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Abstract

In this study, we examine the impact of the physical layer on the performance of deep learn-
ing models applied to side-channel analysis. We explore the relationship between inter-device
variations and model performance using identical devices. We consider the effects of transfer
learning, varying target bytes, and simulated noise on attack performance. Our findings indicate
minimal inter-device variations among identical devices, allowing the direct application of the
base model across devices with comparable results to those obtained using transfer learning.
We conclude that transfer learning is not necessary to enhance model performance. We also
show that incorporating Gaussian noise into the training data improves model robustness while
adding Gaussian noise to the attack traces reduces performance.

Keywords — transfer learning, side-channel analysis, deep learning, cross-device attacks,
noise
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Chapter 1

Introduction

With the emerging IoT devices, small chips run cryptographic software to protect against at-
tackers. The security community has explored the possibility of attacking devices without math-
ematically breaking the cryptographic software [LCC08] [RD20]. This emerged into a new field
of hardware security called side-channel analysis. Each device emits data based on its physical
properties - the so-called side-channel. There are several techniques to analyze this data, from
statistical tests to a relatively new field - machine learning.

In the last few years, the field of using deep-learning for side-channel analysis has been
investigated [PPM+23]. Training such networks is computationally expensive, due to the large
amounts of data. Most research used the ASCAD dataset or their own collected data, of which
most are 8-bit devices. However, current IoT devices are shifting towards operating on 32-bit
devices. On top of that, for every attack, the deep neural network needs to be retrained due to
the differences between devices, as it is not possible to have one general neural network usable
for all side-channel scenarios [KPH+19].

This difference in physical properties between devices is called the portability problem. When
performing profiling attacks - attacks where an extra device is used to model the distribution of
the target device - there is always a slight difference between the profiling device and the target
device. This is due to architectural differences, configuration differences, and different types of
noise within the device.

When performing a side-channel attack, a certain attacker model is assumed. For this
research, we assume the attacker has full access to a similar device compared to the device under
attack. The attacker also knows what encryption implementation is running on the device under
attack. This way, the attacker can control the input plaintext and key and generate power traces
from this profiling device.

This research aims to close the gap in deep learning side-channel analysis research by using
32-bit devices. We also investigate the relevance of the portability problem for 15 identical
devices. Finally, we investigate the possibilities of applying transfer learning when performing
a deep-learning attack to account for the inter-device differences and thus tackle the portability
problem.

To answer the research question, we collected data from 15 identical 32-bit ARM Cortex M4
devices running a firmware implementation of tinyAES-128. ChipWhisperer has been used to
collect the power traces. For each device combination, the inter-device variations are investi-
gated. Then, the possibilities of using transfer learning on an existing good-performing model
are investigated, and how inter-device variations affect the performance of a successful attack.

In short, the main contributions are:

1. Collect data from 15 identical 32-bit devices running tinyAES-128;
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2. Explore how 32-bit devices perform compared to the 8-bit devices in literature;

3. Explore how transfer learning can improve the accuracy of cross-device attacks;

4. Explore how 15 devices vary among them and how this influences the key rank output by
the deep neural network.

5. Provide a tool to compare ChipWhisperer devices to the 15 devices used in this research.
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Chapter 2

Preliminaries

This chapter discusses any preliminary knowledge required for this work. This includes the
architecture of the ARM Cortex M4 chip, techniques for side-channel analysis, and different
deep-learning techniques.

2.1 Target device: ARM Cortex M4

Embedded devices are everywhere: in your car, smart home system, and Fitbit. More devices are
connected to the internet - called the ”Internet of Things” - and communicate with each other.
When information is transmitted, it can be categorized into two types: sensitive information
and regular information. Sensitive information needs to be protected to prevent learning its
content. Protecting sensitive data can be done on several levels: the software security layer, the
network security layer, and the hardware security layer [Ins]. In this thesis, the focus is on the
security of the hardware layer.

2.1.1 Architecture

The architecture of a device is known as the description of the structure of a computer system
and its components [PH90]. A classical Von Neumann architecture consists of two main parts:
the CPU and the memory unit. In the memory unit, a set of instructions is stored. Every
clock cycle, a new instruction is fetched from memory and executed by the CPU. Different
architectures are also available, such as the Harvard architecture [Sar23]. The ARM Cortex M4
is an example of a RISC architecture, which implements the Harvard architecture [Ibr]. Figure
2.1 displays a schematic overview of the processor.

This processor features dedicated Digital Signal Processing (DSP) IP blocks, including an
optional Floating-Point Unit (FPU). Therefore, this processor is easy for embedded systems, such
as IoT, motor control, power management, embedded audio, industrial and home automation,
and healthcare and wellness applications [ST].

2.1.2 ISA and micro-architecture

The architecture of a device can be organized into several subcomponents: one of them is
the instruction set architecture. The instruction set architecture is part of an abstract model,
which describes how the CPU is controlled by the software [ARM]. An implementation of this
abstract model is called the micro-architecture. For the ARM Cortex M4, every chip has the
same instruction set architecture. However, depending on the vendors, the implementation of
this instruction set might vary.
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Figure 2.1: The structure of the ARM Cortex M4 processor. Image from [ARM10]

Not every instruction takes the same amount of power and time to execute. Therefore,
in the field of side-channel analysis, it is important to know which kind of micro-architecture
is implemented on the target device. To streamline the terminology, Zhang et al. made a
distinction for devices and their micro-architectures [ZSX+20] as follows:

1. Same device: there is access to exactly one device used for the task.

2. Identical devices: the relationship between two devices are physical copies of the same chip
model. The design and all configurations are identical.

3. Homogenous devices: In homogenous devices, the architecture of both devices is the same,
but the micro-architecture and configuration are different. This happens when different
manufacturers make a chip.

4. Heterogenous devices: this situation is similar to a real-life scenario: two devices that
differ on a chip level in all aspects, including micro-architecture and power dissipations.

This terminology is used during this thesis to refer to the relationship of the devices.

2.2 Advanced Encryption Standard - AES

To map the physical differences between devices, it is important to investigate what is exactly
running on these devices. Commonly, an attacker is trying to obtain sensitive or secret informa-
tion. This information is usually secured by using encryption. Currently, AES is the most widely
used symmetric cryptography algorithm. Most literature in the side-channel community uses
AES as the standard algorithm for attacking through side-channel [BPS+18]. The Advanced
Encryption Standard - AES - is a symmetric key block cipher. Each block consists of 128 bits,
and the key size varies between 128, 192, and 256. A schematic overview is displayed in figure
2.2.

Firstly, from the provided key by the user, subkeys are determined using the AES keysched-
ule. After that, each round round consists of four parts:

1. SubBytes: This is a non-linear transformation of the state to prevent correlation between
input and output at a byte level. This function makes use of a substitution box (also called
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Figure 2.2: Visualisation of AES. This figure shows the different rounds of AES, with the four
functions happening within a round. [Dae20]

Figure 2.3: Schematic breakdown of AES. This image shows the four functions performed within
one AES round. Image from [RDJ+01]

S-box) which is derived from the multiplicative inverse over GF (28), as it is known for its
good non-linear properties. It is usually implemented as a lookup table.

2. ShiftRows: This creates diffusion within the cipher.

3. MixColumns: This creates diffusion within the cipher. When in the final round, Mix-
Columns is skipped.

4. AddRoundKey: in figure 2.3, this is displayed as the key addition after MixColumns. AddRoundKey
adds the subkey (derived from the secret key) to the current state.

These four parts are also highlighted in 2.3. From a side-channel perspective, the step SubBytes

is the most interesting part. The input and output size of the s-box is 8 bits, which results in a
small sensitive variable based on the input and a subkey.
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2.2.1 Power consumption

When executing encryption algorithms, some calculations may take more time and/or power
compared to other calculations. There are some naturally harder calculations, such as division.
The ARM Cortex M4 takes 2-12 rounds for executing a division, as opposed to 1 cycle for
addition, subtraction, and multiplication [ARM10]. The power consumed depends on the current
instruction or instruction pairs [KU17].

To correctly analyse the power consumption of a side channel, an investigation is needed on
what components define the power consumption. Mangard et al. wrote a comprehensive guide
on side-channel analysis [LCC08]. They provide a good definition in section 4.1 on the different
components of a power trace, quoted below.

”Each point of a power trace can be modeled as the sum of an operation-dependent
component Pop, a data-dependent component Pdata, electronic noise Pelnoise, and a
constant component Pconst”

Ptotal = Pop + Pdata + Pelnoise + Pconst (2.1)

2.2.2 Reference implementation

For this research, the unmasked firmware implementation of tinyAES-128 supplied by the ven-
dors of ChipWhisperer is used. The code belonging to this implementation can be found at [Chi].
In the figure 2.4, the power consumption of the ARM Cortex M4 processor running tinyAES-128
is displayed. As can be seen, the chip consumes different amounts of power at different points in
time. Through visual inspection, it is already possible to distinguish the eight rounds performed
by AES.

Figure 2.4: One trace collected using ChipWhisperer from an ARM Cortex M4 running tinyAES

This power consumption is not only influenced by the chip’s instructions and operations. Its
data also influences it. This has been shown by Das et al [DGD+19]: they found a difference in
power consumption on the same device with a different key: inter-key variations. The inter-key
variations would be modeled as Pdata according to the definition in 2.1.
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2.3 Side-channel analysis

As described earlier, every device emits data based on its physical properties. This is called
the side channel. Examples of side channels are power consumption, electromagnetic emissions,
and time of execution, which can be exploited. The leakage through the side channels is highly
dependent on the micro-architecture of a device [ABPP22]. To perform a good analysis, knowing
what kind of device(s) are targeted is important. In this thesis, the focus is on the power side
channel.

When analyzing the data from a side channel, this can be categorized into two types of
attacks: non-profiled and profiled. In non-profiled attacks, the attacker performs a statistical
analysis without any assumption on the distribution of the target device. In other words, this
attack is being deployed without creating a profile of the target device. In these attacks, usually,
a statistical distinguisher is used to identify the power traces. Profiled attacks are based on the
assumption that the target device follows an unknown distribution [PPM+23]. This distribution
can be approximated to create a profile from the target device. For each of the categories, a few
common attacks are highlighted.

2.3.1 Non-profiled attacks

The most common techniques for non-profiled power analysis involve statistical inference, for
which many traces are collected from the device under attack. This is a non-profiling attack,
as the attacker does not use a copy of the target device. Examples are simple power analysis
(SPA) and differential power analysis (DPA). In SPA, an average trace is computed from all the
traces, which is then visually inspected [BB22] [LCC08]. In section 2.2.2, it has already been
highlighted that the separate AES rounds are visible from the trace. DPA uses a statistical test
to verify or dismiss a hypothesis [KJJ99] [LCC08]. The attacker chooses a bit from the sensitive
variable v - which should be relatively small. Usually, the output of the s-box is taken as the
sensitive variable, as explained in section 2. A schematic overview of the sensitive variable v is
displayed in figure 2.5.

Figure 2.5: Variable y chosen as the sensitive variable v - output of s-box. Source: [BB22]

When making a DPA attack, the attacker computes the value of the output S-box for a
chosen constant plaintext and each possible key value. For each possible key guess, the target
bit can either have two values: 0 or 1. The traces are sorted on this target bit for every possible
key guess. When the difference between those two classes is the biggest, that is the key with
the most probability of being correct. In figure 2.6, this is schematically visualized.

It is also possible to use different distinguishers for this attack. Another common distin-
guisher is the correlation - this is called a correlational power attack (CPA). Next to a CPA the
distinguished, a leakage model is also required - most commonly is the Hamming Weight. The
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Figure 2.6: DPA attack with distinguisher of means on the least significant bit. This figure
shows the grouping of power traces based on a key guess on the value of the least significant bit.
Source: [BB22]

idea is that the Hamming weight models the power consumption of a device: when a certain
bit-value is 0, less power is consumed compared to a bit-value 1. This hamming weight is again
calculated over the sensitive variable v. With the Hamming Weight, an estimate is made on
how much power this output will consume on the device. Then, where the hamming weight
correlates the most with the traces is probably the best key guess [LCC08]. Figure 2.7 shows a
higher-level overview of statistical attacks.

Figure 2.7: High-level overview on statistical attacks. A hypothetical model is compared to the
real side channel for statistical attacks. This hypothetical model is built for every possible key
guess. When the hypothesis is correct, it is most likely the correct key guess. Source: [BB22]
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2.3.2 Profiled attacks

There is also another class of side-channel attacks: profiling attacks. In this type of attack, it
is assumed that measurements follow an unknown distribution [PPM+23]. One of the strongest
attacks is the template attack by [CRR02]. This attack assumes the leakage of a target device
follows a multivariate Gaussian distribution. In this attack, the profiling stage consists of com-
puting the statistical parameters for this distribution [PPM+23]. This is done by computing
the hamming weight as leakage for every possible key byte. In the attacking phase, the at-
tacker computes the probability that a newly obtained power trace belongs to either one of the
parameters.

In the last years, analysis techniques from the field of artificial intelligence have been deployed
as profiling attacks. Methods such as random forests, naive Bayes and support vector machines
have been applied to side-channel analysis [BLR13] [HZ12] [HGDM+11] [LBM14] [LPMS18]
[BCH+20]. When Hospodar et al. applied least-squares support vector machines as a profiling
attack for side-channel analysis, they found that the choice of parameters is of a higher influence
on performance compared to the amount of attack traces available. Lerman highlighted the
curse of dimensionality in using statistical attacks, and how dimensionality reduction techniques
sometimes can outperform modern machine learning approaches [LPMS18].

2.3.3 The portability problem

As an attacker, it is hard to make a correct assumption on the distribution of the measurements.
For SPA and DPA, it is assumed that the attacker has access to the direct target device. However,
it can take millions of measurements to obtain the key with these statistical attacks [PPM+23].
In contrast to profiling attacks, attackers tend to acquire a copy of the device under attack: an
identical device. The attacker uses this identical device to create a profile from the device under
attack. Bhasin showed that inter-device difference (and to a certain extent inter-key difference)
can influence the performance of the model [BCH+20]. The difference in leakage distribution
between the profiling device and the device under attack is called the portability problem.

Referring back to our components in power traces, the inter-device difference would be
modelled as a strong varying Pel.noise devices, where the inter-key difference would be modelled
as Pdata. The components Pop and Pconst will be constant when using an identical device.

2.3.4 Assumptions and success metrics

For this work, two metrics are considered: the signal-to-noise ratio and the key rank. The signal-
to-noise ratio is not part of an attack but is used to evaluate the leakage of a power trace. The key
rank is used to evaluate the performance of a side-channel attack. Papagiannopoulos summarised
the most commonly used side-channel metrics including their benefits and limitations [PGA+23].

The signal-to-noise ratio is a metric to calculate the ratio between signal and noise using
their variance. A signal-to-noise ratio with a value above 1 indicates for a power trace that there
exists more signal than noise. This signal-to-noise ratio can be calculated in two ways: with
simulated traces and with real traces [PGA+23]. In our case, real traces are used. The signal-
to-noise ratio is calculated using a leakage model, in our case the hamming weight. Traces are
sorted according to their hamming weight value into groups. For each group, the average trace
is calculated. The noise for a certain group is then calculated by subtracting the mean trace.
Finally, the variance for the signal trace is divided by the noise trace [Buh]. The signal-to-noise
ratio in this work is used as a way to determine the point of interest in a trace.

To evaluate the performance of a side-channel attack, a success metric has to be chosen.
Regular metrics such as accuracy for profiling attacks do not cover the complete view in the
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Figure 2.8: A multilayer perceptron with fully connected layers. Source: Wikipedia

security community. For example, if the key guesses are sorted according to probability in a
profiling attack, and the correct key is the second highest probability, this can still be a security
threat. The accuracy metric would only consider the first guess. For this, a metric called key
rank is most commonly used in the side-channel community. For a target byte in the key, all 256
possible values are ranked. When the attacker has access to more attack traces, the key guesses
can become more accurate. The key rank is the position of a key guess in the sorted vector
of scores. This score is calculated using the maximum log-likelihood. The full key rank is the
extended version of the key rank: which is the number of full key candidates to enumerate before
reaching the correct full key [PGA+23]. Usually, the key rank is plotted against the number of
attack traces. There are other success metrics as well, but this work is focused on the key rank.

2.4 Machine learning

Neural networks are well known for learning distributions within a dataset - which is exactly
the problem at hand when an attacker is trying to do a profiling attack [Bis94]. However,
neural networks are notorious for their training phase - also called the profiling phase in the
side-channel community. Not does training only take many computational resources, but it
also requires large amounts of data [AZH+21] [Ham93]. Choosing the right architecture for the
neural network highly influences the performance and generalisability [Ala19] [AZH+21].

Neural network architectures

Artificial neural networks are computational models which are inspired by the structure of
the brain [Bis94]. Each network consists of neurons and connections, which are usually sub-
organised in layers. Classically, a neural network consists of an input layer, several hidden layers
and an output layer. Based on the connections and the weight of the connections, input is
processed through each layer. Based on a differentiable optimisation function, the feedback is
backpropagated through the network. This is the ”learning”-step, where weights are updated
accordingly.

Neural networks can have different topologies - also called architectures. There are roughly
two main architectures, mainly based on how they process data: feedforward networks and re-
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Figure 2.9: A convolutional neural network. This figure shows the distinction between the
feature extraction and the classification part. Source: [PR19]

current neural networks [KR92]. In feedforward networks, the information flows uni-directional:
there are no recurrent loops. In recurrent neural networks, the data can flow both ways. For this
work, only feedforward networks are considered. The multilayer perceptron is a type of feed-
forward network, which is known for solving non-linearly separable tasks [Cyb89]. A schematic
of a multilayer perceptron is shown in 2.8. This network is characterised by having at least
three layers - an input layer, one or more hidden layers and an output layer - which are all fully
connected.

Another neural network structure which is widely applied is the convolutional neural network
[AZH+21]. This network is a type of deep feedforward network, where convolutional layers are
used to extract relevant features to learn from them [LBD+89]. It was first designed for image
classifications, but 1D data with patterns has been proven to be suitable for convolutional neural
networks [KLN18]. Convolutional layers are defined by a kernel size - the size of the window
extracting features - and the stride - how much the window moves each step. Convolutional
layers are in almost all cases followed by a pooling layer, to reduce dimensionality. A schematic
of a convolutional neural network has been displayed in figure 2.9.

Transfer learning

As said before, training such neural networks requires a high amount of data and computation
resources. However, it is possible to use pre-trained networks on other similar tasks as well. This
is called transfer learning [Boz20]. These pre-trained networks can sometimes be used directly
or first finetuned to the new task. Finetuning is done by taking your pre-trained network, and
deciding on freezing certain layers - i.e. they do not update while finetuning - or initialising
certain layers with the weights of the pre-trained network. It is important to know how the new
dataset relates to the original trained network. This determines how much finetuning is needed
on the original pre-trained network. Depending on the similarity of your data, there are roughly
four cases [JIM20]:

1. A small but similar dataset: in this case, your data is similar to the data of your original
network. However, there is not much data to fine-tune the network again. In this case, one
could choose to freeze all layers of the pre-trained network (both convolutional layers as
fully connected layers) but the last one. The last layer - which is the classification layer - is
initialised randomly and then finetuned on the new dataset. In the context of side-channel
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analysis, a similar dataset might be data collected from an identical device or maybe a
homogenous device.

2. A small but different dataset: when your dataset is different, your feature extraction needs
to be finetuned as well. In this case, all layers are frozen, except the last (few) convolutional
layers and the last fully connected layer. In the context of side-channel analysis, this might
be the case with heterogeneous devices, but possibly also with homogenous devices.

3. A large but similar dataset: When there is access to a larger dataset, there are more
possibilities for improving your network. In this case, it is not needed to freeze layers, as
there is the capacity to retrain them. Therefore, all layers are initialised with the weights
from the pre-trained network. Only the last layer is randomly initialised to be fine-tuned
to the new dataset. When the attacker has access to such a larger similar dataset, it might
be possible that homogenous devices can also be attacked correctly in this approach.

4. A large but different dataset: in this case, it is also possible to train the network from
scratch. Therefore, the choice is more or less up to the user to initialise the weights of the
convolutional layers (partially) from the pre-trained network. The model might converge
earlier and have overall better performance. However, the last layer should be initialised at
random. For side-channel analysis, depending on how many inter-device variations there
are, it might be possible to attack heterogeneous devices through this method. However,
this has not been investigated yet.
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Chapter 3

Related Work

In the past years, the field of side-channel analysis in combination with artificial intelligence
has been moving rapidly. Papers have been published from different points of view. In this
chapter, the current state-of-the-art on profiled attacks is discussed. Then, papers covering
the portability are summarised. Finally, some work is performed on using transfer learning for
side-channel analysis.

3.1 Current state-of-the-art on profiled attacks

Picek et al. [PPM+23] has recently written a systematisation of knowledge on deep learning in
side-channel analysis. They highlight current state-of-the-art techniques in various aspects, such
as publicly available SCA datasets, research on different data augmentation models, cross-device
models to overcome portability, different attack metrics and the importance of loss functions.
It is a broad research paper meant to highlight all important findings in the SCA community.
For each subarea, the main findings and challenges are listed. Recommendations are also given
to make research in this area more structured. One of these recommendations was to further
investigate the possibilities of transfer learning, as Thapar et al. showed promising results
[TAM20].

One of the publicly available SCA datasets which was mentioned by Picek et al. is the
ASCAD dataset. Benadjila et al. have developed this dataset to facilitate the study of deep
learning of side-channel analysis [BPS+18]. Through electromagnetic emissions they collected
power traces from two devices running AES: the 8-bit ATMega8515 MCU and the 32-bit Cortex-
M ARM. The focus of this study was twofold: firstly, develop a dataset similar to the MNIST
dataset in the machine learning community. This way, there is consistency in benchmarking and
improving networks based on this shared dataset. Secondly, they used this dataset to throughout
investigate different machine-learning models for side-channel analysis. These models varied
from support vector machines and random forests to different neural network architectures.
They also wanted to emphasise the importance of transparency for hyper-parameter tuning in
the deep learning models, to enhance reproducibility. They concluded that MLPs and CNNs
are the most promising machine learning models. The advantage of MLPs is their simplicity,
but they require traces to be preprocessed and aligned. On the other hand, CNNs can deal
with desynchronised traces and still perform well. The main drawback of CNNs is that they
are harder to train. CNNs based on the VGG16 structure showed the highest performance.
Even though convolutional neural networks are classically used for image classification, they
still reached good results for 1-dimensional data such as power traces [KLN18] [KPH+19].

Kim et al. [KPH+19] have developed a similar convolutional neural network inspired by
the VGG16 design. This new convolutional neural network has similar design principles as the
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convolutional neural network designed by [BPS+18], but has a factor of 10 fewer parameters and
has three more convolutional blocks. The performance of this model tested on ASCAD is also
higher with this model. Kim et al. emphasise that there is no such thing as a ”Free Lunch”: one
general neural network can’t be generalisable on different SCA problems. To reuse previously
trained networks, some adjustments might be needed to a certain neural network architecture
if a new problem is tackled. Another contribution made by Kim et al. showed that adding a
Gaussian noise tensor after the first batch normalisation layer improves the robustness of the
model, as compared to task-specific noise. This prevents overfitting of the model.

3.2 Approaching Portability

The portability problem is not left untouched. Different researchers have made attempts to
overcome this problem by using various approaches.

Das et al. highlight that most previous work done on side-channel analysis with deep learning
focuses on attacking the same device - mostly from the ASCAD or DPAv4 dataset [DGD+19].
Therefore, they decided to collect traces from different devices using ChipWhisperer, to facilitate
a cross-device side-channel attack. As ChipWhisperer delivers aligned traces, Das et al. opted
for a fully connected deep neural network network. In total, they used eight identical 8-bit
ATMEGA devices, four for profiling and four for attacking. Their main contribution is to
design a fully connected 256-class deep neural network which is trained, validated and tested on
multiple identical devices. They showed that a single-trace attack is possible with an accuracy
of 99% with 10k training traces and 99.9% with 200k traces. Some specific key bytes are more
likely to be misclassified. They also showed that inter-device variations can influence accuracy,
but these variations become smaller when multiple devices are included in the train set.

Bhasin et al. highlight the same problem: previous work only focuses on profiling and
attacking the same device [BCH+20]. However, using different devices for profiling and attacking
is considered hard due to inter-device variations, which is also known as the portability problem.
The training data is closely related to the device properties. Therefore, they highlight that the
portability issue arises due to a suboptimal validation phase. To tackle this problem, a new
model is introduced: the Multiple Device Model. The idea behind this model is to augment the
profiling phase - which includes training and validating - with more devices, such that the model
performs better on unseen devices. They used in total four identical 8-bit ATMEGA devices
to investigate four scenarios using a regular side-channel setup: same device and same key,
same device and different key, identical device and same key, and identical device with different
key. They found that expanding their data to multiple identical devices of their Atmega328p
8-bit microcontroller target device improved the guessing entropy. The main difference between
Bhasin et al. and Das et al. is that Bhasin et al. collected their data through probes and
obtaining unaligned traces, whereas Das et al. collected their data through ChipWhisperer.

Zhang et al. [ZSX+20] propose a whole new analysing method to overcome the portability
problem: Frequency and Learning based Power Analysis (FL-PA). Instead of augmenting the
training dataset with traces from multiple devices as Bhasin and Das et al. did, this method first
transforms the power traces with Fast Fourier Transform to the frequency domain, before train-
ing a deep neural network. They think the failure of a regular template attack on homogenous or
heterogenous devices is attributed to the selection of POI region and cycles of instruction. Those
are related to the clock in the time domain. By first transforming the traces, the timing differ-
ences between devices are eliminated. In total, they have ten devices with different relations:
there are identical devices, homogeneous devices and heterogeneous devices. They evaluated
their method across all possible combinations of profiling- and attacking devices. They found
that all attacks succeeded within 600 attack traces compared to over 1000 traces with a deep
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learning attack in the time domain. With their new method, they trained the neural network on
their local PIC devices and attacked the DPAContest v4 dataset. This showed to be successful
within 800 traces.

All highlighted papers above use 8-bit micro-controllers as target devices. Most IoT devices
are currently transitioning to 32-bit microcontrollers, leaving new research opportunities.

3.3 Transfer learning and SCA

Next to augmenting the dataset and preprocessing your data, there are other options to improve
the portability issue for side-channel attacks as well. One of these options is to investigate the
possibilities of transfer learning. There are a few recent papers which touch upon the usage of
transfer learning for DNNs in SCA.

As highlighted earlier, Thapar et al. already investigated the possibilities of transfer learn-
ing for side-channel analysis [TAM20]. They propose a deep-learning technique using transfer
learning: TransSCA. This method improves the possibility of a real-world attack scenario and
reduces training costs. The main difference between this model and regular DL-SCA is the fine-
tuning phase. This is done by freezing some layers and fine-tuning the unfrozen layers. They
found that it matters which layers are frozen when entering the fine-tuning phase (i.e. transfer
learning phase). In this work, the last layer of the model was frozen to obtain the best results.
They use simulated power traces to model different FPGA families running AES128.

A similar approach was taken by Genevey-Metat et al. [GMGH20]: they wanted to use
transfer learning for three scenarios in a SCA setting, of which one was a cross-device side-
channel attack in the power domain. Their main investigation was based on three attacker
models with different powers:

1. access to a pre-trained network

2. access to a clone dataset (i.e. identical device)

3. access to both

For this experiment, they used a ChipWhisperer light combined with a CW308 UFO board with
STM32Fx target devices. In total, traces were collected from four devices for finetuning the
pre-trained network. They investigated re-training the pre-trained model and freezing all the
convolutional layers, which gave similar results. In the end, they chose to retrain the model to
prevent making wrong assumptions. The authors indicated that investigating the possibilities
of finetuning the last layer would be a good extension of this work. The third attacker model
(access to a pre-trained network which is retrained and a clone dataset) improved the accuracy
slightly.

The paper by Yu et al. investigates the possibilities of using meta-transfer learning [YSPJ21].
This is a mixture of transfer learning and meta-learning, which reduces training time and costs.
This method makes it possible to train on device A, and then use the meta-transfer learning
approach to attack device B. The paper tested their method against different 32-bit microcon-
trollers, even across domains. The results look promising in terms of training time and the
amount of training data needed, however, they did not address the portability problem.

It is also possible to use transfer learning across domains: Cao et al. developed a deep learn-
ing model for cross-device side-channel attack (CDPA) with domain adaptation [CZLG21]. For
their research, they used 8 identical ATMEGA devices and three identical SAKURA-G devices.
As a base model, they used a convolutional neural network. Transfer learning was used to attack
across domains: from the EM domain to the power domain across an identical 8-bit device. A
fine-tuning phase was needed to transfer this knowledge and it improved results for some of the
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device combinations. A cross-domain experiment using transfer learning was also conducted by
Genevy-Metat et al [GMGH20]. Using the pre-trained CNN network from the ASCAD dataset,
they experimented with the same three cases as in their cross-device experiment. Only in the
case where the attacker has access to the pre-trained network and the clone dataset, it was
possible to perform a transfer learning attack across domains.

Some research has already been done on using transfer learning to attack across devices.
Most of the research used 8-bit devices as targets, whereas most current IoT devices are 32-bit.
The model by Genevy-Metat et al. ended up retraining the network, as it gave similar results
to the fine-tuning phase. From the currently existing literature, it is unclear from this set of
papers if transfer-learning is more beneficial than using DL-SCA, due to different setups and
different finetuning phases. The most promising paper by Yu et al. did not cover portability on
32-bit devices.
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Chapter 4

Experimental setup

Within the previous two chapters, it has been shown that there is a gap between relevant
literature and the real world. First of all, most research on portability has been done on 8-
bit identical devices, while currently there is a shift to 32-bit microcontrollers in IoT. Second,
the research done on transfer learning for side-channel analysis is inconclusive concerning the
portability problem and transfer learning specifications.

4.1 Definitions and Research Question

To close the gap between current literature, this research focuses on the inter-device difference
of 32-bit identical devices and how this affects transfer learning. On top of that, the effect of
noise in traces is investigated on the performance of the model. Therefore, the research question
of this thesis is as follows:

”How does transfer learning compare to a regular deep neural network for a successful side-
channel attack with both clean and noisy traces on identical 32-bit devices?”

To answer this research question, a definition of ”successful attack” needs to be provided.
For this work, a successful attack is defined as follows:

”A successful attack is when the target byte is guessed correctly in exactly one guess”

In the context of deep learning, this means that the network should output a probability
distribution of all possible values for the target byte and the correct target byte should have the
highest probability.

For this research, we assume the following attacker model: Firstly, the attacker should know
which encryption algorithm is running on the device under attack. To train the base model, an
identical device is required as the device under attack, which means the target device and training
device have a similar micro-architecture. The attacker should have full control of this identical
device - the training device. To obtain the traces from the training device, the attacker lets this
training device compute the same algorithm as the device under attack. This algorithm should
be a firmware or software implementation, and this should be operated on one byte at a time.
On top of that, the attacker can determine the plaintexts and keys, to gather the corresponding
power traces. This would lead to the dataset that facilitates the supervised training of the base
model.
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4.2 Devices & specifications

For this experiment, the devices for trace collection used are ChipWhisperers Lite with a 32-
bit STM32F303 target board, which has an ARM Cortex M4 chip. ChipWhisperer is running
firmware version 0.65. The ARM Cortex M4 chip is executing a simple serial AES implementa-
tion, which comes standard with ChipWhisperer. This is the tinyAES128 implementation [Chi].
In total, there is access to 15 identical devices.

As the traces collected with ChipWhisperer are relatively clean, and we are dealing with
clone devices, we decided to add some noise to the data. It has been shown by Kim et al. that
adding non-Gaussian noise improves the robustness of the network and supports generalization.
For this research, artificial electrical noise is added to the traces to investigate the robustness of
the model. This noise is taken from a Gaussian distribution.

4.3 Data collection

The ChipWhisperers have been used to acquire the power consumption of the ARM Cortex M4
chip running tiny AES-128. For this work, two groups of data are collected:

1. The dataset for intra- and inter-device analysis

2. The dataset for the deep learning model

The dataset for intra- and inter-device analysis consists of two devices: A and B. Within
this experiment, a total of 6 sessions are collected. Sessions 1 and 2 on device A were collected
on the same day as session 1 of device B. Sessions 3 and 4 on device A were collected on the
same day as session 2 of device B. Each session consists of 500 traces with 12000 time samples,
for which the plaintext and keys were the same for all sessions. In this dataset, one trace is
collected with the maximum amount of possible time samples allowed by ChipWhisperer. A
schematic of the dataset used for device analysis is displayed in figure 4.1.

The second dataset for the deep learning model consists of 15 devices in total. Device A
is our ground device, on which the model is trained. We collected 50k traces from our ground
device A. These traces have random plaintexts and a fixed key. For all devices, there are 10k
traces collected with the same properties as the ground device which is used for testing. This
includes an additional dataset for device A. On top of that, for each device, there are 500 traces
collected with fixed plaintexts and fixed keys for the device analysis. For each device, the serial
number is written to a txt-file for unique identification. The traces are saved separately in a
.npy-file. Each file consists of three arrays with corresponding key values: trace, textin and
keys. The schematic of the transfer learning dataset is displayed in figure 4.2.

Figure 4.1: Dataset structure for the device analysis. The number indicates the amount of traces
collected. Every trace is saved together with its plaintext and key.
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Figure 4.2: Dataset for training the deep neural network. The numbers indicate the amount of
traces collected. Every trace is saved together with its plaintext and key.

4.4 Design choices & neural network model

When using deep neural networks for data analysis, it is important to keep a grasp on what we
are exactly modelling. In this case, the data being fed to the network are power traces with a
variable plaintext and a fixed key for each device. As discussed in the preliminaries, the power
traces consist of several components, as described in formula 2.1 defined by Mangard et al. In
this research, identical devices are used which are running the same algorithm with the same
input data. As the plaintext is variable, the variations captured by the neural network trained
on our ground device would be the intra-device differences on Pdata+Pel.noise. In this work, it is
investigated if it is needed to close the portability gap between the profiling and attack device.
In other words, would the base model be able to deal with inter-device differences caused by
environmental influences and manufacturing processes?

As shown in the literature review, there have been investigations on which deep neural net-
work architectures are beneficial for the analysis of power traces. In this research, the possibilities
of transfer learning are investigated, thus for comparable research, the currently best-working
deep neural network structure is used as the base model. That would be the convolutional neural
network (CNN) model developed by Kim et al, and is displayed in figure 4.3.

Figure 4.3: CNN model from Kim et al. used for this research [KPH+19]

To apply transfer learning to this chosen base model, we need to determine which layers
are frozen during finetuning. In the preliminaries, it is already briefly discussed how transfer
learning can be applied to different types of datasets. In this case, the training dataset from
device A is more or less similar to the test datasets from device B until O, as they are all
identical devices. Therefore, in this research, it is chosen to freeze all layers after training the
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base model. Then, the last fully connected classification layer will be removed and replaced with
a new classification layer with random initialised weights.

In total, we trained four models based on the CNN by Kim et al. for different target bytes
and noise levels:

1. Model trained on clean traces to attack byte 0

2. Model trained on clean traces to attack byte 5

3. Model trained on traces with simulated noise to attack byte 0

4. Model trained on traces with simulated noise to attack byte 5

For training the base CNN model on our dataset, a similar training setup is done compared to
the model by Kim et al. This includes a categorical cross-entropy loss with the Adam optimiser
and a learning rate of 0.0001. A validation split of 0.1 has been applied. The models are trained
with the 50k traces collected from device A on a point of interest of index 1300 to 2000. In the
latter two models, simulated Gaussian noise is added with a standard deviation of 0.01. The
labels were calculated as label = sbox[plaintext ⊕ key]. For the first two cases, the model was
trained for 150 epochs. Figures 4.4a and 4.4b display the training and validation loss for target
bytes 0 and 5. As can be seen from the plots, for a full convergence the network should have
trained for more epochs, which was not possible due to limits in resources.

(a) Loss for byte 0 on the clean model (b) Loss for byte 5 on the clean model

Figure 4.4: Training and validation loss for the models trained on the clean traces from Chip-
Whisperer. There is a minimal difference in training on byte 0 and byte 5. The models were
almost fully converged.

The third and the fourth models were trained with 75 epochs. Their loss graphs are displayed
in figure 4.5a and 4.5b. From these figures, it follows that the model was able to converge faster
compared to the clean traces, and thus fewer epochs were needed. The number of epochs was
chosen the same for both models for smooth comparison.

When comparing the transfer learning model to the base model, the following setup is used:

1. applying the trained base model directly across different identical devices using 1000 attack
traces

2. finetuning the trained base model on 9000 attack traces from the target device, then attack
using 1000 attack traces
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(a) Loss for byte 0 on the noisy model trained (b) Loss for byte 5 on the noisy model

Figure 4.5: Training and validation loss for the models trained on traces with simulated noise.
The model converged better and with fewer epochs compared to the models in 4.4a and 4.4b.
It was easier for the model to train on byte 0 compared to byte 5

In the case of fine-tuning the clean base model, a total of 30 epochs were used. When fine-
tuning the base model trained on noisy traces, only 10 epochs were needed. When conducting
this experiment, 10-fold cross-validation has been applied on the test set. All other parameters
were the same as training. All target devices were attacked using clean traces and noisy traces.
The full setup is displayed in figure 4.6.

Figure 4.6: Experimental setup for training and attacking. Each attack is done on all target
devices. This setup leads to 16 cases with each case having 15 attack devices.
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Chapter 5

Investigation on portability of 32-bit
devices

To make an educated guess on what information the neural network is modeling, a step-by-step
device analysis is performed on the 15 identical ARM Cortex M4 devices. Figure 5.1 displays
one trace of the ARM Cortex M4 running tiny AES-128. The maximum possible time samples
(+-24000) allowed by ChipWhisperer are collected. To save storage space for the datasets, a
maximum of 12000 time samples are collected for each dataset - indicated in red.

Figure 5.1: Trace collected from device A with maximum possible time samples. The parts
indicated with red lines are collected for all the datasets to save storage space.

This chapter discusses several experiments to answer the posed research question. Section 5.1
gives an overview of how intra- and inter-device variations can behave. Section 5.2 is meant to
determine the point of interest. This is relevant for the deep neural network, as it is undesirable
to input the whole trace. Section 5.3 conducts a cross-device investigation to find similarities
and differences across devices. The signal-to-noise ratio is used to determine the visibility of the
signals for a certain byte. In section 5.4, the effect of transfer learning is compared for all different
devices. Finally, in 5.5, Gaussian noise is added to the training data to test the robustness of
the model. The effect of transfer learning is again compared for all different devices.

5.1 Intra- and inter-device variations

The first analysis is focussed on intra- and inter-device variations. Its goal is to investigate how
intra- and inter-device variations behave. We did this by collecting traces from different devices
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on the same day and from the same device but at different moments in time. The variations are
modeled using the average power trace and the standard deviation per time sample.

5.1.1 Results and discussion

Conclusions. In this first experiment, we conclude from figure 5.3, 5.2, 5.4, 5.7, 5.5 and 5.6
that the inter-device variations are greater compared to the intra-variations of a device. From
these figures, we also conclude that the inter-device variations reveal the pattern of the AES
algorithm.
Analysis. As indicated in section 4.3, for each device, two types of datasets are collected. For
this experiment, the first dataset on device analysis is used. In figure 5.2, the average traces of
devices A and B on the first session are plotted together. The power consumption on the y-axis
is the difference in power consumption compared to a device’s baseline. As shown from the plot,
device A consumes more power than device B.

Figure 5.2: Average trace of devices A and B layered on top of each other. This figure shows
that device A consumes more power compared to device B.

The differences are hardly visible when comparing the two sessions collected on the same
day of device A and the two sessions collected on different days. This is plotted in figure 5.3.

The differences in these traces are calculated to make the variations more visible. In the first
plot of figure 5.4, the average traces of device A sessions 1 and 2 are subtracted. In the second
plot of figure 5.4, the average trace of device A session 1 and device B session 1 is subtracted. The
first plot shows that the intra-device differences are small, concluded from the y-axis scale. The
second plot shows that the inter-device differences are larger than the intra-device differences
but are still relatively small. A remarkable thing about the second plot is that the pattern of
the AES-trace shows. This tells us that the inter-device difference is larger at time samples with
a higher amplitude than at time samples with a smaller amplitude.

The experiments above are repeated but with the standard deviation across time samples
within a session as a metric. In figure 5.7, the standard deviation of device A on session 1
is plotted next to the standard deviation of device B on session 1. As can be seen, device
A’s standard deviation is greater than device B’s standard deviation. There is also a standard
deviation artifact on device A around time sample 700, which does not occur in device B. This
plot shows the pattern of AES appearing, telling us that the standard deviation on higher
amplitudes is greater than the standard deviation on the lower amplitudes. The pattern is
stronger on device A compared to device B.

Figure 5.6 shows the standard deviation of device A across sessions 1 and 2, as well as sessions
1 and 3. The first thing to note is that the standard deviations are small. However, there is
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Figure 5.3: Average trace of different sessions from device A layered on top of each other. This
plot shows that the intra-device variations are hardly visible, even when they are collected on a
different day

Figure 5.4: Average difference between device A and B and between sessions A1 and A2. This
plot shows that the intra-device difference is very small. The inter-device difference reveals the
AES pattern.

a visible difference in the standard deviation at different times. The difference in standard
deviation on sessions 1 and 2 is smaller compared to sessions 1 and 3. Although the variations
are small, an intra-device difference exists across different moments in time. The difference
between sessions 1 and 2 are also displayed in the first plot of 5.7. The difference in standard
deviation on device A’s artifact is higher than the other time samples.

In the second plot of 5.7, the difference in standard deviation between the first sessions of
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Figure 5.5: Standard deviation per time sample of devices A and B layered on each other. This
plot shows that the standard deviation of device A is overall higher compared to B. Device A
also has an artifact around time sample 700.

Figure 5.6: Standard deviation per time sample of different sessions from device A layered on
each other. This plot shows that the difference in standard deviation is bigger when the sessions
are collected on different days.

devices A and B are plotted, still showing the artifact of device A. The difference in standard
deviation on the trace pattern is visible but somewhat less than the experiment using average
traces.

5.2 Determining point of interest

Now that we know how devices differ during different moments in time and between devices, it
is time to investigate which part of the trace is used for attacking. Therefore, this experiment
indicates which time samples are used for attacking. The signal-to-noise ratio and correlation
are used as a metric to determine the point of interest.
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Figure 5.7: Difference in standard deviation between device A and B and between sessions A1
and A2. This figure shows that the intra-device difference in standard deviation is very small.
Still, the artifact is present. When calculating the inter-device standard deviation, the AES
pattern is revealed slightly.

5.2.1 Results and discussion

Conclusions. In this experiment, we conclude from figure 5.11, 5.9, 5.10 and 5.8 that the point
of interest for this work - namely the S-box output from the first AES round - is between time-
sample 1300 and 2000, and this window is the same for all target devices.

Analysis. The profiling dataset determines the point of interest as we train the neural network
on our ground device, A. This dataset has 50k traces with variable plaintexts and fixed keys.
For this work, the targeted bytes of the S-box are byte 0 and byte 5. To determine where the
calculation of the S-box is taking place in the trace, the correlation is calculated between each
time sample of the trace and the leakage model for byte 0 and byte 5. To investigate where
the S-box calculation ends, byte 15 is also included in this investigation. For the rest of this
work, byte 15 is not used as a target. The ranking of the first three most probable time samples
representing the output of S-box on byte 0 and byte 5 are calculated.

Figure 5.8 shows that the time sample with the highest correlation for byte 0 is 1326, and
for byte 5 is 1541 for ground device A. The time sample where the S-box calculates the final
byte 15, is at sample 1973. In figure 5.11, the leakage plots are displayed for all three bytes. The
base model planning to use takes as input 700 time samples. Using this information, we selected
a time sample of 1300 until 2000 as input for the deep neural network. Figure 5.12 shows the
point of interest for all upcoming investigations.

Figure 5.8: Timesamples with the highest correlation for a certain byte. This figure shows that
the window of the first round of AES concerning the output of the S-box is between time sample
1300 and 2000
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Figure 5.9: Timesample ranks for byte 0. In this figure, only device C has a slightly different
time sample for the highest correlation.

Figure 5.10: Timesample ranks for byte 5. This figure shows that for all target devices, the
same time sample has the highest correlation on byte 5.

As it is not sure if the point of interest for all the test devices is the same, a ranking has
been made for the test devices on which time sample correlates the most with byte 0 and byte 5.
This is displayed in figure 5.9 for byte 0 and figure 5.10 for byte 5. As shown in figure 5.9, only
device C has a different time sample with the highest correlation for byte 0 compared to the
ground device. However, the second highest correlation does equal the same time sample as the
ground device. In figure 5.10, it is shown that each test device has the same highest correlating
time sample as the ground device for byte 5. From this information, we can conclude that the
neural network model will most likely not need to model the variation of the point of interest
across devices, as they are mostly the same.

5.3 Investigate test devices

A comparison investigation is made across the test devices to determine how the test devices
differ fundamentally from the ground device A. The goal of this experiment is to visualize the
difference of Pel.noise + Pconst in identical devices on a byte level of 10-time samples and the
1300-2000 time samples window, as shown in figure 5.12. Another goal is to investigate the
strength of the signal concerning the noise by using the signal-to-noise ratio for each test device.
The dataset containing the profiling and attacking traces is used for this investigation.

5.3.1 Results and discussion

Conclusions. From this experiment, we conclude from 5.13a that device E correlates the least
with our ground device A. Figure 5.13b visualizes that devices M and H show the biggest dif-
ference. From figure 5.14, we see that the standard deviation of device K is the highest. From
these plots, we conclude that the overall inter-device variations are small. Figures 5.15 and A
show that the signal-to-noise ratio for byte 0 and byte 5 are very high. Therefore, we conclude
that the traces are relatively clean. When we added the Gaussian noise to the traces, the signal-
to-noise ratio became a factor 10 smaller. The figures in A show that the signal for byte 0 is
still stronger than the noise, but for byte 5, the signal is as strong as the noise. This behavior
is the same for all target devices.

Analysis. The dataset with 500 traces for each target device with fixed plaintext and keys is
used for this comparison. The differences between devices are measured using correlation and
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Figure 5.11: Leakage plots for each byte. This plot shows a visible leakage and an obvious
correlation for byte 0. On byte 5, there is another spot as well, but this is not in the top-3
highest correlation as concluded from 5.10. Byte 15 shows where the first round of SubBytes
ends.

Figure 5.12: Point of interest for all upcoming investigations. This is the part of the trace where
the first round of AES performs the SubBytes operation.

difference. Additionally, for each device, the standard deviation is investigated. The heatmaps
with inter-device correlations and differences are shown in 5.13a and 5.13b. As expected, the
correlation between the ground device A and the test device A is 1, where the difference is 0.
This is because we use the same device but with the data collected in different sessions. The
inter-session difference is not visible on this level. From the axis of the plots, it can be seen that
the differences are minimal. Device E correlates the least with ground device A from all our

30



(a) Heatmap of correlation between test devices. This plot shows that device E correlates the least with
our ground device A.

(b) Heatmap of difference between test devices. This plot shows that devices M and H have the biggest
difference from our ground device A. The differences become stronger at byte 5.

Figure 5.13: Heatmaps for test device investigation. There does not seem to be a relationship
between trace correlation and trace difference.

test devices compared to the other devices. Another highlight is that device E generally stands
out compared to the other devices. When looking at the difference between devices, devices M
and H show the biggest gap compared to device A. In this case, device M stands out the most
compared to other test devices. The variations between devices become stronger when looking
at the byte level, especially on byte 5.

For each device, the standard deviation is calculated from the average trace on the point of
interest. This is displayed in figure 5.14. As can be seen, the standard deviation on device K
on the overall window is the highest, as well as on byte 0. On byte 5, the standard deviation on
device E is the highest. The standard deviation does get lower when zooming in on a byte level
compared to the whole point-of-interest window.

As indicated earlier, the inter-device variations on identical devices are relatively small.
To investigate the effect of noise on the model’s performance, simulated noise from a Gaussian
distribution with a standard deviation of 0.01 is added. This value has been chosen by inspecting
the plots on 5.14, where the highest standard deviation is 0.08, and the lowest standard deviation
is 0.0375. On top of that, this value still results in a signal-to-noise ratio around 1 or higher,
such that the deep neural network can recognize the signal properly.

This is displayed in 5.15 for devices A and B. On the right side, a zoomed-in plot is shown
on its behaviour with added noise. These plots are displayed for all test devices in the appendix
A.

From these plots, it can be concluded that the traces collected from ChipWhisperer are very
clean, as the signal-to-noise ratio is high. The signal for byte 0 is more prominent than that for
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Figure 5.14: Standard deviation for each device. Overall, device M has the highest standard
deviation. At byte 5, device E has the highest standard deviation.

Figure 5.15: Signal-to-Noise ratio for devices A and B. The left plots show that the signal-to-
noise ratio without added noise is high, where byte 0 is stronger than byte 5. With the added
Gaussian noise, the signal-to-noise ratio is between 1.75 and 2 for byte 0 and around 1.00 for
byte 5. Appendix A shows similar behavior for all test devices.

byte 5. When adding the noise, the signal-to-noise ratio decreased by 10. For byte 0, the signal
is still two times stronger than the noise. For byte 5, the signal is almost as equal to the noise.
For all test devices, similar behaviour is observed.

5.4 DL-SCA attack with transfer learning on a clean base model

This experiment investigates the influence of inter-device variations when applying a cross-device
deep learning attack. This experiment’s goal is threefold: first, investigate the difference between
using the base model and the transfer model to investigate the extent of the portability problem
on identical devices. Secondly, investigate if accuracy is different by attacking byte 0 or byte 5.
Thirdly, investigate how noisy attack traces influence the success of the attack.
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5.4.1 Results and discussion

Conclusions. From figure 5.16, we conclude there is no portability issue when using identical
devices for a cross-device attack with clean traces. Only devices E and H were slightly harder to
attack with target byte 5 using the base model. Figure 5.17 shows that using noisy attack traces
influences the base model’s performance. We also saw from figure 5.17 that applying the transfer
learning model using noisy attack traces does not improve the attack performance. Using the
transfer learning model, there is a visible difference between attacking byte 0 and byte 5. For
an attacker, it usually took more traces for a successful attack on byte 5 compared to byte 0.
From figure 5.17, we conclude that it was more difficult to successfully attack byte 0 on device
M. Finally, using the transfer learning model, it was harder to perform a successful attack with
noisy attack traces on byte 5 for the devices H and M.

Analysis. As seen from 5.16, it was possible to do a cross-device attack using both the trained
base model and the transfer learning model when using the clean traces received from Chip-
Whisperer. A small difference is observed when attacking byte 5 on devices E and H. This is as
expected, as these devices were the least similar to our ground device. Other than that, it can
be concluded that there is no portability issue when the inter-device variations are small. The
base model can be applied directly across different identical devices.

Figure 5.16: Performance of clean base model compared to transfer learning model on byte 0
and byte 5 with clean attack traces. This plot shows no portability issue when performing an
identical cross-device attack. The base model and transfer learning model performed equally
well on both byte 0 and byte 5.

The same experiment was repeated to challenge the model by feeding the model noisy attack
traces. This is displayed in figure 5.17. It can be concluded that it is possible to do a cross-device
attack with noisy attack traces using the base model. Therefore, no portability issue arises here.
However, the transfer learning model did not perform as well. Only with a sufficient amount of
noisy attack traces is it possible to perform a successful attack. It can be seen that devices H
and M where harder to attack using the transfer learning model.
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Figure 5.17: Performance of clean base model compared to transfer learning model on byte 0
and byte 5 with noisy attack traces. This plot shows it was better to perform the cross-device
attack using the base model on both target bytes.

From this, it can be concluded that when the inter-device variations are small, applying
transfer learning is unnecessary to enhance the model’s performance. It is even better not to
apply transfer learning when the attack traces are noisier than the base model. In the appendix
B, the plots for each device are displayed separately for clarity.

5.5 DL-SCA attack with transfer learning on a noisy base model

In the final experiment, we investigate using a model trained on noisy traces. The goal of this
experiment is threefold: first, investigate the difference between using the base model and the
transfer model to investigate the extent of the portability problem on identical devices when
noise is added to the training data. Second, investigate if there is a difference in accuracy by
attacking byte 0 or byte 5. Third, investigate how noisy traces influence attack accuracy.

5.5.1 Results and discussion

Conclusions. From figure 5.18, we conclude there is no portability issue when performing a
cross-device attack with clean attack traces. This figure also shows that attacking with the
finetuned model is equally good on byte 0. This figure shows that devices M and H are harder
to attack.

Figure 5.19 shows that the use of noisy attack traces does not influence the base model’s
performance. This figure also shows that transfer learning did not enhance the model’s perfor-
mance when using noisy attack traces. There is a visible difference in performance on attacking
byte 0 compared to attacking byte 5.

Analysis. In figure 5.18, the key rank is displayed when the noisy base model is used. For byte
0, there was not a big difference between the base model’s performance compared to the transfer
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learning model. The device considered slightly harder to attack was device M.

Figure 5.18: Performance of noisy base model compared to transfer learning model on byte 0
and byte 5 with clean attack traces. This plot shows no portability problem when performing a
cross-device attack using the base and transfer learning models trained on added noise.

Adding noise to the attack traces hardly influences the base model’s performance, as shown
in 5.19. It also did not improve the performance of the transfer learning model. Both target
bytes were harder to attack when noise was added. The separate plots of figure 5.18 and 5.19
are displayed in the appendix C.

From this experiment, it can be concluded that adding noise to the data does influence the
network’s performance. The model’s attack byte 0 and byte 5 were different, and attacking with
noisy traces did not improve performance compared to attacking with clean traces.

35



Figure 5.19: Performance of noisy base model compared to transfer learning model on byte
0 and byte 5 with noisy attack traces. This plot shows no portability problem on the base
model performing a cross-device attack. When transfer learning was applied, the performance
decreased. Transfer learning did perform better on the Gaussian-trained model compared to the
model in 5.17.
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Chapter 6

Discussion and future work

The device analysis shows that the inter-device variations are relatively small when using iden-
tical devices. The data collected using ChipWhisperer yielded a high signal-to-noise ratio. The
analysis also showed that point-of-interest is obvious from the data and equal for all target de-
vices. Thus, the deep neural network did not have to account for this. As there is little variation
within all target devices concerning correlations, differences, standard deviations, signal-to-noise
ratio, and time samples of interest, the network would probably perform well in classifying the
attack traces across devices. This was the case: a well-trained base model outperformed the
fine-tuned transfer-learning model. Even for a well-trained base model tested on attack data
with simulated noise, it was still possible to perform a successful attack. Finally, we also saw
that the least similar devices compared to our ground device were harder to attack compared
to more similar devices. Adding transfer learning did not account for these variations.

Transfer learning also showed a difference in performance at the attack bytes when noise
was added to the attack traces. This was already seen in the signal-to-noise ratio, where byte
5 has a weaker ratio than byte 0. From the experiments, it is obvious that having clean attack
traces is more influenced than the target byte or the model used. When clean attack traces were
applied, it was possible to perform a successful attack.

It is also shown that adding Gaussian noise adds to the network’s generalisation, both train-
ing as the finetuning required fewer epochs in the case of a model trained on traces with simulated
noise. The main difference compared to the added noise by Kim et al. [KPH+19] is that the
noise is added as a tensor on a specific layer while learning.

This work shows that applying transfer learning does not improve the model’s performance
compared to identical devices. A well-trained base model for an identical cross-device attack
outperformed a fine-tuned transfer learning model. There can be several reasons for this result:
firstly, the portability problem for identical devices is not as problematic as for other devices.
Secondly, the assumption that the feature extraction stays the same across devices and the
classification needs to be fine-tuned is wrong. This is also what was found in the research
from Thapar et al. [TAM20], where they chose to freeze the classification layer and fine-tune
the convolutional layers. However, they had a pretrained network from a homogeneous device.
Another reason for this result is that the fine-tuning for the transfer learning model has not
converged yet. The fine-tuning was done in a batch due to the size of the study. Therefore,
there were no individual tweaks for each device to make sure the model was fully converged.
In work by Genevy-Metat et al., [GMGH20], they found that retraining and fine-tuning the
last layer yielded similar results, again suggesting that transfer learning is not applicable in this
domain when using a convolutional neural network. The result from Genevy-Metat et al. is
in line with what we found in this work. Adding to the findings of Genevy-Metat et al, it is
possible to predict model performance by doing a device analysis on the clone devices.
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For future work, it is possible to investigate the applications of transfer learning for homoge-
nous or heterogenous devices. The literature shows that the portability problem can still play
a role in different kinds of cross-device attacks. Another option is to perform a similar study
compared to this but using variable keys for each trace. Usually, variable keys are considered
harder compared to fixed keys. Another option for future work is to use a protected implemen-
tation of tinyAES-128. In this situation, transfer learning can still be interesting as the deep
learning model must also model information on the used countermeasures.
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Chapter 7

Conclusions

This work investigated how transfer learning compares to a regular deep neural network for a
successful side-channel attack on 32-bit devices. We investigated this for clean traces and traces
with simulated noise.

From the device analysis and deep learning attack, we can conclude that the convolutional
neural network can be applied for a cross-device attack regardless of the inter-device differences
of these identical devices. In almost all cases, the base and transfer learning models lead both
to a successful attack. The transfer learning model did worse when the attack traces were noisy.

The results of this work show that the portability problem is limited at the level of identical
devices. A cross-device analysis beforehand does indicate the performance of the side-channel
attack. This work also showed that a well-trained model can outperform a transfer-learning
model. Adding noise to the training data contributes to the generalisation of the model. Finally,
clean attack traces are important for a successful attack in both model scenarios.

We suggest investigating the relationship between the profiling and attacking device first. In
the future, this could lead to making an educated guess on the type of model and parameters to
use for a certain problem. As indicated by other literature, there is no silver bullet for solving
all side-channel problems. However, picking the right bullet for the correct goal might reduce
obstacles.
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Sheet. ACM Computing Surveys, 55(10), 2023.

[PH90] David A Patterson and John L Hennessy. Computer architecture: a quantitative
approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1990.

[PPM+23] Stjepan Picek, Guilherme Perin, Luca Mariot, Lichao Wu, and Lejla Batina. SoK:
Deep Learning-based Physical Side-channel Analysis. ACM Computing Surveys,
55(11), 2023.

[PR19] Van Hiep Phung and Eun Joo Rhee. A High-accuracy model average ensemble
of convolutional neural networks for classification of cloud image patches on small
datasets. Applied Sciences (Switzerland), 9(21), 2019.

[RD20] Mark Randolph and William Diehl. Power side-channel attack analysis: A review
of 20 years of study for the layman. Cryptography, 4(2):1–33, 2020.

[RDJ+01] Atri Rudra, Pradeep Dubey, Charanjit Jutla, Vijay Kumar, Josyula Rao, Pankaj
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Appendix A

Signal to noise ratio

Figure A.1: Signal-to-noise ratio for all test devices - device A-E
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Figure A.2: Signal-to-noise ratio for all test devices - device F-J
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Figure A.3: Signal-to-noise ratio for all test devices - device K-O
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Appendix B

Key ranks for each device for base
models trained on clean traces

(a) Performance of base model and transfer learning model on byte 0 and 5 for device A

(b) Performance of base model and transfer learning model on byte 0 and 5 for device B
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(c) Performance of base model and transfer learning model on byte 0 and 5 for device C

(d) Performance of base model and transfer learning model on byte 0 and 5 for device D

(e) Performance of base model and transfer learning model on byte 0 and 5 for device E
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(f) Performance of base model and transfer learning model on byte 0 and 5 for device F

(g) Performance of base model and transfer learning model on byte 0 and 5 for device G

(h) Performance of base model and transfer learning model on byte 0 and 5 for device H
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(i) Performance of base model and transfer learning model on byte 0 and 5 for device I

(j) Performance of base model and transfer learning model on byte 0 and 5 for device J

(k) Performance of base model and transfer learning model on byte 0 and 5 for device K
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(l) Performance of base model and transfer learning model on byte 0 and 5 for device L

(m) Performance of base model and transfer learning model on byte 0 and 5 for device M

(n) Performance of base model and transfer learning model on byte 0 and 5 for device N
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(o) Performance of base model and transfer learning model on byte 0 and 5 for device O

Figure B.1: Performance of base model and transfer learning model with clean base model for
each device
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Appendix C

Key ranks for each device for base
models trained on traces with
simulated noise

(a) Performance of base model and transfer learning model on byte 0 and 5 for device A

(b) Performance of base model and transfer learning model on byte 0 and 5 for device B
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(c) Performance of base model and transfer learning model on byte 0 and 5 for device C

(d) Performance of base model and transfer learning model on byte 0 and 5 for device D

(e) Performance of base model and transfer learning model on byte 0 and 5 for device E
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(f) Performance of base model and transfer learning model on byte 0 and 5 for device F

(g) Performance of base model and transfer learning model on byte 0 and 5 for device G

(h) Performance of base model and transfer learning model on byte 0 and 5 for device H
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(i) Performance of base model and transfer learning model on byte 0 and 5 for device I

(j) Performance of base model and transfer learning model on byte 0 and 5 for device J

(k) Performance of base model and transfer learning model on byte 0 and 5 for device K
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(l) Performance of base model and transfer learning model on byte 0 and 5 for device L

(m) Performance of base model and transfer learning model on byte 0 and 5 for device M

(n) Performance of base model and transfer learning model on byte 0 and 5 for device N
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(o) Performance of base model and transfer learning model on byte 0 and 5 for device O

Figure C.1: Performance of base model and transfer learning model with noisy base model for
each device

58


