-Based Editing
	Lenses

	Conclusion
	Future Work

