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Abstract

When navigating the web, users’ actions and preferences are constantly observed. First and

third party services on web pages collects user data to provide tailored services or to increase

the security of navigation. Different techniques can be used to reach these scopes, however,

involved parties do not always respect regulatory principles or value users’ privacy.

Device or browser fingerprinting is a well-known technique, that is also very hard to counter.

It relies on browser supported APIs to collect different and apparently harmless information on

a user’s device. This information is then aggregated to create an almost unique identifier of that

user’s device, which allows re-identification across different sessions.

However, another technique known as device class fingerprinting allows to identify only the

class of a device. This approach relies on less information, protecting users’ privacy without

sacrificing usability and reliability for many business scenarios. In this Thesis, we investigated

how popular this technique is in the wild. We selected the Picasso [4] implementation proposed

by Google and analysed its presence in the top 40K URLs of the Tranco list [17]. In addition to

this, we tested if navigating as a mobile device or giving consent for data processing could trigger

a more intense use of the technique, especially for abuse fighting.

To reach our goal, we first defined a heuristic to identify an implementation of device class

fingerprinting in the wild. Among other distinguishing features, Picasso strongly relies on

randomness at each execution to protect itself from various replay and dictionary attacks. This

characteristics added complexity in the definition of our heuristic. To verify its presence in the

wild, we run a data collection campaign on the defined URLs range multiple times to allow us

to compare different executions over time. Lastly, we implemented a static analysis detection

algorithm based on our heuristic and executed it against our data to retrieve results.

Although we observed only one implementation of Picasso, we identified other scripts

relying on randomness, probably to obfuscate their behaviour by adding noise. Additionally,

we identified scripts generating Picasso-like canvase images that did not rely on randomness.

Overall, the results showed that this technique is not particularly popular. However, as Picasso

relies on Canvas APIs, its affinity with canvas fingerprinting allowed us to observe the behaviour

of other more popular canvas fingerprinting scripts.
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Chapter 1

Introduction

1.1 Motivation

During web navigation, both first and third parties collect user data for various purposes. Track-

ing techniques are often used to provide personalised content, such as advertisements, but they

are also used in security to detect bots or crawlers. Among the employed techniques, Device

Fingerprinting relies on creating a unique identifier out of the differences in a device’s software

and hardware. By transitivity, the fingerprinted device exposes its user as well.

Differently from other fingerprinting approaches, device class fingerprinting tries to identify

a device’s class from fewer characteristics, such as the operating system and browser used.

Results are then grouped and aggregated into different classes. This technique proved to be

able to detect and distinguish even devices that try to spoof these characteristics or behave

as something they are not. Device class fingerprinting techniques are then useful for different

business scenarios by collecting minimum data and preserving a user’s privacy.

This research aims at investigating how spread and popular device class fingerprinting is. For

this purpose, we identified Picasso [4] as the device class fingerprinting technique of choice to

investigate. As this approach needs some initial preparation and lots of storage, it is expected to

be applied by large companies that can withstand the effort and continuous support. It is also

supposed that these organisations can eventually provide device class fingerprinting as a Service,

similar to what ReCaptcha1 does. However, references to this technique in literature are scarce,

which pose a challenge in defining solid detection rules.

1.2 Problem Statement

The starting point of this research was Picasso: Lightweight device class fingerprinting for Web

Clients [4] by Bursztein et al.. The proposed solution is a variation of the technique known

as canvas fingerprinting [22]. However, it is currently unknown how widely this technique is

used. This research aims to measure how prevalent device class fingerprinting is across different

websites and explore whether its usage is related to website popularity or their categories. By

1https://developers.google.com/recaptcha
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investigating these aspects, we can gain a better understanding of how much this technique is

used and its impact on web privacy and security.

1.3 Objectives and Contribution

Despite the time that has elapsed since Bursztein et al.’s publication, there has been little

research specific to device class fingerprinting. This Thesis develops a heuristic to detect device

class fingerprinting as an implementation of Picasso. We collected data through a crawler and

implemented a custom analysis tool to detect websites and third parties that use device class

fingerprinting. The main objective is to measure how popular the technique is today, if there are

any differences in its presence between mobile and desktop form factors and if the detection is

owned or provided by a third party.

Collected data might also show an updated and upgraded version of the technique. We

will also look for possible differences in implementation with respect to Picasso. As robust as

the proposed technique claims to be, different implementations might contain vulnerabilities.

Based on observed data, we might find indicators of possible implementation flaws.

1.4 Thesis Outline

This Chapter introduced our research’s motivation and its goals. In Chapter 2 we give an

overview of the online tracking ecosystem, looking at its history, business models, techniques

and legal basis. We then present canvas fingerprinting and how Canvas APIs are used as the

backbone for Picasso to work. Chapter 3 describes the characteristics and the selection of

Picasso’s distinguishing features. Then, it describes how data collection was approached and

how the defined heuristic was implemented. In Chapter 4 we describe how we modified the

crawler for a large-scale data collection campaign. We also describe how we selected the ideal

analysis strategy and take advantage of the flexibility of the developed analysis tool. Chapter 5

presents the analysis results and how these relate to our research goals. We also highlight some

interesting techniques and the probability of these to be an implementation of Picasso. Lastly, in

Chapter 6 we discuss the achieved goals, the encountered limitations as well as potential future

work.

14



Chapter 2

Background

This Chapter introduces the reader to the background concepts on which this research is based.

First, it introduces how online tracking works, how it is used for benign and malicious purposes

and the ethical concerns that come with it (2.1). Then, it presents the concept of canvas finger-

printing (2.2), which is the backbone of this research. Lastly, it introduces the concept of device

class fingerprinting (2.3), a more privacy-friendly fingerprinting technique for abuse fighting.

2.1 Online Tracking

2.1.1 Overview

At the dawn of the internet era, the web seemed to allow anonymous communication just

because “nobody knows who is behind the keyboard” [11], as long as one of the parties would not

share such information willingly. Simultaneously, web content was intended to be administered

by a single entity, be it a person or an organisation [20], generally called first party. With the

evolution of the web, first parties found themselves in need of more flexibility and information

to grow and increase revenue. As such needs emerged, the number of entities on each website

increased dramatically.

Third party services allow the integration of valuable functionalities, such as website ana-

lytics, social networking and advertising (among others). However, the value they add to first

parties and users comes at the price of potential security threats for the first and privacy con-

cerns for the latter [20]. Nevertheless, to sustain their business model and continuously improve

the offered services, both first and third parties monitor user activity on the website they manage

or are hosted on.

Online tracking (or web tracking) is the technique in which first or third parties collect, store

and connect users’ browsing data both to offer an improved online service or for personal gains.

The technique relies on identifying single users across different websites, online sessions and

devices [9]. However, the web is not only populated by real users. It is estimated that bots and

crawlers compose almost 50% of online traffic and are used for both benign and malicious

intents [13]. In this landscape, third parties offer bot detection services, which rely on tracking

techniques to detect suspicious behaviour [2]. Tracking techniques are extremely diverse and

15
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their usage depends on the first and third parties purposes. Depending on the final goal, these

techniques rely on different mechanisms, which are either stateful or stateless [20].

Stateful tracking relies on the browser’s ability to generate and store an identifier on a given

device. HTTP cookies are an example of stateful tracking and still play a big role on the web

and are probably the technique most known to the general public. They allow to save key-value

pair information on the client device and its identification across multiple sessions over time.

However, cookies are not only used for session handling but also for actively tracking users across

domains. Due to an increased interest and attention to privacy concerns, most browsers today

allow cookie blocking [24]. For instance, Safari and Firefox already block third party cookies by

default1 [14], and recently also Chrome announced to phaseout third party cookies [21]. This is

slowly leading trackers to rely less on them and look for other approaches.

Stateless tracking, on the other hand, does not store any client-side information. It relies on

obtaining information about a user’s session or device by looking at HTTP Headers or through

client-side JavaScript API calls in scripts embedded on the page. These information are generally

harmless when considered alone, but altogether create an almost unique identifier of the device,

called a fingerprint [14].

Modern browsers have become extremely complex, providing a set of functionalities origi-

nally more tied to the operating system side [22]. Fingerprinting relies on collecting measurable

characteristics, such as screen resolution and installed fonts, which are then exploited and

combined to create an identifier. This approach reduces the entropy2 of a browser’s identity and

results in an (almost) unique identifier for the device, which is then shared in each communica-

tion with the party’s server to allow recognition.

Fingerprinting is a stateless technique and can be either active or passive [20]. The first hap-

pens through scripts that actively request specific device characteristics (such as user agent or

screen size). Conversely, passive fingerprinting is particularly difficult to detect and counteract,

as it relies on information present in HTTP request packets or server logs.

Compared to cookies, fingerprinting is opaque to users, as it does not leave persistent evi-

dence. Additionally, users do not have any control over their fingerprints and cannot “delete”

them [14]. Only major changes in the browser’s and client’s configuration can result in a different

fingerprint, making the previous one unlikable. However, client re-identification is generally pos-

sible and was proved to be relatively easy [7]. In Section 2.2 we will look at canvas fingerprinting

in detail.

2.1.2 Business Models and Ethical Concerns

Online tracking comes with its advantages and concerns, due to the business models it is used

for, as well as the data it uses. For instance, information is used to create users’ profiles to

then offer tailored advertising. This approach optimises advertising investments and allows

companies to better reach potential customers [9][20]. Analytics services offer first parties the

1For detailed information on a specific browser, see https://www.cookiestatus.com/
2For a definition of entropy in the context of browser identification, refer to: https://www.eff.org/deeplinks/

2010/01/primer-information-theory-and-privacy
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possibility to better understand their visitors and their website usage. This allows for refinement

of the user experience and implementation of additional services [20].

Online tracking is used in the security field as well. Financial institutions use online tracking

techniques to prevent fraud and detect suspicious behaviours [14][22]. A similar approach is

used also by online service providers during login procedures to further validate users. In both

cases, it is checked whether requests come from a “known” and previously seen device [14]. User

tracking can also happen for testing purposes or through other means, like integration with

social networks or content providers [20].

Each mentioned scenario comes with its unique privacy concerns. Advertising collects and

consumes data specifically aimed at identifying each single user and their interests. Collected

data is extremely rich and specific [9] and although it might be pseudonymised, the quantity of

information is often enough to uniquely identify a user. Data can be used to provide targeted

advertising based on specific personal information, like their health situation, to leverage

purchases of products based on their fears and insecurities.

Data collected for security reasons is again very user-specific. The extent and legitimacy

of the data collected are bound only by the ethics of the party handling such information.

For instance, a government tracking people without evidence or legitimate suspicion is easily

addressed as “mass surveillance”. In authoritarian regimes, these methods are used to control

and repress dissent or to track down activists.

Similarly, testing data can be used against the user, through deceptive or manipulative design

practices (i.e. dark patterns) to prevent the user from performing certain actions or push them

into clicking something out of instinct, instead of using data to ease and improve the navigation

experience [12][19].

In addition to this, one should consider that no data or company is immune to data breaches:

there has been a notable increase in this kind of incidents in the past years [16][26]. Often the

aim of these cyber-attacks is not only havoc or immediate economic profit, but also stealing

consumer data from companies [16][26]. Once data is outside the control of the original owner

(may it be sold or stolen), it can be read, copied, transferred, altered and misused.

2.1.3 Legal Basis

The right to privacy is recognised to some extent by almost every country in the world [6] and

is also recognised as a fundamental right by the Universal Declaration of Human Rights [27].

However, data protection is not yet recognised as a human right [6]. Online tracking has been a

technique widely controversial for its implications concerning data protection. The European

Union’s law on data protection, the GDPR, came into force in 2018 and brought a new definition

of “consent”: it had to be freely given, specific and unambiguous. This helped in reducing third

party tracking although probably not for vocation but just to be compliant [18][23]. However, the

conformity to GDPR remains somewhat lacking [23]. Legislators and tech companies have not

yet found a consensus on how to guarantee and enforce the right to privacy of users online [23]. It

would be much more suitable to have the user’s consent being given as a browser configuration,
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like the do-not-track header, but tech companies are strongly against having such settings as

legally binding [23].

2.2 Canvas Fingerprinting

In Subsection 2.1.1 we presented the concept of browser fingerprinting, a stateless tracking

mechanism that generates a unique identifier for the device based on multiple unrelated infor-

mation. This information are openly available and needed for various reasons, such as obtaining

a device screen resolution to display a suitable layout. A unique identifier can then be obtained

through specific techniques relying on different types of these information, such as canvas, font,

AudioContext or battery API fingerprinting [8][24].

The possibility of using HTML Canvases as a tracking mechanism was first introduced by

Mowery and Shacham [22] in 2012. Their intuition was that modern browsers strongly rely on

the client’s operating system functionalities and hardware resources through APIs and that their

behaviour varies depending on the client’s capabilities. The proposed canvas fingerprinting

technique renders both text and WebGL scenes to a <canvas> element to then examine pro-

duced pixels. With this technique, they proved that rendering the same image across systems

produces surprising variations in the rendered result, whereas the result remains unchanged on

the same machine. Fifield and Egelman [10] came to the same conclusions in their work on Font

fingerprinting.

The approach proposed by Mowery and Shacham [22] is quite simple and straightforward:

once HTML “2d” image context is acquired, the Canvas API provides basic drawing primitives,

such as fillRect and arc, as well as more complex functions, like drawing Bézier curves and

defining color gradients. The “2d” image context can also draw text directly to the canvas, and

it allows CSS-like text styling to change size and fonts (Figure 2.1). Lastly, to extract the result

with pixel accuracy, the API provides two methods: getImageData() and toDataURL(). The

first returns an ImageData object which contains the RGBA values for every pixel, the second

returns a data URL consisting of the Base64 encoding of an image containing the content of

the canvas. toDataURL() is especially interesting as one can perform the hash of the generated

URL and use this value as the fingerprint. This makes it very easy to share and compare its value

without the need to upload or send the full image.

To summarize, canvas fingerprinting is a method that draws an invisible image and extracts

a persistent, long-term fingerprint without the user’s knowledge [1]. As we will see throughout

Chapters 3 and 4, it is extremely hard to precisely detect canvas fingerprinting due to its benign

uses.

2.3 Device Class Fingerprinting and the Picasso Approach

Until now we have discussed tracking mechanisms that aim at identifying a single user or their

browsers (2.1). However, the specificity of the collected information poses a risk to a user’s

privacy. For instance, a request for the user’s location will return a very precise and specific
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Figure 2.1: Example of canvas images generated by a script for canvas fingerprinting.

information. Targeted advertisements based on location might not need such a specific high

level of accuracy and can rely on a broader location information, like city or region to be effective.

This level of relaxation can be applied to Device Fingerprinting as well.

Device class fingerprinting (or Device Type Fingerprinting) tries to address this concern by

relaxing the level of identification performed in online tracking. Information is aggregated to

identify only the class of a client device. For instance, instead of tracking and recognising the

exact device used by a user during a login procedure, it might be enough to identify the class of

the device (an Android phone), to distinguish it from others (an iPhone, a PC or a cloud machine).

Google’s Picasso approach proposed by Bursztein et al. [4] relies on canvas fingerprinting and

builds a protocol to perform device class fingerprinting.

2.3.1 Picasso

Picasso is a device class fingerprinting protocol that allows to verify if a specific client is running

the hardware and software stack it claims and not spoofing or emulating any of these. The

protocol can be used in many abuse fighting scenarios to verify the authenticity of clients. As

canvas fingerprinting produces enough entropy to distinguish single devices, their protocol is

based on the fact that specific Canvas API primitives can produce a unique, yet stable output

across devices of the same class. In this way, the scheme minimises entropy between devices of

the same class, while maximising it across distinct device classes. In fact, the scheme proved to

be able to distinguish real hardware-software configurations from emulated ones. The scheme

is intended to identify the device class of the client, which in Picasso is defined as the unique

combination of browser, operating system and graphics hardware. The protocol is designed as a

challenge-response scheme (Figure 2.2):

1. the server sends the challenge to the client;

2. the client performs the required computation and returns a response;

3. the response is validated by the server against the expected correct one.

The challenge (1) sent by the server contains indication on the canvas’ size A, a random seed

s and an integer number N, representative of the number of rounds to perform. The seed and

the integer are used for randomisation of the image’s content.The response (2) is the hash of

the generated image. The generation algorithm executes a selected number of steps for N times.

The seed s is used both to randomly select a primitive function to draw on the canvas, as well
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Figure 2.2: Image courtesy of Picasso: Lightweight Device Class Fingerprinting for Web Clients by Burzstein
et al. [4]. High-level overview of device class fingerprinting: a challenge is sent to an untrusted client to
prove its purported device class.

as randomise the arguments passed to the selected primitive. At the end of each round, the

image is extracted and hashed with the previous hash value, if present. At the end, the final

hash is sent as a response. The verification step (3) compares the received response against a

pre-built knowledge base. As the client has already sent information about its nature through

its userAgent or navigator, the server can compare the response with the expected response

hash for that given device class.

For the scheme to work, a large initial knowledge base needs to be computed from a variety

of trusted devices running different configurations. The protocol is also structured in a way that

the server can increase its knowledge base, by sending multiple challenges, of which at least one

response is known. Once all the challenges are received, if the known ones are correct, all the

others can be safely added to the knowledge base. Otherwise, the challenge failed and all can

be discarded. This possibility was already anticipated by Mowery and Shacham [22], as canvas

fingerprinting supported a white box approach to prove that a machine is running a specific

configuration.

The scheme is also designed to be robust against different kind of attacks. For instance, the

seed and the integer used for randomisation help in protecting the scheme from replay attacks.

Similarly, the knowledge base increase is inspired by how reCAPTCHA works. This is necessary

to protect the scheme against dictionary attacks, i.e. from an attacker that was able to create a

dictionary of known challenge-response pairs. Lastly, other mechanisms are in place to protect

the scheme from pollution attacks from clients trying to inject bogus responses. Due to the

costly preparation requirements, it is automatically assumed that smaller services do not have

the computing capabilities to deploy Picasso. The authors envision again a system similar to

reCAPTCHA, which is offered “as a Service” to third parties.
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2.3.2 Prevalence of Device Class Fingerprinting

Since Picasso’s publication, there has not been much research on device class fingerprinting.

The only study that openly mentions it was presented in 2020 by Bird et al. [3]. They tested

a semi-supervised machine learning approach to identify regular browser fingerprinting but

managed to detect device class fingerprinting as well. They managed to identify a Facebook’s

alternative implementation of Picasso with different graphical primitives, plus a never before

seen device class fingerprinting approach through deep feature inspection.

This research is then built on the question “How popular is device class fingerprinting?” in

its Picasso implementation and derivatives. To verify this, there is the need to (1) define what are

the distinguishing features of device class fingerprinting (Chapter 3), (2) collect browsing data

on a large set of web pages (Chapter 4) and (3) analyse such data based on the defined heuristic

(Chapter 5).
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Chapter 3

Methodology

In the previous Chapter, we introduced how online device tracking works and more specifically

how Canvas API could be used for device class fingerprinting. Next, we describe how we

measured the prevalence of device class fingerprinting in its Picasso implementation [4] by

answering some other intermediate research questions, such as:

• How did other researchers implement canvas fingerprinting detection?

• What are the distinguishing features of canvas device class fingerprinting?

• What kind of function calls are used? How can we capture their calls?

• Are there notable differences when accessing a page from a desktop or from a mobile

device?

• Will giving consent for processing of personal data when accessing a page trigger addi-

tional behaviour?

In this Chapter, we present our research methodology, which was divided into three steps.

First, we define possible distinguishing features of Picasso’s device class fingerprinting scheme

and how they were identified (3.1). As second step, we look into possibilities for a large scale data

collection of scripts on web pages and select OpenWPM as our data collection tool of choice

(3.2). Lastly, we define how the heuristic defined in step one is implemented in a custom analysis

tool (3.3).

3.1 Distinguishing Features of Picasso

As a first step, we tried to formalise and define Picasso’s distinguishing features. These features,

also referred to as indicators throughout the paper, were inferred from both the original Picasso

paper and other sources that investigated canvas fingerprinting.
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3.1.1 Reviewing Picasso’s Scheme

To first identify the distinguishing features of Picasso’s scheme, we review its protocol and

its steps, which were presented in Subsection 2.3.1. As described, the challenge contains an

indication of the canvas’ size A, a random seed s and an integer number N, representative of the

number of rounds to perform.

One of the strengths of the solution proposed with Picasso lays in its variability, making the

algorithm unpredictable. The s (seed) argument affects the random decision-making process of

the algorithm, which influences how the graphical primitives will be selected, be it shapes or

text. Assuming also that the seed will be different when the same script is executed again, the

chosen graphical primitives across different executions will be different as well. Additionally,

across different executions, the number of rounds N might change. This feature is formalised as

“variability of primitives” (3.1.3). The seed s is also used in the randomisation of the arguments

passed to the selected primitive. These arguments will define values like colors, size and position

of the primitive, but also variation in its shape and orientation. This feature is formalised as

“variability of arguments” (3.1.3). During the algorithm execution, the canvas image is extracted

to compute the actual fingerprint. We expect to find calls to getImageData() or toDataURL()

methods and therefore we formalise this feature as “image extraction” (3.1.3).

Until now, we did not list which Canvas API methods represent the graphical primitives

for the implementation of Picasso. Bursztein et al. [4] do not openly state what methods were

used in the paper, although some indication can be inferred from their charts in Figure 4, where

pixel differences are plotted. The chart shows results for circle, font, bezier and quadratic

shapes, which all have their respective method in the Canvas API. As these methods will be used

to implement the indicator for either “variability of primitives”, “variability of arguments” or

both, we keep track of them in Table 3.1.

3.1.2 Relevant Literature Review

Burzstein et al. [4] do not provide clear distinguishing features. For instance, the algorithm is just

presented with pseudo-code, with no additional details for implementation. Nevertheless, some

features we expect to find for any Picasso implementation can be searched in related relevant

literature.

Looking at other references for possible graphical primitives, Bird et al. [3] discovered the

usage of emoji as primitive in the Facebook implementation of Picasso, which can be achieved

by writing to canvas the emoji’s unicode representation through fillText() or strokeText().

Outside of the literature, the best indication for valid primitives can be found in the demo

implementation of Picasso by Vastel [28]. The provided source code1 reveals the usage of

gradients and randomly selected colors, as well as the primitives he used and their correlated

methods. These findings are shown in Table 3.1. Figure 3.1 shows an example of a Picasso

generated canvas image.

1Github: https://github.com/antoinevastel/picasso-like-canvas-fingerprinting
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Figure 3.1: Examples of canvas images generated by the Picasso implementation proposed by Antoine
Vastel [28].

Acar et al. [1] defined the criteria to detect canvas fingerprinting and to reduce the number of

false positives. First, they expect canvas fingerprinting scripts to always have calls to Canvas API

methods that write text to the canvas, namely fillText() and strokeText(), as well as calls

to extract the final image, specifically toDataUrl(). Englehardt and Narayanan [8] expanded

the reasoning behind how the image should be extracted by also including getImageData().

These findings are already covered by the list of expected graphical primitives in Table 3.1 and

by the “image extraction” feature (3.1.3).

Acar et al. also defined that the extracted image should contain more than one color and its

size should be greater than 16×16 pixels. This rule was adjusted by Englehardt and Narayanan,

as they extended the size boundary by including the cited values. They claimed that the size

should be at least 16×16 pixels. Finally, the extracted image should not be in a lossy compression

format, such as JPEG. These three concepts are respectively formalised as “color constraint”

(3.1.3), “size constraint” (3.1.3) and “no lossy compression” (3.1.3).

Papadogiannakis et al. [24] claim that canvas fingerprinting using text usually contains a pan-

gram2 in order to increase the number of entropy bits. To identify this technique, they required

the text to be longer than five characters, otherwise “they do not contain enough bits of entropy

to uniquely identify a user”. Similarly, also Englehardt and Narayanan [8] expected the text to

display “at least 10 distinct characters”. This indicator is formalised as “text length constraint” in

Subsection 3.1.3. Still, we would like to point out that Englehardt and Narayanan [8] introduced

the concept and requirement of “distinct” characters, which is different from the already defined

concept of “variability of arguments”. We decided not to formalise this concept, assuming that if

a tracker’s goal is to get high entropy features, then it will not use same characters strings. Here

we assumed all text will be composed of mostly different characters.

2A set of characters that contain all the letters of the English alphabet
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3.1.3 Identified Distinguishing Features

We will now enumerate all the identified features and related considerations. For relative details

about their implementation for static analysis, please refer to Appendix C.

Canvas API

As Picasso is based on Canvas API [22], we can limit the scope of research to scripts that make

use of it.

Variability of Primitives

As Picasso strongly relies on randomness, we will look at anything that is not constant across

different executions. Then, given a set of possible graphical primitives, this indicator searches

for variations in their call order for a given script across multiple executions. If the call order

and used methods are constant when comparing two different executions, then the script is

excluded from the analysis. For a list of the chosen graphical primitives check Table 3.1.

Variability of Arguments

Similarly to “variability of primitives”, we will look for variations across different executions.

Then, given a set of possible graphical primitives, this indicator searches for variations in passed

arguments for the same primitive for a given script across multiple executions. If the arguments

passed to a given method do not change when comparing two different executions, then the

script is excluded from the analysis. For a list of the chosen graphical primitives check Table 3.1.

API method/attribute Primitive †
Var. of

Primitives
Var. of

Args
Text

Length
Source

arc() arc ✓ ✓ [4][28]
font() text ✓ ✓ [1][3][4][28]
strokeText() text ✓ ✓ ✓ [1][3][28]
fillText() text ✓ ✓ ✓ [3]
bezierCurveTo() bezierCurve ✓ ✓ [4][28]
quadraticCurveTo() quadraticCurve ✓ ✓ [4][28]

moveTo()
bezierCurve,
quadraticCurve

✓ [4][28]

ellipse() ellipse ✓ ✓ [28]
createRadialGradient() all ✓ [28]
shadowBlur all ✓ [28]
shadowColor all ✓ [28]

Table 3.1: Considered API methods and attributes.
“✓” marks when each one is relevant for a specific feature.
†: “Primitive” is used as a grouping name to point out in which Primitive-call it can be used.
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Image Extraction

To compute the hash of the generated canvas image, we need to look for methods that return this

information. This indicator looks for scripts that call either getImageData() or toDataURL()

methods. If neither of these methods is present, then the script is excluded from the analysis.

Color Constraint

The generated canvas image needs to have enough entropy to be used effectively. When a canvas

image is extracted, this indicator checks for its colors. If the image consists of a single color only,

then the script is excluded from the analysis.

Size Constraint

The generated canvas image needs to have enough entory to be used effectively. When a canvas

image is extracted, this indicator checks for its size. The size should be at least 16×16 pixels.

Otherwise, the script is excluded from the analysis.

No Lossy Compression

The generated canvas image needs to have enough entropy to be used effectively. When a canvas

image is extracted, this indicator checks for its compression type. If the image is extracted in a

lossy compression format, then the script is excluded from the analysis.

Text Length Constraint

Generally, text is a strong indicator for canvas fingerprinting. However, Picasso only requires

few characters to be useful, setting it apart from other techniques. If any text is written to a

canvas, this indicator checks for its length. Papadogiannakis et al. [24] and Englehardt and

Narayanan [8], that mention length checks, do not agree on the value. Of the two proposed

values (5 vs. 10 characters), we can use the lowest value as a delimiter for a stronger indication of

device class fingerprinting and the highest as an upper bound, above which results are excluded

from the analysis, as it is inserting a lot of entropy for identification. The in-between values

can be used as a softer, possible indicator, still worth keeping track of. The methods that allow

writing text to canvas are tracked in Table 3.1.

3.2 Data collection

As second step of our research methodology, we need to collect execution data of scripts embed-

ded in web pages. Due to the variability of the scheme, it is impossible to detect Picasso-based

device class fingerprinting run-time while navigating a website. As mentioned in Subsection

3.1.3, we can detect device class fingerprinting by looking for differences when comparing two

separate executions of the same script.
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Therefore, for this study, we aimed at crawling Tranco3 [17] top 100K URLs. Unfortunately,

due to technical issues and limitations (4.2), we had to scale down to the top 40K URLs of said

list. Additionally, to check for randomness, we aimed at crawling each website 5 times.

3.2.1 OpenWPM

In order to navigate a website, to capture calls to specific APIs (e.g. Canvas API) and to collect

other relevant data, there was the need to develop a crawler as done by Acar et al. [1] or Papado-

giannakis et al. [24] in their studies. Trying to address similar researchers’ needs, Englehardt

and Narayanan [8] implemented OpenWPM4, an open source Selenium-based5 web crawler to

automatically navigate websites, intercept JavaScript function calls and much more.

We decided to use OpenWPM as our crawler, as it already offered enough flexibility and

customisation options that fit our research goals. Additionally, it is a well known automated

crawler designed for research purposes already used by other researchers, such as Bird et al. [3]

and Nayanamana and Mohammad [25]. We relied on OpenWPM v0.21.1 of October 13th, 2022,

which was the latest stable release prior to our data collection campaign (4.2).

OpenWPM offers a plethora of extensive configuration possibilities, which allow capturing

HTTP requests and responses, DNS requests, cookies, any JavaScript API calls (defaulting the

configurable file to capturing known APIs used in fingerprinting) and more. It also allows to

easily extend and add functionalities on top of its existing infrastructure. Lastly, being built on

top of a Selenium web driver, it allows to navigate web pages on consumer browsers such as

Firefox or Chrome.

OpenWPM also offers the possibility to run multiple browsers in parallel to reduce crawling

times and the instrumentation possibilities allowed us to easily capture Canvas API calls as

desired. Finally, all data collected by OpenWPM is persisted in SQLite6, making it also easy to

perform analysis on it.

As mentioned at the beginning of this Chapter, among our research goals there are the

questions if crawling as desktop or mobile or giving consent for personal data processing brings

notable differences in scripts behaviour. This question was inspired by Papadogiannakis et

al. [24], who identified stronger use of fingerprinting upon data processing rejection. Unfortu-

nately, OpenWPM does not offer the possibility to crawl emulating a mobile device, nor it allows

to give (or reject) consent when prompted. Lastly, although it can capture JavaScript function

calls and their arguments, it does not capture values returned by said functions. Implementation

details on these gaps are further discussed in Subsection 4.1.3.

3List generated on April 1st 2023. Available at https://tranco-list.eu/list/4K83X. For more information
see Appendix A

4https://github.com/openwpm/OpenWPM
5https://www.selenium.dev/documentation/
6https://www.sqlite.org/index.html
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3.2.2 Cloud Crawling

OpenWPM allows crawling multiple URLs in parallel by spawning a configurable amount of

browsers. However, from our tests, the more browsers were spawned, the more the number

of crawl failures increased. We noticed that in order to have a stable reliability, the number of

browsers should have been at most one less than the number of available CPU cores. Neverthe-

less, we still had to expand our crawling capabilities and run our crawling campaign on parallel

cloud machines. We selected Digital Ocean7 as cloud provider, as it offered an easy way to set up

Linux instances at affordable prices8. The best machine Digital Ocean could provide at the time,

was a 4 CPU, 8 GB RAM, 160 GB NVMe disk and we could have at most 10 parallel instances at

once.

3.3 Applying the heuristic

After defining the distinguishing features of Picasso implementations in Section 3.1, we designed

an additional tool to apply this heuristic and analyse the data produced by OpenWPM’s crawls.

Due to the variable nature of Picasso, we needed to compare data from at least two different

crawls. We then defined different aggregation possibilities: the first compared the full URL of

scripts, the second aggregated scripts by their content hash as provided by OpenWPM (“aggre-

gation by hash”), and the third aggregated them by comparing a portion of their URLs (‘fuzzy

aggregation”). The tool was designed to perform the analysis as a series of subsequent steps:

• preparation step, where relevant data is selected and grouped according to parameters.

Data in raw format is extracted and grouped first by “top-level domain” and then by

its relative full “JavaScript URL” (JS-URL). During this grouping, “aggregation by hash”

could apply and JS-URL could be substituted by its script content hash. Right after, an

additional attempt for grouping JS-URLs is performed and “fuzzy aggregation” could apply.

Due to different aggregation strategy possibilities (C.2), we refer to JS-URL or its eventual

aggregated substitute as js_key. Lastly, the grouped data of each js_key is evaluated for

Picasso’s features;

• analysis step, where each feature indicator is computed. It elaborates the data processed

in the previous step and performs the computational analysis for each Picasso feature.

For each js_key, we return the probability of that script of being an implementation of

Picasso (C.1);

• output step, where identified scripts are returned. This step returns information on

evaluated crawls, such as failure percentage, as well as the list of js_key scripts that have

a chance of being Picasso above a user-defined threshold. The canvas images generated

by these scripts are also extracted as a visual proof;

7https://www.digitalocean.com/
8When comparing same capabilities machines offered by other providers, such as AWS or Microsoft, also consider-

ing the respective program for student or free credits
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• generate canvas step, which extracts all crawls’ canvas images. This step is for verification

purposes only: it generates all other encountered canvas images, whose script did not

reach the desired threshold. This step is meant for additional proof of work and is disabled

by default.
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Chapter 4

Data Collection

In the previous Chapter, we enumerated the expected distinguishing features of Picasso imple-

mentations. Then, we defined which tools were needed in our research, selecting OpenWPM

as web crawler to collect browsing data, Digital Ocean as cloud provider to set up a crawling

campaign at scale, and lastly, we designed a custom tool for the data analysis.

Nevertheless, although the selected tools covered the majority of our needs, there were still

some gaps to fill. In this Chapter, we addressed these concerns by extending the capabilities

offered by existing tools (4.1). Then, Section 4.2 presents how we conducted the data collection

campaign.

4.1 Data Collection Preparation

To crawl the anticipated 100K URLs at scale, there was the need to address some gaps in the

selected tools. In this Section, we review the decision-making process in configuring and

extending OpenWPM, as well as verifying requirements for crawling in a cloud instance.

4.1.1 Device Class Fingerprint Example

To test the functionalities offered by OpenWPM and to verify the validity of the distinguishing

features presented in Section 3.1, we required a sound example of Picasso’s device class finger-

printing. Similarly to what Eckersley [7], Mowery and Shacham [22] and Fifield and Egelman [10]

did to test their approaches, we developed a static, local HTML page, which embedded Vastel’s

Picasso implementation [28]. The embedded script simply generates a canvas upon which some

of the defined primitives are drawn (Table 3.1). The selection and position of the primitives on

the canvas, as well as their colors and gradients, are dependent on the randomly chosen seed

parameter. The final image is then extracted with the JavaScript method toDataURL() and the

result hashed and returned.

Running OpenWPM against this page proved that it captured method calls and property

accesses necessary to detect Device Class Fingerprint. For convenience, this HTML page was

kept as reference also when crawling desired web pages. It was later decided to keep it as a
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“control” website during the data collection campaign, to show that the crawl worked as expected

and that the collected data was sound.

4.1.2 Configuring OpenWPM

Among the data collection options offered by OpenWPM, there is the instrument to capture

JavaScript calls. This instrument just needs to have its relative parameter js_instrument

active and it will capture function calls as configured in an additional separate file. The

fingerprinting.json file is pre-configured to capture JavaScript function calls known to

be used in fingerprinting techniques.

OpenWPM also offers the possibility to log the “content hash” of HTTP responses. To

get this information, OpenWPM needs its relative save_content parameter to be active, the

http_instrument and an additional “unstructured” file storage to be configured (different from

the pre-configured SQLite database). A LevelDB1 storage served this purpose, which allowed to

log key-value pairs, with the value being the full content of the response and the key being its

“content hash”. This value is necessary to perform the “aggregate by hash” approach introduced

in Section 3.3.

4.1.3 Extending OpenWPM

Following the results of the fit-gap analysis presented in Subsection 3.2.1, OpenWPM was

extended with additional custom functionalities needed to fulfil our research goals.

Capturing Return Values

Capturing the return value of intercepted function calls is not offered out of the box by OpenWPM.

The return value is especially needed for implementing the distinguishing features related to

the final canvas image. It is impossible to evaluate size, colors and format of an image without

getting the return value from toDataURL() and getImageData().

Mobile Crawling

When crawling a website, OpenWPM inherits its browsing identity and “User Agent” from

the machine it is running. One of our research goals is about whether there are any notable

differences between desktop and mobile crawling, but OpenWPM does not offer such navigation

possibility.

We relied on the possibility of OpenWPM to define custom parameters, to define an “isMobile”

boolean check, which controls the screen resolution and “User Agent” of the Selenium driver.

When active, this parameter changes these values to those of a Pixel 2 XL. We took inspiration

from the work of Das et al. [5] and their OpenWPM-mobile2. Although their implementation

1https://github.com/google/leveldb
2https://github.com/sensor-js/OpenWPM-mobile
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was based on an older and slightly different version of OpenWPM, it still offered valuable insight

on how to achieve it.

Giving Consent

OpenWPM does not offer the possibility to identify a data processing banner and interact with

it. Nevertheless, it offers the possibility to define a custom “Command” on top of its extensible

framework, which can then be queued after the main crawling command. Details on how we

implemented the “give consent” functionality can be found in Appendix B.

4.1.4 Cloud Crawling Requirements

Digital Ocean’s cloud instances are accessible through a command-line only interface, which

upon closure would terminate the running session and any processes spawned from it. To allow

OpenWPM to keep running in the background, we relied on Tmux3, a terminal multiplexer.

Moreover, as this solution does not provide a screen, we could not rely either on the native or the

headless browser’s mode. Luckily, OpenWPM offers the possibility to run the browser through

Xvfb4, a virtual display that performs all graphical operations in virtual memory. Lastly, as one

of our approach is to try to give consent for personal data processing, we deployed all cloud

instances on servers within the EU. This gives us enough confidence that a request for consent

should be prompted.

4.2 Data Collection Campaign

The data collection campaign was conducted between April and May 2023. We run the same

crawl strategy5 in groups of 5 instances, aiming at having at least 3 complete crawls for the same

set of URLs. We decided to run our crawl strategies with 3 parallel browsers as a result of the

hardware capabilities of a cloud instance reviewed in Subsection 3.2.2. Additionally, we defined

these crawl strategies to simply crawl a range of URLs as intended by OpenWPM, or by either

trying to give consent for data processing or emulate a mobile device to better compare crawl

data. All these configuration combinations are shown in Table 4.1.

Due to long crawling times and frequent crashes of the cloud instances, it was decided to

lower our target of URLs to crawl from 100K to 40K. We believe it is still a relevant number to

discuss the distribution of the researched technique.

3https://github.com/tmux/tmux/wiki
4https://x.org/releases/X11R7.7/doc/man/man1/Xvfb.1.xhtml
5A crawl strategy is the combination of parameters used to perform the crawl. It is the combination of range of

URLs, number of browsers, try to give consent for data processing and emulate mobile.
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Crawl Strategy
Tranco Ranks Num. Browsers Give Consent Mobile

1 - 20K 3 - -
1 - 20K 3 ✓ -
1 - 20K 3 - ✓
20K - 40K 3 - -
20K - 40K 3 ✓ -
20K - 40K 3 - ✓

Table 4.1: List of crawl strategies for data campaign grouped by Tranco rank, and their distinctive
parameters.
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Chapter 5

Data Analysis and Results

In the previous Chapter, we presented our contributions and implementation details. First, we

selected OpenWPM as our crawling and data collection tool and augmented its capabilities

to meet our needs. We then described how our heuristic was implemented and finally, we

performed the data collection at scale on 40K URLs multiple times, to have enough comparable

data. Finally, we designed and tested our analysis tool, as well as defined how to approach the

analysis of the full dataset.

In this Chapter, we tested our analysis tool with part of the crawled data to define how to

approach the analysis of the full dataset (5.1). Once defined the desired strategy, we performed

an offline analysis of the full collected dataset. First, in Section 5.2 we review the collected

crawled data in relation to the defined Analysis Strategies. Then, in Section 5.3 we review the

results of crawling with giving consent for data processing. In Sections 5.4 through 5.7 we

investigate the information that can be inferred from the scripts generating Picasso, Picasso-like,

“shapes” and “numbered” canvas images.

5.1 Defining an Analysis Strategy

Although the heuristic was developed before the data collection campaign, a definite analysis

strategy was not yet defined. As scripts generating canvas images could behave very differently,

we assumed that even those performing Picasso could be slightly different than anticipated. As a

stricter approach could lead to overfitting for a specific canvas image, we worked in the direction

of defining multiple analysis strategies. In this way we managed to gradually relax the search

for features in order to detect eventual false negatives from a stricter approach. This should

mitigate the specificity of the final outputs if only one analysis strategy were applied.

Due to the many distinguishing features and aggregation possibilities defined by the analysis

tool, we needed a way to identify which combination of these would yield the best results. An

analysis strategy is then a possible combination of evaluated features, aggregation strategy

and other detection considerations. This selection process was carried out through various

steps and tests and is documented in Appendix E. During the evaluation, we not only identified

implementation of Picasso, but also a set of scripts which generate Picasso-like canvas images.
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We also identified a set of scripts with a degree of randomness in the generated canvas images.

These images contain either random numbers or various shapes in variable positions, which

we called “numbered” and “shapes” canvas images, respectively (Figure 5.1). However, these

last were not an implementation of Picasso, as the scripts generating these canvas images also

produce canvases known to be used in device fingerprinting.

Figure 5.1: Examples of detected “numbered” (a) and “shapes” (b) canvas images.

We then selected three analysis approaches, namely Analysis Strategy 1, 2 and 3 and their

selection is explained in detail in Appendix E.3. The first aims at detecting only implementations

of Picasso, whereas the other two were selected as an attempt to investigate “shapes” and

“numbered” canvas images. Due to the static and constant nature of scripts generating Picaso-

like canvas images, our analysis tool is unable to detect them. No analysis strategy could be

defined to identify them. As these scripts do not contain any randomness, we do not believe

they are an implementation of Picasso. We discuss this further in Section 5.5.

In the following sections, we observe the detection capabilities of selected analysis strategies,

from the very strict Analysis Strategy 1, which considers all the defined features, to Analysis Strat-

egy 3, the most relaxed one, which looks only at a relaxed version of the “text length constraint”

feature (3.1.3).

5.2 Crawls Overview

As introduced in the previous Section, the analysis possibilities offered by the developed tool

were tested and evaluated against a small sample of the collected data. From these tests, we

selected three Analysis Strategies with low false positive rates and good accuracy in detecting

targeted canvas images.

Additionally, as introduced in Section 4.2, websites were crawled through OpenWPM alone,

or with our extensions trying to give consent for data processing or emulating a mobile device. In

this Section, we will refer to this crawling concept as crawl type, which will be either No-Action,

Give-Consent or Mobile. Table 5.1 shows the overall results for all the crawls grouped first by

Tranco rank and then by crawl type.

On average, all crawls performed the same, with an average failure rate of around 17%. There

are although two exceptions in the 20K-40K rank for No-Action and Give-Consent crawl types.

Due to the frequent interruption in crawls presented in Section 4.2, these results were expected

considering the rate at which the relative crawl strategies failed.
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Tranco
ranks

Crawl
Type

Total
Websites

Crawled †

Avg. Crawl
Failure

Unique
Websites

Successfully
Crawled

Websites
using

Canvas API

Total
Scripts

No-Action 80004 15% 17727 5767 9752
Give-Consent 80004 17% 17698 5915 102621-20K
Mobile 120006 17% 17789 5367 10478
No-Action 100020 25% 17559 5581 8694
Give-Consent 60012 24% 17340 5614 849920K-40K
Mobile 80006 18% 17630 5228 8336

Table 5.1: Overall results of data collection campaign.
†: This value is the range of crawled websites × the number of complete crawls for this rank and crawl
type. The few additional numbers above the total are how many times the “control” website was crawled
in that dataset.

We also looked at how many websites contained scripts that use the Canvas APIs, before

performing any additional check through our heuristic. The Canvas APIs seem to be used by

slightly more than a fourth of the total crawled websites, and each of these contains on average

between 1 and 2 scripts that make use of these APIs.

5.2.1 Analysis Strategy 1

In this Subsection, we evaluate the output for applying Analysis Strategy 1 to the collected data.

This strategy aims specifically at detecting implementations of Picasso only. It relies on Approach

1 in its “toDataURL” variant with the “Within-FuzzyAgg” Navigation and Aggregation strategy

combination as defined in Appendix E.3. Table 5.2 shows the results for Analysis Strategy 1.

Tranco
ranks

Crawl
Type

Scripts
with

DCF †

Scripts
with

DCF †
(with agg.
strategy)

Websites
with

DCF †

False
Positives

(websites)

True
Positives

(websites)
Accuracy

1-20K
No-Action 42 14 13 2 11 85%
Give-Consent 39 17 16 8 8 50%
Mobile 56 18 17 6 11 65%

20K-40K
No-Action 48 18 17 7 10 59%
Give-Consent 28 16 15 5 10 67%
Mobile 86 59 57 45 12 21%

Table 5.2: Overall results for Analysis Strategy 1.
†: DCF stands for Device Class Fingerprint.
Detection of pure Picasso implementations according to our heuristic. True positives are consistent
regardless of tranco rank or crawl type.

We can see that the detection rate is consistent across both the Tranco ranks and crawl

types, with the sole exception in the 20K-40K rank for Mobile crawl type. Here we can see a

spike in both the detection rate and in the number of verified false positives. Nevertheless, the

37



s1062069 Lorenzo Casini

final output of encountered true positives is stable with no evident increase in the use of the

technique at the variations of the crawl type or across the two inspected Tranco ranks.

We can also see how the aggregation strategy significantly helped in detecting scripts im-

plementing Picasso. For instance, the number of websites that contain a script performing

the technique is almost the same number of detected aggregated scripts, whereas the number

of distinct scripts is much higher and oscillates between 2 and 4 times the number of aggre-

gated scripts. This shows how these scripts performing Picasso have variations in their URL’s

parameters, as pointed out in Appendix C.2.

Crawl Type
URL No-Action Give-Consent Mobile

bitcoinmagazine.com ✓ ✓
blablacar.fr ✓
carsales.com.au ✓
cma-cgm.com ✓
commercialtrucktrader.com ✓
cycletrader.com ✓ ✓ ✓
delishably.com ✓ ✓
govx.com ✓ ✓
ha.com ✓
hellyhansen.com ✓
hermes.cn ✓
hermes.com ✓
hubpages.com ✓ ✓ ✓
idealista.pt ✓ ✓ ✓
inc.com ✓ ✓ ✓
londondrugs.com ✓
mensjournal.com ✓
organicauthority.com ✓ ✓ ✓
parade.com ✓ ✓
petco.com ✓ ✓
seloger.com ✓ ✓ ✓
rvtrader.com ✓ ✓
thefork.com ✓ ✓ ✓
thefreethoughtproject.com ✓ ✓ ✓
thehockeynews.com ✓ ✓ ✓
thestreet.com ✓ ✓ ✓
turbofuture.com ✓ ✓ ✓
zocdoc.com ✓

Table 5.3: Websites with a script performing Picasso and the crawl type in which they were detected.

Considerations on true positives

As the Analysis Strategy 1 aims at detecting only implementations of Picasso, our results show

that no first party makes use of such technique. According to our findings, true positives were all

generated by a third party script provided by the same service provider. We inspect and analyse
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the canvas images generated by this script in Section 5.4.

Table 5.3 shows the complete list of websites that hosted this Picasso implementation. In total

we detected 28 websites. The table also shows that not all websites were always detected across

all crawl types. This might be due to the script being triggered only as a stronger verification

measure against bots.

Finally, we inspected how these websites were ranked in the used Tranco list. The box plots

in Figure 5.2 show the distribution of the found true positives divided by crawl type and then

observed as a whole group. Here we can see how this implementation of Picasso is evenly

distributed across the whole crawled websites dataset. However, the distribution of this single

implementation simply reflects the range of this single provider’s customers, from very popular

websites to least known ones.

Figure 5.2: Distribution of true positives across the Tranco ranks for Analysis Strategy 1. Diagram shows
distribution for each crawl type and overall.

Through this Analysis Strategy, we managed to answer some of our research questions. First,

we showed that a third party is implementing this technique at this point in time and providing

it “as a service”. Second, according to these results, we detected 28 websites out of 40K crawled

that host an implementation of Picasso. Its distribution stands at around 0.07% of the original

crawled websites dataset, making this technique not very widespread. Lastly, we showed that

the technique is evenly distributed across the considered websites dataset, with no notable shift

towards more popular websites on the Tranco rank.
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5.2.2 Analysis Strategy 2

In this Subsection, we evaluate the output for applying Analysis Strategy 2 to the collected

data. This strategy aims at detecting implementations of Picasso together with “numbered”

canvas images. It relies on Approach 2 in its “toDataURL” variant with the “Within-FuzzyAgg”

Navigation and Aggregation strategy combination as defined in Appendix E.3. Table 5.4 shows

the results for Analysis Strategy 2.

Tranco
ranks

Crawl
Type

Scripts
with

DCF †

Scripts
with

DCF †
(with agg.
strategy)

Websites
with

DCF †

False
Positives

(websites)

True
Positives

(websites)
Accuracy

1-20K
No-Action 339 311 302 2 300 99%
Give-Consent 357 331 309 10 299 97%
Mobile 461 423 351 33 318 91%

20K-40K
No-Action 198 171 154 12 142 92%
Give-Consent 150 137 134 9 125 93%
Mobile 252 223 176 48 128 73%

Table 5.4: Overall results for Analysis Strategy 2.
†: DCF stands for Device Class Fingerprint.
Detection of relaxed Picasso implementations according to our heuristic. Variability of primitives is
ignored and Text length constraint is relaxed. True positives are consistent within tranco rank, but more
present in the higher range of domains.

Differently from Analysis Strategy 1, this strategy shows a clear difference in the detection

rate between the two Tranco ranks. The top 20K rank has at least twice the detection hit of the

40K one. Otherwise, comparing the true positive results for the two Tranco ranks returns us a

consistent presence of these canvas images across all crawl types.

It is worth noticing how the accuracy greatly improved in this Strategy when compared

to Analysis Strategy 1, although the detection threshold is still at 0.5. This is obviously due

to the popularity of scripts generating “numbered” canvas images when compared to Picasso

implementation scripts, which are still part of the true positives here. Analysis Strategy 2 then

proves to be effective in detecting these “numbered” canvas images, which floods the detection

algorithm’s result and improves the overall accuracy at the cost of very few additional false

positives in respect to Analysis Strategy 1.

Considerations on true positives

Due to the relaxed approach of this Analysis Strategy, results include not only “numbered” canvas

images, but also a valid implementation of Picasso. However, the magnitude of their presence

allows us to consider the presence of Picasso implementations as negligible for this analysis.

In addition to this, by inspecting the results we noticed that no domain is hosting scripts that

perform both techniques for Picasso or related to “numbered” canvas images.

Our results show that scripts generating “numbered” canvas images are quite popular. In

40



s1062069 Lorenzo Casini

particular, the scripts are mostly first party, with them being around 10 times more than when

provided by a third party. Figure 5.3 shows the popularity of the technique. It also shows how this

technique is more popular in the top 20K rank. We further analysed these scripts and generated

“numbered” canvas images in Section 5.7.

Figure 5.3: First vs. Third parties scripts distribution count detected with Analysis Strategy 2.
First party scripts are around 10x more popular than Third party scripts.

Finally, we inspected how the detected websites were ranked in the used Tranco list. The box

plot in Figure 5.4 shows the distribution of the found true positives as an aggregated result of all

crawl types. As already noted in Figure 5.3, scripts generating “numbered” canvas images are

most popular in the top 20K rank, which means are mostly used by popular websites.

Figure 5.4: Distribution of true positives across the Tranco ranks for Analysis Strategy 2.

5.2.3 Analysis Strategy 3

In this Subsection, we evaluate the output for applying Analysis Strategy 3 to the collected data.

This strategy aims at detecting a potential implementation of Picasso in the form of “shapes”
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canvas images. Additional details on Analysis Strategy 3 can be found in Appendix E.3. Table 5.5

shows the results for Analysis Strategy 3.

Tranco
ranks

Crawl
Type

Scripts
with

DCF †

Scripts
with

DCF †
(with agg.
strategy)

Websites
with

DCF †

False
Positives

(websites)

True
Positives

(websites)
Accuracy

1-20K
No-Action 18 13 13 8 5 38%
Give-Consent 20 13 13 8 5 62%
Mobile 23 14 13 9 4 31%

20K-40K
No-Action 10 10 10 7 3 30%
Give-Consent 13 12 12 9 3 25%
Mobile 11 8 7 5 2 29%

Table 5.5: Overall results for Analysis Strategy 3.
†: DCF stands for Device Class Fingerprint.
Detection of relaxed Picasso implementations according to our heuristic. Only relaxed Text length
constraint is considered. True positives are consistent within tranco rank, but slightly more present in the
higher range of domains.

Due to the low true positive results and low accuracy, definitive conclusions are hard to

draw. Nevertheless, we can see an overall consistency in the true positives. It appears that this

technique is more used in the top 20K Tranco rank, similarly to scripts generating “numbered”

canvas images in Analysis Strategy 2.

Crawl Type
URL No-Action Give-Consent Mobile

becu.org ✓
bell.ca ✓ ✓ ✓
capitalone.com ✓
choicehotels.com ✓ ✓
ebates.com ✓ ✓ ✓
healthybenefitsplus.com ✓
ncsecu.org ✓ ✓ ✓
newbalance.com ✓
optimum.net ✓ ✓
rakuten.com ✓ ✓ ✓
target.com ✓ ✓

Table 5.6: Websites with a script generating “shapes” canvas images and the crawl type in which they
were detected.

Considerations on true positives

As already presented, scripts generating “shapes” canvas images are not particularly popular.

Table 5.6 shows the complete list of websites that hosted this technique. In total we detected

11 websites. Similarly to what we observed in Analysis Strategy 1, not all websites were always
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detected across all crawl types. In addition to this, by inspecting the results we noticed that no

domain is hosting scripts that perform both techniques for Picasso or related to “shapes” canvas

images. We further analysed these scripts and generated “shapes” canvas images in Section 5.6.

Upon inspection, we noticed that all scripts are first party implementations with the sole

exception of one of the websites providing its solution to another domain. Finally, we inspected

how these websites were ranked in the used Tranco list. The box plot in Figure 5.5 shows the

distribution of the found true positives as an aggregated result of all crawl types. Here we can

see how scripts generating “shapes” canvas images are strongly shifted to the top 20K range of

the crawled data.

Figure 5.5: Distribution of true positives across the Tranco ranks for Analysis Strategy 3.

5.3 Give-Consent Algorithm Review

As part of our research questions, we were curious to see if trying to give consent for data

processing on the websites we crawled would bring any variation in the behaviour of scripts

implementing Picasso. As we have seen from the review of the three Analysis Strategies, it appears

that giving consent for data processing does not have a notable impact on the usage of this

fingerprinting technique.

In Figure 5.6, we can see how our algorithm did not detect any possible “give consent” button

in around 75% of the time. The algorithm managed to detect a possible button and successfully

clicked it at around 18% of the times, whereas the remaining 7% resulted in an error, which

probably propagated through OpenWPM and corrupted the navigation for that URL.

5.4 Picasso Canvas Images Review

All true positives identified in Subsection 5.2.1 were generated by the same third party script.

The script is provided by a cybersecurity company that offers a range of bot and fraud protection

services. Among their services, their Captcha’s protection is claimed to preserve users’ privacy

and to be 10x faster than regular Captchas.

Nevertheless, we tried to infer some characteristics of their implementation by inspecting the

generated canvas images. In Figure 5.7 we can observe that this implementation is performing a

series of rounds where each time a primitive or more are added to the canvas, as by definition
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Figure 5.6: Success rate results of our custom give-consent algorithm. No “give consent” button was
detected around 75% of the time, whereas it managed to detect and click a button around 18% of times.
The remaining 8% of occasions resulted in an error generated by our algorithm’s attempts.

of Picasso’s scheme from Subsection 2.3.1. Moreover, the number of possible sequences of

generated canvas images is fixed. Figure F.3 shows all identified canvas images generated by this

implementation. According to Picasso’s scheme from Subsection 2.3.1, this could be the service

provider’s knowledge base against which Picasso’s verification step is performed.

Figure 5.7: Full sequence of generated canvas images for the detected Picasso implementation. It is
clearly visible the fact that the underlying technique is performing rounds, adding each time a different
primitive with variating position, color and gradient.

From Figures F.2 and F.3, we can infer also some additional information. All the identified

sequences shown in Figure F.3 perform 7 rounds of primitives with a single exception, which

performs 6 rounds. Although Picasso was designed to be resource scalable with variating number

of rounds, we were surprised to find all identified executions to perform always the same number

of rounds and not, for instance, occasionally a portion of them.

We also noticed two additional differences from the original Picasso scheme. First, it seems

that at some point some of the already drawn primitives have their color changed in the following

rounds. Second, from Figure F.2 it appears that at the end of each round, after the primitive is

written, the canvas image is extracted twice. We believe that both of these choices are techniques

to protect the scheme against possible attacks.

However, the presented characteristics make this scheme quite static and limited. One of the

strengths of Picasso’s scheme is its possibility to challenge a client with variable complexity. In

addition to this, the scheme is robust against spoofing attacks as it expects the provider to send
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multiple requests, some of which are part of a known knowledge base of challenge-response

pairs and the others allow to increase it if all are valid. Here, the number of identified sequences

is just 9. The limited number of challenges and the fixed number of rounds discovered in this

provider’s script made us assume that we are looking at a simplified technique inspired by

Picasso which still serves its purposes.

To be sure we were not looking at an implementation flaw, we disclosed our findings about

limited device class fingerprinting challenges to the service provider. They confirmed that they

maintain and rotate a limited number of challenges to remain in control of their knowledge

base. This is because in order to remain undetected, bots implement different strategies to

randomise their canvas image, which then leads to the number of canvas hashes to explode. For

this reason, they stepped back on a variation of the original algorithm. However, following our

disclosure, they shared their plan to reinforce their Captcha challenges with other techniques.

This disclosure from them could be the reason why we found a limited usage of Picasso.

5.5 Picasso-like Canvas Images Review

In Section 5.1, we identified a set of Picasso-like canvas images. The scripts that generated

these canvases always returned the same output at each execution. As our heuristic relied on

variation of primitives and variation of their arguments, these scripts were always marked as

true negatives. From the 6 Picasso-like detected in our dataset (Figure F.4), we observed the

following characteristics:

• Number 1 was found in three flavours. Considering 1a as reference, 1b differs in the font

it uses for the text, whereas 1c is identical, but smaller in size;

• Number 4 is the only one that seems to perform 7 rounds, but again, these canvas images

are constant in each execution. It is used on Japanese domains only;

• Number 5 is the only one that is extracted through getImageData();

• Number 6 generates two different canvas images which do not appear like the script is

performing any round;

• Numbers 4 and 6 are the only ones that generate more than one canvas image.

We then noticed that the scripts that generated these canvas images are used on few websites,

with the sole exception of Number 1. Although the 1b variant is only used by researchgate.net,

1a and 1c were detected on 545 and 312 websites respectively, for a total of 630 distinct websites

and with 72% of 1c’s websites being shared with 1a. This implies, and it was verified, that the

scripts that share the same domain, generate both canvas images i.e. the same canvas in two

different sizes. Nevertheless, as shown in Figure 5.8, it appears that the 1c variant is predominant

in the lower part of the inspected Tranco range.
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Figure 5.8: Distribution of variants 1a and 1c of Picasso-like canvas images and their overall distribution,
when considered together.

We then evaluated their balance between first and third party scripts. We found out that 92%

of the time, both 1a and 1c canvas images are generated by a first party script1. However, all the

scripts’ URLs have in their hosting path minimal variations, namely:

< domai n > /(b|g )/or chestr ate/(manag ed | j sch|captcha)/v1

Based on this and on the canvas match, we believe they all share the same technique,

although most are first party hosted.

Lastly, we searched for the most popular domain categories among the detected 630 websites

that hosted a script that generated either 1a or 1c canvas images. We relied on Webshrinker’s

Domain API Feed2 to extract IAB categories3. Table 5.7 shows the top 10 found IAB categories

and their total occurrence.

Regardless of their similarities with the original algorithm, the scripts that generate these

canvas images are definitely not an implementation of Picasso. We believe that there are two

possibilities why these scripts generate Picasso-like canvases. The first is that the provider of

these scripts implemented a full Picasso algorithm in the past and then decided to abandon it,

but kept their fingerprinting technique based on the primitives used by Picasso. The second

possibility is that the provider of the scripts never intended to use Picasso in the first place, but

1Detected third party scripts were: ’vlxx.cc’, ’empire-streaming.app’, ’dramacool9.pw’, ’animevietsub.in’,
’zgogc.com’, ’dsd10.lol’, ’upwork.com’, ’wgetcloud.org’, ’buffer.com’, ’sextop1.vin’, ’animehay.live’, ’rita99.com’

2https://www.webshrinker.com/
3IAB Tech Lab Content Taxonomy: https://iabtechlab.com/standards/content-taxonomy/
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IAB Id IAB Label Total Occurence

IAB19 Technology & Computing 127
IAB25 Non-Standard Content 72
IAB9 Hobbies & Interests 50
IAB24 Uncategorized 49
IAB3 Business 39
IAB5 Education 36
IAB22 Shopping 36
IAB12 News / Weather / Information 36
IAB1 Arts & Entertainment 34
IAB11 Law, Government, & Politics 20

Table 5.7: Top 10 IAB categories and their total occurrence for websites hosting a script generating either
1a or 1c Picasso-like canvas images.

based their fingerprinting technique on a Picasso-like canvas to distinguish themselves from

other fingerprinting canvases, for whatever reasons.

5.6 “Shapes” Canvas Images Review

All the “shapes” canvas images from the true positives identified in Subsection 5.2.3 are extracted

by the Canvas API getImageData() method. As mentioned, almost all scripts are self-hosted

by each domain but they all behave the same way. In full, these scripts also generate another

canvas image known to be used in fingerprinting, together with other very small canvas images.

We will ignore the smaller ones as they are of negligible size and are excluded by the analysis

tool as their size is less than 16×16 pixels.

Figure 5.9 shows the two main canvas images drawn during these scripts executions. What

we first noticed is that the first canvas image is extracted through toDataURL() and was often

detected as a false positive during the evaluation of Analysis Strategy 1 of Subsection 5.2.1.

However, it is interesting to notice how the “shapes” canvas image is not always generated. In

addition to this, while crawling a specific domain multiple times, often the “shapes” canvas

image did not change. However, across all the detected “shapes” canvas images from all the

websites, none was repeated in a different domain other than itself.

Figure 5.9: Main canvas images generated from a “shapes” script.
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As we have mentioned in Subsection 5.2.3, the low popularity of this scheme does not

allow us to draw definitive conclusions. Moreover, we were not originally investigating this

specific canvas image and we are definitely overlooking some of its characteristics. However, we

simply believe that this canvas images are generated as a means to create noise against possible

detection mechanisms for classic fingerprinting, possibly, after some suspicious behaviour from

our crawler being tagged as a bot.

We have already shown how hard it is to draw a line to exclude noise and false positives for

our analysis. Although classic canvas fingerprinting relies on a fixed and very specific canvas

image, detection algorithms against this technique would look for patterns. Assuming that it is

already hard to detect and prevent canvas fingerprinting without disabling the full capabilities

of the Canvas API, it is not a surprise to see fingerprinters hardening their resilience against

identification by injecting random noise. Appendix F.5 shows all the different “shapes” canvas

images detected by our research.

5.7 “Numbered” Canvas Images Review

Almost all the “numbered” canvas images’ scripts from the true positives identified in Subsection

5.2.2 are self-hosted. In full, these scripts also generate another canvas image known to be used in

fingerprinting. Figure 5.10 shows the main canvas images drawn during these scripts executions.

Figure 5.10: Main canvas images generated from a “numbered” script.

These scripts apparently perform two rounds, in which they generate a known fingerprinting

canvas image with a pangram, followed by a separate and very small canvas image containing

always a different random number. These “numbered” canvas images are always of the same

16×16 pixel size, making them a very edge case when considering the image constraints we

defined in 3.1.2. As defined by Acar et al. [1], canvas images smaller than this specific size might

not have anti-aliasing applied and lose an important source of diversity at the pixel level for

fingerprinting. We are unsure of the purpose of this random number, but we could speculate

that these canvas images are generated as a mean to create noise against possible detection

mechanisms in a similar way as seen in Section 5.6 for “shapes” canvas images.
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Chapter 6

Conclusions

In this Chapter we review how this research performed in terms of achievements. In Section 6.1

we review our contributions and the goals achieved by this research. In Section 6.2 we review

the limitations we had to face. Lastly, Section 6.3 presents unanswered research questions and

possible future implementations based on this research’s results.

6.1 Achieved Research Goals

This research aimed to identify the popularity and distribution of device class fingerprinting

in its Picasso implementation. Our heuristic was able to detect only one implementation of it.

Its distribution stands at around 0.07% of the original crawled URLs dataset resulting in this

technique being not particularly popular. This result was nevertheless possible thanks to the

intermediate results obtained in the research sub-goals.

As a first step, it was vital to identify which are the distinguishing features of Picasso. Through

the definition of its scheme and relevant literature review, the defined heuristic managed to

successfully identify one implementation of it in the wild. The analysis tool was designed to offer

the flexibility to configure which features or constraints to consider during the analysis. This

allowed us to successfully search for other scripts implementing other canvas fingerprinting

even though they were not an implementation of Picasso.

Moreover, due to the variable nature of Picasso, we needed to compare data from at least

two different crawls. To then put data together, we defined different aggregation strategies: the

first compared the full URL of scripts, the second aggregated scripts by their content hash as

provided by OpenWPM, and the third aggregated them by comparing a portion of their URLs.

Although OpenWPM was discovered to be flawed in providing the script hashes, it was also

evident how the variation in URLs’ arguments did not allow us to compare them by the full URL.

In addition, these variations probably have a role in servicing a different script to execute.

Lastly, we detected an implementation of Picasso which was provided “as a service” to first

party domains. Its usage was evenly distributed across the considered URLs dataset, with no

particular notable shift towards more popular websites on the Tranco rank. In parallel, we

identified a more widespread usage of Picasso-like canvas images: they are visually similar to
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Picasso-generated ones but with no variations whatsoever upon multiple executions of the same

script. Differently, these were mostly first party hosted.

Although these results do not allow us to draw definitive conclusions on Picasso’s prevalence,

to the best of our knowledge there is no first party currently using this technique as device class

fingerprinting. Not even Google, which originally presented the solution.

6.2 Limitations

To the best of our knowledge, we are the first to investigate the diffusion of device class fin-

gerprinting as a technique. We concentrated and looked specifically for implementations of

Picasso because is the only publicly available scheme building this kind of fingerprinting. Al-

though an implementation of Picasso and an additional device class fingerprinting technique

were discovered by Bird et al. [3], their research mainly focused on detecting fingerprinting in

general. Due to the scarcity of literature on the topic, it was really hard to have a clear view of the

steps to perform. This limitation impacted our methodology in defining and detecting possible

distinguishing features.

The defined text length feature was a particularly relevant one, as it was the only feature

that remained present throughout all the Analysis Strategies reviewed in Chapter 5. We based

our check on the length mentioned by Papadogiannakis et al. [24] and by Englehardt and

Narayanan [8]. In particular, Englehardt and Narayanan expected the text to display “at least

10 distinct characters”, but we did not implement this feature as described. Our feature only

checked the length of the text written to a canvas. We then evaluated any text variation through

the variability of arguments feature, although is not exactly a check for “distinct” characters.

We did not actively check as such as we did not expect to find any “same character” string. We

add this detail as a limitation, although we do not believe that this omission added noise to our

analysis.

Moreover, we implemented the text length constraint feature with the possibility to relax it.

However, when used, this relaxation introduced a lot of false positives as the length evaluation

does not filter for encoded emojis. This was intended as Bird et al. [3] discovered that emojis are

a possible valid primitive in Facebook’s implementation of Picasso. We did not invest time in

identifying a way to discriminate and accepted the limitation of the relaxed approach.

Lastly, we encountered additional limitation with the used tools. Although OpenWPM is a

powerful and very flexible tool, it comes with its known limitations and issues. First, it is built on

Selenium which was not intended to be used as a crawler for intensive and scaled data collection

campaigns. The authors did a great job in making their infrastructure as robust and reliable as

possible, but as acknowledged by themselves, one “disadvantage of Selenium is that it frequently

hangs indefinitely due to its blocking API” [8]. We encountered some of these issues related to

its instability during the data collection campaign (4.2). The running crawler would often not

properly close its running sessions or create too many temporary files which caused it to stop

for unavailable disk space. This instability lead us to scale down our original crawling goals from

the original 100K down to 40K domains.
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Moreover, although OpenWPM offered the possibility to capture the “content hash” of HTTP

response content, it resulted in same scripts hashing to different values, making this information

not fully reliable for our aggregation strategy. This is a known issue1 as this feature was not

intended to be used as an actual valuable data point in research. We accepted this limitation of

OpenWPM knowing it might not be 100% reliable.

Another limitation of our approach is related to mobile crawling. Although it would have

been ideal to browse with a real mobile device, it was easier and more practical to implement an

emulation of it within OpenWPM.

6.3 Future Work

As anticipated in Section 6.2, once we realised how little the literature on the topic was, it became

clear that our research needed to be relatively simple in concept in order not to risk to go too

much astray. In addition to this, some of the already presented limitations were as such because

of the lack of ground information from other sources. Therefore we had to build either on

assumptions or totally set aside possible interesting research questions which were going to take

too much effort to include.

For instance, considering the capabilities of OpenWPM of both logging HTTP requests and

responses, we envisioned the possibility of detecting HTTP traffic containing the actual shared

fingerprint. It could be interesting to verify if it is possible as it might give insight into possible

new fingerprinting techniques or even reveal a new trend not yet described.

As a possible additional investigation, it might be worth selecting a set of very well-known

domains and implementing a custom OpenWPM command to try login on them. This action

might trigger additional scripts for bot detection including other implementations of Picasso. It

should be relatively easy to implement and might give back interesting results.

Lastly, another possible future implementation is related to our analysis tool. As it was

designed with flexibility in mind, it allowed us to tweak our research approach and look for

the best strategy. However, it proved to be useful in searching also other canvas fingerprinting

scripts. This analysis tool could be extended to include additional features and possibly detect

other techniques relying on Canvas API, making it useful as a generic analysis tool, rather than

one for Picasso implementations only.

1https://github.com/openwpm/OpenWPM/issues/711#issuecomment-656859147

51

https://github.com/openwpm/OpenWPM/issues/711#issuecomment-656859147


s1062069 Lorenzo Casini

52



Bibliography

[1] Gunes Acar et al. “The Web Never Forgets: Persistent Tracking Mechanisms in the Wild”.

In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications

Security. CCS ’14. Scottsdale, Arizona, USA: Association for Computing Machinery, 2014,

pp. 674–689. ISBN: 9781450329576. DOI: 10.1145/2660267.2660347.

[2] Babak Amin Azad et al. “Web Runner 2049: Evaluating Third-Party Anti-bot Services”. In:

Detection of Intrusions and Malware, and Vulnerability Assessment. Ed. by Clémentine

Maurice et al. Cham: Springer International Publishing, 2020, pp. 135–159. ISBN: 978-3-

030-52683-2.

[3] Sarah Bird et al. Actions speak louder than words: Semi-supervised learning for browser

fingerprinting detection. 2020. arXiv: 2003.04463 [cs.CR].

[4] Elie Bursztein et al. “Picasso: Lightweight Device Class Fingerprinting for Web Clients”. In:

Workshop on Security and Privacy in Smartphones and Mobile Devices. 2016.

[5] Anupam Das et al. “The Web’s Sixth Sense: A Study of Scripts Accessing Smartphone

Sensors”. In: Proceedings of the 25th ACM Conference on Computer and Communication

Security (CCS). ACM, Oct. 2018. DOI: 10.1145/3243734.3243860.

[6] Data Protection. URL: https://www.edps.europa.eu/data- protection/data-

protection_en (visited on 05/30/2024).

[7] Peter Eckersley. “How Unique Is Your Web Browser?” In: International Symposium on

Privacy Enhancing Technologies. 2010. URL: https://api.semanticscholar.org/

CorpusID:15233734.

[8] Steven Englehardt and Arvind Narayanan. “Online Tracking: A 1-Million-Site Measure-

ment and Analysis”. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security. CCS ’16. Vienna, Austria: Association for Computing Machinery,

2016, pp. 1388–1401. ISBN: 9781450341394. DOI: 10.1145/2976749.2978313.

[9] Tatiana Ermakova et al. “Web Tracking – A Literature Review on the State of Research”. In:

Jan. 2018. DOI: 10.24251/HICSS.2018.596.

[10] David Fifield and Serge Egelman. “Fingerprinting Web Users Through Font Metrics”. In:

Financial Cryptography. 2015. URL: https://api.semanticscholar.org/CorpusID:

42777664.

53

https://doi.org/10.1145/2660267.2660347
https://arxiv.org/abs/2003.04463
https://doi.org/10.1145/3243734.3243860
https://www.edps.europa.eu/data-protection/data-protection_en
https://www.edps.europa.eu/data-protection/data-protection_en
https://api.semanticscholar.org/CorpusID:15233734
https://api.semanticscholar.org/CorpusID:15233734
https://doi.org/10.1145/2976749.2978313
https://doi.org/10.24251/HICSS.2018.596
https://api.semanticscholar.org/CorpusID:42777664
https://api.semanticscholar.org/CorpusID:42777664


s1062069 Lorenzo Casini

[11] Glenn Fleishman. Cartoon Captures Spirit of the Internet. Dec. 2000. URL: https://

www.nytimes.com/2000/12/14/technology/cartoon-captures-spirit-of-the-

internet.html (visited on 06/03/2023).

[12] Colin M. Gray et al. “The Dark (Patterns) Side of UX Design”. In: Proceedings of the 2018

CHI Conference on Human Factors in Computing Systems. CHI ’18. , Montreal QC, Canada,

Association for Computing Machinery, 2018, pp. 1–14. ISBN: 9781450356206. DOI: 10.

1145/3173574.3174108.

[13] imperva.com. 2022 Imperva Bad Bot Report. 2022. URL: https://www.imperva.com/

resources/resource-library/reports/bad-bot-report/ (visited on 04/14/2024).

[14] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. “Fingerprinting the Fingerprinters:

Learning to Detect Browser Fingerprinting Behaviors”. In: 2021 IEEE Symposium on

Security and Privacy (SP). 2021, pp. 1143–1161. DOI: 10.1109/SP40001.2021.00017.

[15] Nikhil Jha et al. “The Internet with Privacy Policies: Measuring The Web Upon Consent”.

In: ACM Transactions on the Web 16.3 (Aug. 2022), pp. 1–24. DOI: 10.1145/3555352.

[16] Keven Knight. Why Data Breaches Are Increasing And What CISOs Can Do About It. Apr.

2023. URL: https://www.forbes.com/sites/forbestechcouncil/2023/04/20/why-

data-breaches-are-increasing-and-what-cisos-can-do-about-it/ (visited on

06/22/2023).

[17] Victor Le Pochat et al. “Tranco: A Research-Oriented Top Sites Ranking Hardened Against

Manipulation”. In: Proceedings of the 26th Annual Network and Distributed System Security

Symposium. NDSS 2019. Feb. 2019. DOI: 10.14722/ndss.2019.23386.

[18] Vincent Lefrere et al. “The Impact of the GDPR on Content Providers”. In: 2020. URL:

https://weis2018.econinfosec.org/wp-content/uploads/sites/8/2020/06/

weis20-final43.pdf.

[19] Arunesh Mathur et al. “Dark Patterns at Scale: Findings from a Crawl of 11K Shopping

Websites”. In: Proc. ACM Hum.-Comput. Interact. 3.CSCW (Nov. 2019). DOI: 10.1145/

3359183.

[20] Jonathan R. Mayer and John C. Mitchell. “Third-Party Web Tracking: Policy and Technol-

ogy”. In: Proceedings of the 2012 IEEE Symposium on Security and Privacy. SP ’12. USA:

IEEE Computer Society, 2012, pp. 413–427. ISBN: 9780769546810. DOI: 10.1109/SP.2012.

47.

[21] Chris Mills. Saying goodbye to third-party cookies in 2024. Dec. 2023. URL: https://

developer.mozilla.org/en-US/blog/goodbye-third-party-cookies/ (visited on

04/13/2024).

[22] Keaton Mowery and Hovav Shacham. “Pixel Perfect: Fingerprinting Canvas in HTML5”.

In: Proceedings of W2SP 2012. Ed. by Matt Fredrikson. IEEE Computer Society. May 2012.

URL: https://hovav.net/ucsd/dist/canvas.pdf.

54

https://www.nytimes.com/2000/12/14/technology/cartoon-captures-spirit-of-the-internet.html
https://www.nytimes.com/2000/12/14/technology/cartoon-captures-spirit-of-the-internet.html
https://www.nytimes.com/2000/12/14/technology/cartoon-captures-spirit-of-the-internet.html
https://doi.org/10.1145/3173574.3174108
https://doi.org/10.1145/3173574.3174108
https://www.imperva.com/resources/resource-library/reports/bad-bot-report/
https://www.imperva.com/resources/resource-library/reports/bad-bot-report/
https://doi.org/10.1109/SP40001.2021.00017
https://doi.org/10.1145/3555352
https://www.forbes.com/sites/forbestechcouncil/2023/04/20/why-data-breaches-are-increasing-and-what-cisos-can-do-about-it/
https://www.forbes.com/sites/forbestechcouncil/2023/04/20/why-data-breaches-are-increasing-and-what-cisos-can-do-about-it/
https://doi.org/10.14722/ndss.2019.23386
https://weis2018.econinfosec.org/wp-content/uploads/sites/8/2020/06/weis20-final43.pdf
https://weis2018.econinfosec.org/wp-content/uploads/sites/8/2020/06/weis20-final43.pdf
https://doi.org/10.1145/3359183
https://doi.org/10.1145/3359183
https://doi.org/10.1109/SP.2012.47
https://doi.org/10.1109/SP.2012.47
https://developer.mozilla.org/en-US/blog/goodbye-third-party-cookies/
https://developer.mozilla.org/en-US/blog/goodbye-third-party-cookies/
https://hovav.net/ucsd/dist/canvas.pdf


s1062069 Lorenzo Casini

[23] Midas Nouwens et al. “Dark Patterns after the GDPR: Scraping Consent Pop-Ups and

Demonstrating Their Influence”. In: Proceedings of the 2020 CHI Conference on Human

Factors in Computing Systems. CHI ’20. Honolulu, HI, USA: Association for Computing

Machinery, 2020, pp. 1–13. ISBN: 9781450367080. DOI: 10.1145/3313831.3376321.

[24] Emmanouil Papadogiannakis et al. “User Tracking in the Post-Cookie Era: How Websites

Bypass GDPR Consent to Track Users”. In: Proceedings of the Web Conference 2021. WWW

’21. 2021, pp. 2130–2141. DOI: 10.1145/3442381.3450056.

[25] Nayanamana Samarasinghe and Mohammad Mannan. “Towards a Global Perspective on

Web Tracking”. In: Comput. Secur. 87.C (Nov. 2019). DOI: 10.1016/j.cose.2019.101569.

[26] surfshark.com. Data breaches rise globally in Q3 of 2022. Oct. 2022. URL: https://

surfshark.com/blog/data-breach-statistics-2022-q3 (visited on 06/22/2023).

[27] “Universal Declaration of Human Rights”. In: (1948). URL: http://digitallibrary.un.

org/record/666853.

[28] Antoine Vastel. Demonstration of Picasso canvas fingerprinting. Mar. 2019. URL: https://

antoinevastel.com/browser%20fingerprinting/2019/03/21/picasso-canvas-

fingerprinting.html (visited on 07/02/2023).

[29] Wikipedia contributors. Jaccard index — Wikipedia, The Free Encyclopedia. 2023. URL:

https : / / en . wikipedia . org / w / index . php ? title = Jaccard _ index & oldid =

1188130957 (visited on 12/10/2023).

55

https://doi.org/10.1145/3313831.3376321
https://doi.org/10.1145/3442381.3450056
https://doi.org/10.1016/j.cose.2019.101569
https://surfshark.com/blog/data-breach-statistics-2022-q3
https://surfshark.com/blog/data-breach-statistics-2022-q3
http://digitallibrary.un.org/record/666853
http://digitallibrary.un.org/record/666853
https://antoinevastel.com/browser%20fingerprinting/2019/03/21/picasso-canvas-fingerprinting.html
https://antoinevastel.com/browser%20fingerprinting/2019/03/21/picasso-canvas-fingerprinting.html
https://antoinevastel.com/browser%20fingerprinting/2019/03/21/picasso-canvas-fingerprinting.html
https://en.wikipedia.org/w/index.php?title=Jaccard_index&oldid=1188130957
https://en.wikipedia.org/w/index.php?title=Jaccard_index&oldid=1188130957


s1062069 Lorenzo Casini

56



Appendix A

Tranco list with ID 4K83X

List is available at https://tranco-list.eu/list/4K83X.

This list aggregates the ranks from the lists provided by Alexa, Umbrella, and Majestic from 02

March 2023 to 31 March 2023 (30 days).

The following filters were applied to the domains:

• Only pay-level domains were retained.

• Only domains included in the Chrome User Experience Report of February 2023, present

in the global dataset, were retained.
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Appendix B

Give-Consent Algorithm for Data

Processing

B.1 Implementation

In OpenWPM we implemented a custom “GiveConsentCommand”, which included the approach

presented by Jha et al. [15]. Their Priv-Accept1 solution is a Selenium-based crawler which is

able to give consent for data processing while browsing. After a few tests, it appeared that the

integration of this approach in OpenWPM degraded performance considerably. We additionally

implemented a separate custom algorithm to give consent, which naively parsed the loaded

HMTL page looking for <button> elements first and then any element with a role or id attribute

set to “button”. Each found element is then tested if its inner text contains any “accepting” word

from the same list used in Priv-Accept.

We then performed a comparison test, crawling 200 URLs two times and checking the

number of incomplete visits logged by OpenWPM. For reference we run additional crawls

without giving consent, then one with Priv-Accept algorithm only and one last crawl with only

our simple algorithm. We also tested a combination of the two, where first the Priv-Accept

algorithm is executed and, if nothing was found, our algorithm attempted a search, and vice

versa. The results are reported in Table B.1.

Give Consent Strategy Clicked Avg. Crawl Failure

None - 8%
Priv-Accept 167 24%
Custom 132 8%
Priv-Accept + Custom 168 25%
Custom + Priv-Accept 184 21%

Table B.1: Results of tests with different “give consent” strategies. All tests were performed by navigating
400 websites each time.

As shown, although it appears that the Priv-Accept approach was able to perform a click

1https://github.com/marty90/priv-accept
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around 25% more than our algorithm, it came at the cost of 3 times more degraded performance.

Differently, our approach seemed to have no impact at all, when compared to crawling without

giving consent. Looking at the combination of the two approaches seems to prove our point,

with the crawl using our approach first and then Priv-Accept having the best result when it

comes to “clicking”, but with a failure degree very similar to the Priv-Accept only approach.

Based on these findings, and considering the performance degradation tested in Subsection

3.2.2, we accepted the custom algorithm to be good enough for the research purposes given the

apparent non-degradation of performance it offered.

B.2 Evaluation

In Section 5.2 we reviewed how each crawl performed during the data collection campaign.

Looking at this data we can see how crawling and giving consent for data processing performed

similarly to crawling without. This demonstrates our consideration about the custom give-

consent algorithm. This proved that our technique was in fact not particularly intrusive and

did not have a notable negative impact when crawling. We reviewed the results of crawling and

giving consent for data processing in Section 5.3.
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Appendix C

Implementing Heuristic

We defined Picasso’s distinguishing features in Subsection 3.1.3 and their implementation was

approached with two goals in mind. First, the defined distinguishing features might be too

restrictive or too weak. This poses the risk of over-fitting or introducing too many false positives.

It was important for the analysis to look at any combination of the defined features, in order to

test and adapt the final analysis strategy. Each of the defined features was then implemented

as an independent and configurable parameter. For a list of all parameters, see Appendix D.

Second, to know if two scripts can be compared, we expect their URLs to be the same. However,

this is not always the case and we had to anticipate this possibility by defining some aggregation

strategies.

C.1 Implementing features

We approached the development of our tool with the need to flexibly change which feature

to look at and in which combination. Most of Picasso’s device class fingerprinting indicators

enumerated in Subsection 3.1.3 were implemented as independent checks, each controlled by

its parameter.

It is also important to point out that most of the described features are used to discriminate

whether the script is relevant for this research or is excluded completely. It is the case when

checking for the presence of Canvas API’s calls, which methods are used for image extraction,

and the constraints on color and size of such images. Only a few of the described features are

used to calculate the probability for the script to be an implementation of Picasso. These features

are Variability Of Primitives, Variability Of Arguments and Text Length Constraint, as they are

evaluated against different executions of the same script.

All features probability values are then averaged together to define the script’s final probabil-

ity. This value is then compared with a threshold parameter to verify if the script is a potential

implementation of Picasso (as we will see in Subsection C.2). We decided to give each feature the

same “weight” in the final average, although we know any of these features may have a greater

impact than another.
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Canvas API

As our analysis tool is designed to identify implementations of Picasso, it bases the analysis on

the presence of calls to this API, making this feature the backbone of the analysis tool. This

feature does not have its own parameter and is the sole exception to the above statements on

configurability.

Variability Of Primitives

This check is implemented in two steps: first, for each execution of matching URLs script, its

captured methods are filtered for this check’s relevant methods (as defined in Table 3.1) and

returned as a list. Then, all lists are compared with each other to determine the degree of

differences (or variability of this script’s execution). This is achieved by checking that each

relevant method is called a different number of times across all executions and is expressed as:

var i abi l i t ypr i mi ti ves = tot al_di f f er ences_ f ound
tot al_num_compar ed

Values will range from 0 to 1, with a higher value implying a high variability of the executed

methods, thus a sign of Picasso implementation.

Variability Of Arguments

This check is implemented with two different approaches and relative parameters. The first

approach is implemented similarly to “variability of primitives”, the second is implemented as a

Jaccard index 1[29]. Both described approaches are kept due to some edge cases resulting in

respective coefficients being opposite.

Custom comparison:

This check is implemented in two steps: first, for each execution of matching URLs script,

captured methods are filtered for this check’s relevant methods (as defined in Table 3.1), coupled

with their calling arguments and then returned as a list. All lists are then compared with each

other looking only at intersecting called methods. Then, for each method, it is checked if the

arguments used are the same across all executions. The result is expressed as:

same_ar g s = tot al_equal _ f ound
tot al_num_compar ed

As we aim to detect the variability between executions, we invert the result:

var i abi l i t yar g ument s = 1− same_ar g s

Values will range from 0 to 1, with a higher value implying a high difference in used arguments

for the executed methods, thus a sign of Picasso’s implementation.

Inverted Jacacrd index:

This check is implemented in two steps: first, for each execution of matching URLs script,

1Also known as Jaccard similarity coefficient.
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captured methods are filtered for this check’s relevant methods (as defined in Table 3.1) and

coupled with their calling arguments. As Jaccard works with sets, duplicates are removed and

then returned. Then, all sets are compared with each other looking at the quotient between the

set intersection of called methods and their set unions. Jaccard index is expressed as:

j accar d = i nter ect i ng _method s
uni on_o f _set s

As the Jaccard index is an indicator of similarity and we aim at detecting differences between

executions, we invert the result:

var i abi l i t yar g ument s = 1− j accar d

Values will range from 0 to 1, with a higher value implying a high difference in used arguments

for the executed methods, thus a sign of Picasso’s implementation.

Image Extraction

This check is implemented with two different parameters, for getImageData() and toDataURL()

respectively. This check is implemented in two steps: first, for each execution of matching URLs

script, captured methods are filtered and coupled with their return value. Then, if any of these

methods were found, image data information is kept and eventually extracted at a later step as

visual proof to validate the tool’s output.

Color Constraint

This check is dependent on the “image extraction” parameter. Once established that a canvas

image is being extracted, the tool verifies that the image contains at least two colors and if not,

the image is ignored. This exclusion can result in the whole script being discarded during the

“image extraction” check.

Size Constraint

This check is dependent on the “image extraction” parameter. Once established that a canvas

image is being extracted, the tool verifies that the image is at least 16×16 pixels and if not, the

image is ignored. This exclusion can result in the whole script being discarded during the “image

extraction” check.

No Lossy Compression

This check is dependent on the “image extraction” parameter. Once established that a canvas

image is being extracted, the tool verifies that the image is not in a lossy compression format,

eventually excluding it. This exclusion can result in the whole script being discarded during

“image extraction” check.
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Text Length Constraint

This check is implemented in two steps: first, for each execution of matching URLs script,

captured methods are filtered and coupled with their calling arguments. Then, arguments are

evaluated for their length based on two parameters.

The first parameter is called “text_length_dcfp” and allows to customise the text length’s

lower bound for which we consider an indication of Picasso’s fingerprinting. As mentioned in

the definition of the feature, this value is set to 5 by default, but we allow to tweak it. The check

is then implemented by giving a 100% chance of being Picasso to text which length is up to

this parameter’s value, and a 50% chance to text up to two times the parameter’s value. The

remaining cases are ignored (0% chance).

The last parameter is a relaxation of the evaluation algorithm described above. This param-

eter is called “text_length_dcfp_only” and forces to give a 100% chance to very short text2

and ignores any other text, if present.

All percentage values are then averaged and the result will range from 0 to 1, with a higher

value implying a high chance of the used text to be a sign of Picasso’s implementation.

C.2 Other Tool Parameters

As the tool grew larger and more complex, we felt the need to not constrain the analysis by

specific design decisions. Therefore, we envisioned the possibility to let the user decide and

configure these aspects as well. Here we present the most relevant configuration options. For a

list of all parameters, see Appendix D.

Aggregation Capabilities

To know if two scripts can be compared, we expect their URLs to be the same. As this is not

always the case, we anticipated this possibility by defining two separate aggregation strategies.

The best way to be sure of the identity between two scripts would be to compare each script’s

content. We refer to this approach as “aggregation by hash” and was implemented by hashing

the script’s content (already offered by OpenWPM, see Subsection 4.1.2) to then compare the

scripts’ hashes.

We also envisioned the possibility of comparing script URLs without their parameters. We

refer to this approach as “fuzzy aggregation” and is a less precise and more relaxed aggregation

strategy. It was implemented by comparing each URL up to the “?” character, if present. To

make this approach more consistent, the truncated URL is hashed and an “S-” is pre-pended to

distinguish this key from the “aggregation by hash” one. Table C.1 shows a practical example of

these aggregation strategies.

These aggregation strategies were developed as independent parameters, with the “aggrega-

tion by hash” having a higher execution priority (3.3) and were relevant for the selection of an

appropriate analysis strategy (E.3).

2Text length up to the defined “text_length_dcfp” parameter value. See Appendix D.
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a) https://path/to/script.js?param1=abc&param2=123
b) a1b2c3d4e5f6a7b8
c1) https://path/to/script.js
c2) S-a0b9c8d7e6f5a4b3

Table C.1: Aggregation strategies:
a) plain script URL - no aggregation strategy
b) script’s content hash - “aggregation by hash” strategy
c1) script URL truncated at character “?” - “fuzzy aggregation” strategy
c2) hash of truncated script URL - “fuzzy aggregation” strategy

Detection Threshold

The analysis output produces a list of URLs and their relative percentage of being an indicator of

Picasso. This parameter simply allows the configuration of the threshold for considering them

as such and the final output will show only those scripts that hit at least that threshold.
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Appendix D

Analysis Tool Parameters

Parameter name Description

check_variable_primitives Variability Of Primitives in C.1
check_variable_args_custom

Variability Of Arguments in C.1
check_variable_args_jaccard

check_getImageData
Image Extraction in C.1

check_toDataURL
filter_color_constraint Color Constraint in C.1
filter_size_constraint Size Constraint in C.1
filter_no_lossy_compression No Lossy Compression in C.1

check_text_length Text Length Constraint C.1
text_length_min_compare See Appendix D
text_length_dcfp Text Length Constraint in C.1
text_length_dcfp_only Text Length Constraint in C.1

Table D.1: List of analysis tool parameters for Picasso’s distinguishing features

text_length_min_compare

It defines the minimum number of same URLs script needed for comparison. As a text written

to canvas could be evaluated on its own, we allowed to tweak the minimum number of needed

comparable scripts. By default, this value is set to 2.

analyze_within_top_url

As the main goal of this research is to detect implementations of Picasso around the web, the

way script URLs will be compared is crucial. Intuitively, one would look at scripts called when

navigating a specific web page, but what if the majority of repeated crawls for a given website

failed? Although the final goal is to list top-level URLs that host a script that implements Picasso,

that same script could be on other web pages with not enough reliable data. We imagined the

possibility of improving detection results by allowing our tool to be able to perform an analysis

either by comparing scripts’ execution within a top-level domain or by considering all script
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Parameter name Description

analyze_within_top_url See Appendix D
agg_by_hash

Aggregation Capabilities in C.2
agg_fuzzy
filter_exclude_incomplete See Appendix D

max_url_file See Appendix D
use_json See Appendix D
dcfp_threshold Detection Threshold in C.2

prepare

Structure of the tool in 3.3
analyse
output
gen_all

exclusion_file Generates an exclusion file. It includes canvas im-
ages generated in step “output”. It is used in step
“gen_all” to skip already generated canvas images

backup_prev_log Backups eventual previous analysis output. At each
run, all previous temporary and output data is
deleted.

Table D.2: List of other analysis tool parameters

URLs across the whole dataset. We will refer to the selection of this parameter as navigation

strategy in Subsection E.2.

filter_exclude_incomplete

This parameter is set to “true” by default and excludes those single website crawls that were

marked as “incomplete” by OpenWPM. An incomplete set of data would add a lot of noise,

especially with our approach, which is based on identifying the differences in scripts between

different crawls.

max_url_file

This parameter defines the maximum number of URLs allowed in a temporary file. Temporary

files generated during analysis contain data organised by URLs. To avoid these files from growing

too much, custom logic is in place to control how many URLs per file are allowed.

use_json

OpenWPM persists its crawled data to an SQLite database instance, but for performance reasons,

data is extracted from the database and converted to JSON1 format before analysis. Still, we

allowed the analysis tool to work with both formats through this parameter.

1https://www.json.org/json-en.html
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Appendix E

Definition and Selection of an Analysis

Strategy

In this Appendix we present how we investigated data and compared different approaches to

identify the best detection strategies. For this purpose, we decided to use the crawl data of the

top 20K URLs crawled without giving consent for data processing or mobile emulation as a

testing set. The threshold parameter introduced in Appendix C.2 was set to 0.5. Based on this

parameter, the analysis tool will detect any script that has more than 50% probability of being

an implementation of Picasso. Although tweaking this value will definitely reduce the number

of false positives, we purposely left it at 0.5 to avoid missing some true positives. Then, the

selection process was carried out through various steps and with the introduction of some new

concepts:

• We defined as analysis approach the combination of investigated distinguishing features;

• We defined as navigation strategy if the analysis will look at JavaScript calls within a

top-level URL or across the entire dataset (See analyze_within_top_url in Appendix

D);

• We defined as aggregation strategy the selection of a specific aggregation option (C.2).

The different combinations of these three concepts were defined as analysis strategies.

Collected data was evaluated with different analysis strategies and their results in detecting

implementations of Picasso are reported in Chapter 5.

E.1 Define Analysis Approaches

By reviewing the canvas images extracted during the generate canvas step (3.3), we noticed

the presence of some interesting canvas images. First, we discovered the usage of Picasso-like

canvas images on many scripts, but most of them generated the same image at each execution.

Our analysis tool was then unable to detect these, as the relative scripts had a very constant

usage of our defined primitives. Therefore, we could not define an additional strategy to detect
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them. Identified Picasso-like canvas images can be reviewed in Appendix F.4 and we discuss

their distribution in Section 5.5.

We also identified two other canvas images which relied on some sort of randomness. The

first one was a 16×16 pixel canvas image with a random, up to three-digit number in scripts

that generated canvas known to be used in fingerprinting (a) in Fig. E.1). The second one was a

seemingly randomly composed canvas image, which incorporated different shapes, like circles

and stars. Also this “shapes” canvas image was found in scripts that generated other known

canvas used in fingerprinting (b) Fig. E.1). These two canvas images were extracted through

toDataURL() and getImageData() respectively.

Figure E.1: Examples of “numbered” (a) and “shapes” (b) canvas images

The first analysis approach was labelled. In this approach we look at all the defined Picasso

features altogether. We therefore defined three approaches with increased relaxation of included

features.

“Approach 1” considers all the defined Picasso features altogether. “Approach 2” and “Ap-

proach 3” are designed to test the ability of the analysis tool to also detect scripts generating

“numbered” and “shapes” canvas images. Although targeted at specific canvas images, relaxing

the analysis approaches could help detect unexpected implementation of Picasso. Therefore,

Approach 2 and Approach 3 should not be seen as an overfitting detection approach targeting a

specific canvas image, as we are actually reducing the number of features to look at.

In Approach 2, the randomness of numbers and the position of the shapes could be detected

through variations in arguments used by the defined canvas primitives. To give more relevance to

the “variability of arguments”, we decided to deactivate the “variability of primitives” parameter

(3.1.3). Additionally, knowing that few text characters written on a canvas is a valuable feature

on which canvas fingerprinting does not rely (it generally uses a pangram), we activated the

relaxed text length search for “text length constraint” (C.1).

Approach 3 was defined as a further relaxation of Approach 2. Here the “variability of

arguments” check was deactivated, leaving the remaining configurations unchanged. In this

way, the only remaining feature to consider was the relaxed text length search for “text length

constraint” (C.1).

Table E.1 displays the defined analysis approaches and their parameters. Please note that

the constraints on image extractions are always active across the three approaches as they help

reduce the number of false positives. For each analysis approach, only one analysis strategy was
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selected. For a detailed description of how Analysis Strategy 1, 2 and 3 were selected, please refer

to Appendix E.3.

Parameter Approach 1 Approach 2 Approach 3

variability of primitives ✓ - -
variability of arguments C+J † ✓ ✓ -
text length constraint ✓ ✓ ✓
relaxed text length - ✓ ✓

color constraint ✓ ✓ ✓
size constraint ✓ ✓ ✓
no lossy compression ✓ ✓ ✓

Table E.1: List of parameters active for each approach
†: C+J means custom + jaccard.
Note that color constraint, size constraint and no lossy compression remain always active as they help in
reducing the number of false positives.

E.2 Aggregation and Navigation Strategies

As anticipated in Section 3.3, the analysis tool offers different aggregation possibilities Currently

the analysis tool offers two aggregation possibilities to determine if two scripts are an identity:

“aggregation by hash”, where the content hash of scripts is compared, and “fuzzy aggregation”,

where only a portion of the script URLs is used for the comparison.

In addition, as presented in Appendix D, the analysis can be performed by looking for the

same script either between scripts called during the navigation of a specific top-level URL, or

by comparing all script URLs across the entire dataset. This possibility was identified in this

Section as navigation strategy. To help us identify the best analysis strategy, we defined the

matrix presented in Table E.2. Each combination of aggregation and navigation strategies has its

own label, which will be tested with all defined analysis approaches.

Navigation Strategy
Within URL Across Dataset

No Agg. Within-NoAgg Across-NoAgg
Agg. by Hash Within-HashAgg Across-HashAgg
Fuzzy Agg. Within-FuzzyAgg Across-FuzzyAgg

Table E.2: Combination of possible Aggregation and Navigation strategies.

E.3 Selecting an Analysis Strategy

As introduced in the previous Subsection, to determine an analysis strategy, all the Tests pre-

sented in Table E.2 had to be performed for each analysis approach E.1, for a total of 36 possible

combinations to test. Table E.3 reports these results.
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It is interesting to note how the “aggregation by hash” performs almost the same as with

“no aggregation” strategy. The more the approach gets relaxed, the more “aggregation by hash”

performs better in identifying true positives with fewer false positives. The “fuzzy aggregation”

on the other hand performs the opposite, giving best results with the approaches that perform a

search for most or all distinguishing features. Additionally, the use of the navigation strategy

“across dataset” did not seem to bring notable or valuable improvements in the results. However,

its usage was able to detect also those scripts that happened to have data for one crawl only,

with nothing to compare with.

Based on shown results, Approach 1 seemed to be able to detect implementations of Picasso

in its “toDataURL” variant at the cost of a few false positives, whereas the “getImageData”

variant was unable to detect anything interesting. Approach 2 in its “toDataURL” variant was

able to detect “numbered” canvas images, as expected, as well as detecting implementations

of Picasso. This shows that the relaxation of the approach allows to detect “more”, rather

than pinpoint a specific canvas images. As anticipated in Section E.1, this was expected and

is our countermeasure against over-fitting. The “getImageData” variant was able to detect

only 1 “shapes” canvas image out of the more expected, and the rest of the output was still

not interesting. Coming to Approach 3, the considerable amount of “detected” URLs in the

“toDataURL” variant resulted in a spike of false positives, making this approach hard to analyse

and use. On the other hand, this time, the “getImageData” variant returned the expected “shapes”

canvas images with an acceptable number of false positives.

To pick the most fitting research approach, we computed their F1-score1. We selected Ap-

proach 1 and Approach 2 in their “toDataURL” variant with “Within-FuzzyAgg” as the preferred

Navigation and Aggregation strategy combination as interesting analysis strategies. Regarding

Approach 3 in its “getImageData” variant and according to the F1-score, the “Across” Naviga-

tion strategy yields the best results. However, we decided to select the same Navigation and

Aggregation strategy of Approach 1 and Approach 2 to allow for more direct and comparable per-

formance results. Therefore, Approach 3 in its “getImageData” variant with “Within-FuzzyAgg”

Navigation and Aggregation strategy combination was selected as our third analysis strategy.

These selections are highlighted in Table E.1 and will be referred to as Analysis Strategy 1, 2 and

3 respectively.

1https://en.wikipedia.org/wiki/F-score
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Approach Aggregation-Navigation Detected FP F1-score

Within-NoAgg 4 2 25%
Within-HashAgg 4 2 25%
Within-FuzzyAgg 14 2 92%
Across-NoAgg 5 3 50%
Across-HashAgg 5 3 50%

1-toDataURL

Across-FuzzyAgg 6 3 67%
Within-NoAgg 1 1 0%
Within-HashAgg 1 1 0%
Within-FuzzyAgg 1 1 0%
Across-NoAgg 1 1 0%
Across-HashAgg 1 1 0%

1-getImageData

Across-FuzzyAgg 1 1 0%
Within-NoAgg 301 2 100%
Within-HashAgg 305 2 99%
Within-FuzzyAgg 311 2 100%
Across-NoAgg 298 3 99%
Across-HashAgg 10 3 82%

2-toDataURL

Across-FuzzyAgg 299 3 99%
Within-NoAgg 2 1 29%
Within-HashAgg 2 1 29%
Within-FuzzyAgg 2 1 29%
Across-NoAgg 1 1 0%
Across-HashAgg 2 1 29%

2-getImageData

Across-FuzzyAgg 2 1 29%
Within-NoAgg 1237 936 39%
Within-HashAgg 800 491 56%
Within-FuzzyAgg 1574 1265 33%
Across-NoAgg 1214 919 39%
Across-HashAgg 586 277 69%

3-toDataURL

Across-FuzzyAgg 1535 1239 32%
Within-NoAgg 14 9 53%
Within-HashAgg 14 9 53%
Within-FuzzyAgg 13 8 56%
Across-NoAgg 11 6 63%
Across-HashAgg 11 6 63%

3-getImageData

Across-FuzzyAgg 10 5 67%

Table E.3: Results for all defined Approaches with possible Aggregation and Navigation strategies and
their relative F1-score.
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Appendix F

Generated Canvas Images

F.1 Known Fingerprinting Canvas Images in False Positives

Figure F.1: Known Fingerprinting Canvas Images in False Positives.
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F.2 Full Round of Canvas Images Generated by the Detected Picasso’s

Script

Figure F.2: A full round of generated canvas images for the detected Picasso implementation. It is clearly
visible the fact that the underlying technique is performing rounds, adding each time a different primitive
with variating position, color and gradient. Additionally, at each round, the canvas image is extracted
twice, probably to strengthen the implementation against possible attacks.
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F.3 All Canvas Images Rounds Identified and Performed by the De-

tected Picasso’s Script

Figure F.3: Full set of generated canvas images for the detected Picasso implementation. These were
collected from all true positives across all crawls.
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F.4 Picasso-like Canvas Images

Figure F.4: Full set of identified Picasso-like canvas images.
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F.5 “Shapes” Canvas Images

Figure F.5: Full set of identified “shapes” canvas images across all crawls.
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