
Master thesis
Computing Science

Radboud University

Tink Outside the Deck

Author:
Dor Mariel Alter
s1027021
dor.alter@ru.nl

First supervisor/assessor:
Prof. dr. Joan Daemen

j.daemen@cs.ru.nl

Second supervisor:
dr. Silvia Mella

silvia.mella@ru.nl

Second assessor:
dr. Bart Mennink

b.mennink@cs.ru.nl

September 17, 2024

mailto:dor.alter@student.ru.nl
mailto:j.daemen@cs.ru.nl
mailto:silvia.mella@ru.nl
mailto:b.mennink@cs.ru.nl

Abstract

To ease the integration of cryptographic schemes into different applications,
Google introduced a new cryptographic library called Google Tink, which
includes cryptographic schemes for different tasks. For the task of authenti-
cated encryption, Google introduced Google Tink streaming Authenticated
Encryption with Associated Data (AEAD). In this thesis, we examine the
history of Google Tink AEAD’s security and the construction that inspired
Google Tink developers. To prove the security of Google Tink AEAD, a
new security notion, nOAE2, had to be introduced from the existing nOAE
notion. We believe a better approach is to think about the security proof
while designing the scheme. In this thesis, we introduce a new authenticated
encryption mode called Deck-Tink, for which we prove a security bound
using the jammin cipher as a model. We go further and provide an instantia-
tion for the mode called Xoofff-Tink, which uses Xoofff as its deck function.
Xoofff-Tink provides additional features that other deck-based authenticated
encryption modes, e.g. Deck-Plain, do not possess, such as out-of-order
and lost messages. We implement our Xoofff-Tink scheme in C and Rust
to increase its usability and integration potential. We go on to provide an
analysis of performance benchmarks between Google Tink streaming AEAD
and Xoofff-Tink for the C version and a comparison to various authenticated
encryption schemes for the Rust variant. We also discuss our collaboration
with iHub, where we successfully integrated Xoofff-Tink into their PostGuard
project, demonstrating its practicality and ease of adoption in real-world
applications.

Contents

1 Introduction 3

2 Stream Encryption and MAC functions introduction 6
2.1 Stream Encryption . 6
2.2 MAC function . 7
2.3 Deck-function . 8

3 Authenticated Encryption and the nOAE2 Notions 10
3.1 Distinguishing Models . 10
3.2 Authenticated Encryption . 12
3.3 Authenticated Encryption Modes 13
3.4 Nonce-Base Online Authenticated Encryption notions 14

3.4.1 Syntax and Notations . 14
3.4.2 nOAE2 . 15

4 Jammin Cipher 19
4.1 Jammin Cipher Design . 19
4.2 Inner workings . 21

5 STREAM and Google Tink 23
5.1 STREAM Construction . 23
5.2 Google Tink Streaming AEAD Encryption 24

6 Deck-Plain and Xoofff Instantiation 28
6.1 Deck-Plain . 28
6.2 Xoofff - Farfalle over Xoodoo . 30

6.2.1 Xoodoo . 30
6.2.2 Farfalle . 31
6.2.3 Xoofff . 34

7 Deck-Tink 37
7.1 Deck-Tink Design . 37
7.2 Inner workings . 39

1

8 Security Analysis of Deck-Tink 40
8.1 H-coefficient Technique . 40
8.2 Proof of a Bound for Deck-Tink 41

9 Xoofff-Tink Implementation 46
9.1 C Implementation . 46
9.2 Rust Implementation . 48

9.2.1 Why Rust? . 48
9.2.2 Xoofff-Tink Implementation in Rust 49

9.3 C and Rust Compression . 51

10 Xoofff-Tink Performance 53
10.1 Benchmark Setup . 53
10.2 Xoofff-Tink vs Google-Tink AEAD 54
10.3 Rust Xoofff-Tink vs Rust AEADs Crypto Library 56
10.4 General Observations . 65

11 Xoofff-Tink in PostGuard 67
11.1 The PostGuard Project . 67
11.2 Goal of our Collaboration . 68
11.3 Results of Collaboration . 68

12 Conclusions and Future Work 70

2

Chapter 1

Introduction

In the contemporary field of digital security, cryptography stands as the
cornerstone of protecting data confidentiality, integrity, and authenticity. As
cyber threats evolve in complexity and sophistication, the development of
advanced cryptographic solutions becomes essential. Among these solutions,
Authenticated Encryption (AE) has emerged as a possibility for integrating
encryption with authentication to ensure both privacy and data integrity in
a single streamlined process. Traditional encryption techniques are effective
in concealing content, but they often lack mechanisms to verify the integrity
and authenticity of data. While authentication methods could ensure data
integrity, they do not protect content privacy. AE unifies these capabilities,
offering a holistic security solution that encrypts data and simultaneously
ensures its integrity.

Today, the landscape of cryptography and AE schemes is marked by
various methodologies designed to meet different security needs and oper-
ational environments. Modern AE schemes, such as Galois/Counter Mode
(GCM) [MV05] and ChaCha20-Poly1305 [NL18], are widely implemented in
protocols like Transport Layer Security (TLS) and provide robust, efficient,
and scalable security measures.

To ease the integration of cryptographic schemes into different applica-
tions, Google introduced a new cryptographic library called Google Tink,
which includes cryptographic schemes for different tasks. "It was born out
of our extensive experience working with Google’s product teams, fixing
implementation weaknesses" [Goo23b]. The core idea is to have one library
with different functions, which has a variety of cryptographic schemes that
are easy to use, secure, and compatible with existing cryptography libraries
[Goo23a]. For authenticated encryption, Google provides Google Tink stream-
ing Authenticated Encryption with Associated Data’s (AEAD) scheme.

In this thesis, we examine the history of Google Tink AEAD’s security
and the construction that inspired Google Tink developers. We discuss the
history of notions that led to the notion being used for Google Tink AEAD

3

security-bound proof. We start with the first definition of the security notion
OAE, then the improved version OAE2, the looser version nOAE, and finally,
the version Google Tink AEAD is compared to, i.e., nOAE2. The security
bound of Google Tink was proven in [HS20], where the authors created their
ideal world inspired by nOAE [HRRV15] and shaped it into a version that
fits the scheme’s design. We believe we ought to do better and think about
the proof when designing a scheme. As we see it, a scheme’s security proof
should come naturally from the scheme itself, and one should consider the
proof while designing the scheme, not design and then prove it. We believe
an ideal model should be practical to ensure it can be compared to real-world
designs without the need to create a new model, as was done between the
nOAE and nOAE2.

To that end, we develop a new authenticated encryption mode that we
call Deck-Tink, which has proof of security by design and uses the jammin
cipher [BDH+22] as a model for its security proof. We go further and provide
an instantiation for the mode called Xoofff-Tink, which uses Xoofff as its
deck function [Alt24]. Xoofff-Tink provides additional features that other
deck-based AE schemes do not possess, such as out-of-order and lost messages.
Google Tink streaming AEAD inspired us to write this thesis as it showcases
the approach of design and then prove, therefore, it is important to mention
it.

We implement our Xoofff-Tink scheme in two languages, C and Rust,
to increase its usability and integration potential. We also benchmark the
performance of Google Tink stream AEAD and compare it to Xoofff-Tink.
As Google Tink does not have a C implementation, we will compare our C
implementation of Xoofff-Tink to the C++ implementation of Google Tink.
We do not expect to see a significant improvement in performance as Google
Tink uses AES, which is implemented in hardware for most higher-level
devices. Nevertheless, it is essential to report the speed performance of the
two schemes, as speed is an important aspect in today’s cryptographic world
and plays a role when choosing one scheme over the other.

Another important aspect of an implementation is the ease of use. To that
end, we collaborated with iHub on a project to showcase our implementation
and its practicality. iHub is a Radboud interdisciplinary research hub on
digitalization and society. They are currently working on different projects
with a variety of goals. We collaborated on their PostGuard project [BBJ+23],
which aims to prove an easy-to-use email platform that allows encryption
and decryption of emails.

Our primary goal in this collaboration is to provide a real-life example of
how easy it is to use our new implementation and measure the performance
of our scheme compared to the scheme used in PostGuard, AES-GCM. We
decided to go further and benchmark our Rust implementation against more
popular authenticated encryption schemes. As our scheme is relatively new,
it is essential to be able to place it among the more well-known authenticated

4

encryption schemes, and by benchmarking the performances, we can achieve
that. We picked Ascon, AES-GCM, AES-GCM-SIV, and Chacha20Poly1305
for that end. We used the implementation from the Rust Crypto AEAD
library [dev23], which is becoming the standard library for cryptography in
Rust these days.

The thesis is structured in the following way: in Chapter 2, we explain the
working of stream encryption, Mac function, and deck function. In Chapter
3, we introduce the notions of AE and the nOAE2 notions used by Google
Tink. In Chapter 4, we introduce the jammin cipher, which is used in the
security analysis of Deck-Tink. In Chapter 5, we explain Google Tink AEAD
and the scheme that inspired its design. In Chapter 6, we discuss a mode
of AE scheme using a deck function and the deck function we used for our
instance later in the thesis. In Chapter 7, we provide the specification for
our mode Deck-Tink, and in 8, we analyze its security. In Chapter 9, we
discuss an implementation of an instance of Deck-Tink called Xoofff-Tink
and in Chapter 10, we provide the result of benchmarking it against various
schemes. Finally, in Chapter 11, we discuss the collaboration results with
iHub, and in Chapter 12, we conclude the thesis.

5

Chapter 2

Stream Encryption and MAC
functions introduction

2.1 Stream Encryption

Encryption has existed for over 4,000 years in many different variants
[PNT+15]. One variant believed to have been used by Julius Caesar was called
Caesar cipher. The idea is simple: one picks a letter x and then encrypts
by replacing each letter in the message with the letter x positions down the
alphabet. For instance, if a equals 1, the sentence “bob” becomes “cpc”. This
idea was improved by the Vigenere cipher, used by Giovan Battista Bellaso
in the 16th century [AO16]. The same encoding is used for the letter, but
instead of a number, a, a keyword is used, and we shift each letter in the
sentence based on the corresponding letter in the keyword. We first repeat
the word as many times as needed to get the length of the sentence and then
shift the corresponding letter. For example, if the word is key and we encrypt
hello, we will have h shifted k (11) times to the right, e is shifted by e (5)
times, and so on. If the keyword is used only once and has the size of the
sentence, then it is the encryption technique we call today one-time-pad.

Although this cipher is too primitive for our days, as it would require the
key material to be as long as the text, its idea of using one-time-pads is still
common today. Today, instead of using letters, we map the message, which
we call plaintext, into bits and use that for encryption/decryption. Simply
put, a one-time-pad takes a key value, called keystream, and performs XOR
with the plaintext to get the ciphertext, denoted by C. The security of this
technique depends on the randomness of the key. If the key is not random,
one might be able to easily guess it and decrypt the ciphertext back to the
original message. If we know that the key is a value between zero and ten,
we will need at most ten guesses to find the key rather than two to the power
of the length of the key, assuming the input/key is long enough. However, if
the plaintext is an entirely random value, then the attacker that obtains the

6

K

D
Stream cipher Z

Figure 2.2: Illustration of a modern stream cipher.

ciphertext cannot decrypt it unless provided with the keystream.
To reduce the amount of time the keystream needs to be shared, one

usually uses a key K, which is communicated once and future keystreams
are then generated based on K. The algorithm that generates keystreams
from the key, K, is called stream cipher. A stream cipher is a cryptographic
primitive that takes a key in defined domain space {0,1}l and returns an
output in some other specified domain. Given a key K of short fixed length
l, SC returns an arbitrary long keystream Z, SC ∶ {0,1}l → {0,1}∗,K ↦ Z.

For example, consider the case where Alice and Bob agreed on a key K
of length 128 bits. Alice wishes to encrypt a 2 MB file of text, simply using
K, is not possible as it is too short. She, therefore, uses the following stream
cipher:

K Stream cipher Z

P

C

Figure 2.1: Illustration of how a ciphertext is generated using stream encryp-
tion.

Alice then sends C to Bob. Bob performs the same operations, with the
only difference being that instead of P , he uses C and will receive the original
message.

Modern stream ciphers also include a diversifier, D, in the input to
generate multiple keystreams per key. If we use the same key, we will get the
same keystream every time, making it easier to guess. To avoid using different
keys for each message, the diversifier was introduced. For each plaintext, a
different diversifier is used, thus resulting in different keystreams that can be
XORed with the original message. An example can be seen in Figure 2.2.

2.2 MAC function

While a stream cipher provides us with a keystream to encrypt a message, it
does not authenticate it. For authentication, the receiver should be able to
determine who wrote the message. To that end, one can append an authenti-
cation token or a signature. In symmetric cryptography, the token/signature

7

K

P
MAC function T

Figure 2.3: Illustration of a MAC function.

is called either a message authentication code (MAC) or a tag. In this thesis,
we use the name tag for the authentication token, denoted by T . A MAC
function is a cryptographic primitive that takes an arbitrarily long plaintext,
P , and a key, K, and returns a fixed-size tag, T . An illustration can be seen
in Figure 2.3.
Consider the case where Alice wishes to send a message to Bob, and Bob wants
to ensure that the message indeed arrived from Alice. Alice and Bob already
share a secret key, which we will call K. Alice will make a call to the MAC
function with secret key K and plaintext P , obtaining MACK(P) = T different
notation exists for the MAC function such as MAC(K,P). Throughout this
thesis, we will stick to the MACK(P) notation as we do not often change the
key. Therefore, we consider the plaintext to be the only inputted variable.
Alice will then send to Bob (P,T). Bob can verify if the plaintext comes from
Alice by computing MACK(P) = T ′ and verifying it with the received tag T .
In a good MAC function, if the plaintext is modified, the computation of T ′

will differ from T , and assuming that K is secret, using a MAC function with
random K is unlikely to result in a computation that will verify correctly
(considering that the tag is sufficiently long).

Some MAC functions require an additional nonce for their security. Similar
to the idea we saw with the diversifier for stream ciphers, for some MAC
functions, we want to use a nonce to ensure the safe reuse of their key. Consider
the case of a MAC function that performs XOR between the plaintext and
the key. If an attacker uses this method to authenticate the stream of all
zeros, they will get the key. Some MAC functions can prevent such cases
and ensure their security even if the key is reused by adding a nonce to the
computation. This nonce should be checked by the sender to guarantee they
will not use the same nonce twice. Considering this approach, we modify the
definition of the MAC function to take not only a key and a plaintext but
also a nonce, such that MACK(N,P) = T .

2.3 Deck-function

Doubly-Extendable Cryptographic Keyed function, known as deck function, is
a keyed function that takes a sequence of strings and returns a pseudorandom
string of arbitrary length [BDH+22]. Formally defined, we can see a deck
function as a function F that takes as input a secret key K ∈ K, where
K represents the set of all possible keys and a sequence of an arbitrary
number of strings X(0); . . . ;X(m−1) ∈ (Z∗2)+, where (Z∗2)+ is the set of all

8

bit strings containing at least one string, and produces a string of bits
of arbitrary length and takes from it the range starting from a specified
offset q ∈ N and for a specified length n ∈ N [BDH+22]. We denote this as
Z = 0n + FK(X(0); . . . ;X(m−1)) ≪ q, where 0n means that the length of Z
will be n and ≪ q specifies the range of the offset.
Deck functions can be used for different purposes. We focus on the deck
function as a stream cipher, MAC function, and in modes for authenticated
encryption. We can use the deck function as a stream cipher in the same
manner as we have seen above in 3.3. We have a diversifier D, and we encrypt
by XORing the result of F on D with the message M , C =M + FK(D) and
decrypt in the same way M = C + FK(D). We can use the deck function as
MAC by applying F on the message instead of on a diversifier, T = 0t+FK(M).
We verify the tag by computing T ′ = 0t + FK(M) and comparing it to T .

If we combine those two into one ciphertext, say C = M + FK(D)∣∣0t +
FK(M), then we have an instantiation for a mode of authenticated encryption.
By changing the order of operations we can create a different modes. For
example, if ciphertext is computed as C = M + FK(A), where A is the
associated data containing a nonce, and the tag is computed as T = 0t +
FK(A;C). Those are mere examples of how to use a deck function for AE,
in different modes, more about this will be discuss in section 3.2. Where
we will see that the first example is an instance of the Encrypt and MAC
(E&M) mode and the second one is an instance of the Encrypt then MAC
(EtM) mode. More possibilities are available, and depending on the task
at hand, one might prefer one over another. The latest approach is usually
chosen because when decrypting, we can first authenticate and verify the tag
and only then decrypt, ensuring that if the tag is invalid, we do not reveal
anything about the message or the key.

9

Chapter 3

Authenticated Encryption and
the nOAE2 Notions

Before we discuss Google Tink Authenticated Encryption with Associated
Data scheme, we explain the security claim it is trying to achieve and the
ideal-world schemes it is compared to. The security notion is called nonce-
based online authenticated encryption 2, nOAE2. We start with explaining
distinguishing models in section 3.1, which is used in most security analyses
including nOAE2. We then define authenticated encryption and its modes in
sections 3.2 and 3.3. Finally, in sections 3.4, we provide the evolution of the
nOAE2 notion.

3.1 Distinguishing Models

Before discussing any security notions, we need to investigate how they
can be used to prove a security bound for a mode. We model a scheme’s
security by creating a game, also called an experiment, in which an adversary,
Eve, is provided with access to two different schemes. The first is the ideal
world, and the second is the scheme for which we wish to express a security
bound, called the real-world scheme. Eve does not know which scheme she is
communicating with. At the beginning of the game, the scheme is randomly
picked with a probability of 50%. Eve then sends her messages to an interface
that forwards them to either the ideal world or the real world, depending on
the scheme picked. Eve’s goal is to determine if she is taking to the real-world
or ideal-world scheme. She can send several queries to the interface, and
eventually, she must provide her guess. Without any knowledge, Eve has a
success probability of 1

2 as there are two options, and if she randomly picks
one, the probability of it being correct is 1

2 . So her goal is to be able to guess
to which scheme she is talking with probability which is greater than 1

2 . We
call the advantage, denoted by δ between the real world and the ideal world
schemes, twice the difference between Eve’s probability of guess and 1

2 .

10

To make this idea more concrete, we provide the following example where
we instantiate the two schemes: the real world with the stream cipher we
have seen in 2.1 and the ideal one with the following model we call random
oracle. A random oracle is an ideal cryptographic primitive, denoted by RO,
that generates a random response to each query and the same response for
queries with the same value. It can generate arbitrary long output, which we
denote by Z. Given a message M and a length l, it generates a l bits long
output string Z. RO keeps an archive map AR of the messages it received,
M , and the outputs it generated, Z. Initially, this archive is empty. The
procedure of RO is as follows:

1. If M is not in archive AR, randomly generate l bit long string Z and
store (M,Z) in AR.

2. If M is in AR, take the generated Z. If Z length is l, return Z. If
Z is larger than l, return the first l bits of it. If it is smaller than l,
randomly generate the missing bits, append them at the end, update
Z in AR, and return Z.

Random oracle distinguishability is modeled by following the game in
Figure 3.1 where adversary Eve is denoted as A. Eve communicates with
an interface that either forwards the communication to SCK or RO. We
generate a random bit b

$←Ð {0,1} and select SCK if b = 1 and RO if b = 0.
As described above, Eve can send as many queries to the interface as she
wishes, but at the end, she needs to provide a guess bit b′ ∈ {0,1}. Eve is
successful if b′ = b, denoted by the event success. We now can formally express
Eve’s advantage as the probabilistic difference between the real world and
the ideal model: ∆A(SCK ;RO) = Pr(ASCK = 1) −Pr(ARO = 1). In words,
this distance is the difference between the probability that Eve returns b′ = 1
in the real world minus the probability that she returns b′ = 1 in the ideal
world scheme.

SCK RO

D, l Z D, l Z

A

Figure 3.1: Illustration of the distinguishing game between stream cipher SC
and random oracle RO.

Random oracle distinguishability is an example of how we can model
the security of schemes like a stream cipher, where the random oracle is the

11

ideal world scheme. For different schemes, we may need to create other ideal
worlds, such that both the real and ideal worlds share the same interface.
This is because the random oracle might be too simplistic, or the schemes
may possess additional properties we wish to distinguish. In this thesis, we
mainly focus on AE, and therefore, we are looking at ideal schemes that can
be used to distinguish and prove the security bounds of such AE schemes
and we give the first example of such scheme in section 3.4 and another in
Chapter 4.

3.2 Authenticated Encryption

Following the discussion on stream encryption and MAC functions, we next
look at authenticated encryption. Authenticated encryption is achieved when
one not only encrypts the message but also provides means to authenticate
its content. One way to achieve such a scheme is by combining the stream
encryption and MAC function. We can send a tag T alongside the encrypted
message that allows the receiver to verify the message’s origin. Using a Tag
is one way of performing AE, but in some cases, the ciphertext itself has the
means to allow the verification step.

Often, AE schemes include an additional parameter called associated
data, which adds some additional non-confidential information about the
message and is sent in plaintext to be used for the authentication part. Some
AE schemes also use a nonce for their security. This is not mandatory, but
all the schemes in this thesis used it, so we include it in our definition. Given
a key K, a nonce N , an associated data A, and a plaintext P , the sender
applies the wrap operation of the AE scheme to generate ciphertext C, as
can be seen in Figure 3.2.

K

P AE C

A,N

Figure 3.2: Illustration of wrap operation of a nonce-based authenticated
encryption scheme.

The receiver will then unwrap the ciphertext to retrieve the plaintext if
the ciphertext is valid or an error otherwise, as can be seen in Figure 3.3.

12

K

C AD

⎧⎪⎪⎪⎨⎪⎪⎪⎩

P if C is valid

� otherwise
A,N

Figure 3.3: Illustration of unwrap operation for a nonce-based authenticated
encryption scheme.

3.3 Authenticated Encryption Modes

There are different modes for building an authenticated encryption scheme
based on underlying primitives. For simplicity, we use the two schemes we
mentioned above, stream encryption, denoted by SC, and MAC function,
denoted by MAC, and use the concatenation operation, ∣∣, to encode the
associated data and the message. Three common approaches for creating au-
thenticated encryption, which are usually called modes of use in authenticated
encryption, are [BN00]:

• Encrypt-and-MAC (E&M) - on input of a nonce N , associated data A,
and plaintext P , compute:

C = P + SCK(N)
T =MACL(A∣∣M)

• Mac-then-Encrypt MtE - on input of a nonce N , associated data A,
and plaintext P , compute:

T =MACL(A∣∣M)
C = T ∣∣P + SCK(N)

• Encrypt-then-Mac EtM - on input of a nonce N , associated data A,
plaintext P , compute:

C = P + SCK(N)
T =MACL(A∣∣C)

Above, we provide the specification for the wrap operation, the unwrap
is left as an exercise for the reader.

Another common notion for authenticated encryption is being online. For
an AE scheme to be online, we require that it allows the un/wrap operation to
be implemented with a constant memory and a single one-direction pass over
the plaintext (ciphertext), writing out the result during that pass [Boz24].
For wrap, this implies that one can go through the plaintext without saving it

13

and generate a ciphertext in a single pass with constant memory. For unwrap,
it means that if one splits a ciphertext into smaller segments and sends
each, the receiver can unwrap each segment without waiting for the whole
ciphertext to arrive. Consider the following example: we would like to wrap,
send, and unwrap a rather big message (e.g., a movie of a few gigabytes).
If our scheme is online, we can slice the movie into smaller chunks of data
(each a few seconds/minutes, e.g. a few kilobytes), wrap each, and send them
one by one to the receiver, who unwraps them and displays the movie to
the user. Such a property allows us to have a small memory buffer on the
receiver rather than wait and store the cryptogram of the whole message in
memory before being able to unwrap it. This also derives another concept
called session. Session has multiple definitions depending on the context and
the scheme used. We distinguish between processing and communication
sessions to avoid confusing the two definitions.

• When talking about authentication sessions, we refer to authenticating
a message in the context of previously sent ones within the sequence. In
such cases, the cryptogram C3 authenticates the sequence M1;M2;M3

(where Mi = Pi;Ai).

• When using communication sessions, we refer to the sequences of mes-
sages from when a party initialized their communication until they
finalized it. If they later decide to continue their communication, a new
communication session should be started.

3.4 Nonce-Base Online Authenticated Encryption
notions

In this section, we discussed the different online authenticated encryption
(OAE) notions and the most important one, nOAE2, which was used by
Google Tink AEAD. We start by providing the syntax and notation used in
this section in section 3.4.1 and then talk about the OAE notions in section
3.4.2. Notice that in the context of OAE and Google Tink we use the term
encryption to describe wrap and decryption to describe unwrap as those are
the terms used in their specifications.

3.4.1 Syntax and Notations

We start by defining a message M and a segment of a message, Mi, such
that Mi is a string, and M is a sequence of segments M = M0M1, . . . ,Ml,
where l is the length of the message divided by the segment length. An
empty message is an empty sequence rather than an empty string. We denote
the numbers of segments in the message X as ∣X ∣, and the ith segment of
message X as X[i].

14

Following the notation from [HRRV15] we denote an AE scheme in the
OAE notions using Π = (K,E ,D) where the key space K is a nonempty set
with an associated distribution, and the encryption E and decryption D both
consist out of three calls init, next and last. Associated to Π are the nonce
space, N ⊆ {0,1}∗, and the state space S. The state is used to track the
different stages of the instance. The first call of a Π scheme is the init call,
which returns a state. From that moment onwards, we move from one state to
another until last is called, which terminates the state. We have additionally
the associated data (A) space A = {0,1}∗, plaintext spaceM = {0,1}∗ and
ciphertext space C = {0,1}∗. We can define the function signatures of the
encryption E and decryption D as follows:

E .init: K ×N → S D.init: K ×N → S
E .next: S ×A ×M→ C × S D.next: S ×A × C → (M × S) ∪ {�}
E .last: S ×A ×M→ C D.last: S ×A × C →M ∪ {�}

Where an algorithm produces or takes a state s ∈ S from its state space,
it is understood that a fixed encoding of S is employed. We assume that a
single nonce is provided for the entire sequence of segments and that each
plaintext is provided with its A.

For a given AE scheme Π = (K,E ,D), encryption and decryption
algorithms are defined as follows: E,D ∶ K ×N × {{0,1}∗}∗ × {{0,1}∗}∗ →
×{{0,1}∗}∗ and we require that the following holds: if K ∈ K, N ∈
N , A ∈ {{0,1}∗}∗, M ∈ {{0,1}∗}∗ and C = E(K,N,A,M) then M =
D(K,N,A,C). Suppose we encrypt a plaintext with a nonce, a key, and
an associated data. In that case, the decryption of the ciphertext with the
same key, nonce, and associated data should return the original plaintext,
as expected from an AE scheme. Notice that if a ciphertext is invalid, the
function returns an error, �.

Finally, we define the ciphertext expansion, denoted by τ . We consider
the case where τ > 0 as if τ = 0, the scheme only considers encryption without
authentication. We call the value we get with the length of this expansion the
redundancy in a cipher. We define segment/ciphertext expansion of Π as a
number τ ≥ 0 such that if K ∈ K, N ∈ N , A ∈ {{0, 1}∗}∗, M ∈ {{0, 1}∗}∗, m =
∣M ∣ = ∣A∣ and C = E(K,N,A,M) then ∣C[i]∣ = ∣M[i]∣+τ for all i ∈ [1, . . . ,m]
or in words the length of ciphertext is the length of the plaintext plus the
amount of redundancy.

3.4.2 nOAE2

This section explains the evolution of the nOAE2 [HS20] from its first def-
inition in [FFL12]. The first notion is the online authenticated encryption
(OAE), introduced in [FFL12]. OAE was criticized in [HRRV15], where a new
corrected definition was provided due to some error in the original definition.

15

However, even with the corrected definition, OAE suffers from some issues,
according to the authors of [HRRV15], and they decided to provide their
definition, which they call OAE2. There are three variants for the OAE2
notion: OAE2a, OAE2b, and OAE2c. The purpose of creating three different
notions was to help clarify what OAE2 means. The OAE2 mentions the use
of nonce, which are values that should be used only once. If a notion requires
a value to be used only once, we say it is nonce respective, as it upholds the
requirement of nonce not being repeated. However, if a value that should
be a nonce is used multiple times, we call that nonce misuse, as the nonce is
not used as expected. The OAE2 notion allows nonce misuses. The authors
of [HRRV15] created a new notion called nonce-base online authenticated
encryption (nOAE), where they define the security under the presence of a
nonce, or in other words, an OAE2 variable, which is nonce respecting.

The nOAE claim assumes that the user will perform decryption in an
in-order fashion, meaning we first decrypt segment mi before decrypting
segment mi+1. However, some schemes might allow decrypting ciphertext
segments in arbitrary order, we call this property random access decryption.
In other words, segment m2 might arrive before m1, and the receiver would
like to decrypt it before waiting for m1, under the random access decryption,
this should be possible.

nOAE also only considers security in the single-target scenario where an
attacker only targets a single user to attack. However, often an attacker would
not target a single user but rather a set of users to increase the probability
of success. When discussing security in scenarios where an attacker targets
multiple users simultaneously, we consider the multiple-target security notion.

To include those two aspects into the notion, the authors of [HS20]
enhanced the nOAE notion to include multi-target security and allow random
access decryption, resulting in the new nOAE2 notion.

For an AE scheme Π = (K,E ,D), the nOAE2 advantage of an adversary
A is defined as:

Advnoae2Π (A) = 2Pr[Gnoae2
Π (A)] − 1,

where game Gnoae2
Π is defined in Figure 3.4. Adversary A is restricted to be

nonce respecting and is not allowed to create trivial forgeries:

• Calling j ← Enc.init(i,N), and Ck ← Enc.next(i, j,Ak,Mk) for k =
1, . . . ,m and then querying Dec(i,N,A,C,I,0) such that A[j] = Aj

and C[j] = Cj for every j ∈ I.

• Calling j ← Enc.init(i,N), and Ck ← Enc.next(i, j,Ak,Mk) for k =
1, . . . ,m and then querying Dec(i,N,A,C,I,1) such that ∣C∣ ∈ I and
A[j] = Aj and C[j] = Cj for every j ∈ I.

• Calling j ← Enc.init(i,N), and Ck ← Enc.next(i, j,Ak,Mk) for k =

16

1, . . . ,m − 1 and Cm ← Enc.last(i, j,Am,Mm) and then querying
Dec(i,N,A,C,I, 1) such that A[j] = Aj and C[j] = Cj for every j ∈ I.

Figure 3.4: nOAE2 definition of the distinguishing game taken from [HS20]
for an AE scheme Π = (K,E ,D) with expansion τ , nonce space N , and
associated data space A.

The game represents the interface that an adversary is communicating
with, as mentioned in 3.1. The game has six procedures, as shown in Figure
3.4. The first is the initialize procedure, which sets up the scene for the
interface. As nOAE2 considers the settings in a multiple-target scenario,
each user should have scheme-related attributes, which in this case are a key
and a counter. So, in the initialize procedure, the interface assigns a key
Ki and a counter Ji for each user, randomly selects whether the interface
would forward the communication to the real or ideal world, and stores it in
attribute b.

The interface allows an adversary to start multiple communication sessions
by calling the Enc.init and Enc.last procedures. Each time Enc.init is called,
a communication session is started, given a nonce N and user identifier
i ∈ N. More specifically, the Enc.init procedure increases the counter by one,
generates the state S, which will be used for encryption, from the key and
the nonce, and returns the new value of the counter.

There are two types of calls for encryption, either next or last. In both,
the message is encrypted in the same matter, but in the case of the Enc.last,
the communication session is terminated, and the state is set to error. If
a call to either method is done after Enc.last, the procedure will return an
error instead of a cryptogram. Both Enc.next and Enc.last generate two
ciphertexts C0 and C1. C0 is generated in the real world, using the current
state to encrypt message M and associated data A. C1 is created randomly
and considered the output in the ideal world. Based on b, which we set in the
initialize procedure, we either return C0 or C1. Finally, in the case of last,
we set the current state to � to indicate that the state has been terminated.

17

Although we only have one function in decryption, the three calls, init,
next, and last, are integrated into that function. It first performs the D.init
call, as we would expect in a Dec.init call. As the behavior of next and last is
very similar, combining them into one function is possible. This is done using
an additional variable a, which is 0 or 1, depending on whether it is the last
call. The function takes i, the user’s index, N , the nonce, A, the additional
information, or as we call it, associate data, C, the cipher text, I a list of
indices of segments in C, and an a to specify if it is the last message. The
main difference here is the set I. This is a new variable compared to what
we have seen so far. It specifies which messages should be decrypted. As the
notion allows decryption in out-of-order or missing messages, the user should
specify which messages they intend to decrypt. For example, we might wish
to decrypt the set of messages mi where i ∈ {0..5} ∪ {8..10}. So we provide
set I = {0..5}∪{8..10} in the decryption call such that the function will know
which index to use and decrypt. In the ideal world, we always return false for
decryption, meaning the ciphertext is invalid. In the case of the real world,
for each value in list I, we extract the index of the message and retrieve the
state used to encrypt it. Then we use the D.next or D.last depending on a
to decrypt the ciphertext and return true if the ciphertext is valid.

The final procedure is finalize, where the adversary provides their guess
of whether they are talking to the real or ideal world and gets back true if
they are correct and false otherwise.

18

Chapter 4

Jammin Cipher

We have seen in section 3.4.2, the nOAE2 notion and their definition of a
game to distinguish the real and ideal world. This is one example of a security
notion for an AE scheme, but not the only one. This section explains the
jammin cipher ideal world and compares it to the nOAE2 notion. The jammin
cipher originates from the idea that the OAE2 definition is not operational,
as it does not have a functioning unwrap. According to [BDH+22], jammin
cipher has several interesting features and compares favorably to OAE2:

• It can serve as a security reference for both nonce-enforcing and nonce-
misuse-resistant schemes. For OAE2, different ideal-world schemes are
required such as nOAE or dOAE.

• It produces cryptograms whose distribution is intuitive and is as ran-
dom as allowed while leaving the possibility for decryption. In con-
trast, the definition of Ideal2A/B uses a rather complex building block
IdealOAE(τ), called uniformly sampled τ -expanding injective functions.

• It has ciphertext expansion as a parameter, which is required when
dealing with schemes with variable ciphertext expansion due to the use
of block encryption.

• It supports unwrap and wrap calls in any order, including bi-directional
communication. Instead, an instance of Ideal2B can only encipher
messages or decipher cryptograms but not both.

Following those arguments, we discuss the design of the jammin cipher in
section 4.1 and in section 4.2 a more in depth explanation of the inner
workings.

4.1 Jammin Cipher Design

The jammin cipher is specified in an object-oriented manner, making it easier
to compare to written code or implement code out of the specification of

19

a scheme. The world is split into object instances that the communicating
parties can use. For two parties to communicate, they need to have a
shared value, ID, with which their instances will be initialized. This can
be seen as a key in the real world. Consider the case where Alice wishes to
communicate with Bob, then they will both share a IDAlice and Bob while if
Edward and Emma wish to communicate with one another, they will share
IDEdward and Emma. The instances support two functions: wrap and unwrap.
A wrap call computes a cryptogram C out of a plaintext P , associated data
A, which can both be arbitrarily long and the history. The unwrap function
computes the plaintext from cryptogram C, associated data A, and the
history. The jammin cipher is parameterized with the function WrapExpand.
This function takes the length of the plaintext and returns the length of the
cryptogram. Finally, the jammin cipher has a clone function that allows the
user to make a copy of the state of the current instance and restart it freely.

Algorithm 1 The jammin cipher JWrapExpand(p)

1: Parameter: WrapExpand, a t-expanding function
2: Global variables: codebook initially set to � for all, taboo initially set

to empty

3: Instance constructor: init(ID)
4: return new instance inst with attribute inst.history = ID

5: Instance cloner: inst.clone()
6: return new instance inst′ with the history attribute copied from inst

7: Interface: inst.wrap(A,P) returns C
8: context← inst.history;A
9: if codebook(context;P) = � then

10: C = ZWrapExpand(∣P ∣)
2 ∖ (codebook(context;∗) ∪ taboo(context))

11: if C = ∅ then return �
12: codebook(context;P) $← C
13: inst.history ← inst.history;A;P
14: return codebook(context;P)

15: Interface: inst.unwrap(A,C) returns P or �
16: context← inst.history;A
17: if ∃!P ∶ codebook(context;P) = C then
18: inst.history ← inst.history;A;P
19: return P
20: else
21: taboo(context)← C
22: return �

20

The jammin cipher is stateful, where the sequence of messages exchanged
so far are stored in a local attribute called history. It additionally stores a
mapping of all associated data and plaintext with their matching cryptogram
in a global archive called codebook. The codebook is initially empty, and for
each call to wrap, the mapping between the context (consisting of the history
and associated data) and plaintext to the cryptogram is added to the archive.
At the beginning of each communication session, the history is initialized
with the identifier ID, and for each wrap and unwrap call afterward, the
associated data, A, and the plaintext, P , are appended. Each instance keeps
a local version of the history and uses it to wrap and unwrap messages for the
duration of the communication session. Thus, when creating a cryptogram
using the history, not only the current message is authenticated, but the
whole communicated session is. In other words, the session of the jammin
cipher is an authenticated session.

4.2 Inner workings

The jammin cipher keeps a mapping of all the wrap queries and their cryp-
togram or error codes, codebook(history;A;P)→ C/�. The history and the
associated data A form the context for the encryption of a plaintext P , where
different contexts will result in different encryption for the same plaintexts.
Apart from this mapping, the jammin cipher keeps a mapping of invalid
cryptograms called taboo. When one tries to unwrap an invalid cryptogram,
the taboo will store this cryptogram, taboo(context) → C. Initially, both
mappings are empty, and they get populated with calls to wrap and unwrap,
denoted as codebook(context;P) $← C and taboo(context) ← C. The $ in
the expression before denotes the assignment of a random element chosen
uniformly from C, and the expression codebook(context,∗) denotes the set
of the values of codebook(context, P) over all P .

Consider the case where Alice wishes to send a cryptogram to Bob. She
first initializes her instance with her preshared identifier IDAlice and Bob. Then,
she calls the wrap function for a message P and associated data A. The wrap
function creates a context variable consisting of history, being IDAlice and Bob,
and A. Then, it checks that the combination of the context and message is
fresh, meaning that no such combination exists in the codebook. If so, it
will generate a cryptogram in ZWrapExpand(∣P ∣)

2 that is not already present in
the codebook or in the taboo, which at this stage are both empty. Recall
that WrapExpand returns a length based on the size of the plaintext and the
expected size of the tag, and Z2 means bits. If the value returned in line 10 is
the empty set, meaning that all the possibilities for a cryptogram have been
exhausted, the function returns an error. Consider that a cryptogram has
the size of ∣P ∣ + t, where t is 32, then there are at least 4 billion (232) options
for each message size before changing the key. The other option is if the

21

taboo is full, resulting from some other party trying to brute force our key, so
changing the key is also wise. Then, the function adds the new cryptogram
to the codebook for the given combination of context and plaintext, adds the
new associated data and plaintext to the history, and returns the cryptogram.
Then Alice will send Bob A,C. Bob will make a call to unwrap with those
values. The unwrap function will get the context from history and check that
the codebook has a plaintext such that the context and plaintext return the
received cryptogram, if so, it will update the history and return the plaintext.
Otherwise, it will add the context and cryptogram to the taboo list and
return an error.

The Jammin cipher has a few useful properties that can be used to prove
the security of a real-world scheme. For simplicity, we do not provide their
proofs but state them, for the full proof, refer to [BDH+22].

Proposition 1. From the codebook, one always recovers at most one plaintext
value (taken from Proposition 1 in [BDH+22]):

∀(context,C)∣{P ∶ codebook(context;P) = C}∣ ≤ 1

Proposition 2. If WrapExpand is t-expanding with t ≥ 2, wrap is successful
unless there were at least 2t unsuccessful unwrap queries with the same context
(taken from Proposition 2 in [BDH+22]).

22

Chapter 5

STREAM and Google Tink

In this chapter, we examine the design of Google Tink Authenticated En-
cryption with Associated Data [Goo23a] and the construction that inspired
Google developers’ choices, STREAM [HRRV15]. We discuss why Google
Tink AEAD’s designers decided to deviate from the original STREAM con-
struction, and we talk about the ideal scheme used to prove the security
claim of Google Tink AEAD in [HS20].

5.1 STREAM Construction

The STREAM Construction takes the idea of nOAE and provides a more
practical idea of how to implement it. We define the STREAM Construction
as follows taken from [HRRV15]: fix an encoding function < ⋅ > that maps a
tuple of strings (N, i, d) ∈ N ′ × I × {,} to a string < N, i, d >. Here I = N or
else I = {1, 2, . . . ,max} for some max ∈ N (the maximum number of segments
in any message). Let Π = (K,E ,D) be an nAE scheme with A space A, and
nonce space N that includes all possible values of < N, i, d >. Such an nOAE
scheme is said to be compatible with the encoding function. We now describe
the STREAM construction, defined and illustrated in Figure 5.1, to turn Π
and < ⋅ > into an nOAE-secure segmented-AE scheme STREAM[Π ,< ⋅ >]
whose A space is A and whose nonce space is N ′.
As shown in Figure 5.1, there are three calls: init, next, and last. The next
and the last can take any size of messages l, and together with the length of
redundancy τ , we get the ciphertext length l + τ . Each call uses a nonce, a
counter, and an is-the-last-bit value, which is 0 for the next calls and 1 for the
last call. We can also observe that different A sizes are allowed. STREAM is
proven to be nOAE, for the full proof, refer to [HRRV15].

23

Figure 5.1: The STREAM construction taken from [HRRV15].

5.2 Google Tink Streaming AEAD Encryption

Google Tink is a library that implements different cryptography schemes
for various tasks. “It was born out of our extensive experience working with
Google’s product teams, fixing implementation weaknesses” [Goo23b]. The
core idea is to have one library with different functions, which has a variety
of cryptographic schemes that are easy to use, secure, and compatible with
existing cryptography libraries [Goo23a].

A couple of the functions in the library implement the task of authenticated
encryption. Google provides both Google Tink AEAD and Google Tink
Streaming AEAD set of functions. The main difference is that Google Tink
AEAD is a primitive where the user can pick what sub-scheme to use. Google
Tink Streaming AEAD is more specialized for streaming, which they defined
as the case where one needs to use an authenticated encryption scheme for a
large file and send it over the Internet. An example can be sending a movie
or parts of a movie between a server and a client, where the segments sent are
rather large files. The two schemes are similar, with the main difference being
the additional functionality of breaking large files into segments in Google
Tink Streaming AEAD, and Google Tink AEAD allows more options for
the scheme used for the key derivations. This thesis uses both Google Tink
AEAD and Google Tink Streaming AEAD. For the security proof, we use the
Google Tink Streaming AEAD version as used in [HS20]. For benchmarking,
we use the Google Tink AEAD as we believe it is a fairer comparison to our
Xoofff-Tink scheme as Xoofff-Tink is also more of a primitive that requires
some additional implementing around it. With this being said, the primitives

24

used for the benchmark are the same as the one mentioned in Google Tink
Streaming AEAD, so when talking about Google Tink AEAD one can have
Figure 5.2 in mind.

Google Tink attempted to use the previously discussed STREAM con-
struction, where the Ek is instantiated with AES-GCM (GCM construction
using AES) scheme, one of the most popular AE schemes [MV04]. While
doing so, they encountered the following issue: a triple (N, i, a) needs to be
encoded as a 12-byte GCM nonce, Tink uses four bytes to encode i and one
byte to encode a. That means that the nonces of STREAM[GCM] will be
only 7-byte long, and thus, the only viable option is to implement them as
counters, as there is not enough entropy for a random nonce. However, there
are situations when random nonces are desirable [HS20]:

• They are booted frequently in routers, meaning their counters will be
reset often, resulting in many nonce repetition.

• Synchronizing counters among busy distributed servers might be im-
practical.

For this reason, Google developers decided to deviate from STREAM, such
that Tink’s streaming-encryption does not take nonces from the user. Instead,
it picks a 7-byte random nonce prefix P , a 16-byte random salt S∗, and
together with the messages header H it forms R ← S∗∣∣H and derives a
subkey L←KD(K,R), where KD is a key-derivation function that will be
instantiated via HMAC-SHA256. It then runs STREAM[GCM] with key L
and “nonce” P . Such short nonces will repeat, but under different subkeys,
and thus will cause no harm to security [HS20]. An illustration of Google
Tink Streaming encryption is given in Figure 5.2.
By making those decisions, Tink’s streaming encryption suffers from the
following issues according to the authors of [HS20]:

• As it does not follow the typical syntax of an online AE scheme, it is
unclear what kind of security Tink’s streaming-encryption provides.

• Relying on true randomness rather than the uniqueness of nonces is a
step backward in robustness towards randomness failure, which is quite
common [DGP07, HDWH12, LHA+12].

In order to prove Tink’s streaming-encryption security to be nOAE2, the
author of [HS20] distinguish it from their ideal world scheme they call SE1.
They showed how one can view Tink’s streaming-encryption as an online AE
scheme SE1[KD, Π] where a nonce is a pair (R,P) and Π is a segmented
AE scheme as defined in 3.4.1, and Tink chooses to pick nonces at random
[HS20]. Following this convention, the paper confirms that SE1 is indeed
secure, provided that Π is a good conventional AE scheme and KD is a good
PRF. Also, the paper discusses that SE1 is not robust against randomness

25

R ← S∗∣∣H

HMAC-
SHA256

L

M0 P 1 0

EL

C1 S∗∣∣P

M1 P 2 0

EL

C2

M2 P 3 1

EL

C3

Figure 5.2: Tink procedure where P is a 7 byte nonce prefix, H is the header
of the messages, S∗ is a 16 bytes random salt, Mi is the i message in the
sequence, and E is the encryption procedure of GCM using AES.

failure. In particular, its security would degrade if R is random, but P is a
constant string. The procedure of SE1 can be seen in Figure 5.3.
As we can see, SE1 has associated data for each message, but Tink’s streaming-
encryption does not process such a possibility. The authors of [HS20] overcame
this issue by taking the specific case of SE1 where Ai is always empty. This
way, we can compare Tink’s streaming encryption to the generalized canonical
scheme SE1 that supports segmented A. Furthermore, we can view the pair
(R,P) as a nonce, with R = S∗∣∣H. This way, Tink’s streaming-encryption
is robust to randomness failure, guaranteeing that the same nonce will not
repeat.

To summarize, Tink deviates from the syntax of AE in several ways:

• There is no associated data for each message. Instead, one provides
a potentially empty header H at the beginning of the scheme. This
header has the same role as the associated data but is only given at
the beginning of the scheme.

• Nonces cannot be picked, but they result from applying HMAC-SHA256
to a randomly picked 16-byte salt S∗ and a 7-byte nonce prefix P . Out
of which, the scheme generates a subkey L from R ← S∗∣∣H, and runs
STREAM[GCM] (without segmented A) under the key L and nonce P .

26

Figure 5.3: Definition of SE1 taken from [HS20].

27

Chapter 6

Deck-Plain and Xoofff
Instantiation

In Chapter 4, we introduced the notion of the jammin cipher and in Chapter
2 the deck function. In this chapter, we provide a real-world mode that uses
the deck function called Deck-Plain, and then we provide an instantiation for
a deck function called Xoofff [BDH+22].

6.1 Deck-Plain

Deck-Plain is a deck function mode for nonce-based authentication session
supporting AE. It is a real-world design of an AE scheme introduced in
[BDH+22] together with the jammin cipher discussed above. The main
difference is in the initialization. While in the ideal world, we use an identifier
ID, here, we use a key that can be derived from a shared secret or a master
key. On the sending end, the scheme wraps a plaintext and associated data
into a cryptogram consisting of a ciphertext of the original plaintext length
and the length of the redundancy t. At the receiver’s end, it unwraps the
cryptogram to the original plaintext if the cryptogram is valid or an error
otherwise. Both associated data and plaintext are optional. This allows us to
have acknowledgment messages where the receiver wishes to inform the sender
that they received the messages but not to send any messages in return, think
about cases like TCP protocol where such a feature is required. If a key is
used for multiple authentication sessions, the first message’s associated data
must be a nonce. One can use a counter for that goal and include it in the
associated data. Deck-Plain was optimized for the case of an initial message
with associated data and subsequent messages with only plaintext. It then
requires only a single deck function call per fragment of the plaintext. The
specification for the Deck-Plain mode can be seen in Algorithm 2, as taken
from [BDH+22].

28

Algorithm 2 Definition of Deck-PLAIN(F, t, ℓ)
Parameters: deck function F , tag length t ∈ N and alignment unit length
ℓ ∈ N
Let offset = ℓ ⌈ tℓ⌉: the smallest multiple of ℓ not smaller than t

Instance constructor: init(K⃗, i) taking key array K⃗, key index i
(inst.K, inst.history)← (K⃗[i],∅)
return Deck-PLAIN instance
Note: in the sequel, K, history denote the attributes of inst

Instance cloner: inst.clone()
return new instance inst′ with all attributes (K, history) copied from inst

Interface: inst.wrap(A,P) returns C
if ∣P ∣ = 0 then
history ← history;A∣∣00

else if ∣A∣ > 0 or history = ∅ then
context← history;A∣∣10
Z ← P + Fkcontext
history ← context;Z ∣∣1

else
context← history
Z ← P + FK (context)≪ offset
history ← context;Z ∣∣1

T ← 0t + Fkhistory
return C = Z ∣∣T

Interface: inst.unwrap(A,C) returns P or �
if ∣C ∣ < t then return �
Parse C in Z and T
if ∣Z ∣ = 0 then
history′ ← history;A∣∣00

else if ∣A∣ > 0 or history = ∅ then
history′ ← history;A∣∣10;Z ∣∣1

else
history′ ← history;Z ∣∣1

T ′ ← 0t + Fkhistory
′

if T ′ ≠ T then return �
if ∣A∣ > 0 or history = ∅ then
context← history;A∣∣10
P ← Z + Fkcontext

else
context← history
P ← Z + FK (context)≪ offset

history ← history′

return P 29

Inner workings

Similarly to the jammin cipher, Deck-Plain keeps track of messages in a
variable called history. The history is then absorbed in the deck function
state during a authentication session, if the message is missing the state will
be out of sync and the unwrap will fail. In a wrap call, Deck-Plain encrypts
a message by XORing it with a keystream generated from the deck function
call on the history and associated data. The tag is generated by calling the
deck function on the history, associated data, and ciphertext. This way, the
scheme follows the encrypt-then-MAC approach. Allowing on the receiver
end to verify the tag and only then start the decryption, ensuring we do not
leak any partial decryption of the ciphertext if the tag is invalid. In the case
of unwrapping, tag’ is computed in the same manner as in wrapping and
compared to the received tag. If valid, the ciphertext will be decrypted to the
plaintext message. Otherwise, the unwrap will return an error message. In
the case of a plaintext-only message (where we do not have associated data),
the scheme reserves the first t bits of the deck function output for the tag
and the remaining one as the keystream for the encryption. More correctly,
it takes the smallest multiple of ℓ such that offset = ℓ⌈ tℓ⌉ not shorter than
t and shifts the result of the deck function to the right offset times. For
acknowledgement messages, Deck-Plain skips the en(de)cryption step and for
plaintext-only messages, it skips the absorbing of the associated data unless
the message is blank.

6.2 Xoofff - Farfalle over Xoodoo

So far, we have seen the abstract interface of the deck function where we call
a function, F , and receive an output string that we use as a keystream or tag.
This section presents an implementation for a deck function called Xoofff
[DHAK18]. Before we can understand Xoofff, we need to understand its
building blocks. More specifically, we need to understand Xoodoo, the
primitive used in Xoofff and the Farfalle construction, which on top of the
Xoodoo creates the Xoofff.

6.2.1 Xoodoo

Xoodoo is a family of permutations parameterized by the number of rounds
nr and denoted Xoodoo[nr]. We give the specification as written in
[DHAK18]. There are 12 round constants, which allow at most 12 rounds,
but depending on the scheme used, a choice between 6 and 12 rounds is
usually made. The design approach is similar in nature to Keccak-p, where
we have a state and apply a round to it iteratively. The state consists of 3
equally sized horizontal planes, each with 4 parallel 32-bit lanes. Similarly,
the state can be seen as a set of 128 columns of 3 bits, arranged in a 4 × 32

30

x

y

z

lane
x

y

z

plane
x

y

z

state
x

y

z

sheet
x

y

z

column

Figure 6.1: Toy version of the Xoodoo state, with lanes reduced to 8 bits,
and different parts of the state highlighted, taken from [DHAK18].

Ay Plane y of state A

Ay⋘ (t, v) Cyclic shift of Ay moving bit in (x, z) to position (x + t, z + v)
Ay Bitwise complement of plane Ay

Ay +Ay′ Bitwise sum (XOR) of planes Ay and Ay′

Ay ⋅Ay′ Bitwise product (AND) of planes Ay and Ay′

Table 6.1: Notational conventions, taken form [DHAK18]

array. The planes are indexed by y, with plane y = 0 at the bottom and plane
y = 2 at the top, an illustration can be seen in Figure 6.1. Within a lane, we
index bits with z. The lanes within a plane are indexed by x, so the position
of a lane in the state is determined by the two coordinates (x, y). The bits of
the state are indexed by (x, y, z) and the columns by (x, z). Sheets are arrays
of 3 lanes on top of each other, and they are indexed by x. The permutation
consists of the iteration of a round function Ri that has 5 steps: a mixing
layer θ, a plane shifting ρwest, the addition of round constants ι, a non-linear
layer χ and another plane shifting ρeast. We specify Xoodoo in Algorithm
3, completely in terms of operations on planes and use thereby the notational
conventions we specify in Table 6.1. We illustrate the step mappings in a
series of figures: the χ operation in Figure 6.2, the θ operation in Figure
6.3, the ρeast and ρwest operations in Figure 6.4. The round constants Ci

are planes with a single non-zero lane at x = 0, denoted as ci. We specify
the value of this lane for indices -11 to 0 in Table 6.2. Finally, in many
applications, the state must be specified as a 384-bit string s with the bits
indexed by i. The mapping from the three-dimensional indexing (x, y, z) and
i is given by i = z + 32(x + 4y).

6.2.2 Farfalle

Farfalle is parameterized by four permutations denoted as pb, pc, pd and pe
and two rolling functions denoted as rollc and rolle. Rolling functions process
data in a way that allows parts of its internal state or output to change
incrementally as the input is updated. One can split Farfalle into three parts:
the key mask derivation, the compression layer, and the expansion layer. The

31

i ci i ci i ci i ci

−11 0x00000058 −8 0x000000D0 −5 0x00000060 −2 0x000000F0

−10 0x00000038 −7 0x00000120 −4 0x0000002C −1 0x000001A0

−9 0x000003C0 −6 0x00000014 −3 0x00000380 0 0x00000012

Table 6.2: The round constants ci with −11 ≤ i ≤ 0, in hexadecimal notation
(the least significant bit is at z = 0), taken form [DHAK18].

Algorithm 3 Definition of Xoodoo[nr] with nr the number of rounds
Parameters: Number of rounds nr

for Round index i from 1 − nr to 0 do
A = Ri(A)

Here Ri is specified by the following sequence of steps:

θ ∶
P ← A0 +A1 +A2

E ← P ⋘ (1,5) + P ⋘ (1,14)
Ay ← Ay +E for y ∈ {0,1,2}

ρwest ∶
A1 ← A1⋘ (1,0)
A2 ← A2⋘ (0,11)

ι ∶
A0 ← A0 +Ci

χ ∶
B0 ← A1 ⋅A2

B1 ← A2 ⋅A0

B2 ← A0 ⋅A1

Ay ← Ay +By for y ∈ {0,1,2}
ρeast ∶

A1 ← A1⋘ (0,1)
A2 ← A2⋘ (2,8)

32

0

1

2

complement

Figure 6.2: Effect of χ on one plane, taken from [DHAK18].

+ =

column parity θ-effect

fold

Figure 6.3: Effect of θ on a single-bit state, taken from [DHAK18].

0

1

2
shift (2,8)

shift (0,1)

0

1

2
shift (0,11)

shift (1,0)

Figure 6.4: Illustration of ρeast (left) and ρwest (right), taken from [DHAK18].

33

pc

c

m0

k

pc

c

m1

k

…

pc

i
c

mi

k

pe
e

z0

k′

pe
e

z1

k′

…

pej
e

zj

k′

K∥10∗ pb

i+2
c

pd

Figure 6.5: The Farfalle construction, taken from [BDH+16].

key derivation layer takes a key and expands it into b-bits mask denoted
by k, and then k is rolled i + 2 times using the rollc function to k′, where
i is the total number of blocks a message will have, i = ⌈ ∣M ∣b ⌉. Then, in the
compression layer, a message is split into i b-bits blocks, and each message
block is XORed with the result of rollc applied j times to the generated key
bit mask k, where j is the block index. Then, each output is XORed into a
final variable called the accumulator and denoted as x. In the expansion layer,
we apply function pd on the accumulator, and then for each output block,
we apply the second rolling function rolle j times, and then we apply the pe
function and XOR with k′. An illustration of the construction is provided in
Figure 6.5, as well as a specification in Algorithm 4.

6.2.3 Xoofff

Xoofff is a deck function that we obtain by applying the Farfalle construction
on Xoodoo[6] and two rolling functions rollXc and rollXce. We define these
two rolling functions using the notations from Table 6.1 as follows:

34

Algorithm 4 Definition of Farfalle[pb, pc, pd, pe, rollc, rolle]
Parameters: b-bit permutations pb, pc, pd andpe and rolling functions
rollcand rolle.
Input:

key K ∈ Z∗2 , ∣K ∣ ≤ b − 1
input string sequence M (m−1) ○ ⋅ ⋅ ⋅ ○M (0) ∈ (Z∗2)+
requested length n ∈ N and offset q ∈ N

Output: string Z ∈ Zn
2

K ′ = pad10∗(K)
k ← pb(K ′) {mask derivation}

x← 0b

I ← 0
for j running from 0 to m − 1 do
M = pad10∗(M (j))
Split M in b-bit blocks mI to mI+µ−1

x← x +∑I+µ−1
i=I pc(mi + rollic(k))

I ← I + µ + 1 {skip the blank index}
k′ ← rollIc(k)

y ← pd(x)
while all the requested n bits are not yet produced do

produce b-bit blocks as zj = pe(rollje(y)) + k′
Z ← n successive bits from concatenation of z0∣∣z1∣∣z2 . . . starting from bit
with index q.
return Z = 0n + FK (M (m−1) ○ ⋅ ⋅ ⋅ ○M (0))≪ q

35

rollXc:

A0,0 ← A0,0 + (A0,0 ≪ 13) + (A1,0 ≪ 3)
B ← A0⋘ (3,0)
A0 ← A1

A1 ← A2

A2 ← B

rollXe:

A0,0 ← A1,0 ⋅A2,0 + (A0,0 ≪ 5) + (A1,0 ≪ 13) + 0x00000007
B ← A0⋘ (3,0)
A0 ← A1

A1 ← A2

A2 ← B

An illustration of Xoofff is given in Figure 6.6, as we can see, we have the
Farfalle construction we have seen above with pb = pc = pe = pd = Xoodoo[6],
rollc = rollXc and rolle = rollXe.

fm0

k

fm1

k

…

f

i

mi

k

f z0

k′

f z1

k′

…

fj zj

k′

K∥10∗ f

i+2

f

Figure 6.6: Illustration of Xoofff: applying the Farfalle construction on
Xoodoo[6]

36

Chapter 7

Deck-Tink

In this chapter, we explain our proposed mode called Deck-Tink. Similar
to the jammin cipher chapter, we start by giving the general design of the
mode in section 7.1 and a more in depth explanation of the inner workings
in section 7.2.

7.1 Deck-Tink Design

We define in Algorithm 5 a deck function mode for nonce-based AE called
Deck-Tink. Deck-Tink and Deck-Plain share a similar base, but their primary
goals differ. The most noticeable difference is the presence of history. While in
Deck-Plain, we carry a history to authenticate the sequence of all messages up
to that point, in Deck-Tink, we do not have that. In other words, Deck-Plain
supports authentication sessions while Deck-Tink does not. The main goal
of Deck-Tink was to allow online communication sessions, meaning every
message can be verified based on the key, the nonce, the plaintext/ciphertext,
and a counter. Hence, the scheme will allow additional features that Deck-
Plain does not. The most noticeable are out-of-order messages and message
dropping during communication. If we keep a history, we bind ourselves to
enforce that all messages are properly communicated and that no message
is lost. If a message is lost, the decrypter’s history will be out of sync, and
they will not be able to decrypt any further messages. Furthermore, if a
message arrives out of sync, message M2 arrives before message M1, again,
we get an error as the decrypter history will differ from the sender’s. There
are some ways of propagating it by adding a buffer, but our scheme aims to
solve the issue by design. Another difference in the scheme is the use of one
associated data at the initialization of the scheme and not throughout the
wrap and unwrap. We follow Google Tink’s approach: we only use a header,
and after that, each wrap and unwrap uses a specific nonce counter. Similarly
to Google Tink, the first associated data/header should have a nonce in it,
ensuring the session’s uniqueness.

37

Algorithm 5 Definition of Deck-Tink(F, t)
Parameters: deck function F , expansion length t

Constructor: init(K,H) taking key K and absorbing header H
return instance Q.Fk(H) and finish ← False

Instance cloner: inst.clone()
return new instance inst′ with all attributes (K, H) copied from inst

Bit String get current squeeze: inst.getCurrentValue()
return the squeeze value of the inst without absorbing any input

Interface: Q.T inkWrap(P, counter, a) returning C
if finish then

return ERROR: finished instance
Q′ ← Q.clone
if ∣P ∣ > 0 then
X ← P +Q′.Fk(counter∣∣0)
T ← 0t +Q′.Fk(X ∣∣1)
C ←X ∣∣T

else
T ← 0t +Q′.Fk(counter∣∣1)
C ← T

if a > 0 then
finish← True

return C, counter

Interface: Q.T inkUnwrap(C, counter, a) returning P or �
if finish then

return ERROR: finished instance
if ∣C ∣ < t then

return �
Q′ ← Q.clone
if ∣C ∣ > t then

Parse C in X and T
Q′ ← Q′.Fk(counter∣∣0)
Q′′ ← Q′.clone
T ′ ← 0t +Q′.Fk(X ∣∣1)

else
T ′ ← 0t +Q′.Fk(counter∣∣1)

if T ′ ≠ T then
return �

if a > 0 then
finish← True

if ∣C ∣ > t then
P ←X +Q′′.getCurrentValue()
return P

return ∅

38

Notice that header H, in this case, is both associated data and nonce, it
must be unique per init call for the same key.

7.2 Inner workings

Deck-Tink offers the same interface as Deck-Plain, consisting of init, wrap,
and unwrap functions. It has one length parameter, t being the length of the
redundancy determining the security level. It supports different key, header,
and message sizes and empty messages for authenticated acknowledgments.
If a key is used more than once, the header provided in the initialization
phase must be a nonce, e.g., a session incremental value.

The initialization call sets the key for our deck function F to K, absorbs
the header H, and sets our finish variable to False, which indicates the end
of the usability of this session.

Similarly to the Deck-PLAIN, in a wrap call, Deck-Tink encrypts a
plaintext by adding a keystream that is the output of the underlying deck
function with the context input. The difference is that, in this case, the
context is the header and a counter. Then we follow the same encrypt then
authenticate structure of Deck-PLAIN.

1. Encryption: It absorbs the counter, extracts the keystream from the
deck function, and adds it to the plaintext, yielding the ciphertext.

2. Tag generation: It appends ciphertext to the original associated data
and extracts the tag from the deck function.

The unwrapping follows the same idea as the wrap: we first verify the tag
and then decrypt it. For authentication-only messages, Deck-Tink skips the
en(de)cryption step and the absorbing of ciphertext, instead, it absorbs the
counter and only yields a tag. Deck-Tink appends a frame bit to ciphertext
strings for domain separation before absorbing them to create separation
between encryption and authentication. In particular, ciphertext strings end
with 1 and tag strings with 0.

39

Chapter 8

Security Analysis of Deck-Tink

In this chapter, we analyze the security of Deck-Tink. Our proof uses the
H-coefficient technique from [Pat08] and its adaptation from [CS13]. We first
explain the idea of the H-coefficient technique and then provide proof of a
bound for Deck-Tink.

8.1 H-coefficient Technique

An adversary A has access to two AE schemes, one being in the ideal world,
denoted as O, and the other in the real world, denoted by P . In our case, P
is Deck-Tink instantiated with an ideal deck function: a random oracle, and
O is the jammin cipher. The adversary creates a transcript, denoted by τ ,
by interacting with the model. In other words, τ is a list of queries and their
responses from the model. The probability of getting a particular response
differs between the worlds as they differ. We will denote it as DO for the
probability distribution of transcripts that can be obtained in the ideal world
and DP for the probability distribution of transcripts that can be obtained in
the real world. Ideally, we would wish to have the statistical distance between
the two probability distributions (DO

DP
) as close as possible to 1, meaning

the two worlds are hardly distinguishable. We calculate this distance over
finite domain D as: ∆(X,Y) = 1

2 ∑α∈D ∣Pr[X = α] − Pr[Y = α]∣. However,
some transcripts are often better for the adversary than others, in the sense
that for a transcript τ , the ratio between the two probability distributions
might be smaller. This will allow the adversary to have a better guess about
which world they are talking to. We call such transcripts bad transcripts
and denote them by Tbad. One can divide the set of all transcripts T into
T = Tbad ∪ Tgood, where Tbad represent the cases in which the ratio is small
and Tgood when the ratio is close to 1. Below, we are giving the H-coefficient
Technique lemma we will use in our proof, the proof for the lemma can be
found in [CS13].

40

Lemma 1 (H-coefficient Technique). Consider a fixed information-
theoretic deterministic adversary A whose goal is to distinguish O from
P. Let ε be such that for all τ ∈ Tgood ∶ Pr(DO = τ)/Pr(DP = τ) ≥ 1−ε. Then,
∆A(O;P) ≤ ε +Pr(DP ∈ Tbad).

In our proof below, we use the special case where for all τ ∈ Tgood Pr(DO) ≥
Pr(DP) so we have ∆A(O;P) ≤ Pr(DP ∈ Tbad). As expected, we set O to be
the jammin cipher and P to be Deck-Tink.

8.2 Proof of a Bound for Deck-Tink

The security of Deck-Tink relies on the header to be a nonce. Otherwise, we
will leak the difference between two plaintexts. If we assume the encryption
context to be a nonce, the only way to distinguish Deck-Tink from the jammin
cipher is by a forgery or by distinguishing the deck function from a random
function, as captured in the theorem below.

Theorem 2. Let D be any fixed deterministic adversary whose goal
is to distinguish Deck-Tink(F, t, l) from J +t, the jammin cipher with
WrapExpand(p) = p + t in the multi-target settings where there are µ users.
Let N ∈ N and N > 0 represent the amount of queries an adversary performs,
and let k ∈ N be the length of a key. If in the queries of D the header is a
nonce, there exists an adversary D′ using the same resources as D such that

∆D(Deck-Tink(F, t, ℓ);J +t) ≤ qunwrap
2t +AdvprfF (D′) +

µ(µ−1)
2k+1

+ Nµ
2k

,

Advprf
F = ∣P[K

$←Ð Ku ∶ DFK1
,...,FKu = 1] − P[DRO1,...,ROu = 1]∣ where RO is a

random oracle that takes as input a string sequence.

The last two terms in Theorem 2 are related to the key collisions and
guesses. When we have µ users with a uniformly randomly picked key, the
probability of a collision is the number of users choose 2 divided by the length
of the key. If we enforce that the header we use in the init part is unique
per user communication session, we can drop the µ(µ−1)

2×2k
part together as the

combination of the key and the header is unique. Therefore, the attributes
passed to the init call would never collide, meaning multiple communication
sessions will never share the same state after the init call. The uniqueness
of the header can come from including additional attributes in the header.
These attributes can be anything that would be unique per communication
session, such as a combination of a username and a counter, which increases
for each init call.

The last term, Nµ
2k

, comes from the possibility of guessing a key. Given
that there are µ users, the possibility of guessing a key is the computation
power of an adversary, N times µ divided by the key length. If one guesses

41

ten keys, the probability of one of those choices being correct is ten times
more likely for ten users than one user, therefore, the µ is in the formula. If we
follow the idea from above and use a unique header for each communication
session, the probability drops to N

2k
, as each communication session will have

a different state after init, so an attacker would only be able to try and
guess a key for one communication session. One can reasonably assume
that an adversary has a computational power limited to N ≪ 2128 [LBD23].
Therefore, a key length greater than 128 bits would make the whole term
negligible.

If the user of the scheme follows those two enhancements, the security of
the scheme becomes the security of distinguishing Deck-Tink in the single-user
scenario:

Theorem 3. Let D be any fixed deterministic adversary whose goal
is to distinguish Deck-Tink(F, t, l) from J +t, the jammin cipher with
WrapExpand(p) = p + t. If in the queries of D the header is a nonce, there
exists an adversary D′ using the same resources as D such that

∆D(Deck-Tink(F, t, ℓ);J +t) ≤ qunwrap
2t +AdvprfF (D′),

with qunwrap the number of unwrap calls D makes and AdvprfF defined as:

AdvprfF = ∣P[K $←Ð K ∶ DFK = 1] − P[DRO = 1]∣ where RO is a random oracle
that takes as input a string sequence.

Proof. We use a hybrid argument and replace the deck function with a random
oracle before comparing Deck-Tink with the jammin cipher. This follows
from the security claim of the deck function, which should behave like a
pseudorandom function (PRF) [BDH+22]:

∆D(Deck-Tink(F, t, ℓ);J +t) ≤ ∆D′′(Deck-Tink(RO, t, ℓ);J +t)+AdvprfF (D′),

where D′′ has the same resources as D and Deck-Tink(RO, t, ℓ) means that
our FK function returns an output of a random Oracle.

We use the Lemma 1, where we take O = J +t ∆= J and P =
Deck-Tink(RO, t, ℓ). In this proof, we use the syntax of the jammin cipher,
and we can consider Deck-Tinkan instance of jamming with only the key
and header as history.

As we have different interfaces for the two schemes, we build a mode on
top of the jammin cipher, which makes calls to its inner functions (init, clone,
wrap, and unwrap). Following the definition of Deck-Tink, we know that init
calls get a key K and a header H, TinkWrap gets plaintext P , counter, and
is last attribute a, and TinkUnwrap gets ciphertext C, counter, and is last

42

attribute a. Our mode on top of jammin performs the following operations
for the three calls, also visible in Algorithm 6:

• Init: Calls the init function on key K, init(K), which returns Q, and
then wraps on header H and empty associated data "", Q.wrap("", H).
Set local boolean value finish to 0.

• Wrap: If finish is 0: calls clone on the instance, Q.clone() which returns
Q′, then calls wrap on counter, and plaintext P , Q′.wrap(counter, P),
to get ciphertext C, if a is 1, set local boolean value finish to 1 and
returns C to the advisory. Otherwise, if finish is 1: returns an error.

• Unwrap: If finish is 0: calls clone on the instance, Q.clone()
which returns Q′, then calls unwrap on counter, and ciphertext C,
Q′.unwrap(counter,C), to get plaintext P or error �, if the plaintext
is not an error and if a is 1, set local boolean value finish to 1, and
returns plaintext to the advisory. Otherwise, if finish is 1: returns an
error.

By following this interface, we do not lose any security compared to the
jammin cipher because the combination of the header and the counter is
unique, which results in a random output from the jammin cipher for each
communication session. As the header is a nonce, different communication
sessions will never result in the same state for neither our Deck-Tink nor
jammin cipher. Then, in each communication session, we have the counter,
which is also a nonce per communication session. So, for each call to the
jammin cipher clone, the attributes will never be the same, resulting in a
different state for the jammin cipher and random ciphertext.

We define a transcript τ as a sequence of records of the form:

(wrap/unwrap, (H, counter), P,C),

where the first value is the type of call made, and the second is the
combination of the header H and counter. The P and the C are either a
parameter or a return value depending on the operation, such that if the
operation is wrap, then P is a parameter and C is the returned value where
C ≠ �. Or if the operation is unwrap, then C is a parameter, and P is the
return value, which might contain an error code �.

We ignore the transcript records with

• the transcript wrap records with tuple (counter, P) equal unwrap
records with tuple (counter,C).

• the transcript unwrap records which has the same (counter, P,C) as
wrap records.

• the transcript where the instance is finished, there was a call (un)wrap
with a equal one.

43

• Out-of-order messages, as we only consider header H and the given
counter for each wrap operation, there is no need of previous communi-
cations to unwrap a ciphertext.

Algorithm 6 Definition of interface around jammin cipher
Parameters: jammin cipher J

Constructor: init(K,H) taking key K and absorbing header H
Q← J .init(K)
Q.wrap(””,H)
return Q and finish ← False

Instance cloner: inst.clone()
return new instance inst′ with all attributes (finish) copied from inst

Interface: Q.Wrap(P, counter, a) returning C
if finish then

return ERROR: finished instance
Q′ ← Q.clone
C ← Q′.wrap(counter, P)
if a > 0 then

finish← True
return C, counter

Interface: Q.unwrap(C, counter, a) returning P or �
if finish then

return ERROR: finished instance
Q′ ← Q.clone
P ← Q′.unwrap(counter,C)
if P ≠ � then

if a > 0 then
finish← True

return P

We can ignore those cases w.l.o.g. as both worlds act deterministically and
would behave consistently in this respect. This gives us a simple definition of
forgery, namely the presence of a successful unwrap record in the transcript.

This means that for our H-coefficient technique, we have only one type
of bad event, namely a successful forgery. To put it formally (unwrap, P, C
where P ≠ �). As we are using a RO, it means that the tag for a given
plaintext is generated at random. A forgery attempt means that for a given
input, the adversary picks the correct random generated tag. As RO generate
a t-bit string tag uniformly at random, the probability that they are equal is

44

2−t, hence Pr(DP ∈ Tbad) ≤ qunwrap
2t after qunwrap calls to unwrap.

Next, we need to prove that for all τ ∈ Tgood, P r(DJ = τ) ≥ pr(DP = τ)
hence ε = 0 in Lemma 1. We know that in both worlds, the cryptogram is
generated randomly and independently for different contexts. This means
we can use the independent event probability law, e.g. simply split the
transaction records per context and multiply their probability. We consider
a subset of the transcript for a given context value.

In the case of Deck-Tink, the scheme behaves a bit differently in cases
of empty and nonempty messages. Therefore, we need to consider both
options. To put it formally, a wrap call can have one of the two forms
(wrap, counter, P ≠ ϵ,C) or (wrap, counter, ϵ,Cϵ ≠ C), this will come handy
later in the proof. We can consider the record independently as each wrap
call has a unique counter, which provides us with the desired unique counter.

Next, we compare the possible transactions we have in the two worlds.
Upon an unsuccessful unwrap query, the jammin cipher returns � as it avoids
forgeries, and hence we get a 1 for the probability of Pr(DJ). Upon a wrap
query, the jammin cipher selects C from a set of cardinality at most 2∣P ∣+t (the
length of the ciphertext) and hence contributes a factor of at least 2−(∣P ∣+t)

to Pr(DJ = τ). It may return an error, but thanks to Proposition 2, this
would require qunwrap ≥ 2t.

Upon an unsuccessful unwrap query, P = Deck-Tink(RO, t, ℓ) returns � in
a good transcript, and same as above, we have a contribution of at most 1 to
Pr(DP = τ). Upon a wrap query, P computes the value C =X ∣∣T with X =
P +RO(H; counter), and T =RO(H; counter;X). Thanks to the fact that
upon wrap the counter is unique and P takes tags and keystream in different
domains or from different parts of the RO output stream, it contributes a
factor of exactly 2−(∣P ∣+t) to Pr(DP = τ). In the second case where we have
an empty plaintext, we have a wrap record with P = ϵ contributing a factor
2−t to Pr(DP = τ).

This means that for Pr(DJ = τ) we have that Pr(DJ = τ) ≤ 1 ∗ 2−(∣P ∣+t)
and pr(DP = τ) ≤ 1∗2−(∣P ∣+t)∗2−t. This shows that Pr(DJ = τ) ≥ pr(DP = τ)
and concludes the proof.

45

Chapter 9

Xoofff-Tink Implementation

So far, we have discussed our deck function mode construction Deck-Tink
for authenticated encryption. Our primitive for the mode is the deck func-
tion F . We decided to use the Xoofff as our deck function, which gives
us our Deck-Tink instantiation Xoofff-Tink. As Xoofff uses the Farfalle
construction with Xoodoo as its primitive, our underlying primitive is also
Xoodoo. An illustration of this idea, together with the primitives and their
construction, is given in Figure 9.1.

We have decided to implement Xoofff-Tink in two programming languages:
C and Rust [Alt24]. Below, we explain the implementation choices.

9.1 C Implementation

We followed the XKCP implementation style to ensure we could simply
add Xoofff-Tink to the library. XKCP stands for the eXtended Keccak
Code Package or the Xoodoo and Keccak Code Package. It is a repository
maintained by the Keccak team, and it attempts to gather different free and
open-source implementations of the cryptographic schemes defined by the
Keccak team [AKC23]. The XKCP style includes three types of libraries: one

Xoofff-Tink

Deck-Tink

Xoofff

Farfalle

Xoodoo

Figure 9.1: Xoofff-Tink dependencies lower level schemes.

46

for use, another for testing, and a third to test performance (benchmark). By
following the XKCP style, we ensure we can use different optimized versions
of the underlying primitive Xoodoo, increasing performance on different
architectures.

When extracting a library from XKCP, one needs to provide three aspects
to XKCP. The high-level service, in our case Xoofff-Tink, the lower-level
schemes, Xoofff and Xoodoo, and the architecture the library is used on.
More about this can be found in the HOWTO-customize.build in [AKC23].
We also need to specify the purpose of our library. If left empty, we will
get the library itself, if we give BM, we will get the speed performance
(benchmarking), and if we give UT, we will get the unit tests. An example of
a choice can be <target name=“MyBenchmarks” inherits=“Xoofff Xoodoo-
SSE2 Xoodoox4-SSSE3 Xoodoox8-AVX2 BM”/>, which will provide us the
benchmarking code of Xoofff with AVX2 optimization. By following this
style, we get all primitives’ optimization benefits for our scheme, leaving us to
implement the mode. This way, we abstract from one specific implementation
to a set of implementations that works for different architectures.

We used the Xoofff instances present in XKCP as inspiration for our
code together with the implementation of Xoofff. The Xoofff implementa-
tion provides three function calls: Xoofff_MaskDerivation, Xoofff_Compress,
and Xoofff_Expand. The first function, Xoofff_MaskDerivation, initializes
a Xoofff instance with a given key. The function Xoofff_Compress is the
absorb operation used to handle input data. The function Xoofff_Expand is
the squeeze operation used to expand output from the absorbed input. Simi-
larly, we have three functions that the user can call: Deck_Tink_Initialize,
Deck_Tink_Wrap, and Deck_Tink_Unwrap, as can also be seen in the
pseudocode in Algorithm 5. We decided to use the counter as a 64-bit value
as we believe 264 messages should be a reasonable amount for a single header.
After that, one can change the header and keep using the same key. The
scheme user manages the counter, and it is up to them to determine the
behavior of a counter reaches the value 264 − 1. Both Deck_Tink_Wrap,
and Deck_Tink_Unwrap make use of Xoofff_Compress and Xoofff_Expand.
In the pseudocode (Algorithm 5), whenever we use Q.Fk(X), we make a
call to Xoofff_Compress. If we have + before the Q.Fk(X), we call both
Xoofff_Compress and Xoofff_Expand, XORing the output of Xoofff_Expand
with the value on the other side of the +. The function getCurrentValue
also makes a call to Xoofff_Expand to squeeze the input we absorbed before.
Finally, we created the addToContext function to handle the addition of
the domain separation to the input. The rest of the code aligns with the
pseudocode in Algorithm 5. If the wrap or unwrap functions are called on
a finished instance, the code will return a value of 1, which means an error,
and the input values will remain unchanged.

47

9.2 Rust Implementation

In this section, we discuss the Rust implementation of Xoofff-Tink. We first
motivate our reasoning for choosing Rust as our second programming language
for our scheme. Then, we provide more explanations on the implementation
in Rust.

9.2.1 Why Rust?

Rust is a relatively new programming language developed by Mozilla. Its
main goal is to provide a safe programming environment while allowing
control over lower-level resources that languages like C and C++ provide
[ESDH21]. It is getting increasingly popular in the cryptography field as
it provides the benefits of C and C++ while shielding programmers from
command pitfalls and vulnerabilities that C and C++ possess. Some of its
most noticeable advantages are:

• Rust has a memory-safe design that prevents common vulnerabilities
like buffer overflows and use-after-free. It achieves this by using an
ownership model and borrow checkers that enforce strict rules on how
memory is accessed and modified at compile time [MKW18].

• Rust’s syntax supports functional and concurrent programming
paradigms, making programming more accessible and robust for
different development styles.

• Rust has a strong and static type system that helps to catch errors at
compile time and avoid runtime crashes. Rust also supports generics
and traits, which enable code reuse and abstraction [MKW18].

• Rust has a formal and verified subset called RustBelt that provides
strong guarantees about the soundness and safety of Rust programs.
RustBelt can be used to verify the correctness and security of crypto-
graphic implementations in Rust, adding another layer of safety to the
code [JJKD17].

• Rust has a growing ecosystem of libraries that provides developers
access to various cryptographic APIs, making it easier to use for safer
cryptographic implementation.

As we see it, Rust allows us to obtain some of the benefits of low-level
languages like C, while adding additional safety. Therefore, we decided also
to implement Xoofff-Tink in Rust. Below, we give some rationale for the
decisions made while implementing Xoofff-Tink and its primitives.

48

9.2.2 Xoofff-Tink Implementation in Rust

Unlike in the C implementation, there is no standard implementation for
Xoofff-Tink’s primitives, Xoodoo and Xoofff. While working on this
thesis, the first Rust implementation for Xoofff [Roy23] came to be, and
we decided to use it as a base. We also came across a rust implementation
for Xoodyak [Den23], which provided us with a more optimized version of
Xoodoo. In this thesis, with the help of Leon Botros from iHub, we combined
the two versions mentioned above, as well as added AVX optimization in
order to implement our version of Xoofff-Tink. Next, we explain the AVX
extension, the main method we used for optimization. Then, we explain the
design made in each part of our implementation for two primitives Xoodoo
and Xoofff and for the mode we used, Xoofff-Tink.

AVX

There are different approaches to optimizing the performance of a code from
a parallelist point of view. Intel Advanced Vector Extensions (AVX) is
an extension that implements the Single instruction multiple data (SIMD)
vectorization optimization approach. This approach increases the size of a
register from the typical 32/64 bits such that instead of containing a single
value, it can contain a vector of multiple values. Consider the case where one
wishes to add 16 different 32-bit integers. If we do it in the traditional way, it
will take us 8 additions. But if we first place 8 of the integers on one 256-bits
register and the other 8 on another register, perform the addition, and then
split them back to 8 32-bits values, we only need to perform the addition
once. This is the core idea of the SIMD vectorization optimization approach
and its implementation AVX. Intel introduced three types of AVX extensions.
AVX, which increased the register size to 256 bits and introduced a limited
Intel operations set [Lom21]. Afterward, Intel introduced AVX-2, which
has the same register size of 256 bits but additional operations, allowing us
to perform more sophisticated operations on the 256-bits registers [Int21].
Lastly, AVX-512 extended the register size to 512 bits, increased the number
of registers from 16 to 32, and added additional instruction sets for more
complex operations [Cue21].

Xoodoo Implementation

For Xoodoo, we took the generic code from [Den23] and added the Rust
abstraction for AVX. In Rust, it is possible to use AVX optimizations with
little effort in implementation. We can design the function such that multiple
instances of it can run simultaneously. In this case, the round function is
designed to run in parallel multiple states.

49

Xoofff Implementation

It is slightly more complicated for Xoofff as we defined three possible
SIMD vectorization optimization variants: SSE, AVX-2, and AVX-512. For
each of them, we implemented a different version that does either 4, 8, or
16 operations of rounds at once. We used the version of Xoofff from
[Roy23] and adopted the function to support arrays of 4, 8, or 16 values
simultaneously.

We continue optimizing the code by removing the finalize call from the
Xoofff implementation. In [Roy23], there are three functions: absorb, final-
ize, and squeeze. We first absorb all the input, then finalize (the absorption
phase), and finally squeeze. The finalize is used in cases where we want to
absorb multiple times. Instead of absorbing each time we call the function,
we only absorb when the state is full, or we want to squeeze. However, this
is not applicable in our case as we always call finalize after absorption. The
separation of those two functions included some additional operations, which
we removed by combining the two functions. We also included the XOR in
the squeeze function, which allowed us to save the allocation of another array
in order to XOR the output value with the input value. Together with some
small optimizations, such as reusing the same buffer for input and output
(similar to what is done in the C code) and reorganizing some functions, we
got our final optimized version.

Xoofff-Tink Implementation

The Rust implementation of Xoofff-Tink comes in two flavors, supporting
the “bytes in bytes out” approach and the inplace detached mode. In the
first option, the functions are called wrap or unwrap. The user passes the
plaintext message, and the counter and receives the wrap output in a single
variable in the order of ciphertext, counter, and tag, and vice versa for
the unwrap. In the second case, the user passes the plaintext, a counter,
and an empty variable for the tag and receives the cipher in place of the
plaintext and the tag and counter in their matching passed variables. The
rest of the Rust implementation of Xoofff-Tink is similar to the C and the
pseudocode in Algorithm 5. However, due to the nature of Rust, there are a
few differences between the C and Rust implementations. The last attribute
(a in the pseudocode) is incorporated into the borrow checkers design of Rust,
meaning we do not need to pass the value. Instead, we need to decide if we
call the function (un)wrap or (un)wrap_last. The reason for this difference is
the ownership over attributes present in Rust. If we do not explicitly specify
that we want to get the attribute back after calling a function on it, the
attribute’s scope ends, and it can no longer be used. We specify whether we
want the attribute back by the way we pass the attribute to the function.
If we pass it by reference, we will get it back. Otherwise, if we call it by

50

value, the variable will be consumed by the function, and it can no longer
be used after the function call. So if we want our instance to be consumed,
like in the case of having last, a, equal one, we call it by value and not by
reference. Therefore, we have two functions: one that allows call by reference
(un)wrap and returns the ownership of the Xoofff-Tink instance and the other
(un)wrap_last, called by value and consumes the Xoofff-Tink instance. This
also means that the error we will get is different. While in C, we will get one
in the return value, in Rust, the compiler will give an error that we try to
operate on a variable that is not in scope anymore.

Additionally, the code can also return an error if the tag given is invalid
for the given ciphertext. The unwrap would then return WrongTag error.

There are a few more differences between the C and the Rust implementa-
tions, which we discuss in the next section 9.3. The rest of the implementation
aligns with the C code and the pseudocode from Algorithm 5.

9.3 C and Rust Compression

The main difference between the two implementations is the basic length
unit. While the C implementation operates on bits, the Rust implementation
operates on bytes. This means that a message of 129 bits in C will result in
a 129 ciphertext, while in Rust, it will result in a 136-bit ciphertext. More
specifically, it will expect the message itself to be 136 bits as we use a vector
of bytes. This comes from the implementation dependencies of our scheme,
as we are using existing implementations of Xoofff in the two languages.
We do not believe that this limits our Rust implementation, as today, most
online communication is based on bytes rather than bits, and the needed
padding is small (at most 7 bits) compared to the big plaintext that would
be wrapped. It is important to notice that the domain separation in Rust is
one bit, the same as in the C implementation. In this case, we use a mask
(which is already implemented in the Xoofff Rust implementation [Roy23]),
which allows us to use one bit for domain separation.

Another difference is that in Rust, we introduce two function call options:
one similar to the C, where plaintext, tag, and counter are separated, and
another that supports the bytes in bytes out approach. We did that to ease
the integration of our scheme with other implementations, as today’s bytes
in bytes out approach is popular in Rust. It is important to notice that
the speed of the bytes in bytes out implementation is lower than the other
implementation. This comes from the overhead of extending an existing
vector in Rust. As Rust is a memory-safe programming language, extending
a vector is expensive due to the memory allocations happening behind the
scenes.

To ensure no difference between the two implementations, we tested a
large input set that covers all key sizes between 0 bits and 376 bits and

51

nonce sizes between 0 bits and 768 bits, as well as 1584 different sizes of
the messages. We called that test KATS, which can be found in the Rust
implementation tests. This can also be used as a test reference for future
implementation in different languages, as it consists of a list of different keys,
nonces, messages, and their expected ciphertexts and tags.

52

Chapter 10

Xoofff-Tink Performance

This section looks at the speed performance of our Xoofff-Tink implemen-
tation. The section is split into four main parts: the benchmark setup, the
results of the speed performance of our two implementations for Xoofff-Tink,
and finally, some general observations from our benchmarks. We start by com-
paring our C implementation with Google Tink AEAD using AES-GCM128
as its primitive. Due to the lack of a C implementation for the Google
Tink AEAD, at the time of writing this thesis, we use the language closest
to C and C++. For the Rust variant, we compare our implementation to
some more well-known AE schemes. For that end, we use the Rust Crypto
AEADs library [dev23], and we compare our implementation to AES-GCM,
AES-GCM-SIV, Ascon, and Chacha20poly1305.

One observation that we can anticipate before diving into the results is
that some of the schemes we are comparing against are based on or use AES,
which has a hardware implementation in most machines our days, including
the one we are using for our benchmarks. This makes the comparison
slightly imbalanced, as hardware implementations can achieve a significant
speed improvement compared to software implementations [DFY+17]. Also,
our implementation has a more optimized version, using AVX-512, but
unfortunately, for this thesis, we only had access to a machine with an
AVX-2.

10.1 Benchmark Setup

Before we start with reporting on the results, we should mention that all
the executions of the different implementations are done in a benchmark
environment, where performance boosts are turned off. The processor used
for those measures was Tiger Lake processor, Intel CoreTM i7-1165G7, which
has one physical socket with four cores and 8 CPUs. The code for the bench-
marking is in the bench folder [Alt24] and is suitable for any x86 architecture
with cycles reporting and for non x86 architectures with (milli/nano)seconds

53

reporting for Rust. For the C code, various benchmark options are available
using the XKCP suite, we used the AVX-2 optimized variant.

10.2 Xoofff-Tink vs Google-Tink AEAD

In this section, we analyze the results of benchmarking our C implementation
against the results of the C++ implementation of Google-Tink AEAD using
AES-GCM128 as its primitive. In Table 10.1, we can see the results of running
the wrap and unwrap operation of Xoofff-Tink against the results of running
encrypt and decrypt of Google Tink AEAD for plaintexts from size 256 bytes
to 64 MiB, where we double the input size in every entry. We have run each
operation on the given input size 10,000 times and are reporting the median
of our observations.

Input size Xoofff-Tink
Wrap in cycles
(cycles/byte)

Xoofff-Tink Un-
wrap in cycles (cy-
cles/byte)

Google-Tink En-
crypt in cycles
(cycles/byte)

Google-Tink De-
crypt in cycles
(cycles/byte)

256 bytes 2550 (9.96) 2564 (10.02) 42580 (166.33) 2558 (9.99)
512 bytes 2939 (5.74) 2976 (5.81) 48549 (94.82) 2303 (4.50)
1 KiB 4635 (4.53) 4663 (4.55) 42106 (41.12) 2638 (2.58)
2 KiB 6819 (3.33) 6865 (3.35) 42364 (20.69) 3533 (1.73)
4 KiB 12326 (3.01) 12357 (3.02) 52511 (12.82) 5238 (1.28)
8 KiB 22149 (2.70) 22203 (2.71) 68853 (8.40) 8468 (1.03)
16 KiB 43100 (2.63) 43120 (2.63) 80947 (4.94) 14549 (0.89)
32 KiB 84395 (2.58) 84580 (2.58) 135038 (4.12) 26915 (0.82)
64 KiB 169533 (2.59) 169544 (2.59) 232108 (3.54) 51792 (0.79)
128 KiB 335631 (2.56) 335680 (2.56) 477596 (3.64) 103146 (0.79)
256 KiB 669306 (2.55) 669345 (2.55) 914823 (3.49) 205815 (0.79)
512 KiB 1337451 (2.55) 1337053 (2.55) 1700908 (3.24) 401139 (0.77)
1 MiB 2727950 (2.60) 2738662 (2.61) 3382167 (3.23) 786847 (0.75)
2 MiB 5520075 (2.63) 5516427 (2.63) 7740249 (3.69) 1587885 (0.76)
4 MiB 11149811 (2.66) 11141568 (2.66) 13471424 (3.21) 7275647 (1.73)
8 MiB 22988220 (2.74) 23204611 (2.77) 27052583 (3.22) 14488353 (1.73)
16 MiB 47021783 (2.80) 47367080 (2.82) 52290045 (3.12) 30238242 (1.80)
32 MiB 95814527 (2.86) 96318254 (2.87) 107438522 (3.20) 60433754 (1.80)
64 MiB 193736922 (2.89) 194124970 (2.89) 216850144 (3.23) 121038927 (1.80)

Table 10.1: Benchmarks of Xoofff-Tink and Google-Tink for different sizes.

54

Figure 10.1: Benchmarks of wrap Xoofff-Tink and encrypt Google-Tink for
different sizes.

Figure 10.2: Benchmarks of unwrap Xoofff-Tink and decrypt Google-Tink
for different sizes.

55

Discussion

As we see above, our Xoofff-Tink implementation is faster in wrap than Google
Tink AEAD encryption and slower in unwrap compared to Google Tink AEAD
decryption. For wrap/encryption, we can see that our implementation is at
least twice as fast for short plaintext (less than 128 Kib) and between 1.10
and 1.42 faster for longer plaintexts. For unwrap/decryption, we can see that
our implementation is around 2 to 3 times slower for medium-size plaintext
(more than 1 Kib and less than 4 MiB) and between 1.003 and 1.76 slower
for other plaintext sizes.

As we mentioned above, schemes based on or using AES offer some speed
performance improvements, and Google Tink AEAD uses AES-GCM, which
benefits from the hardware implementation of AES. This makes the compari-
son slightly imbalanced, as hardware implementation can have a significant
speed performance compared to software implementation [DFY+17], and if
we had used the AVX-512 variant of our implementation, we could have
seen better performance for our scheme. We argue that on machines that do
not have AES implemented in hardware, like an IoT device, our scheme can
achieve even better performance compared to schemes that use AES, such as
Google Tink AEAD.

There are benefits for faster wrap/encryption compared to faster un-
wrap/decryption. In cases where we have limited resources on a server and
can tolerate slower decryption on the receiver side, such speed improvements
can improve the server’s efficiency. As mentioned above, using lower-level
devices, such as IoTs or older devices that might not have AES implemented
in hardware, can result in faster implementation when using Xoofff-Tink over
Google Tink AEAD.

10.3 Rust Xoofff-Tink vs Rust AEADs Crypto Li-
brary

In this section, we analyze the results of our Rust implementation’s bench-
marking against different schemes in the Rust Crypto AEADs library, namely
AES-GCM, AES-GCM-SIV, Ascon, and Chacha20poly1305. In Tables 10.2-
10.11, we can see the results of running the wrap and unwrap operation on
Xoofff-Tink against the results of running encrypt and decrypt on the other
schemes for plaintexts from size 1 KiB to 64 MiB, where we double the input
size in every entry. We have used the benchmarking suite of cargo [doc24a]
and the microbenchmarking library Criterion [doc24b]. Most of the code for
the benchmarking was taken from [dev23] and modified to fit our require-
ments. In most cases, we only changed the sample size and plaintext sizes.
However, for Ascon, we also needed to change the benchmark to use cycles
rather than milliseconds/nanoseconds and add a benchmark for decryption.

56

For our implementation, we report both the results from using the sequential
implementation and the results of using AVX2. We run each operation on a
given sample size of 10,000, and report the median of our observations and
the best estimate provided by the cargo benchmarking suite.

scheme and input size Wrap in cycles (cycles/byte)
as median and best estimate

Unwrap in cycles (cycles/byte)
as median and best estimate

Xoofff-Tink 1 KiB 6262 (6.12) 6290 (6.14) 6437 (6.29) 6441 (6.29)
Xoofff-Tink 2 KiB 11447 (5.59) 11476 (5.60) 11863 (5.79) 11894 (5.81)
Xoofff-Tink 4 KiB 21974 (5.36) 21991 (5.37) 22517 (5.50) 22570 (5.51)
Xoofff-Tink 8 KiB 42791 (5.22) 42819 (5.23) 43642 (5.33) 43679 (5.33)
Xoofff-Tink 16 KiB 84658 (5.17) 84712 (5.17) 86296 (5.27) 86354 (5.27)
Xoofff-Tink 32 KiB 168047 (5.13) 168363 (5.14) 172381 (5.26) 172528 (5.27)
Xoofff-Tink 64 KiB 335122 (5.11) 335397 (5.12) 343251 (5.24) 343426 (5.24)
Xoofff-Tink 1 MiB 5374509 (5.13) 5378527 (5.13) 5541107 (5.28) 5544088 (5.29)
Xoofff-Tink 2 MiB 10818048 (5.16) 10819791 (5.16) 11205001 (5.34) 11211408 (5.35)
Xoofff-Tink 4 MiB 21654805 (5.16) 21656638 (5.16) 22514016 (5.37) 22522385 (5.37)
Xoofff-Tink 8 MiB 43408621 (5.17) 43411589 (5.18) 45564554 (5.43) 45580918 (5.43)
Xoofff-Tink 16 MiB 87294028 (5.20) 87302514 (5.20) 91882527 (5.48) 91920874 (5.48)
Xoofff-Tink 32 MiB 175414802 (5.23) 175426993 (5.23) 222001903 (6.62) 222046106 (6.62)
Xoofff-Tink 64 MiB 351078398 (5.23) 351123691 (5.23) 449177066 (6.69) 449192659 (6.69)

Table 10.2: Benchmarks of Rust Xoofff-Tink for different sizes.

scheme and input size Wrap in cycles (cycles/byte)
as median and best estimate

Unwrap in cycles (cycles/byte)
as median and best estimate

Xoofff-Tink 1 KiB 4384 (4.28) 4389 (4.29) 4837 (4.72) 4857 (4.74)
Xoofff-Tink 2 KiB 7202 (3.52) 7208 (3.52) 7829 (3.82) 7858 (3.84)
Xoofff-Tink 4 KiB 12794 (3.12) 12809 (3.13) 13814 (3.37) 13852 (3.38)
Xoofff-Tink 8 KiB 23673 (2.89) 23696 (2.89) 25092 (3.06) 25127 (3.07)
Xoofff-Tink 16 KiB 45657 (2.79) 45694 (2.79) 48121 (2.94) 48159 (2.94)
Xoofff-Tink 32 KiB 90416 (2.76) 90524 (2.76) 95502 (2.91) 95841 (2.92)
Xoofff-Tink 64 KiB 181187 (2.76) 181374 (2.77) 189498 (2.89) 189624 (2.89)
Xoofff-Tink 1 MiB 2885718 (2.75) 2893197 (2.76) 3103018 (2.96) 3104623 (2.96)
Xoofff-Tink 2 MiB 5810618 (2.77) 5817611 (2.77) 6364880 (3.04) 6366203 (3.04)
Xoofff-Tink 4 MiB 11684519 (2.79) 11684871 (2.79) 12970993 (3.09) 12972205 (3.09)
Xoofff-Tink 8 MiB 23786073 (2.84) 23795521 (2.84) 25937248 (3.09) 25943416 (3.09)
Xoofff-Tink 16 MiB 48274082 (2.88) 48263583 (2.88) 51868000 (3.09) 51915887 (3.09)
Xoofff-Tink 32 MiB 96646901 (2.88) 96639464 (2.88) 144753123 (4.31) 144770252 (4.31)
Xoofff-Tink 64 MiB 193432819 (2.88) 193443963 (2.88) 292498155 (4.36) 292505479 (4.36)

Table 10.3: Benchmarks of Rust Xoofff-Tink using AVX2 for different sizes.

57

scheme and input size Encrypt in cycles (cycles/byte)
as median and best estimate

Decrypt in cycles (cycles/byte)
as median and best estimate

Ascon-128 (inplace) 1 KiB 15881 (15.51) 15967 (15.59) 15323 (14.96) 15367 (15.01)
Ascon-128 (inplace) 2 KiB 30490 (14.89) 30581 (14.93) 29973 (14.64) 30023 (14.66)
Ascon-128 (inplace) 4 KiB 59815 (14.60) 60251 (14.71) 59261 (14.47) 59334 (14.49)
Ascon-128 (inplace) 8 KiB 118570 (14.47) 118741 (14.49) 117859 (14.39) 118061 (14.41)
Ascon-128 (inplace) 16 KiB 235933 (14.40) 236180 (14.42) 235046 (14.35) 235496 (14.37)
Ascon-128 (inplace) 32 KiB 470354 (14.35) 473413 (14.45) 469385 (14.32) 469877 (14.34)
Ascon-128 (inplace) 64 KiB 939562 (14.34) 941393 (14.36) 938221 (14.32) 939407 (14.33)
Ascon-128 (inplace) 1 MiB 15032714 (14.34) 15052794 (14.36) 15011233 (14.32) 15026187 (14.33)
Ascon-128 (inplace) 2 MiB 30064883 (14.34) 30108121 (14.36) 30015994 (14.31) 30054250 (14.33)
Ascon-128 (inplace) 4 MiB 60167015 (14.34) 60216645 (14.36) 60023967 (14.31) 60085625 (14.33)
Ascon-128 (inplace) 8 MiB 120365084 (14.35) 120408166 (14.35) 120166502 (14.32) 120263010 (14.34)
Ascon-128 (inplace) 16 MiB 265054157 (15.80) 265046095 (15.80) 240721633 (14.35) 240800024 (14.35)
Ascon-128 (inplace) 32 MiB 482512975 (14.38) 482605262 (14.38) 481207857 (14.34) 481333012 (14.34)
Ascon-128 (inplace) 64 MiB 964908471 (14.38) 965169583 (14.38) 962282389 (14.34) 962631420 (14.34)

Table 10.4: Benchmarks of Ascon-128 (inplace) for different sizes.

scheme and input size Encrypt in cycles (cycles/byte)
as median and best estimate

Decrypt in cycles (cycles/byte)
as median and best estimate

Ascon-128a (inplace) 1 KiB 12256 (11.97) 12285 (12.00) 10650 (10.40) 10683 (10.43)
Ascon-128a (inplace) 2 KiB 23424 (11.44) 23448 (11.45) 20631 (10.07) 20646 (10.08)
Ascon-128a (inplace) 4 KiB 45958 (11.22) 46046 (11.24) 40598 (9.91) 40631 (9.92)
Ascon-128a (inplace) 8 KiB 91025 (11.11) 91132 (11.12) 80527 (9.83) 80631 (9.84)
Ascon-128a (inplace) 16 KiB 180977 (11.05) 180993 (11.05) 160348 (9.79) 160447 (9.79)
Ascon-128a (inplace) 32 KiB 361847 (11.04) 363494 (11.09) 320107 (9.77) 320316 (9.78)
Ascon-128a (inplace) 64 KiB 723263 (11.04) 723399 (11.04) 639744 (9.76) 640336 (9.77)
Ascon-128a (inplace) 1 MiB 11519338 (10.99) 11516235 (10.98) 10226937 (9.75) 10229626 (9.76)
Ascon-128a (inplace) 2 MiB 23036649 (10.98) 23033042 (10.98) 20464668 (9.76) 20480863 (9.77)
Ascon-128a (inplace) 4 MiB 46065999 (10.98) 46071957 (10.98) 40929240 (9.76) 40957362 (9.76)
Ascon-128a (inplace) 8 MiB 92152360 (10.99) 92161377 (10.99) 81900876 (9.76) 81935902 (9.77)
Ascon-128a (inplace) 16 MiB 208332154 (12.42) 208255281 (12.41) 164186416 (9.79) 164218617 (9.79)
Ascon-128a (inplace) 32 MiB 369555112 (11.01) 369631367 (11.02) 328309786 (9.78) 328372861 (9.79)
Ascon-128a (inplace) 64 MiB 739119163 (11.01) 739150913 (11.01) 656750437 (9.79) 656861681 (9.79)

Table 10.5: Benchmarks of Ascon-128a (inplace) for different sizes.

58

scheme and input size Encrypt in cycles (cycles/byte)
as median and best estimate

Decrypt in cycles (cycles/byte)
as median and best estimate

Ascon-80pq (inplace) 1 KiB 15862 (15.49) 15929 (15.56) 15309 (14.95) 15340 (14.98)
Ascon-80pq (inplace) 2 KiB 30474 (14.88) 30625 (14.95) 29962 (14.63) 29995 (14.65)
Ascon-80pq (inplace) 4 KiB 59894 (14.62) 60082 (14.67) 59270 (14.47) 59339 (14.49)
Ascon-80pq (inplace) 8 KiB 118403 (14.45) 118702 (14.49) 117915 (14.39) 118138 (14.42)
Ascon-80pq (inplace) 16 KiB 235928 (14.40) 236954 (14.46) 235121 (14.35) 235941 (14.40)
Ascon-80pq (inplace) 32 KiB 471561 (14.39) 472151 (14.41) 469593 (14.33) 469938 (14.34)
Ascon-80pq (inplace) 64 KiB 942406 (14.38) 943720 (14.40) 938462 (14.32) 939923 (14.34)
Ascon-80pq (inplace) 1 MiB 15028823 (14.33) 15046308 (14.35) 15007269 (14.31) 15021887 (14.33)
Ascon-80pq (inplace) 2 MiB 30066381 (14.34) 30103732 (14.35) 30016736 (14.31) 30041649 (14.32)
Ascon-80pq (inplace) 4 MiB 60181766 (14.35) 60232006 (14.36) 60040545 (14.31) 60097567 (14.33)
Ascon-80pq (inplace) 8 MiB 120370533 (14.35) 120410836 (14.35) 120154620 (14.32) 120211754 (14.33)
Ascon-80pq (inplace) 16 MiB 264673556 (15.78) 264720630 (15.78) 240592114 (14.34) 240662410 (14.34)
Ascon-80pq (inplace) 32 MiB 482527341 (14.38) 482651279 (14.38) 481033020 (14.34) 481160783 (14.34)
Ascon-80pq (inplace) 64 MiB 964885706 (14.38) 965124033 (14.38) 962102066 (14.34) 962355572 (14.34)

Table 10.6: Benchmarks of Ascon-80pq (inplace) for different sizes.

scheme and input size Encrypt in cycles (cycles/byte)
as median and best estimate

Decrypt in cycles (cycles/byte)
as median and best estimate

aes-gcm-128 1 KiB 2852 (2.79) 2853 (2.79) 2326 (2.27) 2329 (2.27)
aes-gcm-128 2 KiB 5423 (2.65) 5427 (2.65) 4592 (2.24) 4600 (2.25)
aes-gcm-128 4 KiB 10545 (2.57) 10552 (2.58) 8907 (2.17) 8914 (2.18)
aes-gcm-128 8 KiB 20638 (2.52) 20657 (2.52) 17426 (2.13) 17438 (2.13)
aes-gcm-128 16 KiB 41418 (2.53) 41494 (2.53) 35285 (2.15) 35364 (2.16)
aes-gcm-128 32 KiB 83161 (2.54) 83263 (2.54) 70738 (2.16) 70928 (2.16)
aes-gcm-128 64 KiB 166081 (2.53) 166438 (2.54) 141287 (2.16) 141486 (2.16)
aes-gcm-128 1 MiB 2730251 (2.60) 2735845 (2.61) 2337858 (2.23) 2341534 (2.23)
aes-gcm-128 2 MiB 5621183 (2.68) 5617846 (2.68) 4790858 (2.28) 4788046 (2.28)
aes-gcm-128 4 MiB 11304316 (2.70) 11301983 (2.69) 9635883 (2.30) 9670106 (2.31)
aes-gcm-128 8 MiB 23116765 (2.76) 23134984 (2.76) 19870215 (2.37) 19827245 (2.36)
aes-gcm-128 16 MiB 46692266 (2.78) 46720339 (2.78) 39948449 (2.38) 39886653 (2.38)
aes-gcm-128 32 MiB 131610298 (3.92) 131613803 (3.92) 117961614 (3.52) 117974282 (3.52)
aes-gcm-128 64 MiB 267018434 (3.98) 266865192 (3.98) 239843578 (3.57) 239740463 (3.57)

Table 10.7: Benchmarks of aes-gcm-128 for different sizes.

59

scheme and input size Encrypt in cycles (cycles/byte)
as median and best estimate

Decrypt in cycles (cycles/byte)
as median and best estimate

aes-gcm-256 1 KiB 3080 (3.01) 3083 (3.01) 2320 (2.27) 2324 (2.27)
aes-gcm-256 2 KiB 5810 (2.84) 5814 (2.84) 4591 (2.24) 4594 (2.24)
aes-gcm-256 4 KiB 11307 (2.76) 11315 (2.76) 8918 (2.18) 8926 (2.18)
aes-gcm-256 8 KiB 22133 (2.70) 22168 (2.71) 17437 (2.13) 17446 (2.13)
aes-gcm-256 16 KiB 44398 (2.71) 44539 (2.72) 35293 (2.15) 35336 (2.16)
aes-gcm-256 32 KiB 89122 (2.72) 89234 (2.72) 70764 (2.16) 70901 (2.16)
aes-gcm-256 64 KiB 177953 (2.72) 178293 (2.72) 141299 (2.16) 141476 (2.16)
aes-gcm-256 1 MiB 2927851 (2.79) 2931483 (2.80) 2332194 (2.22) 2336692 (2.23)
aes-gcm-256 2 MiB 5984155 (2.85) 5985905 (2.85) 4792218 (2.29) 4786159 (2.28)
aes-gcm-256 4 MiB 12108353 (2.89) 12116325 (2.89) 9632384 (2.30) 9620415 (2.29)
aes-gcm-256 8 MiB 25028263 (2.98) 25008787 (2.98) 19514011 (2.33) 19514129 (2.33)
aes-gcm-256 16 MiB 50114932 (2.99) 50124200 (2.99) 39875572 (2.38) 39815639 (2.37)
aes-gcm-256 32 MiB 138912974 (4.14) 138972682 (4.14) 118999690 (3.55) 119052977 (3.55)
aes-gcm-256 64 MiB 277072261 (4.13) 277070911 (4.13) 236672455 (3.53) 236667244 (3.53)

Table 10.8: Benchmarks of aes-gcm-256 for different sizes.

scheme and input size Encrypt in cycles (cycles/byte)
as median and best estimate

Decrypt in cycles (cycles/byte)
as median and best estimate

aes-gcm-siv-128 1 KiB 3419 (3.34) 3421 (3.34) 3735 (3.65) 3738 (3.65)
aes-gcm-siv-128 2 KiB 6041 (2.95) 6051 (2.95) 6869 (3.35) 6871 (3.35)
aes-gcm-siv-128 4 KiB 11211 (2.74) 11211 (2.74) 12818 (3.13) 12816 (3.13)
aes-gcm-siv-128 8 KiB 21690 (2.65) 21689 (2.65) 24925 (3.04) 24921 (3.04)
aes-gcm-siv-128 16 KiB 42168 (2.57) 42228 (2.58) 48644 (2.97) 48628 (2.97)
aes-gcm-siv-128 32 KiB 85061 (2.60) 85067 (2.60) 97953 (2.99) 97931 (2.99)
aes-gcm-siv-128 64 KiB 170043 (2.59) 170201 (2.60) 195916 (2.99) 196046 (2.99)
aes-gcm-siv-128 1 MiB 2765764 (2.64) 2767434 (2.64) 3185011 (3.04) 3186508 (3.04)
aes-gcm-siv-128 2 MiB 5715624 (2.73) 5720685 (2.73) 6505373 (3.10) 6513565 (3.11)
aes-gcm-siv-128 4 MiB 11423533 (2.72) 11429209 (2.72) 13039767 (3.11) 13055528 (3.11)
aes-gcm-siv-128 8 MiB 23131546 (2.76) 23184199 (2.76) 27073330 (3.23) 27043401 (3.22)
aes-gcm-siv-128 16 MiB 46729320 (2.79) 46832551 (2.79) 54481752 (3.25) 54431208 (3.24)
aes-gcm-siv-128 32 MiB 132331804 (3.94) 132301051 (3.94) 147959604 (4.41) 148000865 (4.41)
aes-gcm-siv-128 64 MiB 265059624 (3.95) 265068283 (3.95) 297114057 (4.43) 297038637 (4.43)

Table 10.9: Benchmarks of aes-gcm-siv-128 for different sizes.

60

scheme and input size Encrypt in cycles (cycles/byte)
as median and best estimate

Decrypt in cycles (cycles/byte)
as median and best estimate

aes-gcm-siv-256 1 KiB 3987 (3.89) 3998 (3.90) 4463 (4.36) 4468 (4.36)
aes-gcm-siv-256 2 KiB 6792 (3.32) 6795 (3.32) 7990 (3.90) 7992 (3.90)
aes-gcm-siv-256 4 KiB 12312 (3.01) 12314 (3.01) 14658 (3.58) 14692 (3.59)
aes-gcm-siv-256 8 KiB 23477 (2.87) 23481 (2.87) 28059 (3.43) 28069 (3.43)
aes-gcm-siv-256 16 KiB 45369 (2.77) 45417 (2.77) 54878 (3.35) 54909 (3.35)
aes-gcm-siv-256 32 KiB 91109 (2.78) 91124 (2.78) 110195 (3.36) 110450 (3.37)
aes-gcm-siv-256 64 KiB 181571 (2.77) 181707 (2.77) 219604 (3.35) 219606 (3.35)
aes-gcm-siv-256 1 MiB 2943877 (2.81) 2946129 (2.81) 3564010 (3.40) 3566481 (3.40)
aes-gcm-siv-256 2 MiB 6061912 (2.89) 6063739 (2.89) 7258860 (3.46) 7262922 (3.46)
aes-gcm-siv-256 4 MiB 12186716 (2.91) 12193506 (2.91) 14552729 (3.47) 14564510 (3.47)
aes-gcm-siv-256 8 MiB 24674182 (2.94) 24655687 (2.94) 30173715 (3.60) 30169187 (3.60)
aes-gcm-siv-256 16 MiB 49850168 (2.97) 49831467 (2.97) 60421351 (3.60) 60454718 (3.60)
aes-gcm-siv-256 32 MiB 138506160 (4.13) 138518994 (4.13) 159025068 (4.74) 159023460 (4.74)
aes-gcm-siv-256 64 MiB 280312571 (4.18) 280236659 (4.18) 321519161 (4.79) 321465462 (4.79)

Table 10.10: Benchmarks of aes-gcm-siv-256 for different sizes.

scheme and input size Encrypt in cycles (cycles/byte)
as median and best estimate

Decrypt in cycles (cycles/byte)
as median and best estimate

chacha20poly1305 1 KiB 3742 (3.65) 3745 (3.66) 1875 (1.83) 1875 (1.83)
chacha20poly1305 2 KiB 6361 (3.11) 6369 (3.11) 2885 (1.41) 2889 (1.41)
chacha20poly1305 4 KiB 11624 (2.84) 11633 (2.84) 4452 (1.09) 4455 (1.09)
chacha20poly1305 8 KiB 21930 (2.68) 21983 (2.68) 7955 (0.97) 7958 (0.97)
chacha20poly1305 16 KiB 42642 (2.60) 42672 (2.60) 14976 (0.91) 14992 (0.92)
chacha20poly1305 32 KiB 85339 (2.60) 85395 (2.61) 30624 (0.93) 30581 (0.93)
chacha20poly1305 64 KiB 166533 (2.54) 166643 (2.54) 56064 (0.86) 56386 (0.86)
chacha20poly1305 1 MiB 2713568 (2.59) 2714895 (2.59) 964584 (0.92) 967601 (0.92)
chacha20poly1305 2 MiB 5607755 (2.67) 5609831 (2.67) 2064648 (0.98) 2066000 (0.99)
chacha20poly1305 4 MiB 11450323 (2.73) 11452020 (2.73) 4229244 (1.01) 4230838 (1.01)
chacha20poly1305 8 MiB 23410702 (2.79) 23391487 (2.79) 8578521 (1.02) 8529849 (1.02)
chacha20poly1305 16 MiB 46879157 (2.79) 46896213 (2.80) 17009536 (1.01) 17068015 (1.02)
chacha20poly1305 32 MiB 132973404 (3.96) 133080652 (3.97) 74170734 (2.21) 74181324 (2.21)
chacha20poly1305 64 MiB 268716076 (4.00) 268582232 (4.00) 148097491 (2.21) 148054463 (2.21)

Table 10.11: Benchmarks of chacha20poly1305 for different sizes.

Discussion

We split the discussion into two sections: the first will be AES-GCM variants
and chacha20poly1305 vs. Xoofff-Tink, and the second part will be Ascon
vs. Xoofff-Tink. We decided to make this split mainly due to the speed of

61

the results and to keep the graph more coherent. We used the median rather
than the cargo’s best estimate for comparison.

AES-GCM & ChachaPloy vs Xoofff-Tink

As we can see above, in Figures 10.3, 10.7-10.11 our Xoofff-Tink implementa-
tion is slower for shorter size plaintexts and faster for very large message’s size
(more than 16 MiB) in wrap/encryption and slower for all size messages for
unwrap/decryption. For wrap/encryption, we can see that for short plaintexts
(less than 1 MiB) Xoofff-Tink is around 1.2-1.5 times slower, and for medium,
they are around the same speed, and for longer ones (more than 16 MiB)
Xoofff-Tink is faster. For unwrap/decryption, we can see that Xoofff-Tink
is around 1.04-2.4 slower for messages less than 8 MiB and around 1-1.2
slower for longer messages, with some cases in which Xoofff-Tink is faster,
for example, against AES-GCM-SIV, and Xoofff-Tink is around 1.2 times
faster for messages longer than 16 MiB. Notice that we report the differences
according to the AVX2 benchmarking.

As we mentioned above, the comparison against AES schemes is imbal-
anced as AES is implemented in hardware, and again, we used a machine
that has AVX2 and is not the most optimized version of our code, which
takes advantage of AVX512.

The goal of this benchmark was to place our scheme in performance
among the more well-known schemes and provide the reader with a better
understanding of the speed of our implementation. While our main focus was
to benchmark our implementation against Google Tink AEAD, we recognized
the importance of providing a comprehensive comparison. As there are few
benchmarks for Google Tink AEAD in the literature, we also decided to
report benchmarking against more acknowledged schemes.

62

Figure 10.3: Benchmarks of wrap Xoofff-Tink and encrypt of AES-GCM
variants and chacha20poly1305 for different sizes.

Figure 10.4: Benchmarks of unwrap Xoofff-Tink and decrypt of AES-GCM
variants and chacha20poly1305 for different sizes.

63

Ascon vs Xoofff-Tink

Our final benchmarking is against the newly lightweight cryptography stan-
dardized scheme Ascon. As we can see in Figures 10.3-10.6, Xoofff-Tink is
around 2-5 times faster in both wrap/encryption and unwrap/decryption
for the AVX2 implementation and 2-3 times faster for the non-parallelized
version.

This benchmark aims to compare Xoofff-Tink to the new standardized
scheme for lightweight cryptography as we argue that our scheme can be used
for lightweight cryptography.

We believe the main reason for the speed differences between the two
schemes is the difference in their message processing. While Xoofff-Tink pro-
cesses 384 bits of messages for each permutation call, Ascon processes only 64
bits, resulting in many more permutation calls for each scheme operation. As
we are using rather large message sizes, this creates a considerable overhead.
Another reason might be the implementation of the scheme. The implemen-
tation was done by the RustCrypto library developers and not the Ascon
team. Perhaps if the Ascon team had implemented a Rust version, it could
have been faster and could have taken advantage of different optimizations,
such as the AVX2.

Figure 10.5: Benchmarks of wrap Xoofff-Tink and encrypt of Ascon variants
for different sizes.

64

Figure 10.6: Benchmarks of unwrap Xoofff-Tink and decrypt of Ascon for
different sizes.

10.4 General Observations

We believe a few additional observations about the benchmarking reported
above are important to be mentioned.

We can notice some differences between the speed of Xoofff-Tink wrap
and unwrap in some cases. If we examine the two implementations (or the
pseudocode), we can see that the wrap and unwrap operations are rather
similar in nature. Unwrap has some additional clone operations and some
additional if checks, but compared to the absorb and squeeze operations, those
do not play a big role in our scheme’s speed performance. This is clear in the
c code implementation, where we see similar speed performances for wrap
and unwrap. We can see a similar pattern in the non-AVX2 implantation
of Xoofff-Tink in Rust, although it is not as clear as in the case of c, the
wrap and unwrap have similar speeds with the exceptions of very large
message sizes, which we will discuss in later in this section. In the case of
Xoofff-Tink in Rust using AVX2, we see more significant speed differences
between wrap and unwrap. This is due to different optimizations the Rust
compiler performs under the hood. The AVX2 part of the code is not
explicitly implemented but is left for the compiler to do so while providing
the expected amount of values to fit on the 256-bit register. The specific
implementation is abstract, and the compiler decides how to implement it.
It might perform additional optimization through the code using the AVX2
optimization features. This means that in the code of the wrap, the compiler

65

manages to perform more optimizations compared to the unwrap calls, which
explains the differences in speed performances that are not present in the
C or non-AVX2 implementation. The C AVX2 implementation is specified
and optimized by the Keccak team and is part of the XKCP package that we
used for our C implementation.

There seems to be a pick in the speed performance for the Rust imple-
mentations for large messages across almost all schemes. We believe this is
due to the memory safety checks that Rust has over C. Such observations
can be studied further to better understand Rust’s behavior, but they are
outside the scope of this thesis.

66

Chapter 11

Xoofff-Tink in PostGuard

In this section, we discuss the PostGuard project, how we included our
Xoofff-Tink implementation into the project, and the result of this collabora-
tion in terms of analysis of the ease of integration of our implementation.

11.1 The PostGuard Project

The PostGaurd: encryption for all project is an interdisciplinary collaboration
whose goal, as the name suggests, is to provide usable encryption to everyone,
whether in the public or private sector. The project aims to create an
easy-to-use plugin on top of our traditional email application, which will
provide encryption and authentication for the users [BBJ+23]. Encrypted
email providers such as PGP have existed for a while [SWR+22]. However,
they are not widely used due to the difficulty in setting up and usage,
mainly because of challenges in cryptographic key management [BBJ+24].
Meanwhile, encryption is becoming increasingly essential, with legislation,
such as the GDPR, enforcing laws that require encryption of communication
between different parties (for instance, between doctors and patients) and
mass surveillance activities of internationally operating intelligence agencies on
the rise. The project battles the biggest difficulties of PGP (key management
and user experience) by considering user experience while designing the
tool and the cryptography around it. Their novelty lies in combining their
cryptography approach, identity-based encryption with an identity wallet.
Each individual should possess such a wallet, and using their wallet, they
can prove their identity. When a sender sends an email, they should specify
who can decrypt it by providing the recipient attributes (such as name, email
address, or some other attribute). On the recipient side, the user can use
their attributes from the wallet to decrypt the email. Thus, the PostGuard
reduces decryption to authentication.

67

11.2 Goal of our Collaboration

After analyzing the security of our scheme and implementing two instances,
in Rust and C, we would also like to check the usability of Xoofff-Tink.
To that end, we collaborated with iHub on their PostGuard project. The
primary objective of our collaboration with PostGuard is to demonstrate our
new cryptographic scheme’s practical applicability and ease of integration.
By replacing their existing AES-GCM scheme with our scheme, we aimed
to illustrate its user-friendliness and seamless adaptability in a real-world
scenario.

This collaboration serves as a case study for the broader adoption of our
cryptographic scheme. By successfully implementing our system in a live
environment, we aim to establish a precedent for its application in various
fields, emphasizing its versatility and scalability.

11.3 Results of Collaboration

Currently, PostGuard provides two services: a plugin on top of some tra-
ditional email services and an encryption and decryption CLI tool. The
cryptography scheme used for those two services is the same, implemented in
one place and used in both tools. PostGuard uses the bytes-in-bytes-out ap-
proach, the program gives the plaintext to the cryptographic implementation
and expects the output to be written to the same input vector, recall that
the output, in our case, is a ciphertext, counter, and a tag. For that end, we
can use the Rust implementation of our scheme with the bytes-in-bytes-out
approach. As we have already implemented it, we only had to change the init,
wrap, and unwrap call from AES-GCM to our Xoofff-Tink and introduce a
managed counter, which increases after each wrap use. Those changes were
fairly simple and involved only modifying a few lines of code. This demon-
strates that with minor effort, one can replace one of the most commonly
used schemes for authentication encryption with Xoofff-Tink.

Does this mean that from now on, people can use Xoofff-Tink for authen-
tication and encryption on their email providers? Unfortunately, it is not that
easy. Although the scheme change in the code is simple, another issue must
be considered before changing the scheme. As PostGuasrd is already used,
some emails have already been encrypted using AES-GCM. Suppose one
will be to change the scheme from AES-GCM to Xoofff-Tink. In that case,
all the emails before the change will no longer be accessible, as the scheme
applied to the authenticated and encrypted email will provide a non-readable
authentication and decryption. There are solutions for this issue. One can
use both schemes for a period of time, but the question of when one can drop
the older scheme is not easy to answer. Another solution can be to encrypt
all emails using the new scheme and save them instead of the old ones. This

68

is a challenging task and can be an expensive one. The issue we are facing
is not an implementation one but rather a software engineering one, and a
solution for such a problem cannot be answered easily and requires thinking
from the developers of PostGuard.

Does this mean our effort to include Xoofff-Tink in PostGuard and
collaboration is in vain? Quite the opposite, our goal was not to create
a new version for PostGuard, which will replace the old one, but rather to see
how difficult it would be to do so. The answer to this question is promising,
with minimal effort, highlighting our scheme’s ease of usability. Another
outcome of this collaboration is the creation of a CLI tool that wraps and
unwraps messages. As mentioned above, PostGaurd has two tools: a plugin
on top of email providers and a CLI tool that wraps and unwraps files. Our
implementation of the second tool works and can be used without any issues.

In conclusion, we believe the collaboration to be successful, which high-
lights the practical applicability and ease of integration of our new crypto-
graphic scheme and showcases how one can change one of the most commonly
used authenticated encryption schemes to our Xoofff-Tink scheme with mini-
mal effort.

69

Chapter 12

Conclusions and Future Work

In this thesis, we have introduced Deck-Tink, a new authenticated encryption
(AE) mode, and analyzed its security in the multi-target scenario. We showed
how, with an ideal-world scheme with the same interface as Deck-Tink built
on top of the jammin cipher, we can prove a multi-target security bound
for our mode without necessitating the construction of a new ideal world, a
significant advancement over existing methodologies such as those used in
Google Tink AEAD.

Further, we instantiated the Deck-Tink mode using the deck function
Xoofff, resulting in our Xoofff-Tink scheme. We implemented Xoofff-Tink
in both C and Rust [Alt24], and have benchmarked them against several AE
schemes. We report the following findings for our benchmarks:

• Xoofff-Tink C implementation vs Google Tink AEAD C++ implemen-
tation: for wrap/encryption, we can see that our implementation is at
least twice as fast for short plaintext (less than 128 Kib) and between
1.10 and 1.42 faster for longer plaintexts. For unwrap/decryption, we
can see that our implementation is around 2 to 3 times slower for
medium-size plaintext (more than 1 Kib and less than 4 MiB) and
between 1.003 and 1.76 slower for other plaintext sizes.

• Xoofff-Tink Rust implementation vs AES-GCM & ChachaPoly imple-
mentation: for wrap/encryption, we can see that for short plaintexts
(less than 1 MiB) Xoofff-Tink is around 1.2-1.5 times slower, and for
medium, they are around the same speed, and for longer ones (more
than 16 MiB) Xoofff-Tink is faster. For unwrap/decryption, we can
see that Xoofff-Tink is around 1.04-2.4 slower for messages less than 8
MiB and around 1-1.2 slower for longer messages, with some cases in
which Xoofff-Tink is faster, for example, against AES-GCM-SIV, and
Xoofff-Tink is around 1.2 times faster for messages longer than 16 MiB.

• Xoofff-Tink Rust implementation vs Ascon: Xoofff-Tink is around 2-5
times faster in both wrap/encryption and unwrap/decryption for the

70

AVX2 implementation and 2-3 times faster for the non-parallelized
version.

Moreover, our collaboration with iHub on the PostGuard project show-
cased the practical applicability and seamless integration capabilities of
Xoofff-Tink, demonstrating its potential beyond theoretical constructs into
real-world utility.

Xoofff-Tink has demonstrated potential, particularly for streaming encryp-
tion on platforms without dedicated AES support, as well as in applications
requiring online data transmissions, such as email, file sharing, and poten-
tially even TCP communications, due to its support for out-of-order message
handling.

We believe that more work can be done to better understand the potential
of Xoofff-Tink and Deck-Tink. In this thesis, we implemented Xoofff-Tink
in Rust using the Rust AVX high-level operations. However, implementing
native AVX instructions could potentially improve performance, resulting in
faster wrap and unwrap operations. Additionally, exploring more use cases,
such as in low-level devices that do not have AES in hardware, could expand
the utility of Xoofff-Tink and show its potential and improvement compared
to current schemes like AES-GCM. Furthermore, it would be beneficial to
test Xoofff-Tink in different network protocols to evaluate its efficacy and
robustness in varied communication scenarios.

We also observed two other areas that might be worth further investigation.
The first is the difference in speed between encryption and decryption for
Google Tink AEAD. As AES-GCM is used as a primitive, one would expect
to see similar speeds for the two operations, but we notice that decryption is
almost twice as fast. Secondly, in our unwrap benchmark of Xoofff-Tink in
Rust and most of the other AE schemes in Rust, we observed a high pike
around messages with size 16 MiB. We expect this pick to originate from safe
Rust memory handling, but more investigation into the exact cause can help
us better understand Rust and its use in cryptography implementations.

71

Bibliography

[AKC23] G. Van Assche, R. Van Keer, and Contributors. Extended keccak
code package, 2023. https://github.com/XKCP/XKCP.

[Alt24] D. Alter. Xoofff-tink implementation, 2024. https://github.c
om/DorAlter/Xoofff-Tink/.

[AO16] A.A.M Aliyu and A. Olaniyan. Vigenere cipher: trends, review
and possible modifications. International Journal of Computer
Applications, 135(11):46–50, 2016.

[BBJ+23] L. Botros, M. Brandon, B. Jacobs, D. Ostkamp, H. Schraffen-
berger, and M. Venema. Postguard: Towards easy and secure
email communication. In Extended Abstracts of the 2023 CHI
Conference on Human Factors in Computing Systems, CHI EA
’23, New York, NY, USA, 2023. Association for Computing Ma-
chinery. https://doi.org/10.1145/3544549.3585622.

[BBJ+24] L. Botros, M. Brandon, B. Jacobs, D. Ostkamp, H. Schraffen-
berger, and M. Venema. Postguard: encryption for all (webpage),
2024. https://ihub.ru.nl/project/postguard.page.

[BDH+16] G. Bertoni, J. Daemen, S. Hoffert, M. Peeters, G. Van Assche, and
R. Van Keer. Farfalle: parallel permutation-based cryptography.
Cryptology ePrint Archive, Paper 2016/1188, 2016. https:
//eprint.iacr.org/2016/1188.

[BDH+22] N. Băcuiet, i, J. Daemen, S. Hoffert, G. Van Assche, and R. Van
Keer. Jammin’ on the deck. Cryptology ePrint Archive, Paper
2022/531, 2022. https://eprint.iacr.org/2022/531.

[BN00] M. Bellare and C. Namprempre. Authenticated encryption: Re-
lations among notions and analysis of the generic composition
paradigm. Cryptology ePrint Archive, Paper 2000/025, 2000.
https://eprint.iacr.org/2000/025.

[Boz24] A. Bozhko. Properties of AEAD Algorithms, June 2024. https:
//datatracker.ietf.org/doc/draft-irtf-cfrg-aead-prope
rties/.

72

https://github.com/XKCP/XKCP
https://github.com/DorAlter/Xoofff-Tink/
https://github.com/DorAlter/Xoofff-Tink/
https://doi.org/10.1145/3544549.3585622
https://ihub.ru.nl/project/postguard.page
https://eprint.iacr.org/2016/1188
https://eprint.iacr.org/2016/1188
https://eprint.iacr.org/2022/531
https://eprint.iacr.org/2000/025
https://datatracker.ietf.org/doc/draft-irtf-cfrg-aead-properties/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-aead-properties/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-aead-properties/

[CS13] S. Chen and J. Steinberger. Tight security bounds for key-
alternating ciphers. Cryptology ePrint Archive, Paper 2013/222,
2013. https://eprint.iacr.org/2013/222.

[Cue21] A.V. Cueva. The Intel Advanced Vector Extensions 512 (Intel®
AVX-512) Vector Length Extensions Feature on Intel® Xeon®
Scalable Processors. Intel, 2018 accessed on May 2021. https:
//software.intel.com/content/www/us/en/develop/artic
les/the-intel-advanced-vector-extensions-512-feature
-on-intel-xeon-scalable.html?wapkw=advanced%20vector
%20extensions.

[Den23] F. Denis. rust-xoodyak, Last accessed September 2023. https:
//github.com/jedisct1/rust-xoodyak.

[dev23] RustCrypto developers. Authenticated encryption with as-
sociated data (aead) traits, Last accessed September 2023.
https://docs.rs/aead/latest/aead/.

[DFY+17] W. Diehl, F. Farahmand, P. Yalla, J.P Kaps, and K. Gaj. Com-
parison of hardware and software implementations of selected
lightweight block ciphers. In 2017 27th International Conference
on Field Programmable Logic and Applications (FPL), pages 1–4,
2017. https://ieeexplore.ieee.org/document/8056808.

[DGP07] L. Dorrendorf, Z. Gutterman, and B. Pinkas. Cryptanalysis of
the random number generator of the windows operating system.
Cryptology ePrint Archive, Paper 2007/419, 2007. https://ep
rint.iacr.org/2007/419.

[DHAK18] J. Daemen, S. Hoffert, G. Van Assche, and R. Van Keer. The
design of xoodoo and xoofff. IACR Transactions on Symmetric
Cryptology, 2018(4):1–38, Dec. 2018. https://tosc.iacr.org/
index.php/ToSC/article/view/7359.

[doc24a] Rust docs. cargo-bench, Last accessed on March 2024. https:
//doc.rust-lang.org/cargo/commands/cargo-bench.html.

[doc24b] Rust docs. Crate criterion, Last accessed on March 2024. https:
//docs.rs/criterion/latest/criterion/.

[ESDH21] M. Emre, R. Schroeder, K. Dewey, and B. Hardekopf. Translating
c to safer rust. Proc. ACM Program. Lang., 5(OOPSLA), oct
2021. https://doi.org/10.1145/3485498.

[FFL12] E. Fleischmann, C. Forler, and S. Lucks. Mcoe: A family of
almost foolproof on-line authenticated encryption schemes. In

73

https://eprint.iacr.org/2013/222
https://software.intel.com/content/www/us/en/develop/articles/the-intel-advanced-vector-extensions-512-feature-on-intel-xeon-scalable.html?wapkw=advanced%20vector%20extensions
https://software.intel.com/content/www/us/en/develop/articles/the-intel-advanced-vector-extensions-512-feature-on-intel-xeon-scalable.html?wapkw=advanced%20vector%20extensions
https://software.intel.com/content/www/us/en/develop/articles/the-intel-advanced-vector-extensions-512-feature-on-intel-xeon-scalable.html?wapkw=advanced%20vector%20extensions
https://software.intel.com/content/www/us/en/develop/articles/the-intel-advanced-vector-extensions-512-feature-on-intel-xeon-scalable.html?wapkw=advanced%20vector%20extensions
https://software.intel.com/content/www/us/en/develop/articles/the-intel-advanced-vector-extensions-512-feature-on-intel-xeon-scalable.html?wapkw=advanced%20vector%20extensions
https://github.com/jedisct1/rust-xoodyak
https://github.com/jedisct1/rust-xoodyak
https://docs.rs/aead/latest/aead/
https://ieeexplore.ieee.org/document/8056808
https://eprint.iacr.org/2007/419
https://eprint.iacr.org/2007/419
https://tosc.iacr.org/index.php/ToSC/article/view/7359
https://tosc.iacr.org/index.php/ToSC/article/view/7359
https://doc.rust-lang.org/cargo/commands/cargo-bench.html
https://doc.rust-lang.org/cargo/commands/cargo-bench.html
https://docs.rs/criterion/latest/criterion/
https://docs.rs/criterion/latest/criterion/
https://doi.org/10.1145/3485498

Fast Software Encryption Workshop, 2012. https://www.iacr
.org/archive/fse2012/75490200/75490200.pdf.

[Goo23a] Google. Tink cryptographic library (docs), 2023. https://deve
lopers.google.com/tink.

[Goo23b] Google. Tink library (code), 2023. https://github.com/googl
e/tink.

[HDWH12] N. Heninger, Z. Durumeric, E. Wustrow, and J.A.. Halderman.
Mining your ps and qs: Detection of widespread weak keys in net-
work devices. In 21st USENIX Security Symposium (USENIX Se-
curity 12), pages 205–220, Bellevue, WA, August 2012. USENIX
Association. https://www.usenix.org/conference/usenixse
curity12/technical-sessions/presentation/heninger.

[HRRV15] V.T. Hoang, R. Reyhanitabar, P. Rogaway, and D. Vizár.
Online authenticated-encryption and its nonce-reuse misuse-
resistance. In Advances in Cryptology – CRYPTO 2015, page
493–517, Berlin, Heidelberg, 2015. Springer-Verlag. https:
//eprint.iacr.org/2015/189.pdf.

[HS20] V.T. Hoang and Y. Shen. Security of streaming encryption in
google’s tink library. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, CCS
’20, page 243–262, New York, NY, USA, 2020. Association for
Computing Machinery. https://eprint.iacr.org/2020/1019.
pdf.

[Int21] Intel. Intrinsics for Intel Advanced Vector Extensions 2. Intrinsics
for Intel Advanced Vector Extensions 2, 2013 accessed on April
2021. https://www.cism.ucl.ac.be/Services/Formations/I
CS/ics_2013.0.028/composer_xe_2013/Documentation/en_
US/compiler_c/main_cls/index.htm#GUID-9E84F9C5-1711-4
F59-8742-8F9DF283A472.htm.

[JJKD17] R. Jung, J.H. Jourdan, R. Krebbers, and D. Dreyer. Rustbelt:
Securing the foundations of the rust programming language. Proc.
ACM Program. Lang., 2(POPL), dec 2017. https://doi.org/
10.1145/3158154.

[LBD23] C. Lefevre, Y. Belkheyar, and J. Daemen. Kirby: A robust
permutation-based PRF construction. Cryptology ePrint Archive,
Paper 2023/1520, 2023. https://eprint.iacr.org/2023/1520.

[LHA+12] A.K. Lenstra, J.P. Hughes, M. Augier, J.W. Bos, T. Kleinjung,
and Christophe Wachter. Public keys. In Advances in Cryptology

74

https://www.iacr.org/archive/fse2012/75490200/75490200.pdf
https://www.iacr.org/archive/fse2012/75490200/75490200.pdf
https://developers.google.com/tink
https://developers.google.com/tink
https://github.com/google/tink
https://github.com/google/tink
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/heninger
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/heninger
https://eprint.iacr.org/2015/189.pdf
https://eprint.iacr.org/2015/189.pdf
https://eprint.iacr.org/2020/1019.pdf
https://eprint.iacr.org/2020/1019.pdf
https://www.cism.ucl.ac.be/Services/Formations/ICS/ics_2013.0.028/composer_xe_2013/Documentation/en_US/compiler_c/main_cls/index.htm#GUID-9E84F9C5-1711-4F59-8742-8F9DF283A472.htm
https://www.cism.ucl.ac.be/Services/Formations/ICS/ics_2013.0.028/composer_xe_2013/Documentation/en_US/compiler_c/main_cls/index.htm#GUID-9E84F9C5-1711-4F59-8742-8F9DF283A472.htm
https://www.cism.ucl.ac.be/Services/Formations/ICS/ics_2013.0.028/composer_xe_2013/Documentation/en_US/compiler_c/main_cls/index.htm#GUID-9E84F9C5-1711-4F59-8742-8F9DF283A472.htm
https://www.cism.ucl.ac.be/Services/Formations/ICS/ics_2013.0.028/composer_xe_2013/Documentation/en_US/compiler_c/main_cls/index.htm#GUID-9E84F9C5-1711-4F59-8742-8F9DF283A472.htm
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154
https://eprint.iacr.org/2023/1520

- Crypto 2012, volume 7417 of Lecture Notes in Computer Science,
pages 626–642. Springer, 2012.

[Lom21] C. Lomont. Introduction to Intel Advanced Vector Extensions.
Intel White Paper, 2011, accessed on May 2021. https://soft
ware.intel.com/content/www/us/en/develop/articles/in
troduction-to-intel-advanced-vector-extensions.html.

[MKW18] K. Mindermann, P. Keck, and S. Wagner. How usable are rust
cryptography apis? In 2018 IEEE International Conference on
Software Quality, Reliability and Security (QRS), pages 143–154,
2018.

[MV04] D.A. McGrew. and J. Viega. The security and performance of
the galois/counter mode (gcm) of operation. In Anne Canteaut
and Kapaleeswaran Viswanathan, editors, Progress in Cryptology
- INDOCRYPT 2004, pages 343–355, Berlin, Heidelberg, 2004.
Springer Berlin Heidelberg. https://link.springer.com/chap
ter/10.1007/978-3-540-30556-9_27.

[MV05] D.A. McGrew and J. Viega. The galois/counter mode of operation
(gcm), 2005. https://api.semanticscholar.org/CorpusID:
6053538.

[NL18] Y. Nir and A. Langley. ChaCha20 and Poly1305 for IETF
Protocols. RFC 8439, June 2018. https://www.rfc-editor.or
g/info/rfc8439.

[Pat08] J. Patarin. The "coefficients h" technique., 08 2008.

[PNT+15] D. Pandya, K.R. Narayan, S. Thakkar, T. Madhekar, and B.S.
Thakare. Brief history of encryption. International Journal of
Computer Applications, 131(9):28–31, 2015.

[Roy23] A. Roy. Xoofff (rust implementation), Last accessed September
2023. https://github.com/itzmeanjan/xoofff.

[SWR+22] C. Stransky, O. Wiese, V. Roth, Y. Acar, and S. Fahl. 27 years
and 81 million opportunities later: Investigating the use of email
encryption for an entire university. In 2022 IEEE Symposium on
Security and Privacy (SP), pages 860–875, 2022.

75

https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-advanced-vector-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-advanced-vector-extensions.html
https://software.intel.com/content/www/us/en/develop/articles/introduction-to-intel-advanced-vector-extensions.html
https://link.springer.com/chapter/10.1007/978-3-540-30556-9_27
https://link.springer.com/chapter/10.1007/978-3-540-30556-9_27
https://api.semanticscholar.org/CorpusID:6053538
https://api.semanticscholar.org/CorpusID:6053538
https://www.rfc-editor.org/info/rfc8439
https://www.rfc-editor.org/info/rfc8439
https://github.com/itzmeanjan/xoofff

	Introduction
	Stream Encryption and MAC functions introduction
	Stream Encryption
	MAC function
	Deck-function

	Authenticated Encryption and the nOAE2 Notions
	Distinguishing Models
	Authenticated Encryption
	Authenticated Encryption Modes
	Nonce-Base Online Authenticated Encryption notions
	Syntax and Notations
	nOAE2

	Jammin Cipher
	Jammin Cipher Design
	Inner workings

	STREAM and Google Tink
	STREAM Construction
	Google Tink Streaming AEAD Encryption

	Deck-Plain and Xoofff Instantiation
	Deck-Plain
	Xoofff - Farfalle over Xoodoo
	Xoodoo
	Farfalle
	Xoofff

	Deck-Tink
	Deck-Tink Design
	Inner workings

	Security Analysis of Deck-Tink
	H-coefficient Technique
	Proof of a Bound for Deck-Tink

	Xoofff-Tink Implementation
	C Implementation
	Rust Implementation
	Why Rust?
	Xoofff-Tink Implementation in Rust

	C and Rust Compression

	Xoofff-Tink Performance
	Benchmark Setup
	Xoofff-Tink vs Google-Tink AEAD
	Rust Xoofff-Tink vs Rust AEADs Crypto Library
	General Observations

	Xoofff-Tink in PostGuard
	The PostGuard Project
	Goal of our Collaboration
	Results of Collaboration

	Conclusions and Future Work

