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Abstract

This thesis explores the enhancement of automatic speaker verification (ASV)
systems’ robustness to emotional speech. Utilizing the emotional datasets
such as CREMA-D and RAVDESS, the study focuses on optimizing a state-
of-the-art WavLM-based ASV system with ECAPA-TDNN to address per-
formance degradation caused by emotional variability. Traditional similarity
measures and embedding space modifications, such as LDA, PLDA, and con-
trastive learning, offer minimal or no improvements. In contrast, fine-tuning
the ECAPA-TDNN system with the incorporation of the modified Barlow
Twins objective, cosine loss, CopyPaste augmentation, and dataset extension
through pitch shifting led to a significant performance enhancements.

The study also evaluated the model’s generalization across different
emotional datasets, demonstrating improved robustness to emotional vari-
ability at the cost of slight performance reductions in original context, as
observed in VoxCeleb1 evaluations. Cross-dataset tests further highlighted
the challenges of achieving universal emotion-robustness, underscoring the
importance of dataset-specific optimization. An ablation study highlighted
the critical role of modified loss functions and augmentations in enhancing
system performance.
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Chapter 1

Introduction

Automatic speaker verification (ASV) is an application of speaker recognition
technologies that aims to determine whether two speech samples originate
from the same speaker. This problem has wide-ranging applications, from
security systems that verify individual identities to evaluating text-to-speech
models, ensuring that synthesized speech accurately reflects the characteris-
tics of the original speaker.

Developing a robust speaker similarity measure for emotional speech has
significant implications across various fields. In security and surveillance, it
can enhance forensic analysis and surveillance systems by accurately identify-
ing individuals in emotionally charged situations. In telecommunications, it
can improve customer service in call centers and strengthen voice authentica-
tion systems. However, given that this thesis is conducted within a company
focused on text-to-speech synthesis systems, one of the primary real-world
applications is developing a metric to evaluate speaker identity preservation
within synthesized emotional speech.

Recent advancements in ASV technology, driven by improvements in ma-
chine learning and signal processing techniques, have significantly enhanced
speaker verification capabilities. Despite these advancements, accurately
measuring speaker similarity, particularly in the presence of emotional speech,
remains a challenging problem. Emotional speech introduces variability that
can significantly affect the spectral and temporal characteristics of speech
signals, thus complicating speaker recognition tasks.

Emotional expressions, such as happiness, anger, sadness, and fear, can
alter fundamental speech features like pitch, tone, and prosody. These changes
pose substantial challenges for traditional speaker recognition systems, which
often rely on features assumed to be relatively invariant across different
speaking conditions. Consequently, the variability introduced by emotions
can lead to increased error rates in speaker verification systems, undermining
their reliability in real-world applications where emotional speech is common.

Therefore, the primary objective of this thesis is to develop a robust
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speaker similarity measure that can accurately verify speakers regardless
of their emotional state. Specifically, this research aims to create emotion-
invariant representations using a state-of-the-art model. By focusing on the
development of these representations, the study seeks to enhance the quality
and reliability of speaker recognition systems in the presence of emotional
variability.

To achieve this, this thesis will:

1. Analyze the impact of various emotional states on speaker similarity.

2. Develop a model that generates emotion-invariant speaker representations.

3. Evaluate the effectiveness of that model in maintaining speaker identity
across different emotional states.

By examining the impact of emotions on speaker similarity, this study
aims to improve the robustness of speaker recognition systems in diverse
real-world environments. Ultimately, the findings from this research will
contribute to the advancement of ASV technology, particularly in applications
involving emotional speech.

The structure of this thesis is organized into four chapters. Chapter 2
delves into the background knowledge related to speaker verification in
general, with a focus on emotional speech and associated challenges to increase
ASV robustness. Chapter 3 outlines the experimental setup, describes the
specific steps involved in developing the proposed emotion-invariant speaker
representations, and presents the results of these experiments, followed by a
detailed analysis. Finally, Chapter 4 concludes the thesis by summarizing
the key findings, discussing their implications, and providing insights for
future research directions.
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Chapter 2

Related Work

2.1 Classic Speaker Recognition Approaches

Speaker recognition has significantly evolved, employing various methods to
recognize speakers based on their voice characteristics.

Some of the earliest modern speaker verification systems utilized features
extracted using the Gaussian Mixture Model (GMM) and compensating
speaker and channel variability using Joint Factor Analysis (JFA) [KOD+08].
This approach was built on the success of GMM-Universal Background
Model (UBM) systems [RQD00], which employed acoustic features, typically
Mel-Frequency Cepstral Coefficients (MFCCs), to model speakers. JFA was
introduced to tackle intersession variability, a major challenge in GMM-UBM
systems, by separately modeling inter-speaker variability and channel/session
variability. In verification tasks, the system decides whether the speakers
in utterances are the same or not by computing the likelihood of the test
utterance feature vectors against a session-compensated speaker model.

Later research revealed that channel factors in JFA also contained speaker
information, leading to the development of i-vectors [DKD+11]. These vec-
tors combine speaker and channel spaces into a single total variability space
instead of separating them as in JFA. i-vectors, based on supervector repre-
sentations derived from GMMs, facilitate efficient matrix-vector operations.
Typically, Probabilistic Linear Discriminant Analysis (PLDA) [Iof06] is later
employed afterward to obtain similarity scores between the speakers in
utterances.

Recent advancements in machine learning have introduced neural net-
works and deep learning techniques to ASV and other speaker recognition
tasks. Initially, these were used to generate fixed-length representations of
audio, but they have since evolved to accommodate variable-length inputs as
well. These methods, such as Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs), have significantly improved the accuracy
and robustness of speaker verification systems, particularly in short-length
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audio scenarios.
One of the most recent and well-known supervised architectures for the

ASV is the Emphasized Channel Attention, Propagation, and Aggregation in
Time Delay Neural Network (ECAPA-TDNN) [DTD20]. This architecture
incorporates multiple enhancements based on recent results in face verifi-
cation and computer vision, applied to the successful speaker verification
architecture TDNN [WHH+89] which, in turn, uses statistical pooling for the
projection of variable-length utterances into fixed-length speaker represen-
tations. The standard input features of ECAPA-TDNN are 80-dimensional
MFCCs extracted from a 25 ms window with a 10 ms frameshift.

For the training of the speaker representations, an extra classification
layer with a Softmax is used. An key enhancement in the training of ECAPA-
TDNN is Additive Angular Margin Softmax (AAM-Softmax) [DGXZ19],
whose formula is given in 2.1. This advanced version of traditional Softmax
normalizes the weights W ∈ Rd×n and features xi ∈ Rd, making the loss
dependent on the angle between them only. Additionally, it introduces an
additive angular margin m to enhance intra-class compactness and inter-class
separation.

LAAM = − 1

N

N∑
i=1

log
es cos(∠(Wyi ,xi)+m)

es cos(∠(Wyi ,xi)+m) +
∑N

j=1,j ̸=yi
es cos∠(Wj ,xi)

(2.1)

As a result of AAM-Softmax, modern ASV systems no longer require
PLDA for scoring, as simple cosine similarity becomes sufficiently effective
due to the properties of AAM-Softmax.

Recent developments in self-supervised learning have also influenced
speech processing tasks. HuBERT [HBT+21] and especially its later advance-
ment WavLM [CWC+22] are pre-trained on large amounts of unlabeled data,
with WavLM being particularly adaptable across various tasks.

So one of the state-of-the-art ASV systems now uses WavLM hidden
states as an alternative to MFCCs, feeding them into ECAPA-TDNN to
generate speaker representations.

2.2 Impact of Emotional Variation

Although emotion recognition in speech has been extensively studied, its
impact on speaker verification remains underexplored, particularly regard-
ing the robustness of ASV systems when encountering emotional speech.
Emotional speech tends to increase the variance in speaker representations,
leading to higher false positive and false negative rates.

Recently, some approaches have been developed to generate emotion-
invariant speaker representations. In speaker identification based on the
i-vector principle [SD20], both neutral and emotional speech are used as
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inputs, but only neutral speech of the same speaker is used as a target for
transformation. This technique aligns emotional speaker representations
more closely with neutral representations, thereby enhancing the system’s
robustness to emotional variations.

In training emotion-invariant ASV system based on ResNet34-TDSP
[THX24], augmentation techniques such as emotion-aware masking and
“CopyPaste” are employed. Emotion-aware masking uses the root mean
square energy of the speech signal to mask parts of the signal where emotion
expression is most significant. CopyPaste augmentation creates a new utter-
ance by splicing segments from different utterances of the speaker, possibly
with different emotions. It introduces more textual and emotional diversity
in the training samples, improving robustness and making the system less
sensitive to emotional variation. These augmentations are applied to copies
of the same sample and then fed into the model, optimized for both samples
using AAM-Softmax loss. To further enforce convergence of the same-speaker
representations, the cosine similarity between the speaker representations of
these samples is maximized. This architecture is visualized in figure 2.1.

Figure 2.1: Architecture of the emotion-invariant ASV system [THX24]

2.3 Robustness of ASV

The emotional dependency of ASV systems can be viewed more broadly
as a robustness problem and the challenge of handling out-of-domain data.
While this issue has been more thoroughly studied in other contexts, it
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remains under-researched, particularly in real-world, emotionally charged
scenarios. Beyond the standard techniques to improve ASV robustness like
data augmentations, regularization, and the use of robust architectures in
general that improve robustness by preventing overfitting, there are relatively
few other methods.

One notable method addressing robustness is the Barlow Twins objective
[ZJM+21], which learns distortion-invariant representations and disentangles
generated features from each other. Originally developed for self-supervised
learning in computer vision, this method (as illustrated in figure 2.2) creates
pairs of independently distorted batches, generates embeddings using shared
encoder and projector networks, and computes the empirical cross-correlation
of these embeddings. The goal is to make the features in these embeddings
independent, with the target cross-correlation matrix C being the identity
matrix:

LBT =
∑
i

(1− Cii)2 + λ
∑
i

∑
j ̸=i

C2
ij .

For the downstream tasks, only the encoder is used to obtain the representa-
tions without applying distortions.

Figure 2.2: Visualization of the Barlow Twins objective [ZJM+21]

Recently, this approach has been adapted for the distillation of self-
supervised speech models [RGHN+23], with modifications to handle outputs
from different layers of neural networks and avoid averaging over the time
dimension. Unlike the original approach, this adaptation does not employ a
projector network during training, instead using layer outputs directly.
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Chapter 3

Experimental Setup and
Results

This chapter presents the datasets, methods, outcomes, and analysis of our
experiments in developing an emotion-robust ASV system.

3.1 Datasets

The primary dataset used for developing the emotion-robust ASV system is
CREMA-D, which comprises 7442 speech samples in English from 91 actors
expressing six different emotions: neutral, anger, sadness, happiness, fear, and
disgust. The test set for the system includes audio samples from 10 randomly
selected speakers who are excluded during training. Although the emotions
in this dataset are acted, which may simplify the task compared to real-
world scenarios, the primary application of this research is in text-to-speech
synthesis, which often uses acted emotions during training. Additionally,
in real emotions, the emotional tone can change throughout the utterance,
whereas in synthesized speech a single emotion is typically applied to the
specified part of utterance.

In addition to CREMA-D, the RAVDESS emotional dataset is utilized.
RAVDESS, similar to CREMA-D in terms that it features acted emotions,
includes 1440 utterances from 24 speakers. It add calm and surprised emotions
to the previously mentioned set and serves to evaluate the performance on
out-of-domain data. Evaluation is conducted on 5 randomly selected speakers,
while the remaining 19 speakers are used in training.

3.2 Model architecture

For our experiments, we utilize one of the current state-of-the-art ASV
systems that is based on WavLM Large [CWC+22] architecture, which
is pre-trained for diverse speech-related tasks. This model consists of a
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convolutional feature encoder and 24 transformer encoder layers with gated
relative position bias as shown in figure 3.1.

Figure 3.1: Visualization of WavLM architecture [CWC+22]. This image
shows the pre-training process, in our application we use it in inference mode
without mixing utterances and masking

For the ASV task, ECAPA-TDNN (small) is used as a downstream
model. This model uses frozen pre-trained WavLM hidden states summed
with trainable weights as input. The ASV model is pre-trained on the
VoxCeleb1 [NCZ17] dataset using AAM-Softmax loss.

3.3 Metrics

The standard metric for ASV is the equal error rate (EER). It is calculated
based on a set of trials where the system is presented with voice samples and
must decide whether the speaker’s claimed identity is target or not. EER is
derived from the detection error trade-off (DET) curve of the trials, which
plots the false negative rate against the false positive rate at various threshold
settings. The EER is the point on this curve where the rates of false positives
and false negatives are identical, providing a clear and concise single-number
measure of a system’s discrimination capability without dependence on the
specific threshold settings used in the ROC and DET analysis, as shown in
figure 3.2.

However, our goal is not only to improve the overall EER on emotional
speech, but also to bridge the gap between the performance on neutral speech
and (cross)-emotional utterances. By selecting specific samples in the trials
list, we can analyze the impact of emotions on the system’s performance.
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Figure 3.2: Visualization of the EER calculation [GPNFRS12]

For this reason, in addition to calculating the total EER across all test
trials, regardless of emotional labels of utterances, we also calculate the EERs
for trials consisting of utterance pairs with specified emotions. These results
are visualized in a matrix format, where columns represent the emotion of the
first utterance and the rows represent the emotion of the second utterance.
We will further refer to this as the EERs matrix. Additionally, we measure
the performance gap by calculating the difference between maximum and
minimum EERs in this matrix, denoted as ∆EER. Our aim is not only to
reduce the EERs, but also to minimize this gap between neutral and emotional
speech. It is important to note that these metrics are effective proxies for
evaluating the maintenance of speaker identity in emotional settings only
when considered together. Focusing solely on improving EER could lead to
significant variance in emotion-specific EERs, resulting in unreliable outcomes.
Conversely, only minimizing ∆EER could reduce emotion-specific variance at
the expense of accurate speaker verification, potentially leading to a system
that is ineffective in practical applications.

3.4 Methods

First, we validate that WavLM-based ASV performance declines with emo-
tional speech. There are several approaches to improve robustness against
emotional variability:

• Similarity Metric Substitution. Experimenting with metrics like PLDA
instead of cosine similarity.

• Embedding Space Mapping. Transforming speaker representations into
a space less influenced by emotional variability.

• Embedding Enhancement via Fine-Tuning. Fine-tune model parameters
(ECAPA-TDNN layers) to better handle emotional speech.

In this thesis, we investigate each enhancement approach above as follows:
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• We examine the impact of LDA and PLDA as standard methods applied
to scoring, and Spherical PLDA [SKLC23], a recent modification of
PLDA, on system performance to see if changing the scoring function
can better capture the speaker information.

• We apply contrastive learning to refine the embeddings, aiming to create
a more emotion-agnostic embedding space.

• Finally, we fine-tune the ECAPA-TDNN on WavLM features using
various strategies including:

– Standard augmentations: MUSAN music, noise and speech dataset
[SCP15], Room Impulse Response and Noise Database.

– Modified Barlow Twins objective to reduce redundancy in speaker
representations.

– CopyPaste augmentation for reduction of text and emotion depen-
dency.

– Cosine loss to bring speaker representations of the same speaker
closer to each other.

3.5 Results

3.5.1 Preliminary Results

We begin by examining the CREMA-D EERs matrix across different emotion
pairs using pre-trained speaker representations. As shown in figure 3.3, there
is a significant imbalance in the performance of the system across different
emotions.

Figure 3.3: EERs matrix of the speaker representations pre-trained on
VoxCeleb1; here and in the next matrices, emotions in each cell are selected
for both target and non-target speakers
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Next, we examine the distribution of these representations using t-SNE
[vdMH08]. We fit and transform the same set of representations without
speaker labels using this method.

As shown in figure 3.4, the clear clustering of speakers is observed, sug-
gesting the potential for improved scoring functions or embedding mappings.
However, t-SNE’s complex transformation may limit prediction quality when
it is applied to individual samples rather than a set of representations.

Figure 3.4: 2D visualization of the pre-trained speaker representations using
the same data for fitting and visualization

To explore if such a transformation can be applied to different speaker
representations, we train a UMAP [MHSG18] transformation on the training
part of the dataset and use this mapping for the test representations used
above. Since the t-SNE implementation from scikit-learn package [PVG+11]
does not allow the application of trained transformation to new data points,
UMAP is used as an alternative. As shown in figure 3.5, the resulting
transformation does not generalize the desired properties to the new speakers
as well as we would need for the speaker separability with multiple overlaps
and less dense clusters.

Figure 3.5: 2D visualization of the pre-trained speaker representations using
different data for fitting and visualization
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Hence, it cannot be guaranteed that a good scoring function exists that
improves the performance without modifying speaker representations.

3.5.2 Embedding Space

One of the most convenient ways to skew embedding space to make it less
dependent on emotion variability is to apply a transformation on top of the
generated representations. This transformation can be trained using various
losses. However, since we already have relatively good representations, the
goal is to bring representations of the same speakers closer to each other and
push representations of different speakers further apart. For this reason, we
use contrastive learning, which attracts representations of the same speaker
to each other and pushes representations of different speakers away.

For this task, we use contrastive loss [KTW+21] with a projector con-
sisting of a couple of linear layers that do not change dimensions and the
first one is followed by batch normalization and ReLU for 10 epochs with a
learning rate of 10−3. The parameters are the same as in [TLD+22].

Figure 3.6: EERs matrix of the speaker representations mapped with con-
trastive learning

The contrastive loss is conceptually similar to the AAM-Softmax loss,
but instead of calculating cosine similarity between weights and features
to classify speakers, it calculates cosine similarity between embeddings of
utterances of the same speakers to bring these embeddings closer together.
A batch of size N = 300 is randomly sampled, and the loss is calculated for
each positive pair against all the negative pairs [CKNH20], averaging them
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obtaining the loss function:

li,j = − log
exp(cos(f(xi), f(xj)))∑N

k=1 1si ̸=sj exp(cos(f(xi), f(xj))))
, (3.1)

Lcl =
1

N

N∑
i=1

∑
j,si=sj

li,j , (3.2)

where f is the projector mapping, si is the speaker ID of i-th utterance.
However, this method did not preform well, as shown in figure 3.6. This
outcome may be due to contrastive learning typically being used for pre-
training and requiring more data to obtain reliable results.

3.5.3 Scoring Function

For the scoring function, we revisit the following traditional ASV scoring
functions that were used for the previous generations of ASV systems, but
have been gradually replaced by cosine similarity due to the rise of AAM-
Softmax loss:

• LDA, used as an embedding mapping and then fed to cosine similarity.

• PLDA, a standard scoring function for previous ASV generation.

• Spherical PLDA, a recent modification of PLDA.

Figure 3.7: EERs matrix of the speaker representations obtained by LDA

In the training, we have 81 speakers, so we use the maximum possible
number of LDA components (80) and an eigenvalue decomposition solver
with automatic shrinkage. For the LDA-based EERs matrix, see figure 3.7.
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We observe a slight improvement in the overall EER as well as a reduction
in the difference between the pairwise emotional EERs.

For the applicability of the PLDA (using speechbrain implementation
[RPP+21]), we employ LDA to remove colinearity in the embedding features.
Additionally, PLDA uses speaker labels during the training, and the rank
of the between-class covariance matrix is set to 80. Although PLDA yields
slightly better EERs than cosine similarity (in figure 3.8), the result is worse
than for the LDA in terms of both total EER and ∆EER.

Figure 3.8: EERs matrix of the pre-trained speaker representations with
PLDA-based scoring function

Figure 3.9: EERs matrix of the pre-trained speaker representations with
SphPLDA-based scoring function
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Finally, we use Spherical PLDA, a PLDA constrained by making between-
and within-covariance matrices spherical (i.e., proportional to the identity
matrix). This method is more stable than the cosine distance and is claimed
to improve performance in a multi-enrollment setup. As shown in figure
3.9, this method yields results similar to both cosine similarity, with slightly
reduced variance in cross-emotion comparisons, and standard PLDA, with
slightly better total EER.

3.5.4 Fine-tuning

Next, we fine-tune the ECAPA-TDNN layers on CREMA-D.
Initially, we fine-tuned the ECAPA-TDNN layers on the CREMA-D

dataset using hyper-parameters similar to those in the final training described
in [CWC+22], but without employing the large-margin fine-tuning strategy
[TDD21]. Specifically, we used an AAM margin of 0.2 and a scale of 30,
training for 2 epochs with a batch size of 128 and a constant learning rate of
5× 10−5. Before fine-tuning, we initialized the weights of the AAM-Softmax
for 81 target speakers by averaging the speaker representations of each
speaker in the training set. To ensure stability, we performed a warm-up
phase by freezing the ECAPA-TDNN layers and training only the last layer
for 3 epochs. As shown in figure 3.10, this method significantly improved
performance compared to all previous approaches.

Figure 3.10: EERs matrix of the speaker representations fine-tuned with
LAAM

The first enhancement approach is to add Barlow Twins (BT) objective.
For this task, we require a concurrent batch of the utterances in addition
to simple batches, used to calculate the cross-correlation matrix. We apply
AAM-Softmax loss LAAM to both batches. In the original work [ZJM+21],
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an extra projector network is employed, but in our case we use a pre-trained
encoder, raising the challenge of initializing the projector and selecting a
proper size for it. Given this, we do not use a projector network and calculate
cross-correlation directly on encoder outputs, similar to the approach in
[RGHN+23]. Selecting the second batch remains an open task as it can be
selected in multiple ways. In our study, we evaluate the following options:

(a) The same utterances with different augmentations as in the original
implementation (figure 3.11a).

(b) A random utterance of the same speaker (figure 3.11b).

(c) A random neutral utterance of the same speaker (figure 3.11c).

(d) A neutral utterance of the same speaker with the same spoken text,
thanks to the structure of the CREMA-D dataset (see figure 3.11d).

It is important to note that the primary expectation is not a direct
improvement in the ASV performance. Rather, we anticipate that it will
remove redundancy in the dimensions of the representations and help prevent
overfitting. However, all of the approaches still improve the ASV performance
with the best results achieved by selecting the neutral version of the same
utterance by the same speaker, as shown in figure 3.11.

Next, inspired by [THX24], we add cosine loss between the representations
of the previously used batches:

Lcos = −
N∑
i=1

f(x1i ) · f(x2i )
||f(x1i )|| · ||f(x2i )||

,

where xji is the i-th element of j-th batch from Barlow Twins and f is the
encoder used to obtain speaker representations (WavLM + ECAPA-TDNN).
This loss explicitly targets the convergence of emotional and neutral represen-
tations. Additionally, as the CREMA-D dataset contains a limited number
of spoken sentences, we employ CopyPaste augmentation, which randomly
selects an audio sample of the same speaker (possibly with a different emo-
tion) and appends it either to the start or end of the original audio. This
augmentation reduces potential text dependency in the trained system and
further encourages emotion-independent representations by mixing different
emotions within the same utterance. After adding these improvements, we
obtain the results shown in figure 3.12.

17



(a) Same batch (b) Random utterances of the same speak-
ers

(c) Random neutral utterances of the same
speakers

(d) Neutral utterances of the same speakers
with the same sentences

Figure 3.11: EERs matrices of the fine-tuned speaker representations with
the Barlow Twins objective with a different selection of the batch for cross-
correlation
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Figure 3.12: EERs matrix of fine-tuned speaker representations with the
Barlow Twins objective, cosine loss, and CopyPaste augmentation

Finally, in order to address the limited number of speakers compared to
traditional speaker verification datasets, we extend the dataset by augmenting
new speakers with a pitch shift of 6 semitones. This approach yields the
results shown in figure 3.13.

Figure 3.13: EERs matrix of fine-tuned speaker representations with the BT
objective, cosine loss, CopyPaste augmentation, and pitch shift extension

3.5.5 VoxCeleb1 Performance

The experiments above show the performance of the systems trained on the
CREMA-D dataset. However, it is also important to look at the performance
on the test set of the original dataset used during the initial training of
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ECAPA-TDNN – VoxCeleb1 [NCZ17] – to assess how much the original
performance degrades on this data. The performance of the fine-tuned
systems on this data is presented in table 3.1.

System VoxCeleb1 EER

Original 0.63%

Simple Fine-tune 0.96%

Barlow Twins 1.12%

BT + Cosine + CopyPaste 1.10%

Previous + Pitch shift 1.54%

Table 3.1: EERs on VoxCeleb1 test for each model trained on CREMA-D

3.5.6 Ablation Study

To isolate the contribution of each method, we performed an ablation study
on the final model trained on CREMA-D using the modified Barlow Twins
objective, CopyPaste augmentation, cosine loss, and pitch shift dataset
extension.

The EERs matrices for ablated features above are presented in figure 3.14.
As shown in these matrices, all of the applied methods significantly

influence system performance. Loss functions have the most impact, while
augmentations contribute less on the test performance, although, adding to
the robustness of the trained system.

3.5.7 Out-Of-Domain Evaluation

To assess the generalization ability of the trained model, evaluate it on the
RAVDESS dataset.

First, the EERs matrix on pre-trained WavLM + ECAPA-TDNN, shown
in figure 3.15, indicated that pre-trained speaker representation perform
slightly better on RAVDESS compared to CREMA-D, especially for neutral
speech. However, it it also exhibits a greater disparity in emotional mismatch
than the CREMA-D.
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(a) Ablated Barlow Twins objective (b) Ablated CopyPaste augmentation

(c) Ablated cosine loss

Figure 3.14: EERs matrices of the ablation study
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Figure 3.15: EERs matrix of the pre-trained RAVDESS speaker representa-
tions

Next, we evaluate speaker representations generated from the fine-tuned
system on CREMA-D (figure 3.16). The performance improves in this
case compared to the pre-trained system, although the improvement is less
significant than for CREMA-D itself.

Figure 3.16: EERs matrix of the RAVDESS speaker representations by the
fine-tuned system on CREMA-D

To gain a complete understanding of the cross-dataset performance, we
also fine-tune the system on the RAVDESS dataset only and on a combined
emotional dataset consisting of both CREMA-D and RAVDESS datasets.

For the first experiment, training on RAVDESS only, as shown in figures
3.17 and 3.18, yields a symmetric situation to the previous one: performance
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on RAVDESS improves, however, CREMA-D performance worsens.

Figure 3.17: EERs matrix of the RAVDESS speaker representations by the
fine-tuned system on RAVDESS

Figure 3.18: EERs matrix of the CREMA-D speaker representations by the
fine-tuned system on RAVDESS

Finally, we fine-tune the system on both datasets. As shown in figures
3.19 and 3.20, cross-dataset performance improves, but does not match the
results of dataset-specific training.
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Figure 3.19: EERs matrix of the RAVDESS speaker representations by the
fine-tuned system on both datasets

Figure 3.20: EERs matrix of the CREMA-D speaker representations by the
fine-tuned system on both datasets

3.6 Analysis

Here we will discuss the results obtained in previous experiments.
Metric-based methods and contrastive learning did not sufficiently im-

prove the performance of the pre-trained ASV system. This may be due to
the pre-trained speaker representations not containing enough information
to disentangle speakers.

On the other hand, fine-tuning-based methods improved the ASV per-
formance significantly. As mentioned earlier, the most important metrics
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System ∆EER Total EER

Original 12.00 10.77%

Simple Fine-tune 8.13 7.43%

Barlow Twins 6.34 7.02%

BT + Cosine + CopyPaste 6.58 6.85%

Previous + Pitch shift 6.24 6.47%

Ablation BT 6.98 6.84%

Ablation CopyPaste 6.86 6.65%

Ablation Cosine 7.53 7.09%

Table 3.2: ∆EER for each model fine-tuned on CREMA-D

for our research question are total EER over emotion-independent trials,
individual EERs per pair of emotions, and the difference between the maxi-
mum and minimum of these EERs (∆EER). The total EER and ∆EER for
fine-tuning-based methods are summarized in table 3.2.

These results show that all modifications to the fine-tuning procedure
positively influence the overall system performance. All the studied features
including (modified) Barlow Twins, Cosine loss, CopyPaste augmentation,
and pitch shift dataset extension improve both total EER and ∆EER. The
ablation study results indicate that the loss function modifications give the
largest improvement: cosine loss improves ∆EER from 7.53 to 6.24 and total
EER from 7.09% to 6.47% giving a relative improvement of 17.1% and 8.7%
respectively; Barlow Twins objective improves the ∆EER from 6.98 to 6.24
and total EER from 6.84% to 6.47% with a relative improvement of 10.6%
and 5.4% respectively. On the other hand, data modifications introduce
less significant improvements: CopyPaste augmentation gives a relative
improvement of 9% in ∆EER and 2.7% and pitch shift dataset extension
gives a relative improvement of 5.2% and 5.5% for ∆EER and total EER,
respectively. However, this does not pose a problem as CopyPaste is mainly
expected to increase robustness to emotions and prevent overfitting, with its
improvement in ∆EER is comparable to that of loss function modifications.
Pitch shift, alternatively, is expected to increase robustness in general as it
introduces more speakers in the training set, yielding an improvement in the
total EER similar to that of the Barlow Twins.

After conducting a listening test of the incorrect predictions in trials of
the best model (with a threshold at the EER point), it is evident that a
significant amount of the ASV errors are made in cases when there is an
extreme display of emotion, making it difficult even for a human to determine
whether it is the same speaker or not.

It is important to note that while the performance of the systems improved
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on CREMA-D, its performance dropped on the original VoxCeleb1 test set
(table 3.1). The most significant decrease in performance is seen in the
best-performing system on CREMA-D which includes pitch shift dataset
extension. However, this performance drop is by less than 1% which is still
acceptable and is less significant than the improvement in the emotional
data.

In out-of-domain experiments, the systems performed as expected. Al-
though, the cross-dataset evaluations yielded worse results than matching
datasets, the performance was better than that of the pre-trained system.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

This research delved into enhancing the emotion-robustness of ASV sys-
tems using state-of-the-art models and various datasets. By leveraging the
CREMA-D and RAVDESS datasets, we were able to extensively fine-tune
and test the WavLM-Large-based ASV system, employing ECAPA-TDNN
for generating speaker representations.

The initial evaluation highlighted the challenge posed by emotional speech,
which degrades the ASV system’s performance. Through a series of exper-
iments, we explored multiple strategies to mitigate this issue, including
altering similarity metrics, modifying embedding space, and implementing
various fine-tuning techniques.

The key findings are:

1. Similarity measures and embedding space.

• Substituting cosine similarity with LDA, PLDA, and spherical PLDA
resulted in insignificant improvement.

• Contrastive learning for embedding space modification did not yield
any improvements.

2. Fine-tuning.

• Simple fine-tuning of ECAPA-TDNN on CREMA-D substantially
enhanced performance.

• Incorporating a modification of the Barlow Twins objective and cosine
loss further reduced embedding redundancy and improved robustness
against emotional variability.

• Augmenting training with CopyPaste and pitch shift techniques pro-
vided additional resilience, though with a lesser impact compared to
loss functions.
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3. VoxCeleb1 Evaluation. Although the methods above improved the per-
formance on emotional speech, they also introduced a minor decrease in
performance on the original VoxCeleb1 dataset, highlighting a trade-off
between emotion robustness and general performance.

4. Out-of-Domain Evaluation.

• Testing on the RAVDESS dataset confirmed the improved robustness
of the fine-tuned model, though the cross-dataset performance was
naturally lower compared to within-dataset evaluations.

• Training on a combined dataset of CREMA-D and RAVDESS yielded
better generalization, though the optimal performance remained
dataset-specific.

5. Ablation Study.

• The ablation study underscored the critical role of the modified Barlow
Twins objective and cosine loss in enhancing system performance.

• CopyPaste and pitch shift augmentations, while beneficial, had a
more moderate impact compared to the loss functions.

In summary, the study demonstrates that fine-tuning ASV systems with
targeted objectives and augmentations can significantly improve their re-
silience to emotional speech. While there is still room for improvement,
particularly in cross-dataset scenarios, the methodologies explored provide
a solid foundation for developing more emotion-robust speaker verification
systems.

4.2 Future work

Several paths can be explored to further enhance the robustness and general-
ization of ASV systems in the presence of emotional variability:

• Expanding the dataset to include a broader range of speakers and
including real-world emotional speech data, rather than acted emotions,
could provide a more realistic training scenario and improve system
performance in practical applications.

• Employing multi-task learning where the system simultaneously learns
to perform speaker verification and emotion recognition. By jointly
optimizing these tasks, the model may better disentangle speaker identity
from emotional content, leading to improved robustness.

• Developing scoring functions that are emotion-aware, where the scoring
mechanism adjusts based on detected emotions, could involve dynamically
weighting embeddings or scores based on the emotional state of the
speaker.
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• Extending the evaluation to include cross-language and cross-cultural
datasets to understand how emotional expressions in different languages
and cultures affect ASV performance, aiding in building more universally
robust systems.

By pursuing these directions, future research can contribute to the de-
velopment of ASV systems that are more robust, accurate, and capable of
performing well in diverse and emotionally rich real-world scenarios.
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