
Master thesis
Computing Science

Radboud University & SIDN Labs

Achieving Application-Level
Requirement-Based Path Selection

Within SCION

Author:
Alessandra van Veen
s4683382

First supervisor/assessor:
prof. dr. ir. H.P.E. Vranken

harald.vranken@ru.nl

Supervisors SIDN Labs:
dr. ing. R. Koning

ralph.koning@sidn.nl

ir. C.J.T.M. Schutijser
caspar.schutijser@sidn.nl

Second assessor:
dr. ir. E. Poll

e.poll@cs.ru.nl
September 29, 2024

Abstract

In today’s world, the Internet has become quite essential to daily life, yet
there are also many security problems concerning the Internet. Some im-
portant internet protocols, such as routing, were never built with security in
mind. The most important routing protocol is named the Border Gateway
Protocol (BGP), which lacks security features and provides no guarantee
for the integrity and authenticity of the messages sent using BGP. Over
the years, there have been many improvements to BGP, like BGPsec and
RPKI, which only solve some of BGP’s issues. At the same time, researchers
have been looking into alternative internet architectures. One such archi-
tecture is SCION (Scalability, Control, and Isolation On Next-generation
networks), which offers an alternative to BGP using a new routing protocol.
We investigated SCION’s ability on an application-level for an end-host to
choose their paths through the network for packets to take, which is a form
of path-aware networking (PAN). This provides greater security for network
communications as it increases transparency for endpoints and allows end-
points to avoid potentially insecure paths.

This research aims to achieve application-level requirement-based path
selection on the SCION network, where we focused on security requirements
such as geolocation and router manufacturer. Specifically, we aim to answer
the question How can we achieve application-level requirement-based path
selection on the SCION network? By achieving this, we can increase the
security of our network communications as we can then avoid non-trusted
ASes (autonomous systems) or ASes with insecure software versions. To
answer our research question, we first answered three sub-questions. Our
first sub-question was how can we extract different properties for possible
paths?. We selected a medical use case, specifically remote surgery, for
its interest security properties. We then created an application design for
the use case where we specified the path property extraction. We then
extended our application design to answer our second sub-question how can
we find the best available path?. We also created a prototype to prove these
different features are possible within SCION. Lastly, we used this prototype
to measure the impact on the path selection efficiency and to answer our
last sub-question what is the impact on the efficiency using our method in
comparison to path selection without requirements?

Our research shows that PAN within SCION has much potential and
almost all aspects we wish to achieve are possible. However, we also high-
light one significant limitation of PAN within SCION, namely that the most
important security properties, like the router brand, cannot be verified na-
tively as SCION lacks support for this. In a scenario where security is the

most important aspect, the lack of information verification is an important
problem that requires future research.

2

Contents

1 Introduction 5

2 Background 8
2.1 High-level Overview of SCION 8

2.1.1 Goals of SCION . 8
2.1.2 Architecture of SCION 9
2.1.3 How does SCION work? 10

2.2 Control Plane . 11
2.2.1 Path Exploration (Beaconing) 11
2.2.2 Path-Segment Registration 13
2.2.3 Path Lookup and Construction 13

2.3 Data Plane . 14
2.3.1 The SCION Packet . 14
2.3.2 Packet Forwarding . 16

2.4 Related Work . 16

3 Use Case: Remote Surgery on the SCION Infrastructure 19
3.1 Motivation . 19
3.2 Requirements . 20
3.3 Scenarios . 21

3.3.1 Basic Flow . 21
3.3.2 Alternative Flow 1 . 24
3.3.3 Alternative Flow 2 . 24
3.3.4 Relationship to Reality 25

4 Application Design 26
4.1 Application Overview . 26
4.2 Extracting Path Properties 27

4.2.1 Latency . 27
4.2.2 Bandwidth . 28
4.2.3 Geolocation . 28
4.2.4 Router Firmware Version 29

4.3 Automatic Path Selection . 29

1

4.3.1 Selection Algorithm 30
4.3.2 Policy Specification . 32
4.3.3 Selecting a Path . 33

4.4 Multi-pathing . 34

5 Evaluation 35
5.1 Test Setup . 35
5.2 Test Results . 38
5.3 Evaluating the Results . 40

6 Discussion 46

7 Conclusions 48

A Appendix 54
A.1 Preference Policy JSON . 54
A.2 Experiment Timing Data . 56

2

List of Acronyms

(D)DoS (Distributed) Denial of Service.

AP Attachment Point.

AS Autonomous System.

BGP Border Gateway Protocol.

CA Certificate Authority.

CIA Confidentiality, integrity, and availability.

ELECTRE ÉLimination Et Choix Traduisant la REalité.

EPIC Every Packet Is Checked.

FABRID Flexible Attestation-Based Routing for Inter-
Domain Networks.

IP Internet Protocol.

ISD Isolation Domain.

MAC Message Authentication Code.

MCDM Multiple-Criteria Decision Making.

MTU Maximum transmission unit.

PAN Path-aware networking.

PCB Path-segment construction beacon.

PROMETHEE Preference Ranking Organization Method for
Enrichment Evaluation.

3

RIM Reference Ideal Method.

RPKI Resource Public Key Infrastructure.

SCION Scalability, Control, and Isolation On Next-
Generation Networks.

TOPSIS Technique for Order Preference by Similarity
to Ideal Solution.

TRC Trust Root Configuration.

WPM Weighted Product Mode.

4

Chapter 1

Introduction

Today’s internet is an essential part of our society, but it is far from per-
fect. It was initially not built with security in mind, but rather as an open
network to freely exchange data. As the Internet became more widely ac-
cessible, there was a need to improve routing protocols. Eventually, there
was BGP (Border Gateway Protocol) which is still one of the most impor-
tant routing protocols to this day. However, much like the early days of the
internet, BGP relies on trust, and the systems that utilize BGP implicitly
trust all the routes shared with them. This led to a variety of issues over
the years. A famous example is when in 2008 Pakistan Telecom accidentally
brought down YouTube for several hours for the entire world [1]. Pakistan
Telecom announced a prefix that redirected YouTube traffic to Pakistan
Telecom. Two hours later, YouTube announced the same prefix, but as the
shortest path is preferred, most YouTube traffic was still redirected to Pak-
istan Telecom. This case of prefix hijacking was fully solved another hour
later, but it made the headlines all around the world [2].

This example is just one of many problems with today’s internet. Over
the years, besides improving BGP [3][4], there has been much research into
new internet architectures that help resolve the issues of the Internet. One
such architecture is SCION (Scalability, Control, and Isolation On Next-
generation networks) which aims to tackle the current Internet’s problems
with security and availability [5]. SCION offers an alternative to BGP [6] by
implementing a new routing protocol between ASes (autonomous systems).
One important difference between BGP and SCION is who makes the rout-
ing decisions. In BGP, the AS decides which path to take, often based on
what is the most efficient. In SCION, this decision is made by the end host.

This routing control is what makes SCION a path-aware network. It
enables a lot of interesting opportunities. For example, what if you only
want to send your packets through the European Union, because you are
sending very sensitive data? What if you want to send data over multiple
paths at once, in case one path fails? Some of these aspects have been

5

researched within SCION [7] [8] [9] [10] and even implemented, but there is
still much more that can be investigated. There is still research that can
be done into routing based on requirements, and more specifically security
requirements. For example, what if you have a server and a user application
and wish to exchange data securely? There may be a distrust towards certain
router brands and towards countries, so the two end hosts may wish to avoid
these. Furthermore, there may be a requirement that a data transfer may
not be interrupted. There are many aspects to consider, and limited research
has been done yet to fully explore this.

Our aim is to investigate how we can achieve a requirement-based path-
aware networking (PAN) on an application level, where we focus on security-
based requirements such as geolocation and router manufacturer. Investi-
gating PAN on an application level allows us to see what is possible within
SCION itself, without building further on top of it. Our research question
is as follows:
How can we achieve application-level requirement-based path selection on
the SCION network?
Our sub-questions are as follows:

1. How can we extract different properties for possible paths?
To establish a requirement-based PAN, we need to be able to extract
different properties so we can consider if the properties fulfil the re-
quirements. Not all properties for a path are provided, or easily mea-
sured.

2. How can we find the best available path?
It may be possible that there is no path available that meets all re-
quirements. As we focus on security-based requirements, an end host
may wish to instead have a path that meets the requirements as best
as possible, even if not fully, to ensure the highest possible security.

3. What is the impact on the efficiency using our method in comparison
to path selection without requirements?
Our application has several steps before it can send data, such as
property extraction and selecting the best path. This increases the
time it takes for a packet to be made, a path to be chosen, and the
packet to then be sent. As latency is still an important aspect of
networking, we want to investigate what the impact is in milliseconds.

To answer these questions, we will first select a use case with various
security requirements. The use case allows us to explore what kind of re-
quirements might be needed for a PAN application. We will use a literature
study to create a theoretical design of an application for the use case. For
this design, we choose several path properties to show how these can be
extracted within SCION. The chosen properties will be relevant to the use

6

case, but will be varied enough to be applicable to other use cases. We
also need to choose the best available path. The specific method is chosen
specifically for our use case, but it can be applied to other use cases. After
we made our design, we will also implement several features in a proof of
concept application as evidence that our idea is possible within SCION. This
also allows us to measure the efficiency of the path selection.

This thesis is structured as follows; Chapter 2 provides a background on
how SCION works with a high-level overview and then some more detail
into two main aspects of SCION. We will also describe the related work of
our research in this chapter. In Chapter 3, we motivate a remote surgery
use case. Then we describe the requirements the application has based on
this use case and the scenarios it should be able to deal with. In Chapter
4, we provide a high-level overview of our application design and then we
describe the technical details, which help us answer our sub-questions. In
Chapter 5, we evaluate our results. In Chapter 6 we if and how we met
our requirements, and the limitations of our research. Finally, in Chapter 7
we will answer our research question and make recommendations for future
work.

7

Chapter 2

Background

In this chapter, we will provide the background on what SCION (Scalability,
Control, and Isolation On Next-generation networks) is and how it works.
First, we will give a high-level overview of SCION. Next, we will explain two
of SCION’s main components that are both essential to routing; the control
plane and the data plane. Lastly, we will show the related work that our
research is based on.

2.1 High-level Overview of SCION

2.1.1 Goals of SCION

In essence, SCION is an internet architecture of which a new inter-domain
routing protocol is an important part. The routing protocol is built from
the ground up as opposed to improving any present day protocols like the
Border Gateway Protocol (BGP). SCION has been made with several goals
in mind [11, Ch. 1].

The first of six goals is availability in the presence of adversaries.
This means that as long as there exists a path between end hosts, it should
be possible to discover this path and guarantee there is some bandwidth
available between the end hosts. This should be possible even with potential
attackers that, for example, try to hijack the route or delay packets.

Goal two is that there should be transparency and control for the
forwarding paths and the trust roots. This allows for verifiable path control.
In turn, this enables greater protection against certain network attacks, like
DoS and DDoS, and also allows for aspects such as geofencing and multi-
path communication.

The third goal of SCION is efficiency and scalability. SCION should
at least be as efficient as present day IP forwarding in terms of latency and
throughput. Furthermore, compared to the current Internet, SCION should
be more scalable with respect to BGP and the forwarding table size.

8

The fourth goal of SCION is extensibility and algorithm agility.
With this, the aim is to future-proof the architecture better. The extensi-
bility ensures the codebase can easily be expanded with new features. Al-
gorithm agility ensures that it is easy to switch from one cryptographic
algorithm to another.

The fifth goal is deployability, meaning that migrating to SCION
should not be complex and the costs should be kept minimal for ISPs espe-
cially.

The final goal is formal verification. The security and the availability
of the architecture should also be ensured by formal proofs.

2.1.2 Architecture of SCION

SCION, just like the internet we know, consists of many different ASes, and
SCION’s protocol facilitates the communication between the ASes them-
selves. ASes are big networks consisting of many routers where each AS
determines their own routing policies for any traffic through the AS. In
SCION, ASes are grouped together in something called isolation domains
(ISDs), often based on geographical location and/or function. For example,
an ISD can consist of ASes in the Netherlands, and another ISD which con-
sists of European Healthcare ASes. This also means that one AS can be a
part of several ISDs. ISDs are represented by a number from 0 to 65535,
whereas ASes are represented by a 16-bit colon-separated hexadecimal en-
coding with the leading zeros omitted.

To understand why ISDs are used, we will first explain how they are
organised. Each ISD has a trust root configuration (TRC), which is a col-
lection of signed certificates. These certificates define the roots of trust of
the ISD and can also contain policies, which can for example define when
a TRC is valid. The TRC also defines which roles ASes have. All ASes
facilitate communication, however, they can have additional roles:

• Core ASes are an important part of the ISD. Each ISD generally has
a few core ASes that are on the top of the routing domain and are
responsible for connecting the ASes within the ISD with ASes of other
ISDs.

• Certification Authorities (CAs) issue AS certificates to other ASes
and are also able to issue certificates to themselves.

• Voting ASes have the ability to vote to accept changes to TRCs.

• Authoritative ASes have the latest TRCs of the ISD and are also
able to announce changes to the TRC and thus initiate the voting.

The structure of the ISD ensures transparent trust relationships between
ASes. It also helps reduce the chance of external attacks as the routing
process is isolated within the ISD itself to limit any external influences.

9

To be able to communicate with each other, ASes have links with other
ASes. In SCION, we define three different types of links: core links, parent-
child links, and peering links. Core links are the link between two core ASes
within an ISD. A parent-child link is a link between a non-core AS and
another AS, which can be a core AS, within the same ISD. Peering links are
also links between a non-core AS and another AS, but they signify a peering
relationship. The peering link is only available to use by ASes which are a
child of any of the two linked ASes. This does not only mean direct children,
but also the children of the children and so forth.

In Fig. 2.1 we show how a SCION architecture can be structured. The
example consists of two ISDs which each consist of two core ASes and several
child ASes. AS 1-6 and AS 1-7 also have a peering link between them.

Figure 2.1: A SCION architecture consisting of two ISDs and several ASes

2.1.3 How does SCION work?

Now that we established the architecture of SCION, we will explain how
routing within SCION works. Before a router can actually send packets to
a router in another AS, the AS it is in must first discover the possible paths
to that AS. For example, a router in AS 1-6 wants to exchange data with a
router in AS 1-3.

The discovery of paths happens within the control plane of SCION. An
AS discovers paths as follows:

• The beaconing process, or path exploration, is the process where an AS
creates a path-segment construction beacon (PCB) through a beacon
service. This contains information about the AS. It will eventually

10

send this PCB to its child links, which will add their own information
and then send it on to their child links until there are no child links
left. Each AS also saves each PCB it received.

• Path-segment registration is a step that is part of the beaconing pro-
cess. Before an AS forwards a PCB, it will first select the best PCBs it
has saved according to some defined policy. The AS will use its beacon
service to forward the selected PCBs and the path service to register
the PCB to itself. With this, an AS now has a path towards at least
one core AS.

• The last step of the control plane is path look up and construction.
In this step, AS 1-6 would try to find a path to AS 1-3. AS 1-6 now
knows how to reach core AS 1-2 and core AS 1-1. It can query these
ASes for possible paths from the core to AS 1-3. Both ASes can reply
with several path segments. With these segments, AS 1-6 can choose
to combine one of those segments with a segment to reach the core AS
and together those segments form a complete path.

Once a path has been chosen, the data plane of SCION actually facili-
tates the forwarding of packets along the selected path. It does this by first
creating a SCION packet, similar to an IP packet, and then each AS will
forward the packet using the path defined by the sender AS.

In Section 2.2 and 2.3 we will go into further detail about these pro-
cesses, like beaconing, path registration, and the creation of the end-to-end
forwarding paths.

2.2 Control Plane

The role of the control plane is to discover path segments and to make them
available to end hosts. There are several processes part of this, which we
briefly touched upon in the previous section. Especially important for our
work are the beacon extensions which contain metadata on properties that
we rely on in Chapter 4.

2.2.1 Path Exploration (Beaconing)

The first process is path exploration, which can also be called beaconing.
First, the AS initiating the process will create PCBs through its beacon
service. Every AS has set its own propagation period that indicates when
and how often it should do the beaconing. PCBs represent a single path
segment which can later be used to construct an end-to-end forwarding
path. Each PCB is composed of an info field and AS entries. The info
field provides the basic information on the PCB, specifically the set flags to
indicate the type and direction of the constructed path, a random value for

11

MAC-chaining, and a timestamp to indicate when the propagation started.
Each AS entry consists of a signed component, a signature, and an unsigned
component. The signed component provides information on the AS itself like
the ISD-AS number of the entry, the ISD-AS number of the AS to which the
PCB will be forwarded, potential peering links, signed beacon extensions,
and more. The unsigned component is optional and may contain unsigned
beacon extensions. Beacon extensions are optional entries that allow the
PCB to convey metadata, such as properties like latency, bandwidth, and
geolocation.

Figure 2.2: A single PCB going from AS 1-2 to AS 1-6, where each AS entry
describes the router interface the PCB arrives from and exits from.

After the PCB has been signed, the beacon service passes along the PCB
to its border router. This PCB is then propagated to either the AS’s parent-
child links, which we call intra-ISD beaconing, which is also shown in Fig.
2.2, and is to create up-segments and down-segments or to other core ASes,
which is called core beaconing and is to create core segments. Each AS that
receives a PCB will verify the structure of the PCB and its signatures. If
everything is correct, the AS’s beacon service will add the PCB to its local
database. Once it is time for propagation, set by the AS, it will add an AS
entry of itself to the previous PCB and propagate this to its relevant links.

12

2.2.2 Path-Segment Registration

After the path exploration process, path segments can now be created from
PCBs. The process of this differs between intra-ISD segment registration
and core path-segment registration.

First, we will describe intra-ISD segment registration. This process is
necessary to enable ASes to communicate with the core ASes and other ASes
within the ISD. Every AS has a self-determined registration period where
the beacon service selects up-segments and down-segments. Up-segments
are path segments that allow for communication with the core ASes within
the ISD. Down-segments allow other entities to reach the AS. Every AS
has a selection policy for up-segments and a policy for down-segments so
that it can decide which traffic is routed and how. The PCBs from the
local database are examined and the selection policies are used to determine
which of these might serve as up-segments and which as down-segments. If
a PCB gets selected, an AS entry will be added which specifies that the
path ends at this AS. Any peering links are also added to the PCB. This is
then signed and the signature is added to the PCB. All up-segments will be
registered with the path service of the AS, and the down-segments will be
forwarded to the path service of the core AS that sent the PCB originally.

Core path-segment registration works similarly to the intra-ISD version.
It will select some PCBs based on its selection policy. Then it will add a
new AS entry to every selected PCB and sign these. Instead of up- or down-
segments, these are called core-segments. Lastly, the core-segments are only
registered with its path service.

2.2.3 Path Lookup and Construction

When a source host wants to connect to another end host, it needs a full
path. This is where path lookup plays an important role. The goal of path
lookup is to find suitable path segments from between two end hosts so that
the segments can be combined into a path of at most three segments. These
three path-segments are an up-segment so the core of the ISD be reached, a
core-segment to reach the ISD of the AS that has to be reached, and finally,
a down-segment to reach the AS. We also show this in Fig. 2.3 if AS 1-6
were to query AS 1-1 and AS 1-2 for path segments.

To start the process, the source host will query the path service of its AS
for the relevant segments. The AS stores the up-segments in its database
and is easily able to return these. Core- and down-segments may be stored
in its cache, and if this is the case, it can return these. If not, the path
service must query the path service of a core AS for core-segments to the
ISD of the destination AS. With these segments, they can query the core
AS of the destination ISD to retrieve the relevant down-segments. Once it
has collected all the path-segments, they will be returned to the source host.

13

Figure 2.3: An example of up-segments (purple and blue), a core segment
(red), and a down-segment (green) for AS 1-6 to reach AS 1-3.

With these path-segments, the source host can combine these segments to
create one or more paths to the end host.

Now at most one of each type of segment can be chosen to be combined
into a path. Each AS will have its own policy on how to select the best path,
for example, based on which path provides the lowest latency or highest
bandwidth.

2.3 Data Plane

The main purpose of the data plane is to ensure that the packets are for-
warded along the selected path.

2.3.1 The SCION Packet

Once a path has been constructed, a SCION packet can be created. These
are similar to modern internet packets, but these packets will have a SCION
header on the network layer. The SCION header consists of several parts.
The first is the common header, which contains meta information such as
version number, payload and header length, and flags, which looks as follows
[12]:

14

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|Version| TrafficClass | FlowID |

+-+

| NextHdr | HdrLen | PayloadLen |

+-+

| PathType |DT |DL |ST |SL | RSV |

+-+

The next header is the address header, which contains information like
the ISD, the AS, and the end-host addresses of both source and destination
[12]:

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| DstISD | |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +

| DstAS |

+-+

| SrcISD | |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +

| SrcAS |

+-+

| DstHostAddr (variable Len) |

+-+

| SrcHostAddr (variable Len) |

+-+

The path header contains the AS-level forwarding path based on the path
that was constructed during the different processes in the control plane [12]:

+-+

| PathMetaHdr |

+-+

| InfoField |

+-+

| ... |

+-+

| InfoField |

+-+

| HopField |

+-+

| HopField |

+-+

| ... |

+-+`

This also means that SCION’s forwarding decisions are based on this
information, as opposed to local information from routers themselves. While

15

in our application design we do not pay special attention to the headers, they
could be used for future work on path verification. Finally, there is also a
possibility of an extension header which has various options regarding hop-
by-hop and end-to-end. This header is optional.

2.3.2 Packet Forwarding

Once a packet has been initialized, the egress border router will forward
the packet to the next AS specified in the path. Every AS along the path
will first parse and validate the SCION header. Validating also includes
verifying whether or not the path contained in the header was authorized
by the AS. Once validated and parsed, some forwarding within the AS itself
will happen so the packet goes from the correct ingress border router to the
correct egress border router. Eventually, the packet reaches the end host.
The end host is able to use the path specified in the SCION header to send
a reply back, as the path can simply be reversed. However, an end host is
also able to perform its own lookup and find a new path.

2.4 Related Work

Over the years, there have been a few papers that looked at the application
of PAN with SCION. In 2021, Krüger and Hausheer introduced PANAPI [9]
in which they propose the design of a networking API for PAN in SCION
and explore what capabilities such an API should have. Specifically, they
performed an initial investigation into property collection, property process-
ing, and path selection and exploration and made some proposals into how
they could be done. The aspects the paper looks at are relevant to our work,
however, there are some gaps we aim to fill. The properties mentioned for
property collection are all properties that can be expressed in numbers and
easily be compared in that way. There are no properties like the router man-
ufacturer or geolocation. Furthermore, we would also like to improve upon
the path selection by allowing the setting of requirements and choosing the
best path based on more than just latency.

Also in 2021, John et al. [7] introduced a communication gateway for
industrial applications called Linc. Linc utilizes SCION’s path awareness
for a path selection that ensures all traffic only crosses trusted network in-
frastructure, determined by blacklists and whitelists. They also introduce
three different failure and redundancy modes, which help increase recovery
time if a path fails. These modes are interesting features to ensure avail-
ability and can be a part of our final design. Similarly to PANAPI, Linc
has a knowledge gap when it comes to best path selection based on several
requirements and non-quantifiable properties.

In the following year, Davidson et al. [13] introduced a browser plugin for
Brave that introduced PAN in SCION. It also investigates which layer should

16

make the path decisions and on the basis of which properties. They looked
at three possible possibilities: OS, Application, or User. For the browser
plugin, they use SCION’s path policy language where paths can be sorted
and selected based on criteria like bandwidth and latency. Furthermore,
they implemented geofencing on an ISD level. However, it should be noted
that in version 0.0.3, which is the most recent version as of writing, the user
can only control geofencing and decide between a strict or not strict SCION
mode. There is no implementation to decide on what criteria a path should
be chosen beyond geolocation.

In 2023, FABRID or Flexible Attestation-Based Routing for Inter-Domain
Networks [8] introduced a system built on top of SCION that enables inter-
domain path selection based on attested router properties. The two most
important contributions that are also relevant to our work are their exten-
sible policy language to describe those properties and an enhanced path
selection. One important issue they encountered is the lack of being able to
verify unquantifiable properties as an AS may not conform to its announced
properties. While FABRID is similar to what we wish to achieve, it differs
in the fact it is built on top of SCION rather than an application running
on SCION. FABRID has to be deployed on each SCION router the end
host may wish to know the properties of. Our application design does not
have this limitation, and rather we wish to look at what is possible with the
current version of SCION.

UPIN [10] created a method to perform measurements on paths to mea-
sure latency, bandwidth, and packet loss to eventually achieve user-driven
path control. One conclusion they made is that in SCION, latency is mostly
affected by the physical distance between ASes, and not the number of hops
travelled. A point of future research was to use this data for a path recom-
mendation feature.

In table 2.1, we show a comparison between the different papers and
their features. We also included our work to show what features we would
like to include in our application design. These features are chosen to show
the capabilities of SCION on an application-level.

17

Our work PANAPI Linc Browser
Plugin

FABRID UPIN

Active property collec-
tion

✓ ✓ ✓ ✓

Path selection based
on quantifiable proper-
ties

✓ ✓ ✓ ✓

Path selection based
on geolocation

✓ ✓ ✓ ✓

Path selection based
on non-quantifiable
properties except
geolocation

✓ ✓

Multi-path mode ✓ ✓

Table 2.1: A comparison of the discussed papers and their features compared
to our paper and its features

18

Chapter 3

Use Case: Remote Surgery
on the SCION Infrastructure

In this chapter, we will discuss our use case, specifically about remote
surgery. We do this by first explaining our motivation behind choosing this
use case. Afterwards, we explain the requirements and then we establish
several scenarios that our application must be able to handle.

3.1 Motivation

To investigate how we can achieve a path-aware application with requirement-
based path selection, we can utilize a use case to explore what sort of require-
ments might be needed and to make considerations regarding path-aware
applications. The use case should have interesting security requirements, so
we can test the limitations of SCION’s path control as it is. Furthermore, we
would also like to utilize some of SCION’s other security related properties
(see Section 2.1.1), such as availability in the presence of adversaries and
transparency and control. We would also like the use case to be something
relevant, meaning it is an area of active research.

There are several fields of studies that could be suitable such as bank-
ing, healthcare, and national defense. All three of those have a high need for
security, especially the three CIA principles: confidentiality, integrity, and
availability. We decided upon a remote surgery use case. Remote surgery is
the ability for a doctor to perform surgery while not physically present in
the same location as the patient, for example through the use of a remote-
controlled robot. Remote surgery is a relevant topic within healthcare re-
search [14][15], especially as human-controlled robots become more advanced
and precise. As the word remote implies, network security is an important
aspect of remote surgery. Remote surgery consists of a constant network
connection between a controller and a robot, which may not be disrupted
or hijacked. If that does happen, the robot can make a mistake that can

19

Figure 3.1: Abstract diagram of the setup of a remote surgery

have severe consequences for the person being operated on. With SCION’s
path selection, the controller is able to decide which path to take. That
means that for our remote surgery use case, we can set the requirements in
such a way that we can improve upon connection availability and security.
For example, with a requirement to avoid routers with a specific firmware
version. For the use case, we will focus on the literature and a prototype to
imitate the use case, however, we will not perform remote surgery.

3.2 Requirements

A remote surgery application and its network must fulfil several require-
ments. The remote surgery application must consist of two different clients:
the surgeon side and the robot side. The surgeon’s client needs to receive
high-quality video imaging from the robot’s client and the surgeon’s client
must be able to send different commands to the robot’s client. The robot’s
client will then use this to further communicate with the robot. In Fig. 3.1
we show a diagram of how this would look like.

A remote surgery application and its network must fulfil several require-
ments. Some of these requirements will be relevant for why SCION is ap-
propriate and some are more relevant for the application design itself. In
healthcare, the principles of confidentiality, integrity, and availability (CIA)
are all important [16]. Availability especially is a hard requirement, as a
loss of availability while surgery goes on can lead to severe consequences.
Integrity plays a similarly important role. When someone operates a sur-
gical robot from a distance, it is important the control of the robot is not
tampered with in some way. Confidentiality is important as healthcare data
is very sensitive data. SCION itself already guarantees many aspects of the

20

CIA, however, we would like to use path selection to further improve the
availability.

The healthcare network must be resilient against several attacks [16][15]
that violate any of the three principles. One important attack is the (Dis-
tributed) Denial of Service ((D)DoS) [14], which threatens the availability of
connection between the controller and the surgical robot. Some attacks that
threaten the integrity of the data are (IP) spoofing [16] or a masquerading
attack[15]. Confidentiality could be threatened through eavesdropping [15].
SCION already provides some protection against these attacks by design,
however, path selection allows us to avoid ASes which have an increased
chance of being attacked or causing an attack.

Beyond attacks, it is also important that the connection has a low la-
tency, a high bandwidth, and ultra-high reliability [17]. Remote surgery has
a requirement of a 200ms end-to-end latency while keeping in mind robotic
systems have an inherent latency of almost 100ms. Any actions done by the
controller should be nearly instant. Surgical skill deterioration is noticed
at a latency of 300ms and above [18], meaning that if the latency is 300ms
and above a surgeon may not be able to work as accurately. The bandwidth
should be high to allow for high-quality video to be sent through. Ideally,
the bandwidth is around 1 Gbps download and 250 Mbps upload [18] to
allow for this. However, some loss of video quality is allowed if it ensures a
higher latency. Lastly, reliability should be high to ensure the proper avail-
ability of the network and to ensure all data arrives. It also means that the
connection may not be disrupted at any point.

Our design should also take into account the goals of SCION and it
should uphold the same principles.

3.3 Scenarios

In the perfect world, there is always a path available that meets the require-
ments, that is always available, and no other hiccups happen along the way.
In reality, this is of course not the case. We will describe several artificial
scenarios that may happen and that allow us to explore what SCION can
do, and where it is limited.

3.3.1 Basic Flow

To establish a base, we will first describe the theoretical setup and connection
requirement and afterwards, we will describe the basic flow.

Fig. 3.2 is the SCION structure we will use to help describe our different
scenarios. The structure consists of 4 ISDs. The AS that is utilized by the
surgeon’s application is AS 1-7 in ISD-1. The AS that has to be reached,
and where the robot’s application is hosted, is AS 4-2 in ISD-4.

There are five paths made available to AS 1-7 to reach AS 4-2:

21

Figure 3.2: SCION structure of our use case where each coloured arrow
represents a possible path

22

Path 1: AS 1-7 → AS 1-5 → AS 1-2 → AS 3-1 → AS 4-1 → AS 4-2
Latency: 100 ms, Bandwidth Up/Down: 600/1200 Mbps
Minimal Router Firmware Version: 2.1.1

Path 2: AS 1-7 → AS 1-5 → AS 1-2 → AS 2-1 → AS 2-2 → AS 4-1 → AS 4-2
Latency: 120 ms, Bandwidth Up/Down: 500/1100 Mbps
Minimal Router Firmware Version: 2.1.1

Path 3: AS 1-7 → AS 1-6 → AS 1-4 → AS 1-1 → AS 2-1 → AS 2-2 → AS 4-1
→ AS 4-2
Latency: 170 ms, Bandwidth Up/Down: 400/800 Mbps
Minimal Router Firmware Version: 2.0.5

Path 4: AS 1-7 → AS 1-6 → AS 1-4 → AS 1-2 → AS 2-1 → AS 2-2 → AS 4-1
→ AS 4-2
Latency: 170 ms, Bandwidth Up/Down: 600/1200 Mbps
Minimal Router Firmware Version: 2.0.5

Path 5: AS 1-7 → AS 1-5 → AS 1-1 → AS 2-2 → AS 4-1 → AS 4-2
Latency: 150 ms, Bandwidth Up/Down: 300/800 Mbps
Minimal Router Firmware Version: 2.1.1

Our path requirements are as follows:

• Maximal Latency: 150 ms

• Minimum Bandwidth Up/Down: 500/1000 Mbps

• ISD Whitelist: ISD-1, ISD-2, ISD-4

• Minimal Router Firmware Version: 2.1.0

In the case not all requirements can be met, latency holds the highest
weight, followed by the ISD whitelist, then the firmware version, and then
the bandwidth.

The basic flow is where the actor surgeon utilizes the client program
to establish a connection with the server program that controls the surgery
robot. The scenario is successful when the surgeon has established a connec-
tion, sends three commands, and then shuts down the connection. The three
commands are ”up 5”, ”down 2”, and ”left 2”. In a real-world scenario, a
joystick would be used to send more precise coordinates for movement, how-
ever for the simplification we use more simple commands.

1. The client program starts.

2. A policy file is read by the program that indicates the requirements
for the path selection.

23

3. The program attempts to make a connection with the server on AS
4-2, port 1234.

4. A connection is established using a path that meets all requirements,
specifically Path 2.

5. The surgeon sends the command ”up 5”.

6. The surgeon sends the command ”down 2”.

7. The surgeon sends the command ”left 2”.

8. The surgeon sends a finish signal and closes the connection.

Now that we established a basic flow, we can describe alternative flows and
what actions should be taken then.

3.3.2 Alternative Flow 1

Our first alternative flow describes a situation where a path cannot be found
that meets all requirements.

3.1 The surgeon attempts to make a connection with the server on AS 4-2,
port 1234.

3.2 Of the five earlier described paths, all but Path 2 are available. These
four paths do not meet all requirements.

3.3 Path 5 is chosen as it meets all requirements except bandwidth and
the scenario continues with step 4.

3.3.3 Alternative Flow 2

Our second alternative flow describes a situation where an AS along the
chosen path is no longer available while the surgery is in progress.

6.1 The surgeon sends the command ”down 2”.

6.2 AS 2-2, which is on the current path, is no longer available.

6.3 A new connection is established using path 1 as that is the only avail-
able path.

6.4 The client program sends the command down 2 again and the scenario
continues with step 7.

24

3.3.4 Relationship to Reality

It is important to note that we simplified the processes within our scenarios.
In a real-life scenario, a joystick would be used that sends many larger

messages, for example, detailed coordinates, in a very short period of time.
In our flows, we send three simple commands as our main purpose is to
test whether the different aspects of our design are possible. We have also
simplified our scenarios by excluding a video stream as it does not add
anything new to our test scenarios. The most important aspect of our
requirement for a video stream is the bandwidth, which is looked at when a
path is selected.

The minimal router firmware version would be a vague requirement in a
real-world scenario, as there would be many different brands of routers each
with their own version scheme. For the use case, we assume every single
router of every AS is of the same type. Our aim is to explore how this in-
formation can be included and how we can use this to choose a path, which
we can explore more easily with this simplification.

The topology of our use case is also different from the topology from
SCIONLab. The SCIONLab topology is quite big, so for the use case topol-
ogy, we took inspiration from it. Specifically, ISD-1 of the use case is an
adjusted version of ISD-19. ISD-2 is a cut-down version of ISD-17. ISD-3 is a
reduced version of ISD-16. ISD-4 has the same nodes as ISD-18, however we
reduced some of the connections with other ISDs. This was done to improve
the readability of the topology while still keeping interesting scenarios.

25

Chapter 4

Application Design

In this chapter, we will discuss the application design. First, we will give a
high-level overview of the application itself and we follow this by explaining
the different features of the application and the choices we made for the
design.

4.1 Application Overview

Our application is present on two devices: that of the controller and the re-
ceiver. The controller is used by the surgeon performing the remote surgery.
The receiver is a computer that is directly connected to a camera, to present
a live feed to the surgeon, and the robot, to perform the commands that the
controller sends. The application directly runs on the SCION network with
its own AS. This situation we also described and showed in Section 3.2 and
Fig. 3.1.

The controller application has several features. First, there is a status
indicator that indicates which AS the application is communicating with
and it indicates whether all requirements are fully met, partially met, or
not met at all. Further, there is a policy selector that allows the controller
to set the requirements, such as maximal latency and the permitted ISDs.
This allows for different policies during different steps of the surgery. Next,
there is a separate screen for video that shows what is on the receiver’s
camera. Lastly, there are several buttons that allow the application to send
commands such as ”up”, ”down”, ”left”, and ”right”. In a real-life scenario,
a different system, like an advanced joystick, might be used. However, for
the theoretical exploration of SCION’s capabilities, we chose a simplified
version.

The receiver application is meant to run without human interaction.
Once it is started, it is connected to the robot and the camera. Once it is
connected to another application, it will actively stream the camera feed to
it. It should also automatically authenticate a connection attempt to ver-

26

ify the connection is made by an application that has permission to connect.

The controller application has to go through several steps to be able to
send a packet:

1. First it needs to find all possible paths to the destination AS and
extract different properties from each path, specifically latency, band-
width, geolocation and minimal router firmware version. We describe
the extraction process in detail in Section 4.2.

2. Once the properties of all available paths are known, a path has to be
selected (Section 4.3). It does this by first reading from the preference
policy file (Section 4.3.2) and then by creating a ranking using the
Reference Ideal Method (RIM) (Section 4.3.1).

3. It then creates a connection with this path, which allows the user to
send commands and see the path compliance. Path compliance is a
status that indicates which requirements are met and which are not.

4. If the user enabled multi-path mode (Section 4.4), data will also be
sent through a second connection if the primary path has a significant
performance loss.

4.2 Extracting Path Properties

To evaluate if a path matches the requirements set by the user, the appli-
cation first has to extract properties for the path. For the use case, we look
at four different requirements: latency, bandwidth, geolocation, and router
firmware version.

4.2.1 Latency

Latency, or rather two-way latency, is the time delay between sending a
packet from a source to a destination, and receiving a response. This can
be measured by, for example, sending a ping on a specific path several times
and taking the average. The latency is also available as static information
in the path metadata, however, within the time that a PCB is active and
thus the path metadata valid, the latency can greatly change. Battipaglia
et al. [10] uses the first mentioned method and outputs the average latency
of 30 pings in milliseconds (ms). It then stores this data as an entry in
a MongoDB for each path. MongoDB is a NoSQL database product that
utilizes JSON-like documents. We will be using the UPIN method [19] to
measure the average latency of the paths available to the application.

It is important to note that latency can change at any given moment.
For example, if the volume of traffic increases at an AS along the path, the

27

latency may increase. This makes it important to continuously measure the
latency. Since the UPIN application only performs the measurements once
and this work requires continuous results, we can modify the existing code
to loop and continuously update the MongoDB.

4.2.2 Bandwidth

Bandwidth is the capacity or throughput of a channel and this can be mea-
sured both upstream and downstream in bits per second (bps). Like latency,
bandwidth is information available in the path metadata but it is a value
that can change based on how much traffic there is. To test bandwidth
within SCION, you can also use a SCIONLab application called bwtester.
The UPIN project [10] also measures average bandwidth and uses bwtester
to do so. In the paper, the average bandwidth is measured both with 64
byte packets and with MTU-sized packets. In our use case, we will also deal
with smaller packets, like for commands to the surgery robot, and larger
packets for video. This means we would want to measure the bandwidth
both for 64-byte packets and for MTU-sized packets.

We use the UPIN method [19] to measure the average upstream and
downstream bandwidth for each path. For each path, we measure the band-
width with smaller packets and larger packets, and then we select the band-
width for the larger packets. If this is 0, due to measuring faults, we take the
bandwidth of the smaller packets. Alternatively, we could use two paths,
one for a low bandwidth and one for a high bandwidth, but this also doubles
the number of paths needed for multi-path and means the receiver has to set
up additional servers for receiving. Because that would require additional
resources and the SCIONLab network is not always stable enough for high
bandwidth paths, we use one path for both small and large packets. Similar
to latency, we need to measure bandwidth continuously. This can be done
in the same loop as when we measure bandwidth.

4.2.3 Geolocation

The geolocation refers to the physical location of the AS. In SCION this
information can be extracted in two ways: Path metadata from beacons or
the ISD number.

The path metadata from beacons is more specifically the geographic posi-
tion as GPS coordinates of each router along the path. This is highly specific
information, which allows for better tuning of a geolocation requirement.
However, it also requires a more complex specification of the requirement,
as each specific GPS coordinate has to be translated to a country or region.
Also, an AS can fill in information that they like in the path metadata. This
means that the information provided can be inaccurate. While it is possible
to ensure an AS is not travelled on if they provide false information, it may

28

not be detected immediately that the information is false.
A second method to extract the geolocation is based on the ISD number

of an AS. In SCION, all ISDs are a logical grouping of ASes that share a
uniform trust environment, for example, a common jurisdiction or country,
or they are all ASes related to healthcare providers. An AS is also not
just able to join an ISD and instead needs permission to join one. ISD
information cannot be manipulated, and this means an end host is sure
where an AS is located. While there is still a translation from ISD to
country or region, it is a much smaller translation table compared to GPS
coordinates.

For our design, we use the ISD method to extract properties. From the
perspective of our use case, the ASes we trust or do not trust are generally
based on country. The ISD based grouping should provide enough accuracy
to allow for selecting a secure path, while not needing to verify further if the
extracted geolocation is correct.

4.2.4 Router Firmware Version

As of now, SCION does not offer a direct method to obtain information like
a router firmware version. Without adjusting SCION itself, it is possible
to utilize the path metadata. The path metadata set by ASes has a notes
section, which can be used to convey information outside of the already
set values. This can be used to, for example, insert information about the
router. Of course, this does mean that each AS along the paths we may
want to use has to set this information. An AS may be unwilling to provide
such information as it can be sensitive information. Not all ASes may be
willing to share they run on an unsafe firmware version. It is also possible
that ASes misconfigure this information accidentally. SCION also provides
no native method to verify this information, so another AS has to trust the
information provided is correct.

For our design, we attempt to detect if there is information in notes
following the format Router Firmware Version: x.x.x where each x cor-
responds to an integer that is 0 or higher. This must be checked for each AS
in the path. If no firmware version is available for any AS, the value of the
path is nil. If for every AS in the path there is a firmware version available,
the lowest firmware version is used to describe the path. We will also adjust
the MongoDB to store this information.

4.3 Automatic Path Selection

One of the main features of our application is an automatic path selection
based on requirements. Ideally, we will always find at least one path that
meets all requirements, however, there is no guarantee such a path is avail-
able. If a remote surgery is actively happening, it is also important that a

29

Method Description

WPM Uses weights to create a ranking based on several criteria.

ELECTRE Select a set of alternatives that represent the best trade-
off based on different criteria.

PROMETHEE An outranking method that goes over several iterations
to achieve a ranking between alternatives.

TOPSIS Select alternative based on shortest distance to the pos-
itive ideal solution and farthest distance from negative-
ideal solution.

RIM Extends TOPSIS to be able to specify and handle value
constraints.

Table 4.1: Table describing the different considered Multi-Criteria Decision
Methods.

connection is available at all times, even if it means traversing a path that
does not meet all requirements. This means we need a selection algorithm
to choose the best possible path out of the available paths. Once we select a
method, we can describe a selection policy. The policy can be used to spec-
ify the requirements and to give any additional input the algorithm might
need.

4.3.1 Selection Algorithm

To select a path that best meets the requirements, we need a method that
is able to take several requirements as input, both quantifiable and non-
quantifiable, and give us a ranking of paths based on how well they meet
the requirements. The advantage of a ranking instead of a singular path is
that we can more quickly switch paths if the current path fails by perform-
ing a lookup in the ranking. Multiple-criteria decision making (MCDM)
methods are used when there is a decision to be made where a selection
of the best alternative can be complex [20]. There are also many meth-
ods within MCDM that can provide a ranking based on quantifiable and
non-quantifiable requirements.

There are many MCDM methods, each with its own advantages and dis-
advantages. We have looked at several methods to determine which method
is most suitable for our path selection. In Table 4.1, we made an overview
of the different methods we considered.

The Weighted Product Model (WPM) [21] is a fairly simple but popular
method. It is adapted from the Weighted Sum Model (WSM), but WPM
uses multiplication rather than addition. A comparison is made between
alternatives by multiplying the alternative with one ratio per criterion. Each

30

ratio is also raised to the power of the weight of the criterion. The advantage
of this method is that it allows for different units of measurement. It is
also fairly simple to use and quick to calculate. However, there is no clear
normalization step and the model doesn’t allow for a good comparison to a
set of requirements. Also, weights are quite subjective and can be difficult
to set correctly.

ELECTRE, or ÉLimination Et Choix Traduisant la REalité [21], is an
MCDM method that uses outranking. Outranking methods compare pairs
of alternatives and then assign them a score based on how well they satisfy
the criteria. There are many variations of ELECTRE, such as ELECTRE
I, ELECTRE II, and so on. We specifically consider ELECTRE I which is
intended for selection problems. Its goal is to select a set of alternatives
that represent the best trade-off based on different evaluation criteria. The
model allows for a comparison between a set of requirements, however, it is
not a complete method and only reduces the original set of alternatives by
eliminating those that are not favourable. This is convenient when you have
few criteria and a large set of alternatives. Also similarly to WPM, it uses
weights that are very subjective. Lastly, ELECTRE can be susceptible to
the rank reversal problem. This means that if an alternative is removed or
added from the set, the ranking changes in a significant way. For example,
if you remove an alternative, and the alternative previously ranked number
one is now ranked number three.

PROMETHEE [22] (Preference Ranking Organization Method for En-
richment Evaluation) is another outranking-based MCDM method. Sim-
ilarly to ELECTRE, PROMETHEE has many variations. We consider
PROMETHEE II, which is able to provide a complete ranking. It is a
method similar to ELECTRE in that it aims to provide a ranking based
on multiple criteria. There are several preference functions available that
can be used based on the characteristics of the criteria. This allows more
complex problems to be solved more easily, however, it can be hard to de-
termine which preference function should be used. It is also susceptible to
the rank reversal problem and like the other methods, setting the weights
can be difficult.

TOPSIS [21] (Technique for Order Preference by Similarity to Ideal So-
lution) is a method where the alternative is selected based on the short-
est distance to the positive ideal solution and farthest distance from the
negative-ideal solution. It uses an Euclidean distance approach to deter-
mine the distances. The method itself is straightforward in use. It is also
possible to avoid the rank reversal problem by adjusting the normalization
and adding two fictional alternatives that represent the maximal and mini-
mal criteria. However, the method focuses on a maximal or minimal value,
whereas the ideal solution may lie somewhere in between. For example, if
the range of possible values is from 0 to 60, but the ideal alternative lies
somewhere between 20 and 30, TOPSIS would be unable to find such an

31

alternative. Also similarly to all other methods, there is some weight sensi-
tivity.

The last method we consider is RIM [23] (Reference Ideal Method) which
is partially based on TOPSIS. The main difference between TOPSIS and
RIM is that RIM uses an ideal range as opposed to a maximal and minimal
value as the ideals. Also, an interesting quality of RIM is that when an
alternative fully matches all criteria, it gets a score of 1, which is the highest
achievable score. This also means that if there are several alternatives that
match all criteria, they will rank equally on top. RIM also computes each
alternative independently from each other, which means it does not suffer
from the rank reversal problem. Just like the other methods, RIM utilizes
weights, which can be sensitive to variation.

Each method has its own strengths and weaknesses. We decided on RIM
to select the best path. One important aspect is that it does not suffer the
rank reversal problem. As our selection of paths can change at any time, it
is important we can quickly switch paths without needing to recalculate all
paths again to gain a new ranking. While TOPSIS is also a strong contender
and can be adjusted such that the rank reversal problem is not an issue, it
only deals with extremes. The advantage of RIM, compared to TOPSIS,
is that we can have varying criteria where we might want to have an ideal
range as opposed to an extreme.

4.3.2 Policy Specification

A policy will be needed for the surgeon, or the IT team with the surgeon, to
specify the requirements. RIM needs several inputs per criteria, or property.

The first input is the weight. This is a number between 0 and 1 that
determines how important the criterion is. The higher the weight, the more
influence the criterion will have on the ranking. It should be noted that all
weights together should add up to a total of 1.

The second input is the range. The range is the range of values that a
property can be. For quantifiable methods, this is for example 0 to 1000.
However, infinity is unsupported in Golang’s JSON encoder. This can be
an issue for values like bandwidth or latency, where technically the max
range can be infinite. To work around this, we instead choose a very high
number that those values realistically do not hit. For example, a latency
of 100000ms. With non-quantifiable properties, you assign each option a
number from 1 to n, where n is the number of options. The better the
option, the higher the number. For example, if the options are ”bad”, ”ok”,
and ”good”, ”bad” would be equal to 1, ”ok” would be equal to 2, and
”good” is equal to 3, and so the range is 1 to 3. We can also use the range
for preprocessing. If there are any hard requirements, for example, a latency
that may not be above 700 ms, any paths that are outside this range can be

32

filtered out before.
The third input is the ideal range. This is the range we want the as-

sociated path’s property to be in. If we look at the requirements example
from our use case, the latency requirement was 150 ms. In RIM, this would
be represented as 0 to 150ms, as a lower latency is better. A bandwidth of
1000 Mbps would be a range of 1000 to infinity. To work around Golang’s
JSON encoder limitations, we set the maximum ideal that should be infinite
to the same value as the maximum range.
In Appendix A.1, we show an example of how the policy file would look like
for the requirements set for the use case from Chapter 3. Each entry de-
scribes a property. The rangeMin and rangeMax describe the actual range of
the property. For latency and bandwidth, we set the maximum very high to
work around Golang’s limitations. Geolocation and router firmware version
are quantifiable properties, but for these properties, we are only interested
in whether the requirement is fully met or not. For example, if we have a
whitelist of ISDs, we are interested if all ASes along the path are whitelisted.
If one or more is not whitelisted, the path fails to meet the ideal. Because
of this, we set the range from 1 to 2. The idealMin and idealMax de-
scribe our requirements. The weight values describe the weight given to
each property and have been arbitrarily chosen. They will need tuning to
ensure the correct path is chosen. Lastly, additionalInfo describes how to
translate non-quantifiable properties. Each non-quantifiable property will
need its own parser to properly translate the additional information and the
properties given by the path to a number that can be used in the formula.
The disadvantage of this is that it makes it harder to extend the preference
policy file with new properties. However, it does allow developers to define
properties the way they want to. For example, one hospital may want to
work with a whitelist for geolocation and another with a blacklist.

4.3.3 Selecting a Path

To send packets over a path, a path can now be chosen. This is done by first
gathering all properties of each available path from our database. Then, we
enter the preprocessing stage where all paths which are below or above the
specified range are excluded. Furthermore, all quantifiable properties have
to be converted to a number. We then use RIM to obtain a ranking. In the
case there are multiple paths that share the first place, which can happen
if multiple paths meet all requirements, we choose the path with the best
latency. A connection will then be established using this path and packets
will be sent over this path. As latency and bandwidth change with each
loop of the property collector, a new ranking will be made every single time.
If a better path becomes available, a new connection will be made with that
path. Once the new connection is established, the old connection will close.

33

4.4 Multi-pathing

To further ensure the availability of a path, we can create a multi-path mode.
In multi-path mode, data is sent over two or more paths at once. Linc [7]
describes two different modes: redundant and adaptive. In redundant multi-
path mode, traffic is always sent over two or more paths, which makes it
ideal for situations where guaranteed availability is a must. In adaptive
multi-path mode, a second path is only used when the performance of the
primary path is below a certain threshold. This allows for a quick change of
primary path if needed.

Before we can choose a mode, we need to consider how a second path is
selected. The most obvious solution would be to pick whatever path is next
in the ranking. However, you then run into the chance the path is almost
the same as the one first in the ranking, but with one AS different. This
means that if an AS fails on path 1, there is a high chance the second path
also fails. To solve this, we would need to implement some kind of distance
measurement that finds a balance between the best available path and the
difference in which ASes are visited. We would need to use this method if
we use redundant multi-path mode.

With adaptive multi-path mode, we can utilize the performance drop to
select a second path. If the performance decreases, it means the ranking
would likely also change, if aspects like latency and bandwidth have some
weight. With this knowledge, we can expect that the path currently ranked
at 1 or 2 when the performance decreases will no longer contain the AS
that caused the performance decrease. Because of this, we decided on the
adaptive multi-path mode. This is also a simple adjustment on our earlier
mentioned path selection without multi-pathing, where we switch from the
path once a better path becomes available. We can utilize the same method,
but instead, we add a performance threshold, for example, a latency increase
of 20%, and we keep the second path open rather than immediately switch
to it.

34

Chapter 5

Evaluation

In this chapter, we first explain the test setup and the capabilities of our
prototype. Next, we measure the efficiency of our prototype. Lastly, we
evaluate our results.

5.1 Test Setup

Our test setup of our prototype application [24] consists of two laptops both
attached to the SCIONLab network; one laptop which represents the appli-
cation on the surgeon’s side and one laptop which represents the application
on the robot’s side. This setup is also shown in Fig. 5.1 with the SCIONLab
topology in Fig. 5.21. As the figure shows, the SCIONLab topology is dif-
ferent from our use case. We used the SCIONLab network as opposed to
a local topology so we could test our prototype on a wider scale and with
large physical distances between ASes. Variable network properties cannot
be imitated well with a local topology. For our ASes, we used the scionproto
branch, specifically version 0.9.02. At the time we started the experiments,
the SCIONLab network used a few years old branch of the scionproto open
source code and we wanted to potentially utilize some of the newer features
and adjustments.

The Laptop Client runs a local instance of the MongoDB on 127.0.0.1:27017
and it runs the AS with address 18-ffaa:1:10bc. This AS is connected to an
attachment point (AP) in the US called CMU AP. It also runs a client appli-
cation that features the surgeon’s side of the prototype and a separate shell
client that runs the path collection. For our tests, we run the path property
extraction once before we start the client application. The bandwidth tester
occasionally gets stuck and needs manual interference to restart it. Because
of limitations of the SCIONLab network, we limited the bandwidth for the
tests to 1 Mbps and we limited the MTU-sized packets to 1000 bytes.

1https://www.scionlab.org/topology.png
2https://github.com/scionproto/scion/releases/tag/v0.9.0

35

https://www.scionlab.org/topology.png
https://github.com/scionproto/scion/releases/tag/v0.9.0

Figure 5.1: Topology of the test setup of the prototype.

The Laptop Receiver runs the AS with address 19-ffaa:1:10bd, which is
connected to an AP in Germany called the Magdeburg AP. The receiver
runs the application which features the robot’s side of the prototype. It also
runs a bwtester server on 127.0.0.1:30100 to allow the client to constantly
test the bandwidth of the different paths.

Our prototype is a terminal-based application to show path property
extraction, path selection based on requirements, and a multi-path feature.
Its main purpose is to show these features are possible within SCION, so it
is only a simplified version of our original design. The client terminal has
the following commands:

• move dir num: This command sends the command move with a direc-
tion dir (Up, Right, Down, Left) and num steps to the receiver. Once
the receiver receives this, it will send a confirmation back.

• policy policylocation: The command policy sets the location of the
policy file to policylocation. If this is a valid file path, a new best
possible path will be found and the connection will be changed to use
the new path.

• multipath true/false: The command multipath when set to true will
create a second connection. If this is enabled, future move commands
will send the command using both connections. The receiver will reply
to the first one it receives. If the command multipath is set to false,
the second connection will be closed if it exists.

• status: The command status displays if the current path meets all

36

Figure 5.2: Topology of the SCIONLab network, which shows where CMU
AP and Magdeburg AP are located. Red nodes are core ASes and green
nodes are APs. 37

requirements. It will also display which requirements it does not meet
if there are any. If two connections are present, it will display this
information for both connections.

• help: The command help displays all commands and how to use them.

• exit : The command exit exists the application.

For further verification, after each input, the application shows the cur-
rent coordinates. Up increases the y coordinate with the specified amount
whereas Down decreases it. Similarly, Right increases the x coordinate and
Left decreases it.

The receiver terminal reads the incoming move command message and
also keeps track of the coordinates. Whenever it updates the coordinates, it
will print the coordinates as confirmation. After, it will also send a verifi-
cation message to the client that it received the message. The receiver will
also always have two ports open at once, in case multi-path is enabled. This
allows the second port to receive messages through the alternate path.

5.2 Test Results

First, we performed three tests to verify the functionality of our system.
While we do not have the same topology as our use case scenarios (Sec-
tion 3.3), we can imitate the circumstances. We first performed the basic
flow by setting the appropriate policy file, which resulted in a new path 8-
ffaa:1:10bc#0,1 18-ffaa:0:1206#110,1 18-ffaa:0:1201#8,5 19-ffaa:0:1301#3,5
19-ffaa:0:1303#1,463 19-ffaa:1:10bd#1. Here, a path is represented by each
AS and its interfaces, so it follows the construction of AS#interfaceInbound,
InterfaceOutbound. Afterwards, we sent the three commands and verified by
reading the coordinates on both ends that all three commands from the sce-
nario were successfully sent. At the end, the coordinates are x = −2, y = 3.

Next, we adjusted the policy file to have stricter latency requirements
such that no path meets all requirements. We did this by decreasing the
idealMax for latency from 300 to 30 and by only whitelisting ISD 26 to ensure
no path meets all requirements. The system found and set the path to 18-
ffaa:1:10bc#0,1 18-ffaa:0:1206#110,1 18-ffaa:0:1201#8,5 19-ffaa:0:1301#3,5
19-ffaa:0:1303#1,463 19-ffaa:1:10bd#1 and by using the status checker we
verified it met none of the requirements. Interestingly, this was the same
path as with our original policy. Likely this is because the latency is given
a high weight, and this path had the lowest latency of all 40 paths.

Lastly, we tested what happens when an AS is no longer available.
As we cannot manipulate the availability of the ASes within SCIONLab,
we removed all database entries that had a path containing the AS 19-
ffaa:0:1301. This left us with 6 possible paths of the 40. In a real-life

38

scenario if the AS would go down, the AS being unavailable would get
picked up by the property collector as paths containing the AS cannot be
pinged and these entries would be removed from the database. Now after
removing the AS, instead of the default path from our basic flow test, the
new path 18-ffaa:1:10bc#0,1 18-ffaa:0:1206#110,1 18-ffaa:0:1201#8,4 17-
ffaa:0:1101#5,7 17-ffaa:0:1108#1,8 19-ffaa:0:130b#1,4 19-ffaa:0:1303#286,463
19-ffaa:1:10bd#1 was chosen.

We also tested the efficiency of the path selection. First, we measured
the time it takes to perform the path collection, which consists of two parts.
The first part is to collect 40 paths, which is a sufficient number of paths
to find the best available path. This was also proven by UPIN [10]. The
second half performs the ping test and bandwidth test on each path to
collect the properties. The ping test sends 30 pings at 0.1 second intervals.
The bandwidth test sends a 1000 byte packet over 3 seconds while targeting
a bandwidth of 1 Mbps. This second part, as described in the previous
section, can get stuck. Due to this, it took us 20 attempts at 1 Mbps to
gain 10 results. In Table A.1a we show the time in seconds for each part of
a completed property collection run and the total amount of time it takes.
Taking the median, one completed run takes close to 9 minutes (547 seconds)
with 40 paths. There was one outlier of around 7 minutes (417 seconds) and
we suspect several paths timed out during the test and were then skipped.

We ran the same test with all paths of 6, 7, and 8 hops, which was a total
of 18 paths. It took us 17 attempts to gain 10 results as 7 of the attempts
got stuck during the bandwidth test. The successful results are shown in
Table A.1b. In both cases, the average time for path testing was between
13 and 14 seconds per path.

We also set up an AS attached to the Swiss ETHZ-AP and measured
property collection again to see if physical distance has a significant impact
on the speed. Physical distance is reduced by using a Swiss AS in two ways.
First, the physical distance between the Swiss AS and the German AS is less
compared to the US AS and the German AS. Second, the laptop hosting the
AS is in the Netherlands, which is much closer to Switzerland than it is to
the US. The results of this can be seen in Table A.2a. To get those 10 results,
it took us 38 attempts. The last three results of the runs are significantly
lower than the other results. While all of these runs were completed, they
did not provide 40 path results. We suspect that while we ran our tests,
one of the ASes in the SCIONLab network was temporarily unavailable.
Fig. 5.3 shows a comparison between the runs of the US AS with 18 paths,
the US AS with 40 paths, and the Swiss AS with 40 paths. We note that
physical distance has a noticeable effect. On average, using the Swiss AS
improved the speed by 0.5 to 1 second per path. The physical distance
from Magdeburg to Zurich is around 575 km and the physical distance from
Magdeburg to Pittsburgh, where CMU is located, is around 6680km, so while

39

distance has a noticeable effect, it is proportionally less than expected.

Figure 5.3: A comparison of path extraction runs in seconds with the US
AS (18 and 40 paths) and the Swiss AS (40 paths)

After, we used a short script [24] to measure the time it takes to set up
a path without path selection, a path with path selection, and a path with
path selection and multi-path. All three measurements were performed ten
times. Measuring with path selection includes setting a policy, calculating
the scores, and then setting the correct path. The results are displayed in
Fig. 5.4, Fig. 5.5 and Fig. 5.6 and the full measurements can be seen in
Table A.2. Overall, it can be seen that having more paths can increase the
time it takes to select the best available path, but the difference comes down
to around 1-2 milliseconds.

5.3 Evaluating the Results

Our final solution is an application design with automatic path selection
where the path is selected based on a set of requirements described by a

40

Figure 5.4: Run time comparison of client’s path selection without a policy
set with 18 paths and 40 paths

41

Figure 5.5: Run time comparison of client’s path selection with a policy set
with 18 paths and 40 paths

42

Figure 5.6: Run time comparison of client’s path selection with a policy set
and multi-path enabled with 18 paths and 40 paths

43

preference policy file. We had several requirements our application design
(Section 3.2) had to comply with, which we show in Table 5.1.

Requirement Fulfilled?

1 Design choices should uphold the goals of SCION
itself.

Partially

2 It should have property collection and then
be able to automatically select a path based
on latency, bandwidth, geolocation, and router
firmware version.

Yes

3 There should be a method to specify a set of re-
quirements a path should comply with where pos-
sible.

Yes

4 Availability should be guaranteed at all times,
even if it means not fully complying with the re-
quirements.

Yes

Table 5.1: Overview of the requirements of the application design and
whether our design fulfilled the requirement.

Our first requirement was partially met. Our solution improved the
availability and did not affect transparency, control and deployability, and
formal verification. Efficiency and scalability were slightly negatively af-
fected. Finding the best available path using our method is around 1.5
times slower compared to SCION’s standard method of choosing a path.
With multi-path enabled, this was close to 3 times slower compared to the
standard method. Property collection is also not very scalable. Each path
to be tested increased the time for property collection by around 13 to 14
seconds. That means the more paths there are, the longer it takes for a
full cycle to complete and thus be able to do a health check on the present
paths. Our solution does not fully meet the goal of extensibility and algo-
rithm agility, as it is currently not straightforward to add new properties.
Now, if the code has to be extended, custom code has to be written for each
property, both for extraction and for processing. We also did not add formal
verification to verify if a packet was sent along the selected path.

In Section 4.2 we describe how to extract paths and in Section 4.3 we
describe automatic path selection, which means we fulfill requirement 2. We
also describe a way to specify requirements in subsection 4.3.2 which allows
us to fulfil requirement 3.

We fulfil requirement 4 in several ways. First, we always aim to select
the best available path. This can mean using a path that does not meet
all requirements to ensure availability. Next, the path status is constantly
monitored. When there is a new best available path, this will be switched

44

to. We also added a multi-path mode (Section 4.4) that can be utilized to
further ensure availability. When the current path’s performance degrades,
all data is also sent over a second path.

45

Chapter 6

Discussion

Now that we evaluated our design based on the use case, we will look at
if, and how, our design and prototype are applicable to other potential
use cases. In the Related Work (Section 2.4), we looked at the features
our design should have: active property collection, path selection based on
quantifiable properties, path selection based on geolocation, path selection
based on non-quantifiable properties except geolocation, and a multi-path
mode.

We achieved active property collection utilizing UPIN’s code with minor
adjustments. Specifically, we adjusted the locations of SCION, which were
hard-coded, we increased the number of paths to be found, and we decreased
the size of the large packets to 1000 bytes instead of MTU size. With this,
we were able to gather quantifiable properties, and the geolocation in the
form of ISDs. While an ISD is not a perfect geolocation, SCION aims to
group ISDs in such a way that they share a common purpose or jurisdiction.
This may not be enough for all use cases, but SCION does provide a way to
supply coordinate data to an AS to specify the exact location.

In Section 4.2 we described a method to use SCION’s path metadata
to communicate non-quantifiable properties. This does, however, come
with some limitations. The most major one is the inability to verify non-
quantifiable properties. While ASes can utilize the notes section to add in-
formation, like a router firmware version, there is no way to verify whether
the information is correct. With properties like latency, bandwidth, and
geolocation, we have methods to verify the information. From a security
perspective, this is a significant risk. Even when there are no malicious
ASes present on the path, the information can be misconfigured. If our aim
is to avoid certain routers or certain firmware versions of routers due to a
vulnerability, accidentally going over paths with these properties is an issue.

Also, ASes may not be willing to share such information with all other
ASes. Publically sharing information can reveal vulnerabilities, which they

46

may only with to share with certain ASes. This means a system would be
needed where ASes can selectively share information with other ASes and
encrypt this so only the end host is able to extract the shared path proper-
ties.

Our next three features, which can be combined for path selection with
various requirements, are applicable to many other use cases. The RIM
method is flexible as it allows you to set ideal values and hard require-
ments. RIM does require some extensive preprocessing, especially for non-
quantifiable properties, but the method itself is fast as it scales to the number
of paths and properties. The RIM method does require some tuning due
to its usage of weights. Improperly tuned weights can lead to undesirable
rankings. It requires some trial and error with balancing the weights in the
preference policy to achieve the best available path.

Our chosen multi-path mode was very specifically chosen for our use case
as availability was a significant security requirement. For some use cases,
redundant multi-path mode may be more suitable. In that case, a method
would have to be found to include some distance measurement to compare
the amount of overlap any two paths may have. Ideally, you would want a
minimal amount of overlap to reduce the chance of both paths failing due
to an AS failing that was present on both paths.

We also created a prototype, which was an implementation of a selection
of features. While it allowed us to verify property extraction, path selection,
and multi-path mode are possible within SCION, it also showed us some
of the limitations. Property extraction still has some major limitations.
Beyond its limitations for non-quantifiable properties as mentioned earlier,
it is also a slow process. The more paths are available, the longer it takes to
run a full property extraction cycle. When trying to monitor path health,
a cycle of several minutes would be insufficient. Properties like bandwidth
and ping can vary greatly in this period of time, and may even decrease
significantly enough that other paths become the better path. A solution to
this could be to test the different properties in parallel cycles. For example,
the ping tester and bandwidth tester run parallel from each other. As the
bandwidth tester is what caused the long wait times, running latency in
a different cycle would allow the application to monitor path health using
latency.

47

Chapter 7

Conclusions

In this thesis, we presented a method to achieve an application-level requirement-
based path selection on the SCION network. We first established a remote
surgery use case in Chapter 3 to explore the requirements that were needed
and to explore the considerations regarding path-aware applications. Next,
we created an application design to answer our first two sub-questions.

1. How can we extract different properties for possible paths?
To extract different properties from a path (Section 4.2), we used the
same mechanism as the authors of the UPIN paper [10] to collect the
latency, bandwidth, and ISDs from a path. We also described how
we can use SCION’s path metadata to convey information such as a
router version. However, SCION does not offer a method native to
SCION to verify path metadata.

2. How can we find the best available path?
In Section 4.3 we compared several multiple-criteria decision making
methods to create a path ranking. We chose the RIM method, as it
enabled us to set hard and soft requirements. Soft requirements are
parameters that a path ideally should have, and hard requirements are
parameters that a path must be within to be valid. We also described
a multi-path mode to ensure the availability of our application.

Next, we created a prototype to showcase that each of our described features
is possible within SCION and to answer our third sub-question:

3. What is the impact on the efficiency using our method in
comparison to path selection without requirements?
Overall, path selection itself is slower when you set a policy compared
to when you do not. When a policy is set, the path selection takes
an average of 16 seconds. When a policy is not set, the path selection
takes an average of 10 seconds. The path selection with a policy set
and multi-path enabled takes an average of 29 seconds. This means

48

setting multi-path is almost twice as slow as when you only set the
policy, and almost thrice as slow compared to setting no policy. For
the majority of use cases, these are acceptable margins, and the code
can be optimized to speed this up. However, the path property extrac-
tion process currently takes up to 9 minutes with 40 paths. For some
properties, like geolocation, it is acceptable if updating that informa-
tion takes a longer time, as these properties rarely change. However,
aspects like latency should be kept up to date more frequently to be
able to monitor the path health. It is possible to split up these cycles
so that latency and bandwidth are measured separately. With that
adjustment, latency would be updated more often.

By answering these questions, we are able to answer our research ques-
tion:
”How can we achieve application-level requirement-based path se-
lection on the SCION network?”
An application-level requirement-based path selection consists of two parts:
a path property extraction and the actual path selection.

When considering property extraction, some properties can be measured,
such as latency and bandwidth, and properties that are static information
such as ISDs and router information. Quantifiable properties can be mea-
sured using various tools like ping or a bandwidth tester. Aspects like la-
tency, bandwidth, and even jitter, to monitor the path health and ensure
a better availability are straightforward to measure. Not each measurable
property is appropriate to monitor path health though. The bandwidth and
latency together, for example, take around 13 to 14 seconds per path to mea-
sure, which is too long. However, it is possible to split these measurements
into their own cycles to gain information more quickly. Static information
can be harder to extract as many properties are often not made available.
The ISD can be gathered from the AS name. It is also possible to extend
the path metadata to include different pieces of information about the AS,
such as the router brand or version. However, it can be difficult to verify
this information.

When considering path selection, this can be done by using a path rank-
ing method, such as RIM. In the case the aim is not a path that is always
available, but rather a path that meets all requirements, RIM can still be
applicable as it outputs a 1 for a path if it fulfils all requirements, and then
only paths that output a 1 are accepted. This method can also be used
to find the best path of all paths that meet the requirements. This can
be done by making the requirements the hard requirements, such that only
scored paths are those that meet all requirements, and by then using the
ideal ranges to set the preferences and gain a ranking.

As it stands, PAN within SCION is an interesting feature, but we recom-

49

mend some capability be added to extract and verify more path properties.
Currently, non-quantifiable properties are difficult to verify or do not have
the support to verify them. An adjustment could be to run FABRID [8]
natively on SCION, or a new method may be found with more research. For
future work, we also recommend that the client is able to verify whether or
not the packet it sent travelled along the selected path. While SCION has
some validation natively, it does not offer end-host path validation. One
method that could be utilized is EPIC [25] (Every Packet Is Checked) which
allows end hosts to perform path validation. With these two additions, PAN
can greatly improve the security of network communication.

50

Bibliography

[1] RIPE NCC, “YouTube Hijacking: A RIPE NCC RIS case study,”
https://www.ripe.net/publications/news/industry-developments/
youtube-hijacking-a-ripe-ncc-ris-case-study, 2008, accessed on June
12, 2023.

[2] B. Stone, “Pakistan Cuts Access to YouTube Worldwide,” https:
//www.nytimes.com/2008/02/26/technology/26tube.html, 2008, ac-
cessed on December 5, 2023.

[3] M. Lepinski and K. Sriram, “Bgpsec protocol specification - RFC 8205,”
Tech. Rep., 2017.

[4] T. Hlavacek, P. Jeitner, D. Mirdita, H. Shulman, and M. Waidner, “Be-
hind the scenes of rpki,” in Proceedings of the 2022 ACM SIGSAC Con-
ference on Computer and Communications Security, 2022, pp. 1413–
1426.

[5] C. de Kater, N. Rustignoli, and A. Perrig, “SCION Overview,”
Mar. 2023. [Online]. Available: https://www.ietf.org/archive/id/
draft-dekater-panrg-scion-overview-03.html

[6] D. Hausheer, “SCION - A Novel Internet Architecture,” https://labs.
ripe.net/author/hausheer/scion-a-novel-internet-architecture/, 2021,
accessed on January 4, 2023.

[7] T. John, P. De Vaere, C. Schutijser, A. Perrig, and D. Hausheer,
“Linc: low-cost inter-domain connectivity for industrial systems,”
in Proceedings of the SIGCOMM ’21 Poster and Demo Sessions.
Virtual Event: ACM, Aug. 2021, pp. 68–70. [Online]. Available:
https://dl.acm.org/doi/10.1145/3472716.3472850

[8] C. Krähenbühl, M. Wyss, D. Basin, V. Lenders, A. Perrig, and
M. Strohmeier, “FABRID: Flexible Attestation-Based Routing for
Inter-Domain Networks,” Apr. 2023, arXiv:2304.03108 [cs]. [Online].
Available: http://arxiv.org/abs/2304.03108

51

https://www.ripe.net/publications/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study
https://www.ripe.net/publications/news/industry-developments/youtube-hijacking-a-ripe-ncc-ris-case-study
https://www.nytimes.com/2008/02/26/technology/26tube.html
https://www.nytimes.com/2008/02/26/technology/26tube.html
https://www.ietf.org/archive/id/draft-dekater-panrg-scion-overview-03.html
https://www.ietf.org/archive/id/draft-dekater-panrg-scion-overview-03.html
https://labs.ripe.net/author/hausheer/scion-a-novel-internet-architecture/
https://labs.ripe.net/author/hausheer/scion-a-novel-internet-architecture/
https://dl.acm.org/doi/10.1145/3472716.3472850
http://arxiv.org/abs/2304.03108

[9] T. Krüger and D. Hausheer, “Towards an API for the Path-Aware
Internet,” in Proceedings of the ACM SIGCOMM 2021 Workshop on
Network-Application Integration. Virtual Event USA: ACM, Aug.
2021, pp. 68–72. [Online]. Available: https://dl.acm.org/doi/10.1145/
3472727.3472808

[10] A. Battipaglia, L. Boldrini, R. Koning, and P. Grosso, “Evaluation
of SCION for User-driven Path Control: a Usability Study,” in
Proceedings of the SC ’23 Workshops of The International Conference
on High Performance Computing, Network, Storage, and Analysis.
Denver CO USA: ACM, Nov. 2023, pp. 785–794. [Online]. Available:
https://dl.acm.org/doi/10.1145/3624062.3624592

[11] L. Chuat, M. Legner, D. Basin, D. Hausheer, S. Hitz, P. Müller, and
A. Perrig, The Complete Guide to SCION: From Design Principles
to Formal Verification, ser. Information Security and Cryptography.
Cham: Springer International Publishing, 2022. [Online]. Available:
https://link.springer.com/10.1007/978-3-031-05288-0

[12] Anapaya Systems, ETH Zurich, SCION Association, “SCION Header
Specification,” 2023. [Online]. Available: https://scion.docs.anapaya.
net/en/latest/protocols/scion-header.html

[13] A. Davidson, M. Frei, M. Gartner, H. Haddadi, A. Perrig, J. S.
Nieto, P. Winter, and F. Wirz, “Tango or square dance? how
tightly should we integrate network functionality in browsers?”
in Proceedings of the 21st ACM Workshop on Hot Topics in
Networks, ser. HotNets ’22. New York, NY, USA: Association for
Computing Machinery, Nov. 2022, pp. 205–212. [Online]. Available:
https://dl.acm.org/doi/10.1145/3563766.3564111

[14] A. Bernadotte, “Cyber security for surgical remote intelligent robotic
systems,” in 2023 9th International Conference on Automation,
Robotics and Applications (ICARA), pp. 65–69, ISSN: 2767-7745.

[15] S. Iqbal, S. Farooq, K. Shahzad, A. W. Malik, M. M. Hamayun,
and O. Hasan, “SecureSurgiNET: A framework for ensuring security
in telesurgery,” vol. 15, no. 9, p. 1550147719873811, publisher:
SAGE Publications. [Online]. Available: https://doi.org/10.1177/
1550147719873811

[16] D. I. Dogaru and I. Dumitrache, “Cyber security in healthcare net-
works,” Jun. 2017, pp. 414–417.

[17] A. Ahad, M. Tahir, and K.-L. A. Yau, “5G-Based Smart Healthcare
Network: Architecture, Taxonomy, Challenges and Future Research

52

https://dl.acm.org/doi/10.1145/3472727.3472808
https://dl.acm.org/doi/10.1145/3472727.3472808
https://dl.acm.org/doi/10.1145/3624062.3624592
https://link.springer.com/10.1007/978-3-031-05288-0
https://scion.docs.anapaya.net/en/latest/protocols/scion-header.html
https://scion.docs.anapaya.net/en/latest/protocols/scion-header.html
https://dl.acm.org/doi/10.1145/3563766.3564111
https://doi.org/10.1177/1550147719873811
https://doi.org/10.1177/1550147719873811

Directions,” IEEE Access, vol. 7, pp. 100 747–100 762, 2019, conference
Name: IEEE Access.

[18] G. Moustris, C. Tzafestas, and K. Konstantinidis, “A long
distance telesurgical demonstration on robotic surgery phantoms
over 5g,” vol. 18, no. 9, pp. 1577–1587. [Online]. Available:
https://link.springer.com/10.1007/s11548-023-02913-2

[19] A. Battipaglia, “SCION Test Suite,” https://github.com/MrR0b0t14/
SCION-Test-Suite, 2023, accessed on February 12, 2024.

[20] M. Aruldoss, T. M. Lakshmi, and V. P. Venkatesan, “A survey
on multi criteria decision making methods and its applications,”
American Journal of Information Systems, vol. 1, no. 1, pp. 31–43,
2013. [Online]. Available: http://pubs.sciepub.com/ajis/1/1/5

[21] E. Triantaphyllou, “Multi-Criteria Decision Making Methods,” in
Multi-criteria Decision Making Methods: A Comparative Study, ser.
Applied Optimization, E. Triantaphyllou, Ed. Boston, MA: Springer
US, 2000, pp. 5–21. [Online]. Available: https://doi.org/10.1007/
978-1-4757-3157-6 2

[22] H. Taherdoost and M. Madanchian, “Using PROMETHEE Method for
Multi-Criteria Decision Making: Applications and Procedures,” Iris
Journal of Economics & Business Management, vol. 1, no. 1, 2023.

[23] E. Cables, M. T. Lamata, and J. L. Verdegay, “RIM-reference
ideal method in multicriteria decision making,” Information Sciences,
vol. 337-338, pp. 1–10, Apr. 2016. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0020025515009007

[24] A. van Veen, “Prototype,” https://gitlab.science.ru.nl/avveen/
prototype, 2024, accessed on April 18, 2024.

[25] M. Legner, T. Klenze, M. Wyss, C. Sprenger, and A. Perrig, “{EPIC}:
every packet is checked in the data plane of a {Path-Aware} internet,”
in 29th USENIX Security Symposium (USENIX Security 20), 2020, pp.
541–558.

53

https://link.springer.com/10.1007/s11548-023-02913-2
https://github.com/MrR0b0t14/SCION-Test-Suite
https://github.com/MrR0b0t14/SCION-Test-Suite
http://pubs.sciepub.com/ajis/1/1/5
https://doi.org/10.1007/978-1-4757-3157-6_2
https://doi.org/10.1007/978-1-4757-3157-6_2
https://www.sciencedirect.com/science/article/pii/S0020025515009007
https://www.sciencedirect.com/science/article/pii/S0020025515009007
https://gitlab.science.ru.nl/avveen/prototype
https://gitlab.science.ru.nl/avveen/prototype

Appendix A

Appendix

A.1 Preference Policy JSON

1 {

2 "properties": [

3 {

4 "property": "latency",

5 "rangeMin": 0,

6 "rangeMax": 1000000,

7 "idealMin": 0,

8 "idealMax": 150,

9 "weight": 0.2000

10 "additionalInfo": null

11 },

12 {

13 "property": "bandwidthUp",

14 "rangeMin": 0,

15 "rangeMax": 1000000,

16 "idealMin": 250,

17 "idealMax": 1000000,

18 "weight": 0.1000,

19 "additionalInfo": null

20 },

21 {

22 "property": "bandwidthDown",

23 "rangeMin": 0,

24 "rangeMax": 1000000,

25 "idealMin": 1000,

26 "idealMax": 1000000,

27 "weight": 0.1000,

28 "additionalInfo": null

54

29 },

30 {

31 "property": "geolocation",

32 "rangeMin": 1,

33 "rangeMax": 2,

34 "idealMin": 2,

35 "idealMax": 2,

36 "weight": 0.3000

37 "additionalInfo": "Whitelist: 1, 2, 4"

38 }

39 {

40 "property": "router-firmware-version",

41 "rangeMin": 1,

42 "rangeMax": 2,

43 "idealMin": 2,

44 "idealMax": 2,

45 "weight": 0.3000

46 "additionalInfo": "minimal version: 2.1.0"

47 }

48]

49 }

55

A.2 Experiment Timing Data

Run Path Collection (s) Path Testing (s) Total (s)

1 0.419 553.073 553.492

2 2.556 544.566 547.122

3 0.415 546.948 547.363

4 0.415 551.806 552.221

5 0.411 546.687 547.098

6 0.433 555.256 555.689

7 2.734 414.547 417.281

8 2.567 536.838 539.405

9 0.42 540.544 540.964

10 0.429 565.573 566.002

(a) Property collection from AS 18-ffaa:1:10bc to AS 19-ffaa:1:10bd with 40 avail-
able paths

Run Path Collection (s) Path Testing (s) Total (s)

1 2.393 257.243 259.636

2 0.374 241.491 241.865

3 2.28 248.904 251.184

4 2.676 250.907 253.583

5 2.233 246.306 248.539

6 2.211 254.922 257.133

7 2.176 257.252 259.428

8 5.052 203.92 208.972

9 0.371 241.582 241.953

10 5.035 253.435 258.47

(b) Property collection from AS 18-ffaa:1:10bc to AS 19-ffaa:1:10bd with 18
available paths

Table A.1: Property extraction times of completed runs in seconds where
Path Collection is the time to find the available paths and Path Testing is
the time to run the ping and bandwidth tests on the found paths

56

Run Path Collection (s) Path Testing (s) Total (s)

1 1.757 526.815 528.572

2 1.886 509.146 511.032

3 0.427 526.637 527.064

4 0.349 513.948 514.297

5 0.376 520.218 520.594

6 0.804 500.162 500.966

7 0.37 512.076 512.446

8 5.039 436.929 441.968

9 5.034 429.671 434.705

10 5.052 431.845 436.897

(a) Property collection from AS 17-ffaa:1:10bb to AS 19-ffaa:1:10bd with 40
available paths

Table A.2: Property extraction times of completed runs in seconds

57

Client (ms) With Policy (ms) With Multi-path (ms)

11.117 17.443 30.908

9.205 14.461 28.657

8.92 16.429 29.13

8.347 15.558 27.918

7.424 17.018 27.714

6.938 15.518 30.572

8.559 16.405 27.531

8.327 15.651 29.0518

7.713 16.449 28.306

9.084 15.298 28.521

(a) Run Time in ms for Client, Client with a Set Policy, and Client with Multi-
path Enabled on the US AS with 18 Paths

Client (ms) With Policy (ms) With Multi-path (ms)

2.193 15.624 29.458

15.488 17.122 29.415

10.81 15.149 29.107

10.794 13.214 29.912

11.102 15.755 26.287

11.275 18.901 30.387

11.623 17.448 29.711

9.513 16.868 30.436

11.955 14.144 29.459

11.904 16.046 29.262

(b) Run Time in ms for Client, Client with a Set Policy, and Client with Multi-
path Enabled on the US AS with 40 Paths.

Table A.3: Run times in milliseconds

58

	Introduction
	Background
	High-level Overview of SCION
	Goals of SCION
	Architecture of SCION
	How does SCION work?

	Control Plane
	Path Exploration (Beaconing)
	Path-Segment Registration
	Path Lookup and Construction

	Data Plane
	The SCION Packet
	Packet Forwarding

	Related Work

	Use Case: Remote Surgery on the SCION Infrastructure
	Motivation
	Requirements
	Scenarios
	Basic Flow
	Alternative Flow 1
	Alternative Flow 2
	Relationship to Reality

	Application Design
	Application Overview
	Extracting Path Properties
	Latency
	Bandwidth
	Geolocation
	Router Firmware Version

	Automatic Path Selection
	Selection Algorithm
	Policy Specification
	Selecting a Path

	Multi-pathing

	Evaluation
	Test Setup
	Test Results
	Evaluating the Results

	Discussion
	Conclusions
	Appendix
	Preference Policy JSON
	Experiment Timing Data

