
Master Thesis
Computing Science

Radboud University

Optimizing the MEDS
Implementation for ARMv8

Author:
Lars Jeurissen
s1022856
lars.jeurissen@ru.nl

First supervisor/assessor:
prof. dr. Peter Schwabe
peter@cryptojedi.org

Second supervisor:
dr. Simona Samardjiska

simonas@cs.ru.nl

August 23, 2024

mailto:lars.jeurissen@ru.nl
mailto:peter@cryptojedi.org
mailto:simonas@cs.ru.nl

Abstract

As the risk of quantum computers breaking current cryptographic schemes
grows, the need for post-quantum cryptography becomes more pressing.
The recent NIST competition on post-quantum signature schemes has led
to the creation of MEDS, a signature scheme based on the Matrix Code
Equivalence (MCE) problem. In this work, we optimize the existing MEDS
implementation for the ARMv8 CPU architecture using parameter-specific
optimizations and NEON SIMD instructions.
We explore two approaches: a low-level approach that optimizes the individual
operations of the scheme and a high-level approach that parallelizes over
the main commitment loop. The low-level approach gives the best results,
with a speedup of 3.2× for key generation, 3.9× for signing, and 4.1× for
verification, in NIST category 3, on the ARM Cortex-A72.
Additionally, we suggest an optimization to the hashing structure used in
MEDS which, when combined with the low-level optimizations, increases the
speedup for signing and verification to 4.1× and 4.4×, respectively, in NIST
category 3, on the ARM Cortex-A72.
We also provide a brief analysis of the performance on the Apple M2, which
shows that our optimizations are even more effective on this architecture.

Contents

1 Introduction 3
1.1 Context . 3
1.2 Motivation . 4
1.3 Scope . 4
1.4 Related work . 5
1.5 Contributions . 6
1.6 Outline . 7

2 Preliminaries 8
2.1 Notations . 8
2.2 Matrix Equivalence Digital Signature (MEDS) 9

2.2.1 Signature schemes . 9
2.2.2 Codes and Matrix Code Equivalence (MCE) 10
2.2.3 Sigma protocol and Fiat-Shamir transform 12
2.2.4 Parameter sets . 14
2.2.5 MEDS algorithms . 15

2.3 ARMv8, Cortex-A72, and NEON 18
2.3.1 Vectorization and SIMD 18
2.3.2 Cortex-A72 Micro-Architecture 21

2.4 Optimizing cryptographic schemes 24
2.4.1 Branching and conditional execution 24
2.4.2 Data-dependent memory access 26
2.4.3 Non-constant-time operations 26
2.4.4 Preventing timing attacks with Valgrind and Timecop 26

2.5 Modular reduction . 27
2.5.1 Barrett reduction . 28

3 Profiling 30
3.1 Profiling techniques . 30

3.1.1 Cycle counting . 30
3.2 MEDS profiling results . 32

3.2.1 Measurement setup . 32

1

3.2.2 Result analysis . 32

4 Methodology 35
4.1 Modular reduction . 36

4.1.1 Choosing k for Barrett reduction 36
4.1.2 Implementation . 37
4.1.3 Freeze operation . 38

4.2 Low-level optimization . 40
4.2.1 Matrix multiplication 40
4.2.2 Matrix systemizer . 46
4.2.3 Isometry derivation . 50

4.3 High-level optimization . 54
4.3.1 Parallelization of datatypes and supplemental algorithms 55
4.3.2 Parallelization of commitment computations 58
4.3.3 Limitations . 60

4.4 Bitstream filling . 60
4.5 Hash structure . 62

4.5.1 Hash structure optimization 63
4.5.2 Implementation . 64

4.6 Non-constant-time implementations 64
4.6.1 Finite field inversion 64
4.6.2 Matrix systemizer . 65

5 Results 66
5.1 Low-level optimizations . 66

5.1.1 Theoretical and actual speedup factors 68
5.2 Profiling implementation variants 69
5.3 Overall performance . 72
5.4 Comparison to similar schemes 75
5.5 Discussion . 78

6 Conclusions 79

7 Future Work 81
7.1 Further optimization possibilities 81
7.2 Additional research topics . 82

A MEDS Algorithms 92
A.1 Notations and functions . 92

A.1.1 Notations . 92
A.1.2 Functions . 92

A.2 Main algorithms . 94
A.3 Supplemental algorithms . 97

B Benchmark Results 99

2

Chapter 1

Introduction

1.1 Context

As the research on quantum computers progresses, we are getting increasingly
closer to the point where quantum computers will be able to utilize algorithms
such as Shor’s algorithm [69] and Grover’s algorithm [44] to break various
cryptographic schemes, causing the absolute collapse of the present public
key algorithms that are considered secure [53]. As the majority of the digital
world relies on the security of these cryptographic schemes, this will have
devastating consequences for the security of not only the internet, but also
financial transactions, secure communication, and many other critical sectors.

The solution to this problem lies in the development of cryptographic schemes
that are secure against quantum computers. Such algorithms have been
around for a long time, but this area of research has experienced a boost
in attention ever since the National Institute of Standards and Technology
(NIST) started the post-quantum cryptography (PQC) standardization pro-
cess in 2017 [60]. The goal of this process is to standardize cryptographic
schemes that are secure against quantum computers.

In 2022, NIST announced the set of selected PQC algorithms, which included
three digital signature schemes: CRYSTALS-Dilithium [36], Falcon [39], and
SPHINCS+ [21]. As two of these schemes are based on structured lattices,
NIST announced a second competition in the PQC standardization process,
which aims to find additional general-purpose signature schemes that are not
based on structured lattices. One of the candidates in this competition is
Matrix Equivalence Digital Signature (MEDS) [29]. MEDS is a code-based
digital signature scheme based on the notion of Matrix Code Equivalence. In
this thesis, we aim to optimize the performance of the MEDS implementation
for the ARMv8 architecture.

3

1.2 Motivation

The need for digital signature schemes that are secure against quantum
computers is increasing. Of course, the security of these schemes is the most
important aspect, but the speed at which an implementation can create or
verify a signature is also important. The speed of a digital signature scheme
is essential for many applications, such as TLS/SSL certificate verification,
electronic payments, and blockchain transactions.

Although the MEDS scheme is actively being optimized in terms of key and
signature sizes, the performance of the scheme is still lacking. The reported
signature verification times are in the order of hundreds of milliseconds and
sometimes even seconds, depending on the security level and the chosen
parameters. Traditional digital signature schemes such as RSA [64] and
ECDSA [45] can verify thousands of signatures per second on both modern
and even older hardware [34, 49]. The new post-quantum digital signature
schemes must eventually achieve similar performance levels.

The two most widely used CPU architectures in the world are x86 (used in
Intel and AMD processors) and ARM. ARM is used in a wide variety of
devices, for example,

• mobile devices and tablets such as the Apple iPhone and iPad, Samsung
Galaxy, and Google Pixel;

• embedded and Internet of Things (IoT) devices such as smart light
bulbs, smart thermostats, and smart doorbells;

• Apple M1/M2/M3 chips used in Apple MacBooks.

Optimizing the MEDS implementation for the ARMv8 architecture will
improve the MEDS performance for these devices, as well as provide valuable
insights into the performance of MEDS on ARMv8.

1.3 Scope

The goal of this thesis is to optimize the performance of the MEDS implemen-
tation for the ARMv8 architecture to the extent that further optimizations
are either infeasible or provide only minimal performance improvements. To
achieve this goal, we investigate the following research questions:

RQ I. How is CPU time distributed across the code of the MEDS
implementation?

4

RQ II. What optimizations can be made to improve the performance of
the MEDS implementation for the ARMv8 architecture?

a) Which of these optimizations can be used in general for any
architecture?

Since the submission of the original MEDS implementation to the NIST PQC
competition in 2023 [28], the authors have proposed several optimizations
to the scheme to reduce the size of the public key and the signatures [30].
The authors have provided a new reference implementation for MEDS that
implements these optimizations. In this thesis, we focus on optimizing this
new implementation for the ARMv8 architecture. There are two main reasons
for this focus:

• Research has been done on the optimization of the original MEDS
implementation for the x86 architecture (using AVX512 instructions)
in [1, 2]. Although the ARMv8 architecture is different and an optimiza-
tion of the original implementation for ARMv8 would be interesting, we
believe that optimizing the new implementation provides better insights
into the performance of a state-of-the-art MEDS implementation.

• The new MEDS variant has quite a few differences compared to the
original, but the core structure and algorithms remain the same. This
suggests that the optimizations that we make for the new implemen-
tation can also be applied to the original implementation, should the
need arise.

In this thesis, when talking about the MEDS implementation, we refer to
the new reference implementation that was provided by the authors in [30],
unless stated otherwise.

1.4 Related work

Digital signature schemes and their optimization have been the subject of
many research papers over the last few decades. Traditional widely-used
digital signature schemes such as RSA [64], ECDSA [45], and EdDSA [20]
have received optimizations for various versions of ARM CPUs over the
years [74, 75, 81]. The introduction of NEON [6] (ARM’s SIMD instruction
set) in ARMv7 has led to a new wave of optimizations for traditional digital
signature schemes based on NEON instructions, starting with the work of
Bernstein and Schwabe in 2011 [22]. This work has been continued for both
symmetric and asymmetric cryptographic algorithms over the years [11, 42,
67, 68, 78].

The introduction of the NIST post-quantum cryptography standardization
process in 2016 has led to the development of many new public key encryption

5

(PKE), key encapsulation mechanism (KEM), and digital signature schemes
that are believed to be secure against quantum computers. Research into
the NEON optimization of PKE/KEM schemes soon followed [57, 58, 61,
70, 73]. The optimization of post-quantum digital signature schemes has
mostly focused on finalists of the competition: CRYSTALS-Dilithium [36],
Falcon [39], SPHINCS+ [21], and Rainbow [35] have received NEON-based
optimizations for ARMv8 CPUs [17, 18, 46, 47, 50, 59].

More relevant to this thesis is the work on the implementation and opti-
mization of other (code-based) schemes that are similar to MEDS. Many
schemes in the ongoing NIST PQC competition, including ALTEQ [26],
LESS [12], PERK [3], and RYDE [5], have been optimized for x86 CPUs
using AVX2/AVX512 [63] instructions. However, only a few schemes, such
as MiRitH [4] and UOV [24], have been optimized for ARMv8.

Of particular interest is the work on the optimization of the original MEDS
implementation for the x86 architecture using AVX512 instructions [1, 2].
Both this optimization and ALTEQ [26] provide the high-level optimiza-
tion idea of intertwining multiple mathematical objects to allow for more
parallelism in the signature generation and verification algorithms. Besides
this, LESS [12] explores the low-level optimization of the computation of the
RREF of a matrix, which is also used in MEDS.

Besides the use of NEON instructions, the use of already optimized algorithms
can greatly improve the performance of a cryptographic scheme. Common
cryptographic building blocks such as the KECCAK permutation [23] (which
is used in MEDS) and Montgomery multiplication [54] have already been
optimized for various ARM CPUs [18, 27, 66] and are used in many digital
signature schemes.

1.5 Contributions

This thesis makes the following contributions:

• We provide a detailed profiling of the MEDS implementation for the
ARMv8 architecture (specifically, the ARM Cortex-A72), which gives
insights into the performance bottlenecks of the implementation. These
profiling results, although specific to the ARMv8 architecture, can be
used as a guideline for optimizing the MEDS implementation for other
architectures.

• We provide two mutually exclusive optimizations for the MEDS imple-
mentation: a low-level optimization that focuses on the optimization
of underlying functions such as matrix multiplication and the matrix
systemizer, and a high-level optimization that focuses on the paral-

6

lelization of the commitment loop in the signature and verification
algorithms.

• We provide novel assembly implementations of essential functions such
as modular reduction and matrix multiplication that are optimized for
the ARMv8 architecture. These implementations can be used in other
cryptographic schemes that require similar functions.

• We propose a change to the MEDS scheme that allows for larger
parallelizability in the hashing process. This change provides a speedup
of both signature generation and verification.

• We present the benchmarking results of the optimized MEDS imple-
mentation on the ARM Cortex-A72 and the Apple M2 and compare
these results to the reference implementation.

• We compare MEDS to similar digital signature schemes in terms of
performance and show that the optimized MEDS implementation is
competitive with these schemes.

1.6 Outline

In Chapter 2, we provide the necessary background information on the
functioning of MEDS and the specific details of the ARMv8 architecture.
In Chapter 3, we discuss the profiling techniques that we use to obtain an
understanding of the performance of MEDS and present the profiling results
of the MEDS implementation. Following that, in Chapter 4, we discuss the
optimization techniques that we use to optimize the MEDS implementation.
In Chapter 5, we present and discuss the benchmarking and profiling results
of our optimizations. We conclude the thesis in Chapter 6, where we reflect
on the results that we obtained. Finally, we discuss the remaining future
work in Chapter 7.

All code used in this thesis is available on GitHub for reference under the
GPL-3.0 license.1

1https://github.com/MeItsLars/MEDS-ARMv8-optimization-thesis

7

https://github.com/MeItsLars/MEDS-ARMv8-optimization-thesis

Chapter 2

Preliminaries

In this chapter, we provide the relevant background concepts on the func-
tioning of the MEDS scheme, the ARMv8 architecture, the optimization of
cryptographic schemes and modular reduction. Additionally, we give a small
overview of the notations that we use in this thesis.

2.1 Notations

In the MEDS scheme and this thesis, we use the following notations:

• Fq: The finite field of size q.

• Fm×n
q : The set of matrices of size m× n (m rows and n columns) over

Fq, meaning that each element of the matrix is an element of Fq.

• GLk(q): The set of all invertible k × k matrices over Fq.

• A ∈ Fm×n
q : A matrix A of size m× n over Fq.

• In: The identity matrix of size n× n.

• A[i][j]: The element in the i-th row and j-th column of matrix A.

• AT : The transpose of matrix A.

• A−1: The inverse of matrix A.

• A×B or simply AB: The matrix product of A and B.

• A+B: The element-wise matrix sum of A and B.

• A⊗B: The Kronecker product of A and B.

• πA,B(G): Simplified notation for the operation G(AT ⊗B).

• (A | B): The matrix formed by concatenating matrices A and B.

8

2.2 Matrix Equivalence Digital Signature (MEDS)

Matrix Equivalence Digital Signature (MEDS) [29] is a code-based digital
signature scheme and the candidate in the NIST PQC competition that we
aim to optimize in this thesis. A series of optimizations for the key and
signature sizes of MEDS have already been proposed by the authors of the
scheme [30], together with a new reference implementation that implements
these optimizations. In this paper, we focus our efforts on optimizing this
new reference implementation.

2.2.1 Signature schemes

A digital signature scheme is a cryptographic scheme with the purpose of
verifying the authenticity of a message. The scheme allows a party to sign a
piece of data such as a message or a document, after which any party can
verify the signature and thereby the authenticity of the data.

A digital signature scheme consists of three algorithms:

• Key generation: This algorithm generates 2 keys, a private key and
a public key. The private key is used to sign the data, and the public
key is used to verify the signature.

• Signature generation: Given a message and the private (and some-
times public) key, this algorithm generates a signature for the message.

• Signature verification: Given a message, a signature, and the public
key, this algorithm verifies the signature over the message.

The formal definition of a digital signature scheme is given in Definition 2.2.1.

Definition 2.2.1 (Signature Scheme, following [40]).
A digital signature scheme is a tuple of algorithms (Keygen,Sign,Verify)
where:

• Keygen(1n) generates a key pair (pk, sk), where pk is the public key
and sk is the private key. The parameter n represents the security
parameter which determines the security level of the scheme.

• Sign(sk,m) generates a tag T which represents the signature over
the message m using the private key sk.

• Verify(pk,m, T) outputs 1 if the tag T is a valid signature over
the message m using the public key pk, and 0 otherwise.

9

Such that, given (pk, sk)← Keygen(1n):

Verify(pk,m, Sign(sk,m)) = 1

for all m (with a negligible probability of error).

2.2.2 Codes and Matrix Code Equivalence (MCE)

Most PQC schemes are based on mathematical concepts such as linear codes,
isogenies, lattices and multivariate equations. These concepts have associated
decisional and computational problems that are believed to be hard to solve
for both classical and quantum computers. MEDS is based on the notion
of Matrix Code Equivalence (MCE), which is closely related to the notion
of Code Equivalence that is used in LESS [25], a similar scheme in the
NIST PQC Signature competition. In this section, we provide background
information on codes and the MCE problem. A more detailed explanation
of matrix codes can be found in [41]. A study on the hardness of the MCE
problem, as well as related problems, can be found in [62].

Codes

Each matrix has a so-called rank, of which the definition is given in Defini-
tion 2.2.2.

Definition 2.2.2 (Matrix Rank).
The rank of a matrix A ∈ Fm×n

q , denoted as rank(A), is the maximum
number of linearly independent rows (or columns) of A.

The matrix rank can be used to create a distance metric between matrices.
This metric is called the rank metric, and its definition is provided in
Definition 2.2.3.

Definition 2.2.3 (Rank Metric, following [41]).
The rank metric between two matrices A,B ∈ Fm×n

q is defined as:

d(A,B) = rank(A−B)

where A−B is the element-wise difference of the matrices.

Using the rank metric, we can define a (matrix) rank metric code: the
underlying mathematical object of MEDS. The definition of a rank metric
code is given in Definition 2.2.4.

10

Definition 2.2.4 ((Matrix) Rank Metric Code, following [41]).
A rank metric code (also called matrix code) C is a subspace of Fm×n

q ,
meaning it is a set of matrices of size m × n over Fq that are closed
under addition and scalar multiplication.

A ‘codeword’ of a rank metric code is a matrix that is an element of the
code. Codewords in a rank metric code can have different ranks.

A mapping, also called an isometry, can be applied to a code C to create a
new code D. An isometry is denoted by ϕ and is defined in Definition 2.2.5.

Definition 2.2.5 (Isometry, following [41]).
An isometry ϕ is a bijective transformation on Fm×n

q , defined by a pair
of matrices (A,B) where A ∈ GLm(q) and B ∈ GLn(q), having the
following form:

M 7→ AMB

ϕ can be applied to a code C to obtain a new code D: ϕ(C) = D. For
every codeword C in C, the matrix D = ACB is in D. All codewords
in D can be obtained by applying ϕ to the codewords in C.

Matrix Code Equivalence (MCE)

MEDS, just like many other (post-quantum) signature schemes, is based
on an equivalence problem, which asks if there exists a mapping (isometry)
between two mathematical objects that preserves certain properties. When
given two objects, it is usually hard to find such a mapping, but it is easy to
verify if a given mapping is correct. This is the underlying principle of the
security of many cryptographic schemes.

In the case of MEDS, these mathematical objects are rank metric codes. Two
rank metric codes C and D are called equivalent if there exists an isometry
ϕ with ϕ(C) = D. The isometry should preserve the rank of the matrices
in the code. This means that after applying ϕ, the rank distance between
any two matrices in C should be the same as the rank distance between the
corresponding matrices in D.

The computational form of the MCE problem is shown in Definition 2.2.6.

Definition 2.2.6 (Matrix Code Equivalence Problem, following [28]).
Given two rank metric codes C,D ∈ Fm×n

q , find an isometry ϕ on Fm×n
q

such that C = ϕ(D) and ϕ preserves the rank metric.

11

2.2.3 Sigma protocol and Fiat-Shamir transform

Sigma protocol

The MCE problem is used in MEDS to construct a 3-pass Sigma protocol [32].
A Sigma protocol (Σ-protocol) is a variant of a zero-knowledge proof, which
is a protocol between a prover and a verifier where the prover convinces the
verifier that it knows a piece of information without revealing the informa-
tion itself. A slightly simplified definition of a Sigma protocol is given in
Definition 2.2.7.

Definition 2.2.7 (Sigma Protocol, following [32]).
A Sigma protocol for a relation R over a pair (x,w) where x is a
statement (an instance of some computational problem) and w is a
witness (a solution to that instance) is a 3-pass protocol between a
prover P and a verifier V consisting of the following steps:

• Commitment: The prover P generates a commitment a based
on generated values of x and w and sends it to the verifier V .

• Challenge: The verifier V sends a random challenge e to the
prover P .

• Response: The prover P sends a reply z based on the challenge
e, the commitment a, and the information x and w. The verifier
V can verify z based on a and e.

In the above definition, a prover P can cheat the verifier V with some
probability by guessing the challenge e before sending the initial commitment.

In the case of MEDS, the prover convinces the verifier that it knows a certain
isometry ϕ that satisfies an instance of the MCE problem, without revealing
the isometry itself. In the definition of the Sigma protocol, x is an instance
of the MCE problem (two rank metric codes C and D), and w is an isometry
ϕ (such that ϕ(C) = D). The Sigma protocol for the optimized version of
MEDS is provided in [30, Section 4.2].

Fiat-Shamir transform

To convert a Sigma protocol into a digital signature scheme, the Fiat-Shamir
transform [38] is used. The initial Sigma protocol is interactive, meaning
that the prover and verifier exchange messages, which is not suitable for a
digital signature. The Fiat-Shamir transform converts the Sigma protocol
such that the prover can show knowledge of the isometry while only sending
a single message to the verifier, making it non-interactive. This is achieved
by creating the challenge based on a collision-resistant hash of the message

12

to be signed and the commitment. The bits in the resulting digest are used
as the challenge in the Sigma protocol.

When working with the Fiat-Shamir transform, various techniques and
optimizations can be used to increase the security or lower the size of the
public key and the signature. In the list below, we provide an overview of
some of the techniques that are considered in the MEDS scheme. In addition
to this list, Section 2.2.5 discusses more complex optimizations that are not
listed here.

• Multiple challenges:
Following the structure of a Sigma protocol used in MEDS, where a
challenge is either 0 or 1, an attacker can impersonate an honest prover
with 1

2 probability. This can be prevented by extracting not one, but
t challenges from the bits in the digest that was created by the hash
of the message and the commitment. This reduces the probability of
impersonation to 1

2t .

• Multiple public keys:
As mentioned before, an attacker can impersonate an honest prover
with 1

2 probability. To reduce this probability, the scheme can use
multiple public keys, each of which is used to compute a different
isometry. This increases the challenge space from 2 to s+ 1, reducing
the probability of impersonation to 1

s+1 (s is the number of public keys
used in the scheme).

• Fixed-weight challenge strings:
A challenge is a number in the range [0, s]. If a challenge is 0, the
response consists of matrices that are generated uniformly at random.
In this case, it is sufficient to set the response to the seed that was used
to generate the matrices, greatly reducing the size of the signature.
By fixing a certain number w of challenges to 0, the average size of
a response can be reduced. This technique has a slightly negative
impact on the security of the scheme, but this can be compensated by
increasing the number of challenges.

• Seed tree:
If a scheme requires sending multiple seeds for the generation of matrices
(or other objects), a seed tree can be used to reduce the size of the
public key and the signature. This is a structure that allows the prover
to transmit a smaller amount of bits than the size of the seeds, at the
cost of an increased computational complexity.

By selecting t, s and w carefully and combining them with other parameters
of the scheme, the security of the scheme can be increased to the desired level.
Multiple combinations of parameters are used in MEDS to achieve various
security levels [28]. The selection of these parameters has a big influence on

13

Table 2.1: Recommended MEDS parameter sets. pk and sig represent the
size in bytes of the public key and the signature, respectively.

Parameter Set q n m k s t w pk sig

MEDS-21595 4093 26 25 25 2 144 48 21595 5200
MEDS-55520 4093 35 34 34 2 208 75 55520 10906
MEDS-122000 4093 45 44 44 2 272 103 122000 19068

the size of the public key and the signature, as well as the computational
performance of the scheme.

2.2.4 Parameter sets

The security of MEDS depends on the choice of a set of parameters. The
parameters that are used in the MEDS scheme are the following:

• q: The size of the finite field Fq over which all computations are done.

• n: The width and height of the private matrices Ai ∈ Fn×n
q that are

used to generate the key pair.

• m: The width and height of the private matrices Bi ∈ Fm×m
q that are

used to generate the key pair.

• k: The width and height of the private matrices Ti ∈ Fk×k
q that are

used to generate the key pair.

• s: The number of different public keys that are used in the scheme.

• t: The number of challenges that are used in the Fiat-Shamir transform.

• w: The number of challenges in the Fiat-Shamir transform that are
fixed to be 0.

The team behind MEDS has proposed three parameter sets for the new
optimized version of the scheme [30]. These parameter sets are optimized
for the three different security levels that are required in the NIST PQC
competition. The parameter sets are shown in Table 2.1. The security level
for each parameter set is shown in Table 2.2.

We can see that all parameter sets use the same finite field size q = 4093. The
dimensions of the matrices that are used increase with each security level, as
well as the number of challenges t (and the number of fixed challenges w).
The number of public keys s is always set to 2, meaning the scheme does
not use the multiple public keys technique. Note that this differs from the
original MEDS scheme [28], which used multiple public keys.

14

Table 2.2: MEDS security levels. FS denotes the claimed security of a MEDS
parameter set in bits, following the currently best-known attack of [55].

Parameter Set NIST Category FS

MEDS-21595 Level 1 128.406
MEDS-55520 Level 3 192.058
MEDS-122000 Level 5 256.005

2.2.5 MEDS algorithms

In this section, we give an algorithmic overview of the three algorithms of
MEDS: key generation, signature generation, and signature verification. The
complete and detailed pseudocode of these algorithms is shown in Appendix A.
Additionally, we provide some information on the matrix systemizer and
isometry mapping derivation, two common functions used in the MEDS
algorithms.

Key generation

A simplified overview version of the MEDS key generation algorithm is shown
in Algorithm 2.1. The full and detailed key generation algorithm for MEDS
is shown in Algorithm A.1 (Appendix A).

Algorithm 2.1 MEDS key generation (overview)

1: Input: -
2: Output: public key pk, private key sk
3: Generate random matrix G0 ∈ Fk×mn

q

4: for i ∈ {1, . . . , s− 1} do
5: Generate random invertible matrix Ti ∈ Fk×k

q

6: Compute G′
0 ∈ Fk×mn

q = Ti ×G0

7: Compute isometry (Ai ∈ Fm×m
q ,Bi ∈ Fn×n

q) from codewords in G′
0

8: Compute Gi ∈ Fk×mn
q = πAi,Bi(G0)

9: Convert Gi to systematic form

10: return pk = G0,Gi, sk = G0,Ai,Bi,Ti (for i ∈ {1, . . . , s− 1})

Signature generation

A simplified overview version of the MEDS signature algorithm is shown
in Algorithm 2.2. The full and detailed signature generation algorithm for
MEDS is shown in Algorithm A.2 (Appendix A).

15

Algorithm 2.2 MEDS signature generation (overview)

1: Input: private key sk, message m
2: Output: signature σ (contains the tag)
3: Parse G0 and Ti from sk for i ∈ {1, . . . , s− 1}
4: for i ∈ {0, . . . , t− 1} do
5: Generate random matrix M̃i ∈ F2×k

q

6: Compute C ∈ F2×mn
q = M̃i ×G0

7: Compute isometry (A ∈ Fm×m
q ,B ∈ Fn×n

q) from codewords in C

8: Compute G̃i ∈ F2×mn
q = πA,B(G0)

9: Convert G̃i to systematic form

10: Hash m and G̃i for i ∈ {0, . . . , t− 1} to obtain d
11: Parse a set of hashes h0, . . . , ht−1 from d
12: for i ∈ {0, . . . , t− 1} do
13: if hi > 0 then
14: Compute κi ∈ F2×k

q = M̃i ×T−1
hi

15: return Signature σ = κ0, . . . , κt−1, h0, . . . , ht−1,m

Signature verification

A simplified overview version of the MEDS signature verification algorithm is
shown in Algorithm 2.3. The full and detailed signature verification algorithm
for MEDS is shown in Algorithm A.3 (Appendix A).

Matrix systemizer

The matrix systemizer is responsible for converting a matrix A ∈ Fm×n
4093 over

the finite field F4093 into a systematic form. In MEDS, the systematic form
A′ ∈ Fm×n

4093 of a matrix A ∈ Fm×n
4093 can take two forms:

• REF’:
A′ is in row-echelon form (REF) [77, Section 3.2], with the additional
property that the leading coefficient of row i is in column i.

• RREF’:
A′ is in reduced row-echelon form (RREF), with the additional property
that the first m×m submatrix of A′ is the identity matrix.

The algorithm used in MEDS to systemize a matrix is a Gaussian elimination
algorithm with some extra properties. The algorithm is implemented such
that it runs in constant time, meaning that the execution time is the same
for all matrices of equal size. Additionally, the algorithm contains three
optional features that can be used (based on the input arguments):

• rmax: Set the number of rows of the input matrix that need to be
systemized. If not specified, the entire matrix is systemized.

16

Algorithm 2.3 MEDS signature verification (overview)

1: Input: public key pk, signature σ
2: Output: 1 if the signature is valid, 0 otherwise
3: Parse G0 and Gi from pk for i ∈ {1, . . . , s− 1}
4: Parse κi, hi, d and m from σ for i ∈ {0, . . . , t− 1}
5: for i ∈ {0, . . . , t− 1} do
6: if hi > 0 then
7: Compute G′

0 = κi ×Ghi

8: Cmpt. isometry (A ∈ Fm×m
q ,B ∈ Fn×n

q) from codewords in G′
0

9: else
10: Re-generate matrix M̃i ∈ F2×k

q as in Algorithm 2.2

11: Compute C ∈ F2×mn
q = M̃i ×G0

12: Compute isometry (A ∈ Fm×m
q ,B ∈ Fn×n

q) from codewords in C

13: Compute Ĝi ∈ F2×mn
q = πA,B(G0)

14: Convert Ĝi to systematic form

15: Hash m and Ĝi for i ∈ {0, . . . , t− 1} to obtain d′

16: return 1 if d = d′, 0 otherwise

• do swap: Allow the algorithm to swap columns of the matrix to ensure
that the leading coefficient of a row is not 0.

• do backsub: Whether or not to perform back substitution after the
matrix has been systemized into REF’/RREF’ form.

The complete algorithm is depicted in Algorithm A.7 (Appendix A.3).

Deriving isometry mappings

For more information on the isometry derivation process, we refer the reader
to [30, Section 4.2], where the authors provide a detailed explanation of the
technique.

In key generation, signing, and verification, as a result of an optimization
technique that is applied to reduce the signature size [30], MEDS requires
the derivation of an isometry mapping ϕ = (A ∈ Fm×m

q ,B ∈ Fn×n
q). This

isometry mapping maps two full-rank, linearly independendent codewords
C̃1, C̃2 ∈ F1×mn

q that are stored in a matrix C ∈ F2×mn
q to two matrices

D0,D1 ∈ Fm×n
q . The deriving of this isometry is done by constructing a

linear system of 2mn equations and m2 + n2 variables formed by:

A×C0 = D0 ×B−1

A×C1 = D1 ×B−1

The resulting system of linear equations can be solved using a simple Gaussian
elimination algorithm. However, because of the large size of the linear system,

17

this would result in a complexity ofO(2mn·(m2+n2)2) = O(n6) (as n = m+1
for the parameter sets that we consider) which is very inefficient.

Luckily, there is a better alternative. As the values of D0 and D1 can be
public information or random matrices, we have the freedom to choose them.
By setting D0 = (Im | 0) ∈ Fm×n

q and D1 = (0 | In) ∈ Fm×n
q , we obtain a

much more sparse and structured linear system which can be solved with an
algorithm that has a complexity of O(n3).

This is precisely what the solve opt function in the MEDS reference imple-
mentation is responsible for. Its input is a matrix C ∈ F2×mn

q that represents
the two codewords. It then constructs the sparse linear system of equations
mentioned above and solves it in O(n3) time. The output of the function
are the matrices A and B that represent the isometry mapping. The code
for this function is rather long and is therefore omitted, but can be found in
the code repository of this thesis.1

2.3 ARMv8, Cortex-A72, and NEON

In this thesis, we focus on optimizing the MEDS implementation for the
ARMv8 CPU architecture [52]. ARMv8 supports a wide range of instruction
sets and extensions, of which the following are relevant to this thesis:

• A64: The default 64-bit instruction set for ARMv8.

• NEON (Advanced SIMD): The NEON instruction set is an extension
to the ARMv8 architecture that is mandatory in all ARMv8 imple-
mentations. It allows for SIMD operations on 128-bit registers (see
Section 2.3.1).

• Crypto: The cryptographic extension to the ARMv8 architecture.
This is a non-mandatory extension that supports hardware support for
various cryptographic algorithms.

2.3.1 Vectorization and SIMD

Single Instruction, Multiple Data (SIMD) is a type of instruction that oper-
ates on multiple pieces of data (vectors) in parallel. Using this technique, it
is possible to execute a single operation (such as an addition or multiplica-
tion) on a vector of multiple numbers in a timeframe that is similar to the
conventional operation on a single number. This can greatly improve the
performance of algorithms that lend themselves to vectorization.

1https://github.com/MeItsLars/MEDS-ARMv8-optimization-thesis/blob/main/re

f/src/util.c

18

https://github.com/MeItsLars/MEDS-ARMv8-optimization-thesis/blob/main/ref/src/util.c
https://github.com/MeItsLars/MEDS-ARMv8-optimization-thesis/blob/main/ref/src/util.c

Table 2.3: Possible ARMv8 NEON lane sizes and their assembly instruction
suffixes.

Lane Count Lane Width ASM Suffix

2 64 bits .2d

1 64 bits .1d

4 32 bits .4s

2 32 bits .2s

8 16 bits .8h

4 16 bits .4h

16 8 bits .16b

8 8 bits .8b

In ARM, the SIMD instruction set is called NEON or Advanced SIMD (both
terms refer to the same instruction set). NEON is a 128-bit SIMD architecture
extension that is required in all standard ARMv8 implementations [6]. The
NEON unit contains 32 128-bit registers, each of which can be used to store a
vector of values. Each NEON register can be split into several different lanes.
The lane sizes that are supported in NEON, together with their assembly
(ASM) code suffixes, are shown in Table 2.3.

In assembly code, we can refer to a NEON register by using the register
prefix v0-v31 followed by a suffix that indicates the lane size. For example,
v0.4s refers to a 128-bit NEON register that contains 4 lanes of 32 bits each
and can therefore store 4 32-bit values.

The NEON instruction set contains a wide range of instructions that can be
used to perform various operations on these vectors. Some illustrative exam-
ples are included in Algorithm 2.4. A graphical depiction of the instructions
in the code snippet above is shown in Figure 2.1.

In the remainder of this thesis, we use such NEON instructions in two forms:

• Assembly: Directly writing assembly code that uses NEON instruc-
tions, such as the add v2.4s, v0.4s, v1.4s instruction that adds
two 4-lane vectors of 32-bit values.

• C intrinsics: Using C intrinsics, which are functions that map directly
to NEON instructions. ARM provides a set of intrinsics that can
be used when including the arm neon.h header file [9].2 An example
is the vadd u16(uint16x4 t a, uint16x4 t b) intrinsic, which adds
two 4-lane vectors of 16-bit unsigned integers.

2https://developer.arm.com/architectures/instruction-sets/intrinsics/#f:

@navigationhierarchiessimdisa=[Neon]&f:@navigationhierarchiesarchitectures=

[A64]

19

https://developer.arm.com/architectures/instruction-sets/intrinsics/#f:@navigationhierarchiessimdisa=[Neon]&f:@navigationhierarchiesarchitectures=[A64]
https://developer.arm.com/architectures/instruction-sets/intrinsics/#f:@navigationhierarchiessimdisa=[Neon]&f:@navigationhierarchiesarchitectures=[A64]
https://developer.arm.com/architectures/instruction-sets/intrinsics/#f:@navigationhierarchiessimdisa=[Neon]&f:@navigationhierarchiesarchitectures=[A64]

Algorithm 2.4 NEON instruction example (assembly)

1 // Load 4 32-bit unsigned integers stored at the memory address

in x0 and x1 into v0.4s and v1.4s

2 ld1 {v0.4s}, [x0]

3 ld1 {v1.4s}, [x1]

4 // Add the values in v0.4s and v1.4s into v2.4s

5 add v2.4s, v0.4s, v1.4s

6 // Multiply v2.4s with itself into v3.2d and v4.2d

7 umull v3.2d, v2.2s, v2.2s // Lower half

8 umull2 v4.2d, v2.4s, v2.4s // Upper half

9 // Combine the upper halves of v3.2d and v4.2d into v5.4s

10 uzp2 v5.4s, v3.4s, v4.4s

11 // Store the result in v5.4s to the memory address in x2

12 st1 {v5.4s}, [x2]

Figure 2.1: Visual representation of the NEON registers and instructions in
Algorithm 2.4.

20

Figure 2.2: High-level overview of the ARM Cortex-A72 instruction process-
ing pipeline [7].

2.3.2 Cortex-A72 Micro-Architecture

For profiling (and benchmarking) our code, we use a Raspberry Pi 4 Model
B, which has a 64-bit quad-core ARM Cortex-A72 CPU that uses the
ARMv8-A architecture (which is a specific profile of ARMv8). The term
‘Cortex-A72 Micro-Architecture’ refers to the specific design of the
ARM Cortex-A72 CPU, which differs from other CPUs that implement the
ARMv8-A architecture.

We work with the A64 instruction set, combined with the NEON extension.
Unfortunately, the Cortex-A72 does not support the Crypto extension, which
means that we cannot use hardware acceleration for cryptographic operations
such as SHA-3 [37].

In this thesis, we focus on optimizing the MEDS implementation for the
Cortex-A72 CPU. However, we also provide benchmarks for the Apple M2
CPU, which runs on the ARMv8.6-A architecture and supports the Crypto
extension.

Core pipeline

The core pipeline of the Cortex-A72 consists of 15 stages which are split
into a front-end and a back-end. A high-level overview of the instruction
processing pipeline [7] is shown in Figure 2.2.

The pipeline consists of two parts:

1. Front-end (In Order): This part of the pipeline is responsible for
fetching and decoding incoming instructions into micro-ops: smaller
instructions that are easier to execute. These micro-ops are then

21

fed into the back end. The front end works on instructions in order,
meaning that it processes them in the order that they are received.

2. Back-end (Out of Order): This part of the pipeline is responsible for
executing the micro-ops that are generated by the front end. It consists
of multiple pipelines that serve different purposes, such as branching,
integer arithmetic, NEON operations, and memory operations. The
back-end pipelines can execute micro-ops out of order, meaning they
can execute operations in a different order than they were received.

The front-end can work on 3 instructions at the same time and it can dispatch
up to 5 micro-ops per cycle to the back-end [65]. The back-end pipelines can
execute one or two micro-ops per cycle, depending on the specific pipeline.
The main goal of the front end (and this structure in general) is to make
sure that the back-end pipelines are always filled with micro-ops to minimize
stalls (where a pipeline has to wait for an earlier operation to finish).

Assembly instructions and latency

In this thesis, we use A64 assembly instructions to optimize the MEDS
implementation. Each used instruction has three relevant properties:

• Execution latency: The number of CPU cycles after starting an
instruction that it takes for the results of that instruction to be available
for usage in the next instruction.

• Execution throughput: The maximum amount of times that a
particular instruction can be executed per cycle.

• Utilized pipeline: The back-end pipeline(s) that this instruction
uses.

As the Cortex-A72 uses an out-of-order execution model, it is impossible to
provide instruction timing information that will predict how long a certain
instruction will take to execute in a certain context [7]. Nevertheless, the
execution latency and throughput of instructions provide valuable information
about the performance of that instruction. Therefore, we list the execution
latency and throughput of the NEON instructions that we use in the assembly
code that was written for this thesis in Table 2.4. We also use many intrinsic
functions in the C code, which are functions that map directly to assembly
instructions. However, as the compiler is still able to reorder and optimize
these instructions, it is not directly beneficial to know the latencies and
throughputs of these instructions.

22

Table 2.4: ARM Cortex-A72 latency and throughput for the NEON assembly
instructions used in this thesis [7].

Instruction Description Latency Throughput

ld1 Load from memory 5 1
st1 Store to memory 5 1

umull Unsigned multiply long 4 1
umull2 Unsigned multiply long (high half) 4 1
umlal Uns. mult. long & accumulate 4 1
mls Multiply subtract 5 1/2
add Add 3 2
sub Subtract 3 2
and Bitwise AND 3 2
ushr Unsigned shift right 3 1

dup Store in all lanes 8 1
ins Store in one lane 3 2
xtn Extract and narrow 3 2
uzp1 Unzip (keep low) 3 2
uzp2 Unzip (keep high) 3 2

cmeq Compare equal 3 2
cmhs Compare higher or same 3 2

Instruction scheduling

At first glance, it might seem that the order in which instructions of a certain
instruction sequence are written in the assembly/intrinsic code influences
the performance of the code, as the latencies and throughputs of the various
instructions can influence the execution time of the code. This is the case
for earlier ARM architectures, where hand-tuning of the instruction order
could lead to performance improvements. However, the technical reference
manual of the Cortex-A72 states that the out-of-order pipeline of the CPU
can schedule and execute the instructions of a certain instruction sequence
in an optimal fashion without any instruction reordering required [8]. This
means that the CPU can ‘hide’ the latencies of instructions (by executing
other micro-ops in the meantime). Although it is debatable whether this
is always the case and whether there are no instruction sequences that the
CPU is not able to schedule optimally, it is a good indication that we can
focus on writing clean and readable code without having to worry about the
order of the instructions.

It is important to note that this does not mean that there are no benefits to
knowing the latencies and throughputs of instructions. Choosing a different
sequence of instructions to compute the same result can still have an impact

23

on the performance of the code because some instructions might be better
suited for that specific computation.

2.4 Optimizing cryptographic schemes

When programming or optimizing cryptographic schemes or primitives, it
is essential that the security of the scheme is not compromised because of
vulnerabilities that are introduced in the code. One of the most important
aspects in this context is the notion of constant-time execution [48]. A
cryptographic function is said to be executed in constant-time if there exist
no side-channel attacks that can extract secret information (such as a private
key) by looking at the execution time of the function or any sub-sequence of
the instructions in the function. In this section, we go over the main pitfalls
that can lead to non-constant-time execution.

2.4.1 Branching and conditional execution

One of the most common reasons for non-constant-time execution occurs
when the code contains branches that depend on secret data, allowing an
attacker to perform a timing attack. A timing attack is a side-channel attack
where an attacker measures the time that it takes to execute a certain piece
of code and uses this measurement to derive information about the secret
data that is used in the code. Consider the example in Algorithm 2.5.

Algorithm 2.5 Branching on secret data (unsafe)

1: if secret data = 0 then
2: doExpensiveOperation() ▷ This operation is slow
3: else
4: doCheapOperation() ▷ This operation is fast

The execution time of this code snippet depends on the value of ‘secret data’.
If ‘secret data’ is 0, the execution time will be longer than when ‘secret data’
is not 0, allowing an attacker to derive information about the value of
‘secret data’ by measuring the execution time of the code.

Another example of branching on secret data occurs when the code uses
a loop in which the execution time depends on secret data. Consider the
example in Algorithm 2.6.

Algorithm 2.6 Looping on secret data (unsafe)

1: for i = 0 to secret data do
2: doSomething()

The execution time of this code snippet depends on the value of ‘secret data’.

24

Compiler optimizations and branch prediction

The previous examples are relatively obvious, but there are many more subtle
ways in which branching on secret data can occur, especially when working
with a smart compiler that tries to optimize the code. Consider the following
example in Algorithm 2.7.

Algorithm 2.7 Conditional swap (unsafe)

1: function conditionalSwap(x, y, secret data)
2: if secret data = 1 then
3: x, y ← y, x
4: else
5: x, y ← x, y

6: return x, y

Although it might seem that this function is safe, nearly all compilers will
optimize this code such that the assignment in the ‘else’ branch is removed,
making a timing attack possible.

Even if you can guarantee that the compiler does not optimize this code,
the ‘branch prediction’ feature in modern CPUs might still make a timing
attack possible. Branch prediction is a technique that tries to predict the
outcome of a branch instruction before it is executed, allowing a CPU to start
executing the instructions within the predicted branch. If the prediction is
correct, the code will execute faster, but if the prediction is incorrect, the
CPU will need to discard the results and start executing the correct branch,
causing a delay. If an attacker knows how the CPU will predict the branch,
they can use this information to perform a timing attack.

Mitigating timing attacks

The most important technique to mitigate timing attacks on conditional
execution is to never branch on secret data at all, not even if it seems safe.
Most common operations can be rewritten in a way that removes conditional
execution. For example, the conditional swap operation in Algorithm 2.7
can be rewritten as shown in Algorithm 2.8.

Algorithm 2.8 Conditional swap (safe)

1: function conditionalSwap(x, y, secret data)
2: d← (x⊕ y) · secret data ▷ ‘⊕’ is the XOR operation
3: x← x⊕ d
4: y ← y ⊕ d

In this code snippet, if ‘secret data’ is 1, x = x ⊕ (x ⊕ y) = y. Otherwise,
x = x⊕ 0 = x. This way, the code does not branch (on secret data) and is

25

therefore safe from timing attacks, assuming the compiler does not optimize
the code in such a way that the branch is reintroduced.

2.4.2 Data-dependent memory access

Another common cause for non-constant-time execution is caused by accessing
memory at an index that depends on secret data. Consider the example in
Algorithm 2.9.

Algorithm 2.9 Data-dependent memory access (unsafe)

1: x← public array[secret data]

This code is susceptible to a ‘cache-timing attack’. A cache-timing attack
is a side-channel attack where an attacker measures the time that it takes
to access a certain memory location [19, 48]. If the data at that location
is stored in the CPU cache, the access time will be faster than if the data
is not (yet) in the cache. By measuring the time that it takes to access a
certain memory location, an attacker can infer information about the value
of ‘secret data’.

This is only the most basic form of a cache-timing attack. More advanced
attacks can be performed if the attacker has more control over the system,
such as the ability to manipulate the cache to ensure that the data is (or
is not) in the cache. Although there exist techniques to mitigate these
attacks (such as always accessing every index of the array), it is best to avoid
accessing memory at an index that depends on secret data altogether.

2.4.3 Non-constant-time operations

A final common cause for non-constant-time execution is the use of CPU
instructions that do not execute in constant time. Common examples of
such instructions are (integer) division, math functions such as sin/cos, and
various other instructions, depending on the CPU architecture. Instructions
like these can take a variable amount of time to execute, depending on the
input data. It is important to avoid using such instructions with secret data.

2.4.4 Preventing timing attacks with Valgrind and Timecop

It has been shown that even if you write code that should theoretically
compile to a constant-time binary, the compiler might still optimize the code
in such a way that it is vulnerable to various kinds of timing attacks [16, 71].
Therefore, it is good practice to make sure the resulting binary is indeed
constant-time.

Vulnerabilities to timing attacks described in Section 2.4.1 and Section 2.4.2
can be detected using Valgrind [56] using a technique that was described

26

by Langley [51]. Valgrind is a programming tool that is used to detect
memory leaks, buffer overflows, and other memory-related problems. Among
many other things, Valgrind can detect branching on uninitialized data and
memory accessing at an uninitialized index. Valgrind is unable to detect
timing attack vulnerabilities caused by non-constant-time operations such as
mentioned in Section 2.4.3. Using the following routine, we can use Valgrind
to detect timing attack vulnerabilities:

1. Uninitialized secret data: Make sure our code does not initialize
any secret data. Normal operations (such as arithmetic operations) on
uninitialized data are ignored by Valgrind.

2. Run Valgrind: Run Valgrind on our code. Any resulting complaints
about uninitialized data are possible locations at which a vulnerability
to a timing attack might exist.

Timecop [76] provides a poison.h header file that can be used to poison
secret data, which essentially makes it uninitialized. This can be used in
combination with Valgrind to detect timing attack vulnerabilities.

2.5 Modular reduction

As MEDS is a cryptographic scheme that operates on elements in a finite
field, modular reduction is a basic building block that is used in many parts
of the scheme. Various algorithms can be used to perform modular reduction.
In this section, we go over the most common algorithms.

• Naive reduction
The naive reduction algorithm is slow and not suitable for our purposes,
but we use it as a baseline to compare the other algorithms to. This
algorithm works by applying an integer division instruction to the
input, followed by a multiplication with the modulus and a subtraction.
A big disadvantage of this approach is that division is not a constant
time operation, which can lead to timing attacks (see Section 2.4.3).
Furthermore, the division operation is usually relatively slow compared
to other operations.

• Montgomery reduction
Montgomery reduction [54] is a modular reduction algorithm that
is based on the Montgomery multiplication algorithm. It does not
use a division instruction, which makes it suitable for constant time
operations. Instead, it works by subtracting a multiple of the modulus
from the input such that the input is (almost) smaller than the modulus.
The algorithm requires the input and outputs to be converted to and
from a Montgomery representation.

27

• Barrett reduction
Barrett reduction [15] is a modular reduction algorithm that is similar
to Montgomery reduction in the sense that it also subtracts a multiple
of the modulus from the input. However, it does not require the input
to be converted to a different representation. Additionally, the cost of
the reduction is slightly lower for small inputs compared to Montgomery
reduction.

Montgomery reduction is generally very efficient when a large chain of multi-
plications is required and the overhead of converting to and from Montgomery
representation is negligible compared to the number of multiplications/re-
ductions, whereas Barrett reduction is typically a bit faster for small inputs.

2.5.1 Barrett reduction

Barrett reduction works by approximating the modular reduction. Given an
unsigned integer a and a modulus n,

a mod n = a−
⌊a
n

⌋
· n.

From this, the Barrett reduction formula for unsigned integers can be derived
(Definition 2.5.1).

Definition 2.5.1 (Barrett reduction for unsigned integers).
Let a be an unsigned integer and n be a modulus. Let R be a constant
such that R = 2k > n for some k. Then:

a mod n = a−

⌊
a ·
[
R
n

]
R

⌋
· n.

where
[
R
n

]
represents R

n rounded up or down, depending on the choice
of the rounding operation.

As R is a power of 2, the division by R can be implemented as a cheap
right-shift operation. Additionally, the value of m =

[
R
n

]
can be precomputed

because the modulus n is a constant. This leaves us with two things to
choose: the value of k and the rounding operation.

Choice of k

Usually, the value of k chosen for Barrett reduction is as small as possible
such that 2k > n. Combined with setting the rounding function of the
precomputed value to the ‘floor’ function, this results in a reduction that
reduces to a value between 0 and 2n− 1, requiring an additional conditional

28

subtraction at the end of the reduction. Choosing a larger value of k has one
major disadvantage: the precomputed value m =

[
R
n

]
becomes larger, which

means that the multiplication a ·m will result in a larger value (possibly
leading to a register overflow). However, choosing a larger value of k can also
be beneficial: the quotient m will be closer to the actual value of R

n , which
means that the reduction will be more accurate. If we know that the input
a will never be larger than a particular value, we can choose k such that the
conditional subtraction at the end of the reduction is not required. For this
to work, we need to use the ceiling function for the rounding operation.

29

Chapter 3

Profiling

In this chapter, we discuss and execute the profiling of the optimized MEDS
implementation from [30], with the goal of identifying the code sections that
take up the most time. We use this information to optimize the code in the
next chapter.

3.1 Profiling techniques

To obtain a better understanding of the performance of (specific functions
of) MEDS, we need to profile the implementation. Profiling is the process of
measuring the space or time complexity of a program or a specific function.
The goal of profiling is to identify the bottlenecks in the speed or memory
usage of a program: these are the parts of the program that take the most
time or memory. Usually, we hope that a small part of the program is
responsible for a large part of the time or memory usage and that this part
can be optimized to improve the overall performance.

Typically, profiling is done by running the program with a profiler. There
exist a wide variety of profilers for C, such as GProf [43], Valgrind [56],
and Linux-Perf [33]. In our case, the most accurate way to measure the
performance is to measure the number of cycles that are used by the program
or a specific function, which can be done with Linux-Perf.

3.1.1 Cycle counting

Cycle counting is a technique that is used to measure the number of CPU
cycles that it takes to execute a certain program or function. This is usually
done by accessing the performance monitoring unit (PMU) of the CPU,
which is a CPU component that measures the performance of the processor.
Typically, these PMUs contain a register that can be read to obtain the

30

number of cycles executed since a certain point in time. On Linux, we can
access this data using the Linux-Perf tool [33], which can be used to measure
the number of instructions executed, the number of cache misses, etc.

Advantages

The advantages of profiling the code using a cycle counter are:

• Accurate: Measuring the cycle counter results in the most accurate
measurement of time. For comparison, using a technique that measures
the current time in (nano)seconds is less accurate, because the CPU is
capable of executing multiple cycles in a single nanosecond.

• Low overhead: Measuring the cycle counter has a very low additional
performance overhead to the program, as it usually consists of reading
a single register.

• Precise: By annotating the code with our own cycle counter, we can
measure the performance of specific functions or even specific lines of
code.

Disadvantages

The disadvantages of profiling the code using a cycle counter are:

• Interference: The program to be measured shares the CPU (core)
with other programs, which can interfere with measurements. If another
program is switched in by the operating system, the cycle counter will
also count the cycles that were used by this program. Although this
usually does not have a big impact on profiling results, this can be
problematic for obtaining accurate benchmarks.

• Architecture: The way in which the cycle counter is accessed is
different for each architecture. However, since we use the Linux-Perf
tool, this is abstracted away for us.

Problem mitigation

There are a few problems with cycle counting that we need to mitigate.
First of all, there are some features on modern CPUs that will cause cycle
counting to produce inaccurate results. These features include frequency
scaling (based on the current workload, a CPU can change its clock frequency
to save power) and hyperthreading (multiple threads share the same CPU
core at the same time by interleaving instructions). It is essential to disable
these features to obtain accurate results.

31

Table 3.1: MEDS-55520 key generation profiling results for the ARM Cortex-
A72.

Function # MCycles (±) % of Total (±) # Calls

pmod mat mul 15.98 69.78 70
pmod mat syst 2.08 9.07 6
rnd sys mat 2.07 9.05 1
solve opt 1.42 6.20 1
bs fill 1.06 4.63 1

Cumulative 22.61 98.73
Remaining 0.29 1.27

Another problem is program interference (see above). Unfortunately, this
is a problem that is hard to prevent completely, but we can work around
it. By running the program multiple times and taking the median of the
results, we can reduce the impact of interference on the results. This is a
common technique in benchmarking and is used in many other cryptographic
papers [17, 36].

3.2 MEDS profiling results

3.2.1 Measurement setup

We added cycle count measurements to all MEDS functions that we anticipate
will require a significant amount of time. We decided to profile the code
for the MEDS-55520 parameter set, which is in the middle of the three
parameter sets in terms of security level. The results are representative of
the other parameter sets as well, only the scale is different. We executed
measurements for the three algorithms of a digital signature scheme: key
generation, signing, and verification, on the ARM Cortex-A72. The results
are shown in Tables 3.1 (key generation), 3.2 (signing), and 3.3 (verification).
For each algorithm, we list the functions or code sections that take up more
than 1% of the total number of cycles. We provide the number of megacycles
(MCycles) that were used in that function, the percentage of the total number
of cycles that were used by that function, and the number of times that
function was called. Note that the number of cycles cannot be divided by
the number of calls to obtain the average number of cycles per call, because
the number of cycles that are used by a function can depend on the input.

3.2.2 Result analysis

Because of the way that MEDS works, the results of the signing and verifica-
tion operations are very similar. For key generation, the results in the table

32

Table 3.2: MEDS-55520 signing profiling results for the ARM Cortex-A72.

Function # MCycles (±) % of Total (±) # Calls

pmod mat mul 2518.85 69.17 14635
pmod mat syst 391.36 10.75 1040
solve opt 293.44 8.06 208
bs fill 212.74 5.84 1
shake256 absorb 203.06 5.58 212

Cumulative 3619.46 99.39
Remaining 22.24 0.61

Table 3.3: MEDS-55520 verification profiling results for the ARM Cortex-
A72.

Function # MCycles (±) % of Total (±) # Calls

pmod mat mul 2537.20 69.24 14560
pmod mat syst 393.22 10.73 1040
solve opt 294.20 8.03 208
bs fill 212.88 5.81 1
shake256 absorb 203.31 5.55 267

Cumulative 3640.80 99.35
Remaining 23.80 0.65

account for 98.76% of the total number of cycles. For signing and verification,
these numbers are 99.42% and 99.39%, respectively. In all three algorithms,
the remainder of the cycles is spent on a large set of functions that take up
a small amount of time. Given that there are only a few functions that take
up a significant amount of time, we can conclude that the performance of
MEDS is mostly determined by these functions.

Matrix multiplication

For all three operations, the pmod mat mul function takes up the most time,
almost 70%. This function is used to multiply two matrices A ∈ Fm×n

q and
B ∈ Fn×o

q over a finite field Fq. The function is implemented in MEDS using
a naive algorithm that computes the dot product of each row of A with
each column of B, followed by a reduction modulo q. As will be shown in
Section 4.2.1, the time complexity of this algorithm is O(mno) (= O(n3) for
square matrices).

33

Matrix systemizer

The pmod mat syst function (pmod mat syst ct partial swap backsub in
the code, but shortened for readability) is responsible for about 11% of the
total number of cycles for signing and verification. This function is used
to systemize a matrix A ∈ Fm×n

q over a finite field Fq (see Section 2.2.5).
This is done using a Gaussian elimination algorithm that has a complexity
of O(m2n) (this is calculated in Section 4.2.2).

Isometry derivation

The solve opt function is responsible for about 8% of the total number of
cycles for signing and verification. This function derives an isometry mapping
ϕ = (A ∈ Fm×m

q ,B ∈ Fn×n
q) by constructing and solving a sparse system of

linear equations, see Section 2.2.5. The algorithm has a complexity of O(n3).

Bitstream filling

The bs fill section is responsible for about 6% of the total number of cycles
for signing and verification. In this section of the code, multiple calls are
made to the bs init, bs write, and bs finalize. We decided to group
them because they are all part of the same operation: filling a bitstream
with elements of the finite field Fq. In the MEDS parameter sets that we
consider, the finite field is F4093, which means that the bitstream is filled
with 12-bit elements. This is done to reduce the number of bytes required to
store a list of field elements.

SHAKE256

A small percentage of the total number of cycles in each of the three operations
is used by either shake256 squeeze or shake256 absorb. SHAKE256 is an
extendable output function (XOF). It is part of the SHA-3 family [37] and is
based on the KECCAK sponge construction [23]. MEDS uses SHAKE256 to
generate random field elements and to hash the challenge strings that are
used in the Fiat-Shamir transform (see Section 2.2.3).

Random systemized matrix generation

The rnd sys mat function is responsible for about 9% of the total number
of cycles for key generation. This function is used to generate a random
systemized matrix over a finite field Fq. Nearly all of its cycles are spent on
generating random field elements using the shake256 squeeze function (see
above).

34

Chapter 4

Methodology

We have established two approaches to optimize the MEDS implementation.
These approaches are not specific to ARMv8, but their implementation will
be tailored to the ARMv8 architecture. Note that the two approaches are
mutually exclusive, meaning they cannot be combined. We implement both
approaches and evaluate their performance to determine which approach
gives the highest speedup.

• Low-level optimization:
This approach focuses on optimizing the MEDS implementation at
a low level. This means that we look at individual functions (such
as matrix multiplication and the matrix systemizer) that take up a
significant amount of time and optimize them. The input and output
of these functions are thus not changed, but the way in which the result
is computed is optimized using techniques such as vectorization.

• High-level optimization:
This approach focuses on optimizing the MEDS implementation at a
high level. The Fiat-Shamir transform used in MEDS (see Section 2.2.3)
uses t challenges, where t is a parameter set according to the target
security level. The values of t for each parameter set are displayed in
Table 2.1 (Section 2.2.4). As can be seen from the algorithmic overviews
in Section 2.2.5, the computation of each challenge (and commitment
for that challenge) is done in the same way. This means that we can
compute multiple commitments in parallel, which can greatly increase
the performance of the scheme. As opposed to low-level optimization,
this approach changes the input and output of the underlying functions
to take in and return the inputs and outputs of multiple commitments
at once.

35

In this chapter, we start by discussing how we implement modular reduction,
an operation that is the same for both approaches, in Section 4.1. We then
discuss the implementation of the two approaches in Sections 4.2 and 4.3.
After this, we discuss bitstream filling and the usage of an alternative hash
structure (two optimizations that can be applied to both the low-level and
high-level approaches) in Section 4.4 and Section 4.5, respectively. Finally,
we discuss a few non-constant-time optimizations that can be applied to the
verification algorithm in Section 4.6.

4.1 Modular reduction

Throughout the entirety of the MEDS implementation, modular reduction is
used extensively to reduce the size of the elements modulo q, where q is the
modulus of the finite field Fq. The finite field that is used in MEDS for the
parameter sets that we consider is F4093, which means that all elements are
reduced modulo 4093. In the reference implementation of MEDS, all modulo
operations are done using the % operator in C. As we use NEON assembly
instructions and C intrinsics to optimize the MEDS implementation, we
cannot rely on this operator, as it is not defined for NEON registers and
there is no single-instruction alternative in assembly.

Because of this, we need to implement our own modular reduction function
that can be used with NEON registers. This function must be as fast
as possible, as it is used in many places in the MEDS implementation.
The various modular reduction algorithms are considered in Section 2.5.
Our NEON assembly implementation of both the Barrett and Montgomery
reduction algorithms is shown in Algorithm 4.1. As can be seen from the
implementation, both algorithms use the same number of instructions. We
therefore choose to use Barrett reduction, as it does not require the input and
output to be converted to a different representation. We further elaborate
on the Barrett reduction algorithm in the remainder of this section. As we
will not use the Montgomery reduction algorithm, we only add it for the
sake of comparison and do not further explain how it works.

4.1.1 Choosing k for Barrett reduction

As mentioned in Section 2.5.1, the choice of k for Barrett reduction is
important. If possible, we should pick a k such that the reduction will not
require a final conditional subtraction. Although it is possible to continue
working with small values that are congruent to the original value modulo q
and thereby avoid the conditional subtraction, this will eventually still require
a few extra instructions to make sure the final value is reduced modulo q.
If we can find a k such that the reduction will not require a conditional

36

Algorithm 4.1 NEON Barrett and Montgomery reduction for MEDS

Input: ai ∈ [0, 229.5) for 0 ≤ i < 4 (in v0.4s)
MEDS p = 4093 (in v2.4s)

Output: ai mod 4093 for 0 ≤ i < 4 (in v0.4s)
Barrett
m = 0x80180481 (in v1.4s)

1 umull v3.2d, v0.2s, v1.2s

2 umull2 v4.2d, v0.4s, v1.4s

3 uzp2 v3.4s, v3.4s, v4.4s

4 ushr v3.4s, v3.4s, 11

5 mls v0.4s, v3.4s, v2.4s

6 xtn v0.4h, v0.4s

Montgomery
N ′ = 2731 (in v1.4s)
Rmask = 0xFFF (in v3.4s)

1 mul v1.4s, v0.4s, v1.4s

2 and v1.16b, v1.16b, v3.16b

3 xtn v1.4h, v1.4s

4 umlal v0.4s, v1.4h, v2.4h

5 ushr v0.4s, v0.4s, #12

6 xtn v0.4h, v0.4s

subtraction whilst also not requiring additional instructions, we should pick
this value.

For the MEDS parameter sets that we consider, we know that all field elements
fit into 12 bits. This means that any multiplication of two field elements will
result in a value that fits into 24 bits. The largest possible value that any
value can become (before reduction) results from the matrix multiplication
algorithm, see Section 4.2.1. In this algorithm, the temporary value can (for
parameter set MEDS-122000) become as large as log2(k · (q − 1) · (q − 1)) =
log2(44 · 4092 · 4092) ≈ 29.5 bits (see Section 4.2.1). This means that we
should find a k such that for all 0 ≤ a < 230, the reduction will not require a
conditional subtraction.

As 230 is a relatively small number, we use a brute force approach to find the
smallest k that satisfies this condition. This value turns out to be k = 43,
which gives m = ⌈ 243

4093⌉ = 0x80180481. This number fits nicely into 32 bits,
which means that we can store it in 32-bit NEON lanes. Because of this,
using k = 43 does not require any additional instructions compared to using
a smaller value of k.

4.1.2 Implementation

The reference code for our Barrett reduction algorithm is shown in Algo-
rithm 4.2. This algorithm does not operate on vectorized data and serves as
a baseline for implementing the NEON version.

The NEON version of the Barrett reduction algorithm is shown in Algo-
rithm 4.3 (C code) and Algorithm 4.4 (assembly code). The C code uses
NEON intrinsics to perform the reduction on 128-bit NEON registers. The
assembly code is a direct translation of the C code to ARMv8 assembly. Both
algorithms assume that the input consists of four 32-bit unsigned integers

37

Algorithm 4.2 MEDS Barrett reduction

1: function reduce(a)
2: m← 0x80180481
3: v ← a ·m
4: v ← v ≫ 43
5: return a− v · 4093

that are stored in four lanes of a 128-bit NEON register. The output can
either be stored in four 32-bit lanes or four 16-bit lanes, depending on the
requirements of the calling function.

Algorithm 4.3 MEDS NEON Barrett reduction (C)

1 uint16x4_t reduce(uint32x4_t a)

2 {

3 // Compute a*m for the lower and higher registers

4 uint64x2_t low = vmull_u32(vget_low_u32(a), vget_low_u32(

MAGIC_VEC));

5 uint64x2_t high = vmull_high_u32(a, MAGIC_VEC);

6 // Combine low and high parts. Gets rid of least significant

32 bits of each element , effectively executing a right

shift by 32

7 uint32x4_t zip = vuzp2q_u32 ((uint32x4_t)low , (uint32x4_t)high

);

8 // Right shift by 11 (remaining part)

9 uint32x4_t val = vshrq_n_u32(zip , 11);

10 // Multiply by MEDS_p and subtract from a

11 uint32x4_t result = vmlsq_u32(a, val , MEDS_p_VEC_32x4);

12 // (Optional) shrink to uint16x4_t

13 return vmovn_u32(result);

14 }

From the assembly code, we can see that the reduction is done using five
instructions (not counting the optional shrink).

4.1.3 Freeze operation

A useful operation when working with numbers outside of the finite field is the
‘freeze’ operation. This operation takes a number a ∈ [0, 2n− 1] and returns
a mod n, useful after the addition of two field elements. The advantage
over the reduction functions mentioned before is that this operation can
be executed with fewer instructions. Additionally, the operation can be
executed over eight lanes of a 128-bit NEON register (as opposed to four
lanes for the reduction operation). The freeze operation is useful after (for
example) two field elements are added together and need to be reduced, in
which case we can do a cheaper reduction operation. The freeze operation
for MEDS is shown in Algorithm 4.5.

38

Algorithm 4.4 MEDS NEON Barrett reduction (assembly)

Input: ai ∈ [0, 229.5) for 0 ≤ i < 4 (in v0.4s)
m = 0x80180481 (in v1.4s)
MEDS p = 4093 (in v2.4s)

Output: ai mod MEDS p for 0 ≤ i < 4 (in v0.4s)

1 // Compute a*m for the lower and higher registers

2 umull v3.2d, v0.2s, v1.2s

3 umull2 v4.2d, v0.4s, v1.4s

4 // Combine low and high parts. Gets rid of least significant 32

bits of each element , effectively executing a right shift

by 32

5 uzp2 v3.4s, v3.4s, v4.4s

6 // Right shift by 11 (remaining part)

7 ushr v3.4s, v3.4s, 11

8 // Multiply by MEDS_p and subtract from a

9 mls v0.4s, v3.4s, v2.4s

10 // (Optional) shrink to 16-bit lane

11 xtn v0.4h, v0.4s

Algorithm 4.5 MEDS Freeze Operation

1: function freeze(a)
2: if a ≥ 4093 then
3: a = a− 4093

4: return a

Algorithm 4.6 NEON freeze operation (C)

1 uint16x8_t freeze(uint16x8_t a)

2 {

3 // Create mask of 1^* for all lanes where a >= MEDS_p

4 uint16x8_t mask = vcgeq_u16(a, MEDS_p_VEC_16x8);

5 // Create vector of MEDS_p for all lanes with a >= MEDS_p

6 uint16x8_t val = vandq_u16(mask , MEDS_p_VEC_16x8);

7 // Subtract MEDS_p from all lanes where a >= MEDS_p

8 return vsubq_u16(a, val);

9 }

Algorithm 4.7 NEON freeze operation (assembly)

Input: ai ∈ [0, 2 · 4093− 1] for 0 ≤ i < 4 (in v0.4s)
MEDS p = 4093 (in v1.4s)

Output: ai mod MEDS p for 0 ≤ i < 4 (in v0.4s)

1 cmhs v2.8h, v0.8h, v1.8h

2 and v2.16b, v2.16b, v1.16b

3 sub v0.8h, v0.8h, v2.8h

39

As explained in Section 2.4.1, we cannot use branching in constant-time
code. However, using NEON intrinsics (or assembly instructions), we can
implement the freeze operation in constant time. The NEON version of
the freeze operation is shown in Algorithm 4.6 (C code) and Algorithm 4.7
(assembly code).

4.2 Low-level optimization

The low-level optimization approach focuses on optimizing the individual
functions that take up a significant amount of time in the MEDS implemen-
tation. As can be seen from the profiling results displayed in Section 3.2,
over 99% of the total number of cycles used in signing and verification is used
on just five functions. In this section, we discuss the optimization of three
of these functions: matrix multiplication (Section 4.2.1), matrix systemizer
(Section 4.2.2), and isometry derivation (Section 4.2.3). The optimization
of the other two functions is not specific to the low-level optimization ap-
proach and will be discussed in Section 4.4 (bitstream filling) and Section 4.5
(SHAKE256).

4.2.1 Matrix multiplication

Matrix multiplication is by far the most time-consuming function in MEDS,
taking up almost 70% of the total number of cycles in key generation, signing,
and verification. The function is responsible for the simple task of multiplying
two matrices A ∈ Fm×n

4093 and B ∈ Fn×o
4093 over the finite field F4093.

Complexity analysis

Matrix multiplication is implemented using a naive algorithm (see Algo-
rithm A.4 in Appendix A.3) that works by calculating the dot product of
each row of A with each column of B, followed by a reduction modulo 4093.
Three nested loops loop over the m rows of A, the o columns of B, and the n
columns of A and rows of B. The resulting time complexity of this algorithm
is therefore O(mno), and the amount of work that needs to be done can
be expressed as mno. Algorithms have been developed that can multiply
two matrices in a lower time complexity, such as the Strassen algorithm [72]
and (generalizations of) the Coppersmith-Winograd algorithm [31]. However,
these algorithms have such a high constant factor that they are not suitable
for our purposes. Instead, we focus on optimizing the naive algorithm.

40

Optimization

We optimize matrix multiplication by applying vectorization to the naive
algorithm. We compute the dot product of multiple rows of A with multiple
columns of B at the same time.

Our first observation lies in the fact that all intermediate values that are
computed while calculating the dot product fit into 32 bits.

• Given A ∈ Fm×n
q × B ∈ Fn×o

q = C ∈ Fm×o
q , the maximum value of

n for all matrix multiplications in all MEDS parameter sets is 44
(MEDS-122000).

• The values stored in A and B are field elements that fit into 12 bits.
Their value is 4092 at most.

• In the computation of a single element of C, exactly n multiplications
are performed, which are all added together.

• This means that n values are added together, which results in a value
that fits in log2(n · 4092 · 4092) = log2(44 · 4092 · 4092) ≈ 29.5 bits.

As a result, we do not need to reduce the intermediate values modulo 4093
during the computation of the dot product if we accumulate the multiplica-
tions of the 16-bit values into 32-bit registers. Instead, we can reduce the
resulting value after the dot product is computed. From this observation, we
can derive that we can compute the dot product of four rows of A with four
columns of B at the same time, as we can fit four 32-bit values in four lanes
of a 128-bit NEON register.

However, we can do slightly better than that. The NEON unit is capable
of performing four (widening) multiplications of 16-bit unsigned integers at
the same time, but a NEON register can hold eight 16-bit unsigned integers.
This means that we can compute the dot product of eight rows of A with
eight columns of B using two multiplication instructions. This does not
change the total number of multiplications that need to be performed, but it
does halve the number of memory loads and stores that need to be executed.

Unfortunately, we cannot directly apply an easy 8-way vectorization to (one
of) the loops in the naive algorithm. The NEON unit can load 128 bits of
data from memory at a time, but it is not able to do this with an arbitrary
distance between the elements. The matrices in MEDS are stored in row-
major order (each row is stored after the previous row), meaning we can load
eight elements of a row using a single NEON instruction, but we cannot load
eight elements of a column using a single NEON instruction. An easy solution
would be to transpose matrix B before performing the multiplication, but
this would require additional memory and time to perform the transpose.

41

Instead, we use an approach where 16 dot products are computed at the same
time, in the form of an 8× 8 submatrix of C. We load an 8× 8 submatrix
of A and an 8 × 8 submatrix of B into NEON registers and compute the
dot product of these submatrices, adding the result to the submatrix of C.
We repeat this process until all dot products are computed and stored in C.
The resulting algorithm is shown in Algorithm 4.8. A visualization of the
functionality of this algorithm is shown in Figure 4.1. This algorithm works
for matrices of which the dimensions are multiples of eight.

Algorithm 4.8 Vectorized matrix multiplication for matrices that are mul-
tiples of eight in size

1: function matrix mul(A ∈ Fm×n
q , B ∈ Fn×o

q)
2: C ← zero matrix of size m× o
3: for c← 0 to m in steps of 8 do
4: for r ← 0 to o in steps of 8 do
5: C0, . . . , C7 ← empty NEON register
6: for k ← 0 to n in steps of 8 do
7: A0, . . . , A7 ← load 8× 8 submatrix at A[r][k]
8: B0, . . . , B7 ← load 8× 8 submatrix at B[k][c]
9: for i← 0 to 8 do

10: Ci ← Ci +B0 ×Ai[0]
11: Ci ← Ci +B1 ×Ai[1]
12: Ci ← Ci +B2 ×Ai[2]
13: Ci ← Ci +B3 ×Ai[3]
14: Ci ← Ci +B4 ×Ai[4]
15: Ci ← Ci +B5 ×Ai[5]
16: Ci ← Ci +B6 ×Ai[6]
17: Ci ← Ci +B7 ×Ai[7]

18: for i← 0 to 8 do
19: Ci ← reduce(Ci)

20: store 8× 8 submatrix C0, . . . , C7 at C[r][c]

21: return C

Handling non-multiples of eight

The algorithm in Algorithm 4.8 only works for matrices of which the dimen-
sions are multiples of eight. Unfortunately, MEDS uses matrices of which
the dimensions are usually not multiples of eight. To solve this problem,
there are various approaches that we can take. An easy solution is to pad
the matrices such that the dimensions become multiples of eight, but this
would require additional memory and, if performed dynamically, additional
computation time.

42

Figure 4.1: Visualization of the vectorized matrix multiplication algorithm.
With one run of the k-loop, we compute one 8× 8 submatrix of C (marked
in blue). The orange cells depict the calculation of a single element of C.

Our solution to this problem is threefold, as three dimensions can be non-
multiples of eight: m, o, and n. We handle each of these dimensions
separately.

• Dimension m:
When m is not a multiple of eight, we can use the normal approach
until we reach the last multiple of eight. After this, when loading the
submatrix of A, we load an (m mod 8)× 8 submatrix. Additionally, we
only compute the dot products and store the results for the m mod 8
rows of C that are required.

• Dimension o:
When o is not a multiple of eight, we can use the normal approach
until we reach the last multiple of eight. After this, when loading the
submatrix of B, we load an 8× (o mod 8) submatrix. The remaining
lanes in the NEON registers containing Bi are set to 0, making sure
no incorrect values are added to C. When storing the results, we store
only the first o mod 8 columns of C.

• Dimension n:
When n is not a multiple of eight, we can use the normal approach
until we reach the last multiple of eight. After this, we load only an
8× (n mod 8) submatrix of A and an (n mod 8)× 8 submatrix of B.
When computing Ci, we skip the last 8 − (n mod 8) multiplications
and additions.

43

It is also possible for multiple of these dimensions to be non-multiples of eight
at the same time. In this case, we can combine the approaches described
above. In a few cases where the remaining number of rows or columns is less
than eight but at least four, we can use 4-way vectorized instructions for a
very small extra speedup.

Implementation

The actual implementation of Algorithm 4.8 combined with the handling
of non-multiples can be done in multiple ways. As the resulting algorithm
becomes quite complex, we figured that the C compiler might not be able to
optimize the code as well as we can. Therefore, we have decided to implement
a Python script1 that generates optimized ARMv8 assembly code. The script
generates a specialized assembly function for each set of input dimensions
that is used in MEDS.

Minimum cycle bound

To understand the performance of our optimized matrix multiplication
algorithm, we need to find a minimum bound on the number of cycles that
the algorithm will take to execute. To do this, we establish a minimum
bound on the number of instructions that the algorithm uses.

A very crude minimum cycle bound on the naive algorithm (see Algo-
rithm A.4) can be established by counting the number of arithmetic op-
erations required:

• m · o · n multiplications and additions;

• m · o modulo operations.

The ‘multiply-accumulate’ operation is a single instruction on ARMv8, and
modular reduction can be done in five instructions (see Section 2.5.1). This
means that we can establish a minimum bound of m · o · n + m · o · 5 on
the number of arithmetic instructions required for the naive algorithm. Any
algorithm that follows this structure will require at least this number of
instructions to execute, divided by the parallelization factor of that algorithm.
In the case of the vectorized algorithm, this factor is eight.

1https://github.com/MeItsLars/MEDS-ARMv8-optimization-thesis/blob/main/op

t-low-level/src/asm/matmul/generate_matmul_asm.py

44

https://github.com/MeItsLars/MEDS-ARMv8-optimization-thesis/blob/main/opt-low-level/src/asm/matmul/generate_matmul_asm.py
https://github.com/MeItsLars/MEDS-ARMv8-optimization-thesis/blob/main/opt-low-level/src/asm/matmul/generate_matmul_asm.py

A more accurate minimum cycle bound can be established by looking at
the number of instructions required for the vectorized algorithm (see Algo-
rithm 4.8). This algorithm obtains a speedup because of two factors:

• The NEON unit can perform operations in parallel.

• As we compute the result for an 8× 8 submatrix of C, we can use the
same input value eight times, reducing the number of loads required.

The vectorized algorithm loads and later re-loads the same values multiple
times. It is hard to account for this in a minimum cycle bound, as various
implementations of the algorithm might require more or less loads. Therefore,
we establish a minimum cycle bound based on the idea that we have infinite
registers and need to load and store all required values only once. The
number of instructions required for the vectorized algorithm can then be
calculated as follows:

• 1
8m ·

1
8n · 8 loads of A;

• 1
8o ·

1
8n · 8 loads of B;

• 1
8m ·

1
8o ·

1
8n · 8 · 8 · 2 multiply-accumulate operations;

• 1
8m ·

1
8o · 8 · 2 reductions;

• 1
8m ·

1
8o · 8 stores of C.

Given that reduction takes five cycles and the other operations take one
cycle, we establish the following minimum cycle bound:

1

8
mn+

1

8
on+

1

4
mon+

1

4
mo · 5 + 1

8
mo =

1

4
mno+

1

8
mn+

11

8
mo+

1

8
no

Theoretical speedup

We compare the minimum cycle bound of the naive algorithm to the minimum
cycle bound of the vectorized algorithm. We calculate the difference factor
between the two bounds, which is the factor by which the vectorized algorithm
should theoretically be faster than the naive algorithm. Using a similar
approach as in the previous section, we establish the bound for the naive
algorithm:

mo+ no+mn+ 2mno+mo · 5

The theoretical speedup between the two algorithms is then given by:

2mno+mn+ 6mo+ no
1
4mno+ 1

8mn+ 11
8 mo+ 1

8no

The theoretical and actual speedup factors are compared in Section 5.1.

45

4.2.2 Matrix systemizer

The matrix systemizer function is the second most time-consuming function in
MEDS, taking up about 9% of the total number of cycles for key generation
and 11% of the total number of cycles for signing and verification. The
function is responsible for the task of systemizing a matrix A ∈ Fm×n

4093 over
the finite field F4093 into a systemized matrix of REF’ or RREF’ form (see
Section 2.2.5).

Complexity analysis

We analyze the complexity of the matrix systemizer algorithm used in the
reference implementation (see Algorithm A.7). We first consider the basic
algorithm where rmax = m and do swap and do backsub are set to false. We
can then compute the complexity of the algorithm as follows:

m−1∑
r=0

(
m−1∑

r2=r+1

n−1∑
c=r

O(1) +O(1) +
n−1∑
c=r

O(1) +
m−1∑

r2=r+1

n−1∑
c=r

O(1)

)

= 2 ·

(
m−1∑
r=0

m−1∑
r2=r+1

n−1∑
c=r

O(1)

)
+

(
m−1∑
r=0

n−1∑
c=r

O(1)

)
+

(
m−1∑
r=0

O(1)

)

= 2 ·

(
m−1∑
r=0

O((m− r − 1)(n− r))

)
+

(
m−1∑
r=0

O(n− r)

)
+O(m)

= 2 ·

(
m−1∑
r=0

O(mn−mr − nr + r2 − n+ r)

)
+

(
m−1∑
r=0

O(n− r)

)
+O(m)

= O

(
mn

m−1∑
r=0

1−m

m−1∑
r=0

r − n

m−1∑
r=0

r +

m−1∑
r=0

r2 − n

m−1∑
r=0

1 +

m−1∑
r=0

r + n

m−1∑
r=0

1−
m−1∑
r=0

r +m

)

= O
(
mn ·m−m · (m− 1)m

2
− n · (m− 1)m

2
+

(m− 1)m(2m− 1)

6
+m

)
= O

(
m2n− m3 −m2

2
− m2n−mn

2
+

2m3 − 3m2 +m

6
+m

)
= O

(
m2n− m3

2
+

m2

2
− m2n

2
+

mn

2
+

2m3

6
− 3m2

6
+

m

6
+m

)
= O(m2n)

We can use arithmetic series to replace sums with closed-form expressions. In
the final step, as n ≥ m and therefore m2n ≥ m3, we find that the complexity
of the basic algorithm is O(m2n).

We consider the changes that the three optional features of the algorithm
bring to the complexity:

• Using rmax will change the dimensions of the outer loop of the algorithm
to rmax instead of m. This will change the complexity of the algorithm

46

to O(rmaxmn). As rmax is only ever m or m− 1 in MEDS, this has no
drastic effect on the complexity of the algorithm.

• When do swap is set to true, an additional loop is added to the algo-
rithm which adds the following complexity:(

m∑
r=0

m∑
r2=r+1

O(1)

)
+

(
m∑
r=0

r∑
i=0

O(1)

)

Following a similar approach as above, we find that this results in a
complexity of O(m2), which does not change the complexity of the
algorithm.

• When do backsub is set to true, we perform another triple-nested loop
to perform back substitution. This loop has the following complexity:(

m∑
r=0

r∑
r2=0

O(1)

)
+

(
m∑
r=0

r∑
r2=0

n∑
c=m

O(1)

)

Again, following a similar approach as above, we find that this results
in a complexity of O(m2 + m2n − m2) = O(m2n), which does not
change the complexity of the algorithm.

From this, we can conclude that the complexity of the matrix systemizer
algorithm is O(m2n).

Optimization

We optimize the matrix systemizer algorithm by applying vectorization to
the loops in the algorithm. Contrary to the matrix multiplication algorithm,
we cannot easily parallelize the main r-loop in the algorithm, as the starting
values of subloops depend on the (changing) value of r. This structure makes
parallelization over the r-loop impossible. Instead, we optimize each inner
loop separately by applying a parallelization technique tailored to the specific
inner loop.

For all nested loops, we apply parallelization to the innermost loop. In
the systemizer algorithm, this loop is always the easiest to parallelize, as it
accesses matrix elements that are stored sequentially in memory. Each input
matrix element is stored in a 12-bit field element, which fits into a 16-bit
register. This means that we can compute 8 elements at the same time using
128-bit NEON registers.

Unfortunately, we are unable to use a full 8-way vectorization for all loops, as
the algorithm uses multiplication operations. When multiplying two 16-bit
values, the result is a 32-bit value, of which we cannot store eight in a
128-bit NEON register. We can work around this issue by using the umull

47

instruction to multiply the lower four 16-bit values of two registers and the
umull2 instruction to multiply the upper four 16-bit values of two registers.
After reducing both results, we can use the uzp1 operation to combine the
results back into a single 128-bit register.

Handling non-multiples of eight

The inner loops that we are optimizing usually do not loop over a dimension
that is a multiple of eight. To handle this, we use the following approach:

1. While at least eight elements are left to process, use the 8-way vector-
ization approach;

2. After this, if there are at least four elements left to process, use one
iteration of a 4-way vectorized approach;

3. After this, use a non-vectorized approach for any remaining elements
(maximum 3).

Implementation

As with the matrix multiplication algorithm, the resulting systemizer algo-
rithm becomes quite complex. Although it can be implemented with NEON
intrinsics, we opted for the faster approach of generating optimized ARMv8
assembly code using a Python script.2 The script generates a specialized
assembly function for each set of input dimensions that is used in MEDS.

Minimum cycle bound

Finding a minimum cycle bound for the optimized systemizer algorithm
is very similar to determining its complexity. As we can follow the same
structure as in Section 4.2.2, we omit some of the steps taken and refer
the reader to that section for a more detailed explanation. As with matrix
multiplication, we assume infinite registers and that all values are loaded
and stored only once.

For the basic algorithm, the number of instructions required is as follows:

• rmax · n · 18 loads of A;

•
∑r max−1

r=0

∑m−1
r2=r+1

∑n−1
c=r

1
8 add, bitwise AND, and freeze instructions

(first inner loop);

•
∑r max−1

r=0 1 finite field inversions;

2https://github.com/MeItsLars/MEDS-ARMv8-optimization-thesis/blob/main/op

t-low-level/src/asm/systemizer/generate_systemizer_asm.py

48

https://github.com/MeItsLars/MEDS-ARMv8-optimization-thesis/blob/main/opt-low-level/src/asm/systemizer/generate_systemizer_asm.py
https://github.com/MeItsLars/MEDS-ARMv8-optimization-thesis/blob/main/opt-low-level/src/asm/systemizer/generate_systemizer_asm.py

•
∑r max−1

r=0

∑n−1
c=r (

1
8 · 2) multiply and reduce instructions (normalize

loop);

•
∑r max−1

r=0

∑n−1
c=r

1
8 combine instructions (normalize loop);

•
∑r max−1

r=0

∑m−1
r2=r+1

∑n−1
c=r (

1
8 · 2) multiply and reduce instructions (last

inner loop);

•
∑r max−1

r=0

∑m−1
r2=r+1

∑n−1
c=r

1
8 combine, add, subtract and freeze instruc-

tions (last inner loop);

• rmax · n · 18 stores of A.

Given that reduction takes five cycles, freezing takes three cycles, field
inversion takes 115 cycles, and all other instructions take one cycle, combining
these results using the same techniques as for the complexity analysis gives
us the following minimum cycle bound for the basic algorithm:

1

4
· rmax · n+ 115 · rmax +

13

8

(
n · rmax −

(rmax − 1)rmax

2

)
+

23

8

(
mn · rmax −m · (rmax − 1)rmax

2
− n · (rmax − 1)rmax

2

+
(rmax − 1)rmax(2rmax − 1)

6
− n · rmax +

(rmax − 1)rmax

2

)
When using the algorithm with do swap set to true, the following instructions
are added to the minimum cycle bound:

•
∑r max−1

r=0

∑m−1
r2=r

1
8 bitwise OR instructions (swap loop 1).

Following the same approach as above, using do swap adds the following
value to the minimum cycle bound:

1

8

(
m · rmax −

(rmax − 1)rmax

2

)
When using the algorithm with do backsub set to true, the following instruc-
tions are added to the minimum cycle bound:

•
∑r max−1

r=0

∑r−1
r2=0(

1
8 ·2) multiply and reduce instructions (backsub middle

loop);

•
∑r max−1

r=0

∑r−1
r2=0

1
8 combine, add, subtract, and freeze instructions

(backsub middle loop);

•
∑r max−1

r=0

∑r−1
r2=0

∑n−1
c=rmax

(18 ·2) multiply and reduce instructions (back-
sub inner loop);

•
∑r max−1

r=0

∑r−1
r2=0

∑n−1
c=rmax

1
8 combine, add, subtract, and freeze instruc-

tions (backsub inner loop).

49

Following the same approach as above, using do backsub adds the following
value to the minimum cycle bound:

18

8

(
(rmax − 1)rmax

2

)
+

18

8
(n− rmax)

(
(rmax − 1)rmax

2

)

Theoretical speedup

Similarly to the matrix multiplication algorithm, we establish a theoretical
speedup factor. Using a similar approach as in the previous section, we
establish the bound for the non-optimized systemizer algorithm with do swap

and do backsub set to false:

2 · rmax · n+ 115 · rmax + 6 ·
(
n · rmax −

(rmax − 1)rmax

2

)
+ 11 ·

(
mn · rmax −m · (rmax − 1)rmax

2
− n · (rmax − 1)rmax

2

+
(rmax − 1)rmax(2rmax − 1)

6
− n · rmax +

(rmax − 1)rmax

2

)
When using the algorithm with do swap set to true, the bound is increased
by:

1 ·
(
m · rmax −

(rmax − 1)rmax

2

)
When using the algorithm with do backsub set to true, the bound is increased
by:

11 ·
(
(rmax − 1)rmax

2

)
+ 11 · (n− rmax)

(
(rmax − 1)rmax

2

)
As these bounds are very complex, we do not provide a closed-form expression
for the theoretical speedup factor. This factor is obtained by dividing the
bound for the non-optimized algorithm by the bound for the optimized algo-
rithm (possibly with the additional instructions for do swap and do backsub).
The theoretical and actual speedup factors are compared in Section 5.1.

4.2.3 Isometry derivation

In all three operations of MEDS, the solve opt function is used to derive
an isometry mapping ϕ = (A ∈ Fm×m

q ,B ∈ Fn×n
q) by constructing and

solving a sparse system of linear equations, see Section 2.2.5. The system
that needs to be solved is constructed in a very specific way, which allows
for a more efficient method of solving it (as opposed to using a more general
algorithm like Gaussian elimination). Even though this more efficient method

50

is used, the function still takes up a significant amount of time in the MEDS
implementation.

Unfortunately, the function is also extremely large, with the reference code
containing over 300 lines of code, making it very tedious to optimize the
function as a whole. Instead, we profiled the function and found that the
majority of the time of this function (±70 %) is spent on two relatively small
triple-nested loops, while the remainder of the time (±30 %) is spent on all
other parts of the function combined. Therefore, we focus on optimizing
these two loops. Both loops have the same structure, so we only discuss the
optimization of the first loop. This loop is shown in Algorithm 4.9.

Algorithm 4.9 Isometry derivation: time-consuming loop 1

1 for (int b = MEDS_m - 3; b >= 0; b--)

2 for (int c = MEDS_m - 1; c >= 0; c--)

3 for (int r = 0; r < MEDS_m; r++)

4 {

5 uint64_t tmp1 = pmod_mat_entry(N, MEDS_n -1,MEDS_m , r, c);

6 uint64_t tmp2 = sol[(MEDS_m +1)*MEDS_n+b*MEDS_m+MEDS_m+c];

7 uint64_t prod = (tmp1 * tmp2) % MEDS_p;

8 uint64_t val = sol[(MEDS_m +1) * MEDS_n + b * MEDS_m + r];

9 val = ((MEDS_p + val) - prod) % MEDS_p;

10 sol[(MEDS_m + 1) * MEDS_n + b * MEDS_m + r] = val;

11 }

Complexity analysis

As mentioned in Section 2.2.5, the complexity of the entire solve opt func-
tion is O(n3). Analyzing the complexity of the two time-consuming loops
specifically is trivial as they are both triple-nested loops that start and end
at specific values. As can be derived from Algorithm 4.9, the first loop has a
complexity of:

O((m− 3)(m− 1)m) = O(3m− 4m2 +m3) = O(m3)

Using the same approach, we find that the second time-consuming loop has
a complexity of O(m2n). Note that as n = m+1 for the parameter sets that
we consider, both loops are also O(n3), which is the same as the complexity
of the entire function.

Optimization

Fortunately, the loop structure of the time-consuming loops in the algorithm
is very suitable for vectorization, meaning the C compiler might already have
optimized the loops to a degree that we cannot improve upon. Nevertheless,
we try to optimize the loops by applying vectorization to the innermost loop,
which always loops from 0 to MEDS m (MEDS n for the second loop).

51

As the field elements are stored in 16 bits, we can compute eight elements
at the same time using 128-bit NEON registers. Therefore, we compute the
results for eight values of r at the same time. We start by loading tmp1, which
gives us a small problem, as these eight values are not stored sequentially in
memory. Therefore, we load these values using normal load instructions and
store them in a 128-bit NEON register. The remaining loads and stores can
be done using vectorized instructions as those values are stored next to each
other in memory.

As with the matrix systemizer, we are unable to use a full 8-way vectorization
as the algorithm uses multiplication instructions, which result in 32-bit values.
We apply the approach used in the matrix systemizer to work around this
issue, see Section 4.2.2.

Handling non-multiples of eight

Similar to the matrix systemizer function, the number of elements that need
to be processed is usually not a multiple of eight. We use the same approach
as with the matrix systemizer function to handle this issue (see Section 4.2.2),
meaning we decrease the parallelization factor to four and one when there
are not enough elements left to process.

Implementation

As the solve opt function is very large, we have decided not to implement
the full function in ARMv8 assembly. This presented us with two options:
either we use NEON intrinsics to parallelize the two time-consuming loops,
or we write (a script that generates) ARMv8 assembly code for the two
time-consuming loops. As the loops themselves are not very complex, we have
decided to use NEON intrinsics to parallelize them, under the assumption
that the assembly variant would not be much faster. Exploring the assembly-
based optimization of these loops and the full function is left as future
work, see Section 7.1. The optimized C code with NEON intrinsics is quite
elaborate, so we do not show it here. Instead, we refer to the code in the
code repository.3

Minimum cycle bound

We establish a minimum cycle bound for the part of the solve opt function
that we optimized: the two time-consuming loops. As they share the same
structure, we show a general approach for establishing a minimum cycle
bound for these loops, which we then apply to both loops to obtain a
minimum cycle bound for the combined loops.

3https://github.com/MeItsLars/MEDS-ARMv8-optimization-thesis/blob/main/op

t-low-level/src/util.c

52

https://github.com/MeItsLars/MEDS-ARMv8-optimization-thesis/blob/main/opt-low-level/src/util.c
https://github.com/MeItsLars/MEDS-ARMv8-optimization-thesis/blob/main/opt-low-level/src/util.c

We call x the number of iterations of the outermost loop, y the number of
iterations of the middle loop, and z the number of iterations of the innermost
loop. As with matrix multiplication, we assume infinite registers and that all
values are loaded and stored only once. The minimum number of instructions
for the triple-nested loop can be calculated as follows:

• x · y loads of tmp2 (not dependent on z);

• y · 18z · 8 loads to load the 8 values of tmp1 (not dependent on x);

• x · y · 18z · 2 multiplications and reductions to compute prod low/high;

• x · y · 18z combinations of prod low and prod high to compute prod;

• x · 18z loads to load val (not dependent on y);

• x · y · 18z additions, subtractions, and final reductions to compute val;

• x · 18z stores of val (not dependent on y).

Given that reductions take five cycles, freezes take three cycles, and all other
operations take one cycle, we establish a minimum bound of:

xy+yz+
1

8
xyz · (2 · (1+5)+1+(1+1+3))+

1

4
xz = xy+yz+

1

4
xz+

18

8
xyz

We have x = m−3, y = m−1, z = m for loop 1 and x = m−2, y = m−1, z = n
for loop 2, where m and n are the values of the parameter set that is used
(as shown in Table 2.1). This gives us a total of

(m− 3)(m− 1) + (m− 1)m+
1

4
(m− 3)m+

18

8
(m− 3)(m− 1)m

=
9

4
m3 − 27

4
m2 +m+ 3

cycles for loop 1 and

(m− 2)(m− 1) + (m− 1)n+
1

4
(m− 2)n+

18

8
(m− 2)(m− 1)n

=
9

4
m2n+m2 − 11

2
mn− 3m+ 3n+ 2

cycles for loop 2, giving a combined minimum cycle bound of:

9

4
m3 +

9

4
m2n− 23

4
m2 − 11

2
mn− 2m+ 3n+ 5

Theoretical speedup

As with the matrix multiplication and systemizer algorithms, we establish a
theoretical speedup factor for the optimized isometry derivation algorithm.

53

Using a similar approach as in the previous section, we establish the bound
for the two time-consuming loops in the non-optimized isometry derivation
algorithm:

13m3 + 13m2n− 47m2 − 36mn+ 25m+ 21n+ 5

The theoretical speedup between the two algorithms is then given by:

13m3 + 13m2n− 47m2 − 36mn+ 25m+ 21n+ 5
9
4m

3 + 9
4m

2n− 23
4 m

2 − 11
2 mn− 2m+ 3n+ 5

The theoretical and actual speedup factors are compared in Section 5.1.

4.3 High-level optimization

The high-level optimization approach focuses on optimizing the MEDS im-
plementation by parallelizing over the challenge space. MEDS uses a large
number (t) of challenges and commitments in both signing and verification,
which are all computed independently in a for-loop. Additionally, the com-
putation for each commitment is the same for signing and very similar for
verification. This means that we can parallelize the computation of the
commitments for each challenge.

Before we can parallelize the computation of the commitments, we need to
determine the number of commitments that we compute in parallel. The
commitment computation is executed over F4093, which means that the field
elements can be stored in 12 bits (which fits in a 16-bit register). This means
that we can store up to eight field elements in a single 128-bit NEON register.
From this, there are two possible parallelization factors we can consider.

1. Four-way parallelization:
Nearly all operations on field elements allow the values to stay in 16-bit
registers. An exception is multiplication: the result of a multiplication
of two field elements is a 24-bit value, which fits in a 32-bit register.
This means that we can compute four multiplications at the same
time using 128-bit NEON registers. Because of this limitation, we can
choose to compute four commitments at a time.

2. Eight-way parallelization:
We can work around the multiplication limitation by using instructions
such as umull and umull2 to multiply the lower and upper four values
(respectively) of two 128-bit NEON registers, after which we can reduce
the results and combine them back into a single 128-bit register. Using
this technique, we can compute eight commitments at the same time.

Initially, we implemented the 4-way parallelization approach as it is easier to
implement. However, we found that the 8-way parallelization approach is

54

more efficient, as the extra parallelization far outweighs the small overheads
introduced by the more complex implementation. Therefore, we focus on the
8-way parallelization approach in this section.

In this section, we discuss the high-level optimization of the MEDS imple-
mentation. We first discuss the alterations that need to be made to the
underlying datatypes and supplemental algorithms to allow for high-level
parallelization in Section 4.3.1. Next, we discuss the actual parallelization
of the commitment computations in Section 4.3.2. Finally, we discuss the
limitations of the high-level optimization approach in Section 4.3.3.

4.3.1 Parallelization of datatypes and supplemental algo-
rithms

In the reference implementation of MEDS, the main datatypes used are
defined as follows:

#define GFq_t uint16_t

#define pmod_mat_t GFq_t

These two datatypes represent a field element and a matrix element, respec-
tively. Matrices are stored as one-dimensional arrays in row-major order and
are passed to functions using pointers to a pmod mat t.

To parallelize the algorithms that use these datatypes, we adjust the datatypes
such that they represent multiple field/matrix elements at the same time.
In our implementation, we add a vec 16x8.h file4 containing these new
datatypes, which are defined as follows:

#define GFq_vec_t uint16x8_t

#define pmod_mat_vec_t GFq_vec_t

These two datatypes represent eight field elements and eight matrix elements,
respectively. By passing these datatypes to a modified version of each
function, we can compute the function output for eight commitments at the
same time.

4https://github.com/MeItsLars/MEDS-ARMv8-optimization-thesis/blob/main/op

t-high-level/include/vec_16x8.h

55

https://github.com/MeItsLars/MEDS-ARMv8-optimization-thesis/blob/main/opt-high-level/include/vec_16x8.h
https://github.com/MeItsLars/MEDS-ARMv8-optimization-thesis/blob/main/opt-high-level/include/vec_16x8.h

Additionally, we define a wide range of functions that operate on these
vectorized datatypes in the vec 16x8.h file. Examples of such definitions
include:

#define ADD_VEC(a, b) vaddq_u16(a, b)

#define MUL_VEC_LOW(a, b) vmull_u16(vget_low_u16(a),

vget_low_u16(b))

#define MUL_VEC_HIGH(a, b) vmull_high_u16(a, b)

#define OR_VEC(a, b) vorrq_u16(a, b)

The main advantage of this approach is that the entire high-level-optimized
MEDS implementation can easily be converted to use a different CPU
architecture (that supports vectorization) such as AVX512 [63] simply by
changing the definitions in the vec 16x8.h file.

Supplemental algorithms

To parallelize the commitment computations, we need to modify the sup-
plemental algorithms that are used in the MEDS implementation. In the
reference implementation, these algorithms perform operations for matrices
or values that belong to a single commitment. We need to modify these
algorithms such that they can perform operations for multiple commitments
at the same time. The following algorithms need to be modified:

1. Matrix multiplication: pmod mat mul

Responsible for multiplying two matrices over the finite field F4093.

2. Matrix systemizer: pmod mat syst ct partial swap backsub

Responsible for converting a matrix into a systematic form (Algo-
rithm A.7, Appendix A.3).

3. Field inversion: GF inv

Responsible for inverting an element over the finite field F4093.

4. Matrix inversion: pmod mat inv

Responsible for inverting a matrix over the finite field F4093.

5. Isometry derivation: solve opt

Responsible for deriving an isometry mapping ϕ by constructing and
solving a sparse system of linear equations over the finite field F4093.

6. Applying the π function: pi
Responsible for applying the π function (Algorithm A.5, Appendix A.3)
to a pair of matrices.

7. Applying the SF function: SF
Responsible for applying the SF function (Algorithm A.6, Appendix A.3)
to a matrix.

56

Each of these algorithms will be modified to work with the vectorized
datatypes defined in the vec 16x8.h file. These algorithms will then be
plugged into the MEDS implementation, which will be modified to compute
multiple commitments at the same time.

To give a brief overview of the modifications that need to be made to these
algorithms, we provide an example for the matrix multiplication algorithm.
The reference matrix multiplication algorithm is shown in Algorithm A.4
(Appendix A.3). The C code for this algorithm is shown in Algorithm 4.10.
The modified matrix multiplication algorithm is shown in Algorithm 4.11.
Both algorithms are slightly simplified for the sake of readability.

Algorithm 4.10 Matrix multiplication (non-vectorized)

1 void pmod_mat_mul(pmod_mat_t *C, int C_r , int C_c ,

2 pmod_mat_t *A, int A_r , int A_c ,

3 pmod_mat_t *B, int B_r , int B_c)

4 {

5 for (int c = 0; c < C_c; c++)

6 for (int r = 0; r < C_r; r++)

7 {

8 uint64_t val = 0;

9 for (int i = 0; i < A_c; i++)

10 val = val +

11 (uint64_t)pmod_mat_entry(A, A_r , A_c , r, i) *

12 (uint64_t)pmod_mat_entry(B, B_r , B_c , i, c);

13 C[r * C_c + c] = val % MEDS_p;

14 }

15 }

As can be seen from the code, the vectorized version is essentially the same as
the non-vectorized version, but with certain operations altered so they work
with the vectorized datatypes and functions defined in the vec 16x8.h file
and thus perform 8 computations in parallel. The same approach is used for
all other supplemental algorithms that require parallelization, their modified
implementations can be found in the code repository.5

5https://github.com/MeItsLars/MEDS-ARMv8-optimization-thesis/tree/main/op

t-high-level/src

57

https://github.com/MeItsLars/MEDS-ARMv8-optimization-thesis/tree/main/opt-high-level/src
https://github.com/MeItsLars/MEDS-ARMv8-optimization-thesis/tree/main/opt-high-level/src

Algorithm 4.11 Matrix multiplication (vectorized for eight commitments)

1 void pmod_mat_mul_vec(pmod_mat_vec_t *C, int C_r , int C_c ,

2 pmod_mat_vec_t *A, int A_r , int A_c ,

3 pmod_mat_vec_t *B, int B_r , int B_c)

4 {

5 for (int c = 0; c < C_c; c++)

6 for (int r = 0; r < C_r; r++)

7 {

8 pmod_mat_vec_w_t val_low = ZERO_VEC_W;

9 pmod_mat_vec_w_t val_high = ZERO_VEC_W;

10 for (int i = 0; i < A_c; i++)

11 {

12 val_low = MUL_ACC_VEC_LOW(val_low ,

13 pmod_mat_entry(A, A_r , A_c , r, i),

14 pmod_mat_entry(B, B_r , B_c , i, c));

15 val_high = MUL_ACC_VEC_HIGH(val_high ,

16 pmod_mat_entry(A, A_r , A_c , r, i),

17 pmod_mat_entry(B, B_r , B_c , i, c));

18 }

19 pmod_mat_vec_t val_low_red = REDUCE_VEC_32BIT(val_low);

20 pmod_mat_vec_t val_high_red = REDUCE_VEC_32BIT(val_high);

21 C[r * C_c + c] = COMBINE_VEC(val_low_red , val_high_red);

22 }

23 }

4.3.2 Parallelization of commitment computations

Using the modified datatypes and supplemental algorithms, we can parallelize
the computation of the commitments in MEDS. As can be seen in the
algorithms for both signing (Algorithm 2.2) and verification (Algorithm 2.3),
the computation of the commitments is done in a for-loop that loops from
0 to t. As the generation of a commitment can fail (for example, when a
randomly generated matrix is not invertible), the generation of a particular
commitment is done in a while loop that runs until the commitment is
successfully generated. This is why the signing and verification code exhibits
the following structure:

// Initial definitions and loading

for (int i = 0; i < t; i++) {

while (1) {

// Compute commitment

if (commitment is computed) break;

}

}

// Final operations

This structure introduces a problem if we want to parallelize the computation
of the commitments. We cannot simply parallelize the for-loop to use t

8

58

iterations, as the while loop might run for a different number of iterations for
each commitment. Additionally, although the computation of two different
commitments is independent, the computation of the same commitment (after
a failure) is dependent on the previous computation of that commitment,
as the seed for the random number generator is updated after each failure.
This means that we also cannot parallelize the while-loop.

Optimization

We can overcome the aforementioned problems by using a different approach
to parallelize the commitment computations. Instead of finishing the compu-
tation for a commitment before moving on to the next, we start by running
the first computation attempt for each commitment. If a computation fails,
we store the necessary information to retry the computation later. After the
first computation attempt for all commitments is done, we run the second
computation attempt for all commitments that failed the first time. This
process is repeated until all commitments are successfully computed. This
approach is inspired by [1]. It is suitable for parallelization and has the
following structure:

// Initial definitions and loading

while (there are uncomputed/failed commitments) {

// 1. Load data for next 8 uncomputed/failed commitments

// 2. Compute these commitments in parallel

// 3(a). Store results for successful commitments

// 3(b). Store information for failed commitments

}

// Final operations

Of course, this introduces some overhead, as steps 1 and 3 in the structure
above cannot be parallelized and take slightly more time than their equivalent
in the reference implementation. However, the parallelization of step 2 will
result in a significant speedup, as the computation of the commitments itself
is by far the most time-consuming part of the MEDS implementation.

Verification

For the signature verification algorithm, the same approach can be used with a
few minor adjustments. The verification algorithm is shown in Algorithm 2.3.
As can be seen, the verification of a commitment can be done in two ways. If
hi is not zero, we compute the isometry mapping based on the commitment
that is contained in the signature. If hi is zero, we re-compute the isometry
mapping in the same way as in the signing algorithm.

A key observation is that in both cases, the same matrix multiplication
and isometry derivation algorithms are used, with the same dimensions and

59

parameters. The only difference is the source of the matrices. This means
that we can use the same parallelization approach described earlier, with a
small change in the way the matrices are loaded. This is done separately
for each matrix, which will bring a small overhead, but will still result in a
significant speedup.

4.3.3 Limitations

Theoretically, we should expect that this approach will result in a speedup
factor of eight. However, there are a few important reasons that will prevent
us from reaching this speedup factor:

1. Overhead:
As mentioned earlier, the parallelization approach introduces some
overhead. This overhead is caused by the fact that we cannot parallelize
the loading of the data and the storing of the results.

2. Memory bandwidth:
The parallelization approach will result in a much higher memory
bandwidth usage, as the inputs and outputs of each supplemental
algorithm are now 8 times larger. This implies that the inputs and
outputs to supplemental algorithms will no longer fit in the L1 cache of
the CPU, which will result in a larger amount of cache misses, causing
a severe slowdown.

4.4 Bitstream filling

After the commitments are computed, the resulting matrices are hashed,
after which the hash output is converted into an array of t challenges. The
input to the hash function is an array of 8-bit unsigned integers. For the
MEDS parameter sets that we consider, the matrix elements fit in 12 bits
and are stored as 16-bit unsigned integers. This means that the 16-bit values
need to be converted to 8-bit values before they can be hashed. Although this
can be done by simply changing the pointer type (for C implementations),
MEDS uses the more complex approach of only using the 12 least significant
bits (which contain the field element) of each 16-bit value. These 12-bit
values are concatenated into a bitstream which is then hashed.

The main advantage of this approach is that the number of 8-bit values that
need to be hashed is reduced by a factor of 16

12 = 4
3 , lowering the number

of calls to the hash function. However, it also comes with the disadvantage
that the process of filling the bitstream is more complex and time-consuming
than the alternative of changing the pointer type.

60

We discuss the optimization of the existing approach for filling the bitstream.
The alternative approach of changing the pointer type is left as future work,
see Section 7.1.

The reference implementation6 for filling the bitstream is generalized to work
with up to 32 bits per value and therefore has to keep track of and update
the current bit position in the bitstream. This means that we can save some
time by using a specialized approach for filling bitstreams with 12-bit values.

Our optimization relies on the observation that two 12-bit values can be
converted to three 8-bit values (which are required by the hash function) using
a few simple bitwise operations. A conceptual pseudocode implementation
of this approach is shown in Algorithm 4.12. The actual implementation7

is a bit more complex as the structure of the input data is different and it
needs to handle the case where the number of values is not a multiple of two.
The high-level variant8 is also slightly different as it needs to parallelize this
operation.

Algorithm 4.12 Bitstream filling for 12-bit values

1: Input: v: array of n 16-bit unsigned integers
2: Output: bs: array of 3

2n 8-bit unsigned integers
3: bs← empty array of size 3

2n
4: i← 0
5: for j ← 0 to n in steps of 2 do
6: v1 ← v[j]
7: v2 ← v[j + 1]
8: bs[i]← v1 & 0xFF

9: bs[i+ 1]← (v1 ≫ 8) | ((v2 & 0xF)≪ 4)
10: bs[i+ 2]← (v2 ≫ 4) & 0xFF

11: i← i+ 3

6https://github.com/MeItsLars/MEDS-ARMv8-optimization-thesis/blob/main/re

f/src/bitstream.c
7https://github.com/MeItsLars/MEDS-ARMv8-optimization-thesis/blob/main/op

t-low-level/src/meds.c
8https://github.com/MeItsLars/MEDS-ARMv8-optimization-thesis/blob/main/op

t-high-level/src/vec_16x8.c

61

https://github.com/MeItsLars/MEDS-ARMv8-optimization-thesis/blob/main/ref/src/bitstream.c
https://github.com/MeItsLars/MEDS-ARMv8-optimization-thesis/blob/main/ref/src/bitstream.c
https://github.com/MeItsLars/MEDS-ARMv8-optimization-thesis/blob/main/opt-low-level/src/meds.c
https://github.com/MeItsLars/MEDS-ARMv8-optimization-thesis/blob/main/opt-low-level/src/meds.c
https://github.com/MeItsLars/MEDS-ARMv8-optimization-thesis/blob/main/opt-high-level/src/vec_16x8.c
https://github.com/MeItsLars/MEDS-ARMv8-optimization-thesis/blob/main/opt-high-level/src/vec_16x8.c

Figure 4.2: MEDS commitment hashing structure. G̃i represents the commit-
ment matrix for commitment i, Hash1 represents a call to SHAKE256, and
si represents the intermediate KECCAK state after hashing commitment i.

4.5 Hash structure

The result of the computation of each commitment is a large matrix. To
convert these commitments into a set of challenges (as is required by the
Fiat-Shamir structure, see Section 2.2.3), the commitments are hashed (using
the SHAKE256 XOF) into a single KECCAK state. This state is then
converted into an array of t challenges.

The commitment matrices are hashed sequentially, meaning that to hash
commitment i, we are dependent on the hash output of commitment i− 1.
The structure of this hashing process is depicted in Figure 4.2. In this figure,
G̃i represents the commitment matrix for commitment i, converted such that
it is stored in an array of k(mn−k) unsigned 8-bit integers (see Section 2.2.4
for values of m, n, and k). Hash1 represents a call to SHAKE256, which
in turn calls the Keccak-f[1600] permutation until the entire input array
is absorbed. si represents the intermediate KECCAK state after hashing
commitment i, where s0 is 0. The resulting state st is used to generate the
array of challenges.

The hashing process for a single commitment is already quite computationally
expensive. The number of bits to be hashed per commitment is 8·⌈k(mn−k)·b

8 ⌉,
where b is the number of bits required to store a field element. For MEDS-
55520 (see Section 2.2.4), this results in a value of 471648. As SHAKE256
uses a rate of 1088 bits, this means that the hashing process for a single
commitment requires ⌈4716481088 ⌉ = 434 calls to the Keccak-f[1600] permutation
(for MEDS-55520).

Additionally, the hashing process is not parallelizable because of the sequential
structure of the process. The profiling results (see Section 3.2) show that
the hashing process takes up a little over 5% of the total execution time
of signing and verification, which makes it worthwhile to explore possible
optimizations.

62

Figure 4.3: Optimized MEDS commitment hashing structure. G̃i represents
the commitment matrix for commitment i, Hash1 and Hash2 represent calls
to SHAKE256, and ii and st represent intermediate and final KECCAK
states, respectively.

4.5.1 Hash structure optimization

There is little to no room for improvement in the actual SHAKE256 XOF, as
it (and the underlying KECCAK permutation) is already widely studied and
optimized. However, we can optimize the structure of the hashing process in
such a way that we can compute the hashing result for multiple commitments
in parallel. To do this, we need to alter the structure of the hashing process.
This altered structure is depicted in Figure 4.3. In this structure, the hashing
structure is split into two stages:

1. Stage 1: Hash1
In the first stage, the commitment matrices are hashed into a set of
intermediate states i0, i1, . . . , it−1 using the same Hash1 function as in
the original structure. This stage can be parallelized, as the hashing of
each commitment no longer depends on other commitments.

2. Stage 2: Hash2
In the second stage, we combine the intermediate states i0, i1, . . . , it−1

into a single state st that we can use to generate the array of challenges.
We do this by repeatedly applying the Hash2 function (which also
calls SHAKE256) to the intermediate states and the running state s.
This stage is once again sequential, but it only requires t calls to the
Keccak-f[1600] permutation.

The resulting structure introduces a small amount of overhead, as stage 2
requires t additional calls to the Keccak-f[1600] permutation. However, as
stage 1 can now be parallelized, the overall execution time of the hashing
process is expected to decrease.

Unfortunately, the final state st that the optimized structure generates is
different from the final state that the original structure generates. This
means that the resulting challenges will also be different between the two
structures, meaning that the optimized and reference implementations are
not compatible with each other. Therefore, we leave this optimized hash
structure as a suggested change to the MEDS scheme.

63

4.5.2 Implementation

The implementation of the optimized hash structure into the MEDS imple-
mentation is trivial and requires only one important detail: a parallelized
version of SHAKE256, optimized for the ARMv8 architecture. The extended
KECCAK code package [80] does not contain vectorized implementations of
the Keccak-f[1600] permutation for ARMv8 (only for ARMv7). Fortunately,
recent research by Becker and Kannwischer [18] has resulted in a large set of
optimized and vectorized implementations of the Keccak-f[1600] permutation
for ARMv8 and various extensions of the ARMv8 architecture.

We have benchmarked these implementations on the Cortex-A72 and found
that the keccak f1600 x4 hybrid asm v3p9 optimized permutation (which
can process 4 states in parallel) requires the lowest amount of cycles per state
permutation on the ARM Cortex-A72. As the number of challenges t is a
multiple of 4 for all MEDS parameter sets that we consider, this means that
we can easily plug this optimized permutation into the new hash structure.
On the Apple M2, we found that the keccakx2 bas10 optimized permutation
(which can process 2 states in parallel) requires the lowest amount of cycles
per state permutation. This variant was developed by Westerbaan [79] and
is also used in SPHINCS+ [10]. The main advantage of this permutation is
the fact that it uses the cryptographic extension of the ARMv8 architecture
(available on the Apple M2 but not on the ARM Cortex-A72), which contains
instructions that accelerate the parallel performance of the Keccak-f[1600]
permutation.

4.6 Non-constant-time implementations

To prevent timing and cache-based side-channel attacks (see Section 2.4), the
MEDS implementation must be constant-time. However, this is only the case
for the key generation and signing phases of MEDS. The verification phase
is not required to be constant-time, as it operates only on public data. This
means that we can use non-constant time code for the verification phase. In
this section, we list the functions that can be optimized using non-constant
time implementations. The implementation of each optimization is slightly
different for the low-level and high-level approaches, but the idea is the same.

4.6.1 Finite field inversion

MEDS requires the inversion of field elements over the finite field F4093. The
constant-time algorithm used in the reference implementation utilizes an

9https://gitlab.com/arm-research/security/pqax/-/blob/master/asm/manual/k

eccak_f1600/keccak_f1600_x4_hybrid_asm_v3p.s
10https://gitlab.com/arm-research/security/pqax/-/blob/master/tests/keccak

_neon/manual/third_party/keccakx2_bas.s

64

https://gitlab.com/arm-research/security/pqax/-/blob/master/asm/manual/keccak_f1600/keccak_f1600_x4_hybrid_asm_v3p.s
https://gitlab.com/arm-research/security/pqax/-/blob/master/asm/manual/keccak_f1600/keccak_f1600_x4_hybrid_asm_v3p.s
https://gitlab.com/arm-research/security/pqax/-/blob/master/tests/keccak_neon/manual/third_party/keccakx2_bas.s
https://gitlab.com/arm-research/security/pqax/-/blob/master/tests/keccak_neon/manual/third_party/keccakx2_bas.s

optimal addition chain based on the inversion approach of Fermat’s Little
Theorem, which uses 115 instructions. However, as the number of possible
field elements is limited to 4093, we can precompute the inverse of each field
element and store it in a lookup table. This allows us to invert a field element
simply by executing an array lookup, which takes only a few instructions to
execute.

4.6.2 Matrix systemizer

In the matrix systemizer (shown in Algorithm A.7), the algorithm spends
some time making sure the leading coefficient of each row is nonzero (it almost
always is). As the implementation is constant time, this entire process is
executed even if the leading coefficient is already nonzero. In a non-constant
time implementation, we add a check to see if the leading coefficient is zero,
and if it is not, skip the entire process of making it nonzero.

65

Chapter 5

Results

In this chapter, we present the results of the optimizations that we have
performed on the MEDS implementation. We compiled the code using gcc
(Debian 12.2.0-14) 12.2.0 with the -O3 optimization flag and executed it on
the ARM Cortex-A72 (ARMv8-A) clocked at 1.5 GHz with frequency scaling
disabled. The overall performance of the scheme, discussed in Section 5.3,
is also analyzed on the Apple M2 (ARMv8.6-A), on which we compiled the
code using gcc (Apple clang-1500.3.9.4) 15.0.0 with the -O3 optimization
flag and executed it on one of the performance cores clocked at 3.49 GHz.
In all tables and figures, the numbers shown represent the number of cycles,
kilocycles (KCycles, 1 KCycle = 1 thousand cycles), or megacycles (MCycles,
1 MCycle = 1 million cycles) that the respective algorithm or function took
to execute.

We first look at the performance results of the three algorithms that were
optimized specifically for the low-level approach in Section 5.1. After that,
we look at the post-optimization profiling results of the functions that
originally took up the most time in the MEDS implementation in Section 5.2.
Following this, we look at the overall performance results of all three MEDS
parameter sets for both the reference implementation, low-level optimized
implementation, and high-level optimized implementation in Section 5.3.
Finally, we compare the performance of the optimized MEDS implementation
to other state-of-the-art signature schemes in Section 5.4.

5.1 Low-level optimizations

In our low-level optimization approach (see Section 4.2), we optimized matrix
multiplication, the matrix systemizer, and isometry derivation. For each of
these functions, we established a lower bound on the number of cycles that
the (optimized part of the) function should take to execute. The calculated

66

Table 5.1: Results of low-level algorithm optimizations for parameter set
MEDS-55520. ‘Cycles’ represents the number of cycles that the reference
(Ref.) or optimized (Opt.) function (part) took to execute on the Cortex-
A72. ‘Bound’ represents the lower bound (as calculated in the relevant
section in Chapter 4) on the number of cycles that the function (part) should
take to execute. ‘Ratio’ represents the ratio between the number of cycles
that the optimized function (part) took to execute and the lower bound.
For the Matrix Systemizer, the arguments (as explained in Section 4.2.2)
are represented by ∗ (apply back substitution), ∗∗ (apply systemizer to a
limited number of rows), and ∗∗∗ (swap columns to ensure non-zero leading
coefficients).

Function Input size Cycles Cycles Bound Ratio
A B (Ref.) (Opt.)

Matrix Multiplication 2× k k × k 6450 1348 824 1.63
Matrix Multiplication 2×mn mn× k 226217 39234 28568 1.37
Matrix Multiplication k ×mn mn× k 3757155 489947 404744 1.21
Matrix Multiplication m× n n×m 109556 15947 12044 1.32
Matrix Multiplication m× n n× n 111334 16794 12351 1.36
Matrix Multiplication 32× 32 32× 32 89725 10750 9856 1.09

Matrix Systemizer k × k 169141 95299 42800 2.23
Matrix Syst. k × 2k 292309 175155 99805 1.75
Matrix Syst. (bsub∗) n× 2n 453498 292422 156774 1.87
Matrix Syst. (bsub∗) m× 2m 407491 261331 143984 1.82
Matrix Syst. (bsub∗) k × 2k 407583 261028 143984 1.81
Matrix Syst. (n-1∗∗) (bsub∗) n× 2m 422529 269895 149018 1.81
Matrix Syst. (swap∗∗∗) (bsub∗) m− 1×m 190097 123796 43413 2.85

Isometry Derivation (part) 2×mn 1142883 350909 166319 2.11

lower bounds apply to the algorithms that we used for the optimizations.
Using a different algorithm might result in a different lower bound.

To determine how close we got to our calculated bound, we benchmarked
the optimized functions for parameter set MEDS-55520. Together with the
cycle count of the original function and the calculated minimum bound for
each function (part), this gives us an understanding of how close we got to
the optimal performance of the function (with the specific algorithm that
we used). The results for these optimizations are shown in Table 5.1. Each
benchmark result was obtained by running that function 128 times and
taking the median of the timing results.

Because of our assumption that we have infinite registers (and therefore only
need to load or store each value once) in the calculation of the minimum
cycle bound, none of the functions reach the lower bound. This is especially
true for the matrix systemizer and isometry derivation functions, both of

67

these use a lot of intermediate loads and stores and are therefore relatively
far from the lower bound.

The results show that we were able to optimize the matrix multiplication
function for the 32× 32 case to within 9% of the lower bound. This case is
not used in MEDS, but we added it to show that the optimization works
almost perfectly for matrices of which the dimensions are a multiple of 8.
The other cases show that the optimization works fairly well for matrices
with more than 8 rows and columns. These cases are unable to reach the
lower bound because of the overhead of having to deal with dimensions that
are not a multiple of 8, but the results are still very good. The worst case
arises when one of the input matrices has only 2 rows. This makes sense, as
we are unable to use full 8-way parallelization and therefore lose performance.
The optimization of matrix multiplication for these cases might be improved
by using a different approach to parallelization, which we leave as future
work (see Section 7.1).

When looking at the matrix systemizer, we see that we get reasonably close
to the lower bound for most cases. The difference is mostly caused by the
assumption that we have infinite registers, which is not the case in reality.
The exceptions are the cases where the matrix size is relatively small, which
is to be expected. For these matrix sizes, the additional overhead of having to
deal with dimensions that are not a multiple of 8 is relatively large, compared
to the parallelization speedup.

Finally, we consider the isometry derivation function. The results show that
we were able to optimize this function to within 2.11× of the lower bound.
This is a major improvement over the reference implementation, but it is
still quite far from the lower bound. This can be attributed to the infinite
register assumption and the fact that we only optimized the two most time-
consuming parts of the function. Furthermore, we used NEON intrinsics for
the optimization, whereas an assembly implementation might have resulted
in a larger speedup. We leave this as future work (see Section 7.1).

5.1.1 Theoretical and actual speedup factors

Besides determining the proximity of the optimized functions to the calculated
lower bound, we also calculate the theoretical and actual speedup factors
for each optimization to get an understanding of how well we optimized the
functions compared to the theoretical expectation. The results are shown in
Table 5.2.

68

Table 5.2: Theoretical and actual speedup factors of the low-level optimiza-
tions for parameter set MEDS-55520. Factors are calculated as the ratio
between the number of cycles that the reference function took to execute
and the number of cycles that the optimized function took to execute. The
cycle counts are taken from Table 5.1 and are omitted here for brevity.
Additionally, the definitions of ∗, ∗∗, and ∗∗∗ are also taken from Table 5.1.

Function Input size Factor Factor
A B Theoretical Actual

Matrix Multiplication 2× k k × k 7.6 4.8
Matrix Multiplication 2×mn mn× k 7.6 5.8
Matrix Multiplication k ×mn mn× k 7.5 7.7
Matrix Multiplication m× n n×m 7.5 6.9
Matrix Multiplication m× n n× n 7.5 6.6
Matrix Multiplication 32× 32 32× 32 7.5 8.3

Matrix Systemizer k × k 3.6 1.8
Matrix Syst. k × 2k 3.7 1.7
Matrix Syst. (bsub∗) n× 2n 4.1 1.6
Matrix Syst. (bsub∗) m× 2m 4.1 1.6
Matrix Syst. (bsub∗) k × 2k 4.1 1.6
Matrix Syst. (n-1∗∗) (bsub∗) n× 2m 4.1 1.6
Matrix Syst. (swap∗∗∗) (bsub∗) m− 1×m 3.7 1.5

Isometry Derivation (part) 2×mn 5.7 3.3

The results show that especially for the matrix multiplication function, the
actual speedup factors are close to the theoretical speedup factors, indicating
that we were able to optimize these functions very well. Again, the exceptions
are the cases where the matrix size is relatively small, in which case we are
unable to use full 8-way parallelization, causing the actual speedup factor
to be lower than the theoretical speedup factor. For the matrix systemizer
and isometry derivation functions, the actual speedup factors are lower than
the theoretical speedup factors. This is because the C compiler was already
able to optimize these functions to a certain extent, which means that the
speedup factor that we could achieve was limited.

5.2 Profiling implementation variants

The results of profiling the reference implementation were shown earlier
in Section 3.2. In this section, we profile the optimized implementations
(both low-level and high-level) for parameter set MEDS-55520 to obtain an
understanding of how much impact each optimization had. The relative
results for the other two parameter sets are very similar and are therefore
omitted. As the main goal of profiling does not revolve around getting accu-
rate measurements but rather around understanding the relative performance

69

Figure 5.1: MEDS-55520 profiling results on the Cortex-A72 for functions
used in key generation.

of (functions within) the different implementations, we only ran one profiling
iteration for each of the three algorithms. The profiling results, depicted in
bar charts, are shown in Figure 5.1 (key generation), Figure 5.2 (signing),
and Figure 5.3 (verification).

The figures show major improvements for all three algorithms in both the
low-level and high-level optimized implementations, with a few notable
exceptions:

• The key generation algorithm used in the high-level optimized imple-
mentation is the same as the one in the reference implementation,
because the parameter sets that we consider do not allow for large
speedup factors for the high-level optimizations of this algorithm. We
leave this as future work (see Section 7.1).

• In key generation, the rnd sys mat (responsible for generating ran-
dom systemized matrices) and bs fill (responsible for writing to a
bitstream) functions have not been optimized, and therefore show no
improvement. Generating random systemized matrices cannot be opti-
mized, as it relies on the generation of random field elements using the
SHAKE256 XOF (which is already optimized). Writing to a bitstream
can be optimized using the approach described in Section 4.4, which
we leave as future work.

70

Figure 5.2: MEDS-55520 profiling results on the Cortex-A72 for functions
used in signing.

Figure 5.3: MEDS-55520 profiling results on the Cortex-A72 for functions
used in verification.

71

• The shake256 absorb function used in signing and verification does
not show any improvement. This is because the SHAKE256 XOF is
already heavily optimized. The only thing that can be optimized is
the structure of the hashing process, which we execute and explain in
Section 4.5.

Besides these exceptions, the results show that the optimizations have been
very effective. Particularly matrix multiplication shows a huge speedup, but
the other functions also show major improvements. We note the following
observations:

• The low-level optimized matrix multiplication function is faster than its
high-level optimized counterpart. We believe that this is because the
high-level optimized function needs to access 8 times as many values
in memory as the low-level optimized function. This results in a larger
amount of cache misses, which slows down the function.

• The high-level optimized matrix systemizer function is faster than its
low-level optimized counterpart. We believe that this is because the
low-level optimized function is not able to parallelize every aspect of
the systemizer process (such as the inversion of field elements), whereas
the high-level optimized function can do this. This results in a larger
speedup for the high-level optimized function.

• The high-level optimized isometry derivation function is slightly faster
than its low-level optimized counterpart. We believe that this is
because the high-level optimized function parallelizes the entire function,
whereas the low-level optimized function only parallelizes the two most
time-consuming loops. The low-level optimized function might therefore
benefit from further optimization, which we leave as future work (see
Section 7.1).

5.3 Overall performance

We have benchmarked the performance of the MEDS for all combinations of
the four relevant variables to consider:

• Processor: We benchmarked the performance on both the ARM
Cortex-A72 and the Apple M2.

• MEDS parameter set: We analyzed the performance for each of
the three considered parameter sets: MEDS-21595, MEDS-55520, and
MEDS-122000 (see Section 2.2.4).

• Algorithm: We tested each of the three signature algorithms: key
generation, signing, and verification.

72

• Implementation variant: We tested all implementations: reference,
low-level optimized, high-level optimized, low-level optimized with
alternative hash structure, and high-level optimized with alternative
hash structure.

MEDS was benchmarked for every possible combination of these variables,
resulting in a total of 45 benchmarks per CPU. The result for each benchmark
was obtained in the following way:

1. 16 ‘warmup’ runs were executed to ensure that the cache was filled
with the necessary data and the branch predictor was optimized;

2. 128 measurement runs were executed to obtain 128 measurements of
the execution time of the algorithm;

3. The final benchmark result was obtained by taking the median of the
128 measurements.

The exact results of the benchmarks on the Cortex-A72 are shown in Table B.1
(MEDS-21595), Table B.2 (MEDS-55520), and Table B.3 (MEDS-122000)
in Appendix B. For the Apple M2, the results are shown in Table B.4
(MEDS-21595), Table B.5 (MEDS-55520), and Table B.6 (MEDS-122000) in
Appendix B.

As the relative performance of the implementations is more important than
the exact numbers and as we focused our optimization efforts on the Cortex-
A72, we depict the Cortex-A72 results in the form of bar charts in Figure 5.4
(MEDS-21595), Figure 5.5 (MEDS-55520), and Figure 5.6 (MEDS-122000).

The results show that both the low-level and high-level optimizations have
resulted in a major speedup of the MEDS implementation (except for high-
level key generation) on both CPUs. The low-level optimized implementation
is faster than the high-level optimized implementation for all algorithms and
parameter sets. This is because the high-level optimized variant needs to
transfer larger amounts of data to and from the various functions it uses,
causing a larger amount of cache misses, which slows down the implementa-
tion.

Additionally, the results show that the alternative hash structure presented
in Section 4.5 results in a small speedup for the signing and verification
algorithms. It does not have a noticeable impact when applied to the reference
implementation.

The speedup factors are larger on the Apple M2 than on the ARM Cortex-
A72, especially for the variants with the optimized hash structure. This
is because the Apple M2 can utilize the cryptographic extension of the
ARMv8 architecture, which contains instructions that accelerate the parallel
performance of the Keccak-f[1600] permutation.

73

Figure 5.4: Overall performance of MEDS-21595 variants on the Cortex-A72.
Low-Level refers to the low-level optimized implementation and High-Level to
the high-level optimized implementation. The ‘New Hash Structure’ variants
refer to the optimized hash structure described in Section 4.5.

Figure 5.5: Overall performance of MEDS-55520 variants on the Cortex-A72.
Low-Level refers to the low-level optimized implementation and High-Level to
the high-level optimized implementation. The ‘New Hash Structure’ variants
refer to the optimized hash structure described in Section 4.5.

74

Figure 5.6: Overall performance of MEDS-122000 variants on the Cortex-A72.
Low-Level refers to the low-level optimized implementation and High-Level to
the high-level optimized implementation. The ‘New Hash Structure’ variants
refer to the optimized hash structure described in Section 4.5.

5.4 Comparison to similar schemes

We compare the performance of MEDS on the Cortex-A72 to the performance
of other digital signature schemes. Note that we compare to the self-reported
performance of the schemes over various CPUs, which means the results are
not directly comparable. Nevertheless, the comparison indicates the rough
relative performance of the schemes. Besides this, note that the comparison
is only based on the performance of the schemes and does not take key and
signature sizes into account.

For reference, we include a comparison to Dilithium [36], Falcon [39], and
SPHINCS+ [10], the three selected signature schemes in the initial NIST post-
quantum standardization process. More importantly, though, we compare to
a set of related (mostly code-based) post-quantum digital signature schemes
that are, like MEDS, in the current NIST post-quantum digital signature
standardization process. The results are shown in Table 5.3.

When comparing the performance of MEDS to other similar post-quantum
digital signature schemes, the results are mixed. ALTEQ, CROSS, PERK,
and RYDE outperform MEDS for all three algorithms. UOV also outperforms
MEDS by a large factor, except for key generation. MEDS performs relatively
similarly to LESS, although for larger security levels, LESS is significantly

75

Table 5.3: Comparison of MEDS performance to self-reported times of
other similar or relevant signature schemes in the NIST standardization
process. The numbers represent the number of MCycles that the key
generation, signing, and verification algorithms take on the mentioned CPUs:
(1) AMD Ryzen 5 Pro 3500U, (2) Intel Core i7-12700, (3) Intel Comet Lake,
(4) ARM Cortex-A72, (5) Intel i5-1135G7, (6) Intel Xeon E-25588G, (7) In-
tel Xeon E3-1220, (8) Intel Core i9-13900K. For SPHINCS+ measurements,
the SHA2-simple variant is used.

NIST
Level

Scheme CPU Keygen Sign Verify

I

Dilithium2 (NEON) [17] (4) 0.27 0.65 0.27
Falcon512 (NEON) [59] (4) - 1.04 0.06
SPHINCS+-128s (AVX2) [10] (7) 84.97 644.74 0.86

Balanced-ALTEQ [26] (6) 0.36 2.74 2.11
CROSS-R-SDP-b [13] (1) 0.04 2.38 1.44
LESS-1b (AVX2) [12] (2) 0.90 263.60 271.40
MEDS-21595 (reference) (4) 7.97 890.71 889.77
MEDS-21595 (ours) (4) 2.82 248.22 229.79
PERK-I-short3 (AVX2) [3] (8) 0.08 38.0 27.0
RYDE-128S (AVX2) [5] (8) 0.03 23.40 20.10
uov-Ip-classic (NEON) [24] (4) 11.17 0.25 0.14
Wave822 [14] (5) 13946.20 1156.18 206.10

III

Dilithium3 (NEON) [17] (4) 0.52 1.09 0.45
SPHINCS+-192s (AVX2) [10] (7) 125.31 1246.38 1.44

Balanced-ALTEQ [26] (6) 2.23 28.46 26.20
CROSS-R-SDP-b [13] (1) 0.08 4.97 2.89
LESS-3b (AVX2) [12] (2) 2.80 2446.90 2521.40
MEDS-55520 (reference) (4) 22.66 3623.80 3628.16
MEDS-55520 (ours) (4) 7.18 927.91 878.27
PERK-III-short3 (AVX2) [3] (8) 0.18 80.0 64.0
RYDE-192S (AVX2) [5] (8) 0.05 49.60 44.80
uov-III-classic (NEON) [24] (4) 66.87 1.54 0.57
Wave1249 [14] (5) 46285.89 3534.75 467.36

V

Dilithium5 (NEON) [17] (4) 0.78 1.44 0.77
Falcon1024 (NEON) [59] (4) - 2.14 0.13
SPHINCS+-256s (AVX2) [10] (7) 80.94 1025.72 1.99

CROSS-R-SDP-b [13] (1) 0.14 8.26 5.00
LESS-5b (AVX2) [12] (2) 6.40 10212.60 10458.80
MEDS-122000 (reference) (4) 71.02 13748.90 13731.38
MEDS-122000 (ours) (4) 16.65 2794.53 2693.83
PERK-V-short3 (AVX2) [3] (8) 0.31 182.0 142.0
RYDE-256S (AVX2) [5] (8) 0.07 105.50 95.90
uov-V-classic (NEON) [24] (4) 313.81 3.32 1.32
Wave1644 [14] (5) 106260.00 7851.48 806.86

76

slower at generating and verifying signatures. The only scheme that MEDS
outperforms for all three algorithms is Wave. Although these results do not
seem too promising, it is important to note that, except for Wave and UOV,
MEDS provides smaller signature sizes than all of these schemes. This makes
MEDS a viable competitor in the digital signature scheme landscape.

When comparing the performance of MEDS to standardized post-quantum
digital signature schemes, we see that MEDS is significantly slower than
Falcon and Dilithium but can compete with SPHINCS+. Although MEDS
and a lot of other schemes are slower than Falcon and Dilithium, they can
still be viable alternatives. Firstly, there can be specialized use cases where
performance is not the most important factor, and where the potentially
smaller key or signature sizes of alternative schemes are more important.
Secondly, standardizing schemes that rely on different mathematical problems
provides more diversity in security assumptions. If the security of structured
lattices (on which both Falcon and Dilithium rely) is ever broken, it is
important to have alternative schemes that rely on different mathematical
problems.

77

5.5 Discussion

Throughout our research, we have found answers to our research questions.

RQ I. From our profiling efforts in Chapter 3, we have found that
the matrix multiplication, the matrix systemizer, and isometry
derivation functions are the most time-consuming functions in
the MEDS implementation. Together, they account for over
87 % of the total execution time of the MEDS implementation
on the Arm Cortex-A72. After optimizing these functions, we
have found that these functions still take up a significant amount
of the total execution time. Additionally, we found that the
KECCAK permutation now takes up a significant amount of
time in all three algorithms.

RQ II. We have found that the low-level optimization approach results in
a large speedup for all parameter sets on both the ARM Cortex-
A72 and the Apple M2. The high-level optimization approach
is less effective but still results in a significant speedup. On
architectures with larger cache sizes and/or larger SIMD registers,
the high-level optimization approach might be more effective. As
for the low-level approach, we optimized the matrix multiplication,
matrix systemizer, and isometry derivation functions using NEON
instructions. Additionally, we obtained a speedup by optimizing
the bitstream filling process and suggested a new hash structure
that allows for parallelization of the hashing process, providing
another small speedup on the Cortex A72 and a larger speedup
on the Apple M2 which supports the cryptographic extension of
the ARMv8 architecture.

a) The bitstream filling and hash restructure speedups can
be applied to the reference implementation as they do not
require any ARMv8-specific instructions. The remaining
optimizations (which make up the bulk of the speedup) are
ARMv8-specific and can therefore not directly be applied
to the reference implementation. However, most other ar-
chitectures have their own SIMD instruction set, which can
be used in the same way as NEON instructions and should
achieve similar speedups.

78

Chapter 6

Conclusions

From the results in Chapter 5, it is clear that our optimizations have resulted
in a major speedup of the MEDS implementation. The low-level optimization
approach (as described in Section 4.2) has provided the highest speedup. On
the ARM Cortex-A72, MEDS-21595 is sped up by a factor of 2.9, 3.6, and
3.9 for key generation, signing, and verification, respectively; MEDS-55520
by factors 3.2, 3.9, and 4.1; and MEDS-122000 by factors 4.3, 4.9, and 5.1.
On the Apple M2, the speedup factors are slightly larger, with MEDS-21595
being sped up by factors 3.0, 3.7, and 4.1; MEDS-55520 by factors 3.8, 4.4,
and 4.7; and MEDS-122000 by factors 4.4, 5.1, and 5.4. The high-level
optimization approach (as described in Section 4.3) has provided a smaller
speedup due to the limitations in the cache sizes of the CPUs.

We present an alternative hash structure in Section 4.5 that further improves
the performance of signing and verification, at a negligible cost to the non-
parallelized reference implementation. The performance is improved by
another ±5 % on the ARM Cortex-A72 and another ±35 % on the Apple M2,
which supports the cryptographic extension of the ARMv8 architecture and
can therefore utilize instructions that accelerate the parallel performance of
the Keccak-f[1600] permutation. Since MEDS produces different challenges
and signatures when using this alternative hash structure, we leave it as a
suggested change to the MEDS scheme.

We have shown that the MEDS implementation is very suitable for optimiza-
tion using SIMD instructions. The achieved speedup on ARMv8 is big, but
we expect that future research can achieve even larger speedups on other
architectures that support SIMD instructions, such as AVX512 [63], on which
4 times as many field elements can be processed in parallel compared to
ARMv8.

79

Compared to standardized post-quantum signature schemes, MEDS is heavily
outperformed by Falcon and Dilithium. However, if the security of structured
lattices (on which both Falcon and Dilithium rely) is ever broken, MEDS
can serve as a viable alternative, as it is based on a different mathematical
problem. When compared to other similar (code-based) post-quantum
signature schemes, MEDS provides a smaller signature size than nearly all
of them but is outperformed by most of them in terms of performance.
The choice between these schemes should be based on a wide range of
factors, among which are the security requirements of the application, the
performance requirements of the key generation, signing, and verification
algorithms, the private and public key sizes, and the signature size.

80

Chapter 7

Future Work

Although we have optimized the MEDS implementation significantly, we have
mentioned several limitations and possible improvements. In this chapter,
we discuss these ideas in more detail. Additionally, there are some other
unexplored but interesting topics that we discuss.

7.1 Further optimization possibilities

Bitstream optimization

As explained in Section 4.4, the commitment matrices are hashed by first
converting them into a bitstream. An alternative approach is to change the
pointer type of the matrix elements from 16-bit to 8-bit unsigned integers
(which would practically take no time to execute) and then hash the resulting
array. The main advantage of this approach is that we no longer need to
execute the relatively costly bitstream filling process. However, it also comes
at the cost of having 4

3 times as many values to hash. It would be interesting
to see if this approach results in a speedup of the general hashing process.

Optimizing isometry derivation

Our optimizations to the isometry derivation function solve opt as described
in Section 4.2.3 have been very effective, resulting in a speedup factor of
2.7 for MEDS-55520 (see also the results in Section 5.2). However, our
optimizations were solely based on the vectorization of the two most time-
consuming loops in the solve opt function using NEON intrinsics. We expect
that an additional speedup can be achieved by optimizing the remaining
loops in the function. Additionally, we believe that a pure-assembly approach
will result in an even larger speedup.

81

Additional multiplication techniques for specific matrix dimen-
sions

We have heavily optimized the matrix multiplication function, achieving an
average matrix multiplication speedup factor of 6.9 for MEDS-55520 (see
also the results in Section 5.2). Naturally, the optimizations are slightly less
effective for matrices that use dimensions that are not a multiple of 8. For
most matrix sizes, the results were still close to the lower bound. However,
we noticed that matrices with dimensions 2× x were not optimized as well
as we would have liked. The creation of an additional algorithm that is
specifically tailored to such matrix sizes could pull the performance of these
matrix multiplications closer to the lower bound.

High-level key generation optimization

We have not applied high-level optimizations to the key generation function.
The main loop of the key generation generates all s matrices that represent
the public key. For the parameter sets that we consider, s is always 2, which
heavily limits the possibilities for parallelization. The speedup factor would
be limited to 2, which we already exceeded with our low-level optimizations.
However, it might still be interesting to explore the possibilities for high-level
optimizations for key generation, especially considering that the need for
parameter sets with larger values of s might arise in the future.

7.2 Additional research topics

Memory and power usage analysis

We have focused on optimizing the performance of the MEDS implementation,
but we have not analyzed the memory and power usage of any of the
implementations. It would be interesting to see what the impact of our
optimizations on memory and power usage is. Additionally, the possibilities
for further optimizations in these areas could be explored, which is especially
relevant for embedded systems and IoT devices.

Optimizing for other CPU architectures

We have optimized the MEDS implementation for the ARMv8 architecture,
but many other CPU architectures support SIMD instructions. One interest-
ing architecture to explore is the AVX512 architecture, which is supported by
Intel and AMD CPUs. AVX512 can process 4 times as many field elements
in parallel compared to ARMv8, which could result in a significant speedup
of the MEDS implementation.

82

Bibliography

[1] IIS Summer 2023. meds-simd-highlevel. https://github.com/IIS-s
ummer-2023/meds-simd-highlevel, 2023. Accessed: 08-07-2024. 5, 6,
59

[2] IIS Summer 2023. meds-simd-lowlevel. https://github.com/IIS-sum
mer-2023/meds-simd-lowlevel, 2023. Accessed: 08-07-2024. 5, 6

[3] Najwa Aaraj, Slim Bettaieb, Löıc Bidoux, Alessandro Budroni, Victor
Dyseryn, Andre Esser, Philippe Gaborit, Mukul Kulkarni, Victor Mateu,
Marco Palumbi, Lucas Perin, and Jean-Pierre Tillich. PERK. https:
//pqc-perk.org/assets/downloads/PERK_2023_10_16.pdf, October
2023. Accessed: 2024-08-21. 6, 76

[4] Gora Adj, Stefano Barbero, Emanuele Bellini, Andre Esser, Luis Rivera-
Zamarripa, Carlo Sanna, Javier Verbel, and Floyd Zweydinger. MiRitH.
https://pqc-mirith.org/assets/downloads/mirith_specificati

ons_v1.0.0.pdf, May 2023. Accessed: 2024-08-23. 6

[5] Nicolas Aragon, Magali Bardet, Löıc Bidoux, Jesús-Javier Chi-
Domı́nguez, Victor Dyseryn, Thibauld Feneuil, Philippe Gaborit, An-
toine Joux, Matthieu Rivain, Jean-Pierre Tillich, and Adrien Vinçotte.
RYDE. https://pqc-ryde.org/assets/downloads/ryde_spec.pdf,
June 2023. Accessed: 2024-08-21. 6, 76

[6] ARM. ARM Cortex-A Series Programmer’s Guide for ARMv8-A. https:
//developer.arm.com/documentation/den0024/latest/AArch64-F

loating-point-and-NEON. Accessed: 26-03-2024. 5, 19

[7] Arm Limited. Cortex-A72 Software Optimization Guide. https://de
veloper.arm.com/documentation/uan0016/latest/, March 10 2015.
Accessed: 12-07-2024. 21, 22, 23

[8] ARM Limited. ARM® Cortex®-A72 MPCore Processor: Technical
Reference Manual. https://developer.arm.com/documentation/10
0095/0003/?lang=en, 2016. Accessed: 08-09-2024. 23

83

https://github.com/IIS-summer-2023/meds-simd-highlevel
https://github.com/IIS-summer-2023/meds-simd-highlevel
https://github.com/IIS-summer-2023/meds-simd-lowlevel
https://github.com/IIS-summer-2023/meds-simd-lowlevel
https://pqc-perk.org/assets/downloads/PERK_2023_10_16.pdf
https://pqc-perk.org/assets/downloads/PERK_2023_10_16.pdf
https://pqc-mirith.org/assets/downloads/mirith_specifications_v1.0.0.pdf
https://pqc-mirith.org/assets/downloads/mirith_specifications_v1.0.0.pdf
https://pqc-ryde.org/assets/downloads/ryde_spec.pdf
https://developer.arm.com/documentation/den0024/latest/AArch64-Floating-point-and-NEON
https://developer.arm.com/documentation/den0024/latest/AArch64-Floating-point-and-NEON
https://developer.arm.com/documentation/den0024/latest/AArch64-Floating-point-and-NEON
https://developer.arm.com/documentation/uan0016/latest/
https://developer.arm.com/documentation/uan0016/latest/
https://developer.arm.com/documentation/100095/0003/?lang=en
https://developer.arm.com/documentation/100095/0003/?lang=en

[9] Arm Limited. Arm Neon Intrinsics Reference. https://arm-software
.github.io/acle/neon_intrinsics/advsimd.html, August 4 2023.
Accessed: 12-07-2024. 19

[10] Jean-Philippe Aumasson, Daniel J. Bernstein, Ward Beullens, Christoph
Dobraunig, Maria Eichlseder, Scott Fluhrer, Stefan-Lukas Gazdag, An-
dreas Hülsing, Panos Kampanakis, Stefan Kölbl, Tanja Lange, Martin M.
Lauridsen, Florian Mendel, Ruben Niederhagen, Christian Rechberger,
Joost Rijneveld, Peter Schwabe, and Bas Westerbaan. SPHINCS+.
https://sphincs.org/data/sphincs+-r3.1-specification.pdf,
2022. Accessed: 2024-08-21. 64, 75, 76

[11] Reza Azarderakhsh, Zhe Liu, Hwajeong Seo, and Howon Kim. NEON
PQCryto: Fast and Parallel Ring-LWE Encryption on ARM NEON
Architecture. Cryptology ePrint Archive, Paper 2015/1081, 2015. https:
//eprint.iacr.org/2015/1081. 5

[12] Marco Baldi, Alessandro Barenghi, Luke Beckwith, Jean-François Biasse,
Andre Esser, Kris Gaj, Kamyar Mohajerani, Gerardo Pelosi, Edoardo
Persichetti, Markku-Juhani O. Saarinen, Paolo Santini, and Robert
Wallace. LESS: Linear Equivalence Signature Scheme. https://www.
less-project.com/LESS-2024-02-19.pdf, February 2024. Accessed:
2024-08-09. 6, 76

[13] Marco Baldi, Alessandro Barenghi, Sebastian Bitzer, Patrick Karl,
Felice Manganiello, Alessio Pavoni, Gerardo Pelosi, Paolo Santini, Jonas
Schupp, Freeman Slaughter, Antonia Wachter-Zeh, and Violetta Weger.
CROSS: Codes and Restricted Objects Signature Scheme. https://

www.cross-crypto.com/CROSS_Specification_v1.2.pdf, February
2024. Accessed: 2024-08-09. 76

[14] Gustavo Banegas, Pierre Karpman, Kévin Carrier, Johanna Loyer,
André Chailloux, Ruben Niederhagen, Alain Couvreur, Nicolas Sendrier,
Thomas Debris-Alazard, Benjamin Smith, Philippe Gaborit, and Jean-
Pierre Tillich. WAVE. https://wave-sign.org/wave_documentati

on.pdf, June 2023. Accessed: 2024-08-09. 76

[15] Paul Barrett. Implementing the Rivest Shamir and Adleman Public
Key Encryption Algorithm on a Standard Digital Signal Processor. In
Andrew M. Odlyzko, editor, Advances in Cryptology — CRYPTO’ 86,
pages 311–323, Berlin, Heidelberg, 1987. Springer Berlin Heidelberg. 28

[16] Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin, Vin-
cent Laporte, David Pichardie, and Alix Trieu. Formal verification of
a constant-time preserving C compiler. Proceedings of the ACM on
Programming Languages, 4(POPL):1–30, 2019. 26

84

https://arm-software.github.io/acle/neon_intrinsics/advsimd.html
https://arm-software.github.io/acle/neon_intrinsics/advsimd.html
https://sphincs.org/data/sphincs+-r3.1-specification.pdf
https://eprint.iacr.org/2015/1081
https://eprint.iacr.org/2015/1081
https://www.less-project.com/LESS-2024-02-19.pdf
https://www.less-project.com/LESS-2024-02-19.pdf
https://www.cross-crypto.com/CROSS_Specification_v1.2.pdf
https://www.cross-crypto.com/CROSS_Specification_v1.2.pdf
https://wave-sign.org/wave_documentation.pdf
https://wave-sign.org/wave_documentation.pdf

[17] Hanno Becker, Vincent Hwang, Matthias J. Kannwischer, Bo-Yin Yang,
and Shang-Yi Yang. Neon NTT: Faster Dilithium, Kyber, and Saber on
Cortex-A72 and Apple M1. Cryptology ePrint Archive, Paper 2021/986,
2021. https://eprint.iacr.org/2021/986. 6, 32, 76

[18] Hanno Becker and Matthias J. Kannwischer. Hybrid scalar/vector
implementations of Keccak and SPHINCS+ on AArch64. Cryptology
ePrint Archive, Paper 2022/1243, 2022. https://eprint.iacr.org/
2022/1243. 6, 64

[19] Daniel J Bernstein. Cache-timing attacks on AES. https://cr.yp.to
/antiforgery/cachetiming-20050414.pdf, 2005. 26

[20] Daniel J Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin
Yang. High-speed high-security signatures. Journal of cryptographic
engineering, 2(2):77–89, 2012. 5

[21] Daniel J. Bernstein, Daira Hopwood, Andreas Hülsing, Tanja Lange,
Ruben Niederhagen, Louiza Papachristodoulou, Michael Schneider, Pe-
ter Schwabe, and Zooko Wilcox-O’Hearn. SPHINCS: Practical Stateless
Hash-Based Signatures. In Elisabeth Oswald and Marc Fischlin, editors,
Advances in Cryptology – EUROCRYPT 2015, pages 368–397, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg. 3, 6

[22] Daniel J. Bernstein and Peter Schwabe. NEON Crypto. In Emmanuel
Prouff and Patrick Schaumont, editors, Cryptographic Hardware and
Embedded Systems – CHES 2012, pages 320–339, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg. 5

[23] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Keccak. In Thomas Johansson and Phong Q. Nguyen, editors, Advances
in Cryptology – EUROCRYPT 2013, pages 313–314, Berlin, Heidelberg,
2013. Springer Berlin Heidelberg. 6, 34

[24] Ward Beullens, Ming-Shing Chen, Jintai Ding, Boru Gong, Matthias J.
Kannwischer, Jacques Patarin, Bo-Yuan Peng, Dieter Schmidt, Cheng-
Jhih Shih, Chengdong Tao, and Bo-Yin Yang. UOV: Unbalanced Oil
and Vinegar. https://drive.google.com/file/d/1NdMHuCyyFG6xg

QGrpssM99kyiNwA9JG-/view, May 2023. Accessed: 2024-08-21. 6, 76

[25] Jean-Francois Biasse, Giacomo Micheli, Edoardo Persichetti, and Paolo
Santini. LESS is More: Code-Based Signatures without Syndromes.
Cryptology ePrint Archive, Paper 2020/594, 2020. https://eprint.i
acr.org/2020/594. 10

[26] Markus Bläser, Dung Hoang Duong, Anand Kumar Narayanan, Thomas
Plantard, Youming Qiao, Arnaud Sipasseuth, and Gang Tang. The

85

https://eprint.iacr.org/2021/986
https://eprint.iacr.org/2022/1243
https://eprint.iacr.org/2022/1243
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://drive.google.com/file/d/1NdMHuCyyFG6xgQGrpssM99kyiNwA9JG-/view
https://drive.google.com/file/d/1NdMHuCyyFG6xgQGrpssM99kyiNwA9JG-/view
https://eprint.iacr.org/2020/594
https://eprint.iacr.org/2020/594

ALTEQ Signature Scheme: Algorithm Specifications and Supporting
Documentation. https://pqcalteq.github.io/ALTEQ_spec_2024.0
3.05.pdf, 2024. Accessed: 2024-08-21. 6, 76

[27] Joppe W. Bos, Peter L. Montgomery, Daniel Shumow, and Gregory M.
Zaverucha. Montgomery Multiplication Using Vector Instructions. In
Tanja Lange, Kristin Lauter, and Petr Lisoněk, editors, Selected Areas
in Cryptography – SAC 2013, pages 471–489, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg. 6

[28] Tung Chou, Ruben Niederhagen, Edoardo Persichetti, Lars Ran, Tovo-
hery Hajatiana Randrianarisoa, Krijn Reijnders, Simona Samard-
jiska, and Monika Trimoska. Matrix Equivalence Digital Signature.
https://www.meds-pqc.org/spec/MEDS-2023-07-26.pdf, 2023. 5,
11, 13, 14

[29] Tung Chou, Ruben Niederhagen, Edoardo Persichetti, Tovohery Haja-
tiana Randrianarisoa, Krijn Reijnders, Simona Samardjiska, and Monika
Trimoska. Take Your MEDS: Digital Signatures from Matrix Code Equiv-
alence. In Nadia El Mrabet, Luca De Feo, and Sylvain Duquesne, editors,
Progress in Cryptology - AFRICACRYPT 2023, pages 28–52, Cham,
2023. Springer Nature Switzerland. 3, 9

[30] Tung Chou, Ruben Niederhagen, Lars Ran, and Simona Samardjiska.
Reducing signature size of matrix-code-based signature schemes. Cryp-
tology ePrint Archive, Paper 2024/495, 2024. https://eprint.iacr.
org/2024/495. 5, 9, 12, 14, 17, 30

[31] Don Coppersmith and Shmuel Winograd. Matrix multiplication via
arithmetic progressions. In Proceedings of the nineteenth annual ACM
symposium on Theory of computing, pages 1–6, 1987. 40

[32] Ivan Damg̊ard. On Σ-protocols. Lecture Notes, University of Aarhus,
Department for Computer Science, 84, 2002. 12

[33] De Melo, Arnaldo Carvalho. The new linux ‘perf’ tools. In Slides from
Linux Kongress, volume 18, pages 1–42, 2010. 30, 31

[34] Erik De Win, Serge Mister, Bart Preneel, and Michael Wiener. On the
performance of signature schemes based on elliptic curves. In Joe P.
Buhler, editor, Algorithmic Number Theory, pages 252–266, Berlin,
Heidelberg, 1998. Springer Berlin Heidelberg. 4

[35] Jintai Ding and Dieter Schmidt. Rainbow, a New Multivariable Poly-
nomial Signature Scheme. In John Ioannidis, Angelos Keromytis, and
Moti Yung, editors, Applied Cryptography and Network Security, pages
164–175, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. 6

86

https://pqcalteq.github.io/ALTEQ_spec_2024.03.05.pdf
https://pqcalteq.github.io/ALTEQ_spec_2024.03.05.pdf
https://www.meds-pqc.org/spec/MEDS-2023-07-26.pdf
https://eprint.iacr.org/2024/495
https://eprint.iacr.org/2024/495

[36] Leo Ducas, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehle. CRYSTALS – Dilithium: Digital
Signatures from Module Lattices. Cryptology ePrint Archive, Paper
2017/633, 2017. https://eprint.iacr.org/2017/633. 3, 6, 32, 75

[37] Morris J Dworkin. SHA-3 standard: Permutation-based hash and
extendable-output functions, 2015. 21, 34

[38] Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions
to Identification and Signature Problems. In Advances in Cryptology -
CRYPTO ’86, Santa Barbara, California, USA, 1986, Proceedings, vol-
ume 263 of Lecture Notes in Computer Science, pages 186–194. Springer,
1986. 12

[39] Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyuba-
shevsky, Thomas Pornin, Thomas Prest, Thomas Ricosset, Gregor Seiler,
William Whyte, Zhenfei Zhang, et al. Falcon: Fast-Fourier lattice-based
compact signatures over NTRU. Submission to the NIST’s post-quantum
cryptography standardization process, 36(5):1–75, 2018. 3, 6, 75

[40] Shafi Goldwasser and Mihir Bellare. Lecture Notes on Cryptography.
Chapter 10: Digital signatures, pages 168–169, 2008. 9

[41] Elisa Gorla. Rank-metric codes. In Concise Encyclopedia of Coding
Theory, pages 227–250. Chapman and Hall/CRC, 2021. 10, 11

[42] Conrado P. L. Gouvêa and Julio López. Implementing GCM on ARMv8.
In Kaisa Nyberg, editor, Topics in Cryptology — CT-RSA 2015, pages
167–180, Cham, 2015. Springer International Publishing. 5

[43] Graham, Susan L and Kessler, Peter B and McKusick, Marshall K.
Gprof: A call graph execution profiler. ACM Sigplan Notices, 17(6):120–
126, 1982. 30

[44] Lov K Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the twenty-eighth annual ACM symposium on Theory
of computing, pages 212–219, 1996. 3

[45] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve
digital signature algorithm (ECDSA). International journal of informa-
tion security, 1:36–63, 2001. 4, 5

[46] Youngbeom Kim, Jingyo Song, and Seog Chung Seo. Accelerating Falcon
on ARMv8. IEEE Access, 10:44446–44460, 2022. 6

[47] Youngbeom Kim, Jingyo Song, Taek-Young Youn, and Seog Chung
Seo. CRYSTALS-Dilithium on ARMv8. Security and Communication
Networks, 2022(1):5226390, 2022. 6

87

https://eprint.iacr.org/2017/633

[48] Paul C. Kocher. Timing Attacks on Implementations of Diffie-Hellman,
RSA, DSS, and Other Systems. In Neal Koblitz, editor, Advances in
Cryptology — CRYPTO ’96, pages 104–113, Berlin, Heidelberg, 1996.
Springer Berlin Heidelberg. 24, 26

[49] Martin Koppl, Dmytro Siroshtan, Milos Orgon, Stefan Pocarovsky,
Antonin Bohacik, Karel Kuchar, and Eva Holasova. Performance Com-
parison of ECDH and ECDSA. In 2021 2nd International Conference
on Electronics, Communications and Information Technology (CECIT),
pages 825–829. IEEE, 2021. 4

[50] Hyeokdong Kwon, Hyunjun Kim, Minjoo Sim, Wai-Kong Lee, and
Hwajeong Seo. Look-up the Rainbow: Table-based Implementation of
Rainbow Signature on 64-bit ARMv8 Processors. ACM Trans. Embed.
Comput. Syst., 22(5), sep 2023. 6

[51] Adam Langley. ImperialViolet: Checking that functions are constant
time with Valgrind. https://www.imperialviolet.org/2010/04/01/
ctgrind.html, April 2010. Accessed: 08-07-2024. 27

[52] Arm Limited. Armv8-M Architecture Reference Manual. https://de
veloper.arm.com/documentation/ddi0553/latest/, 2015. Accessed:
04-07-2024. 18

[53] Vasileios Mavroeidis, Kamer Vishi, Mateusz D Zych, and Audun Jøsang.
The impact of quantum computing on present cryptography. arXiv
preprint arXiv:1804.00200, 2018. 3

[54] Peter L Montgomery. Modular multiplication without trial division.
Mathematics of computation, 44(170):519–521, 1985. 6, 27

[55] Anand Kumar Narayanan, Youming Qiao, and Gang Tang. Algorithms
for matrix code and alternating trilinear form equivalences via new
isomorphism invariants. Cryptology ePrint Archive, Paper 2024/368,
2024. https://eprint.iacr.org/2024/368. 15

[56] Nicholas Nethercote and Julian Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation. ACM Sigplan notices,
42(6):89–100, 2007. 26, 30

[57] Duc Tri Nguyen and Kris Gaj. Fast NEON-Based Multiplication for
Lattice-Based NIST Post-quantum Cryptography Finalists. In Jung Hee
Cheon and Jean-Pierre Tillich, editors, Post-Quantum Cryptography,
pages 234–254, Cham, 2021. Springer International Publishing. 6

[58] Duc Tri Nguyen and Kris Gaj. Optimized software implementations
of CRYSTALS-Kyber, NTRU, and Saber using NEON-based special

88

https://www.imperialviolet.org/2010/04/01/ctgrind.html
https://www.imperialviolet.org/2010/04/01/ctgrind.html
https://developer.arm.com/documentation/ddi0553/latest/
https://developer.arm.com/documentation/ddi0553/latest/
https://eprint.iacr.org/2024/368

instructions of ARMv8. In Proceedings of the NIST 3rd PQC Standard-
ization Conference (NIST PQC 2021), 2021. 6

[59] Duc Tri Nguyen and Kris Gaj. Fast Falcon Signature Generation and
Verification Using ARMv8 NEON Instructions. In Nadia El Mrabet,
Luca De Feo, and Sylvain Duquesne, editors, Progress in Cryptology -
AFRICACRYPT 2023, pages 417–441, Cham, 2023. Springer Nature
Switzerland. 6, 76

[60] NIST. Post-Quantum Cryptography Standardization. https://csrc.n
ist.gov/projects/post-quantum-cryptography/post-quantum-cr

yptography-standardization, 2017. Accessed: 08-07-2024. 3

[61] Jheyne N Ortiz, Félix Carvalho Rodrigues, Décio Gazzoni Filho, Caio
Teixeira, Julio López, and Ricardo Dahab. Evaluation of CRYSTALS-
Kyber and Saber on the ARMv8 architecture. In Anais do XXII Simpósio
Brasileiro em Segurança da Informação e de Sistemas Computacionais,
pages 372–377. SBC, 2022. 6

[62] Krijn Reijnders, Simona Samardjiska, and Monika Trimoska. Hardness
estimates of the code equivalence problem in the rank metric. Designs,
Codes and Cryptography, pages 1–30, 2024. 10

[63] James R. Reinders. Intel® AVX-512 Instructions. https://www.inte
l.com/content/www/us/en/developer/articles/technical/intel

-avx-512-instructions.html, June 2017. Accessed: 08-07-2024. 6,
56, 79

[64] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Communica-
tions of the ACM, 21(2):120–126, 1978. 4, 5

[65] Sand, software and sound. ARM Cortex-A72 Fetch and Branch Process-
ing. https://sandsoftwaresound.net/arm-cortex-a72-fetch-and
-branch-processing/, December 2020. Accessed: 02-07-2024. 22

[66] Hwajeong Seo, Zhe Liu, Johann Großschädl, Jongseok Choi, and Howon
Kim. Montgomery Modular Multiplication on ARM-NEON Revisited.
In Jooyoung Lee and Jongsung Kim, editors, Information Security
and Cryptology - ICISC 2014, pages 328–342, Cham, 2015. Springer
International Publishing. 6

[67] Hwajeong Seo, Zhe Liu, Johann Großschädl, and Howon Kim. Efficient
arithmetic on arm-neon and its application for high-speed rsa imple-
mentation. Security and Communication Networks, 9(18):5401–5411,
2016. 5

89

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-avx-512-instructions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-avx-512-instructions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-avx-512-instructions.html
https://sandsoftwaresound.net/arm-cortex-a72-fetch-and-branch-processing/
https://sandsoftwaresound.net/arm-cortex-a72-fetch-and-branch-processing/

[68] Hwajeong Seo, Zhe Liu, Taehwan Park, Hyunjin Kim, Yeoncheol Lee,
Jongseok Choi, and Howon Kim. Parallel Implementations of LEA.
In Hyang-Sook Lee and Dong-Guk Han, editors, Information Security
and Cryptology – ICISC 2013, pages 256–274, Cham, 2014. Springer
International Publishing. 5

[69] Peter W Shor. Algorithms for quantum computation: discrete logarithms
and factoring. In Proceedings 35th annual symposium on foundations of
computer science, pages 124–134. Ieee, 1994. 3

[70] Minjoo Sim, Siwoo Eum, Hyeokdong Kwon, Hyunjun Kim, and Hwa-
jeong Seo. Optimized Implementation of Encapsulation and Decapsula-
tion of Classic McEliece on ARMv8. Cryptology ePrint Archive, Paper
2022/1706, 2022. https://eprint.iacr.org/2022/1706. 6

[71] Laurent Simon, David Chisnall, and Ross Anderson. What you get is
what you C: Controlling side effects in mainstream C compilers. In 2018
IEEE European Symposium on Security and Privacy (EuroS&P), pages
1–15. IEEE, 2018. 26

[72] Volker Strassen. Gaussian elimination is not optimal. Numerische
mathematik, 13(4):354–356, 1969. 40

[73] Silvan Streit and Fabrizio De Santis. Post-Quantum Key Exchange on
ARMv8-A: A New Hope for NEON Made Simple. IEEE Transactions
on Computers, 67(11):1651–1662, 2018. 6

[74] Ahmed Talal, Mohamed A. Sobh, and Ayman M. Bahaa Eldin. An
efficient implementation of RSA for low cost microprocessors. In 2009
4th International Design and Test Workshop (IDT), pages 1–4, 2009. 5

[75] Haluk Kent Tanik. ECDSA Optimizations on an ARM Processor for a
NIST Curve Over GF(p). 2001. Master’s Thesis, Oregon State University.
5

[76] Timecop. Timecop. https://www.post-apocalyptic-crypto.org/

timecop/. Accessed: 03-07-2024. 27

[77] J. H. van Lint. Introduction to Coding Theory, volume 86 of Graduate
Texts in Mathematics. Springer, third edition, 1999. 16

[78] Junwei Wang, Praveen Kumar Vadnala, Johann Großschädl, and Qiu-
liang Xu. Higher-Order Masking in Practice: A Vector Implementation
of Masked AES for ARM NEON. In Kaisa Nyberg, editor, Topics in
Cryptology — CT-RSA 2015, pages 181–198, Cham, 2015. Springer
International Publishing. 5

90

https://eprint.iacr.org/2022/1706
https://www.post-apocalyptic-crypto.org/timecop/
https://www.post-apocalyptic-crypto.org/timecop/

[79] Bas Westerbaan. ARMv8.4-A implementation for Keccak-f1600. https:
//github.com/bwesterb/armed-keccak, 2023. Accessed: 2024-08-22.
64

[80] XKCP contributors. XKCP: Extended Keccak Code Package. https:
//github.com/XKCP/XKCP, 2024. Accessed: 2024-06-14. 64

[81] Sheng-Bo Xu and Lejla Batina. Efficient Implementation of Elliptic
Curve Cryptosystems on an ARM7 with Hardware Accelerator. In
George I. Davida and Yair Frankel, editors, Information Security, pages
266–279, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg. 5

91

https://github.com/bwesterb/armed-keccak
https://github.com/bwesterb/armed-keccak
https://github.com/XKCP/XKCP
https://github.com/XKCP/XKCP

Appendix A

MEDS Algorithms

A.1 Notations and functions

A.1.1 Notations

In the algorithms in this appendix, we use the following notations in addition
to the notations mentioned in Section 2.1:

• ℓx: The size of the variable x in bytes.

• Bx: The set of all byte strings of length x.

• σ: A seed used to generate random values.

• b[i, j]: The j − i byte long substring of byte string b starting at index i.

• A[; i, j]: The submatrix of A that starts at column i (inclusive) and
ends at column j (exclusive), containing all rows.

• (x | y): The concatenation of byte strings x and y.

A.1.2 Functions

In the algorithms in this appendix, we use the following functions (in order
of appearance):

• Randombytes(x): Generates a random byte string of length x.

• ExpandSysMat(σ): Generate a random systematic matrix from seed σ.

• XOF(σ, x, y): Generates two random byte strings of length x and y
from seed σ.

• ExpandInvMat(σ, k): Generates a random invertible matrix of size
k × k from seed σ.

92

• Solve(G): Computes an isometry mapping ϕ = (A,B) from the (first)
two codewords represented by the rows in G.

• SF(G): Converts matrix G to systematic form.

• Compress(G)(A): Compresses matrix A into a byte string.

• Decompress(G)(x): Decompresses byte string x into a matrix.

• SeedTreet(ρ, α): Constructs a seed tree of height log2(t) from root seed
ρ and salt α and return the first t leaf nodes.

• ToBytes(x, y): Converts x to a byte string of length y.

• ExpandRndMat(σ): Generates a random matrix from seed σ.

• H(x): Hashes byte string x.

• ParseHashs,t,w(d): Parses hash d into t challenges that are smaller than
s each, where w challenges are 0.

• SeedTreeToPatht(h0, . . . , ht−1, ρ, α): Reconstructs a seed tree with the
same structure as SeedTreet(ρ, α). Based on the values of h0, . . . , ht−1,
returns a seed-tree path with which the leaf node seeds can be recon-
structed.

• ParseSig(ms): Parses the signed message ms into its components.

• PathToSeedTreet(h0, . . . , ht−1, p, α): Reconstructs a seed tree with the
same structure as SeedTreet(ρ, α). Based on the values of h0, . . . , ht−1

and the path p, returns the seeds of the leaf nodes.

93

A.2 Main algorithms

Algorithm A.1 MEDS.KeyGen()

Input: -
Output: public key pk ∈ Bℓpk , secret key sk ∈ Bℓsk

1: δ ∈ Bℓsec seed ← Randombytes(ℓsec seed)
2: σG0 ∈ Bℓpub seed , σ ∈ Bℓsec seed ← XOF(δ, ℓpub seed, ℓsec seed)
3: G0 ∈ Fk×mn

q ← ExpandSysMat(σG0)
4: for all i ∈ {1, . . . , s− 1} do
5: σTi , σ ∈ Bℓsec seed ← XOF(σ, ℓsec seed, ℓsec seed)
6: Ti ∈ GLk(q)← ExpandInvMat(σTi , k)
7: G′

0 ∈ Fk×mn
q ← TiG0

8: Ǎi ∈ Fm×m
q ∪ {⊥}, B̌i ∈ Fn×n

q ∪ {⊥} ← Solve(G′
0)

9: if (Ǎi = ⊥ and B̌i = ⊥) or Ǎi /∈ GLm(q) or B̌i /∈ GLn(q) then
10: goto line 5

11: Ai,A
−1
i ∈ GLm(q)← Ǎi, Ǎ

−1
i

12: Bi,B
−1
i ∈ GLn(q)← B̌i, B̌

−1
i

13: Gi ∈ Fk×mn
q ← πAi,Bi(G0)

14: T−1
i ∈ Fk×k

q ← Gi[; 0, k − 1]

15: Gi ∈ Fk×mn
q ∪ {⊥} ← SF(Gi)

16: if Gi = ⊥ then
17: goto line 5

18: pk ∈ Bℓpk ← (σG0 | CompressG(G1) | . . . | CompressG(Gs−1))
19: sk ∈ Bℓsk ← (δ | σG0 | Compress(A−1

1) | . . . | Compress(A−1
s−1)

20: | Compress(B−1
1) | . . . | Compress(B−1

s−1)

21: | Compress(T−1
1) | . . . | Compress(T−1

s−1))
22: return pk, sk

94

Algorithm A.2 MEDS.Sign()

Input: secret key sk ∈ Bℓsk , message m ∈ Bℓm
Output: signed message ms ∈ Bℓsig+ℓm

1: fsk ← ℓsec seed

2: σG0 ← pk[fsk, fsk + ℓpub seed − 1]
3: G0 ∈ Fk×mn

q ← ExpandSysMat(σG0)
4: fsk ← fsk + ℓpub seed + (s− 1) · (ℓ

Fm×m
q

+ ℓ
Fn×n

q
)

5: for all i ∈ {1, . . . , s− 1} do
6: T−1

i ∈ Fk×k
q ← Decompress(sk[fsk, fsk + ℓ

Fk×k
q

])

7: fsk ← fsk + ℓ
Fk×k

q

8: δ ∈ Bℓsec seed ← Randombytes(ℓsec seed)
9: ρ ∈ Bℓtree seed , α ∈ Bℓsalt ← XOF(δ, ℓtree seed, ℓsalt)

10: σ0, . . . , σt−1 ∈ Bℓtree seed ← SeedTreet(ρ, α)
11: for all i ∈ {0, . . . , t− 1} do
12: σ′

i ∈ Bℓsalt+ℓtree seed+4 ← (α | σi | ToBytes(21+⌈log2(t)⌉+i, 4))
13: σM̃i

∈ Bℓpub seed , σi ∈ Bℓtree seed ← XOF(σ′
i, ℓpub seed, ℓtree seed)

14: M̃i ∈ F2×k
q ← ExpandRndMat(σM̃i

)

15: C ∈ F2×mn
q ← M̃iG0

16: Ãi ∈ Fm×m
q ∪ {⊥}, B̃i ∈ Fn×n

q ∪ {⊥} ← Solve(C)

17: if (Ãi = ⊥ and B̃i = ⊥) or Ãi /∈ GLm(q) or B̃i /∈ GLn(q) then
18: goto line 12

19: G̃i ∈ Fk×mn
q ← π

Ãi,B̃i
(G0)

20: G̃i ∈ Fk×mn
q ∪ {⊥} ← SF(G̃i)

21: if G̃i = ⊥ then
22: goto line 12

23: d ∈ Bℓdigest ← H(Compress(G̃0[; k,mn− 1]) | . . .
24: | Compress(G̃t−1[; k,mn− 1]) | m)
25: h0, . . . , ht−1 ∈ {0, . . . , s− 1} ← ParseHashs,t,w(d)
26: for all i ∈ {0, . . . , t− 1} do
27: if hi > 0 then
28: κi ∈ F2×k

q ← M̃iT
−1
hi

29: p ∈ Bℓpath ← SeedTreeToPatht(h0, . . . , ht−1, ρ, α)

30: return ms ∈ B
w·ℓ

F
2×k
q

+ℓpath+ℓdigest+ℓsalt+ℓm=ℓsig+ℓm

31: = (κ0 | . . . | κt−1 | p | d | α | m)

95

Algorithm A.3 MEDS.Verify()

Input: public key pk ∈ Bℓpk , signed message ms ∈ Bℓsig+ℓm

Output: message m ∈ Bℓm or ⊥
1: σG0 ← pk[0, ℓpub seed − 1]
2: G0 ∈ Fk×mn

q ← ExpandSysMat(σG0)
3: fpk ← ℓpub seed

4: for all i ∈ {1, . . . , s− 1} do
5: Gi ∈ Fk×mn

q ← DecompressG(pk[fpk, fpk + ℓ
Fk×mn

q
])

6: fpk ← fpk + ℓGi

7: p ∈ Bℓpath , α ∈ Bℓsalt , d ∈ Bℓdigest ,m ∈ Bℓm ← ParseSig(ms)
8: σ0, . . . , σt−1 ∈ Bℓtree seed ← PathToSeedTreet(h0, . . . , ht−1, p, α)
9: for all i ∈ {0, . . . , t− 1} do

10: if hi > 0 then
11: κi ∈ F2×k

q ← ms[i · ℓF2×k
q

, (i+ 1) · ℓ
F2×k

q
− 1]

12: G′
0 ∈ F2×mn

q ← κiGhi

13: Âi ∈ Fm×m
q ∪ {⊥}, B̂i ∈ Fn×n

q ∪ {⊥} ← Solve(G′
0)

14: if (Âi = ⊥ and B̂i = ⊥)or Âi /∈ GLm(q) or B̂i /∈ GLn(q) then
15: return ⊥
16: Ĝi ∈ Fk×mn

q ← πÂi,B̂i
(Ghi

)

17: Ĝi ∈ Fk×mn
q ∪ {⊥} ← SF(Ĝi)

18: if Ĝi = ⊥ then
19: return ⊥
20: else
21: σ′

i ∈ Bℓsalt+ℓtree seed+4 ← (α | σi | ToBytes(21+⌈log2(t)⌉+i, 4))
22: σM̂i

∈ Bℓpub seed , σi ∈ Bℓtree seed ← XOF(σ′
i, ℓpub seed, ℓtree seed)

23: M̂i ∈ F2×k
q ← ExpandRndMat(σM̂i

)

24: Ĉi ∈ F2×mn
q ← M̂iG0

25: Âi ∈ Fm×m
q ∪ {⊥}, B̂i ∈ Fn×n

q ∪ {⊥} ← Solve(Ĉi)

26: if (Âi = ⊥ and B̂i = ⊥)or Âi /∈ GLm(q) or B̂i /∈ GLn(q) then
27: goto line 21

28: Ĝi ∈ Fk×mn
q ← πÂi,B̂i

(G0)

29: Ĝi ∈ Fk×mn
q ∪ {⊥} ← SF(Ĝi)

30: if Ĝi = ⊥ then
31: goto line 21

32: d′ ∈ Bℓdigest ← H(Compress(Ĝ0[; k,mn− 1]) | . . .
33: | Compress(Ĝt−1[; k,mn− 1]) | m)
34: if d = d′ then
35: return m
36: else
37: return ⊥

96

A.3 Supplemental algorithms

The MEDS key generation, signing, and verification algorithms require some
additional algorithms to function. In this section, we present a few algorithms
that are used by the three MEDS algorithms. Note that we do not list all
supplemental algorithms, but only those that are relevant to our research.

Algorithm A.4 MEDS matrix multiplication

function matrix mul(A ∈ Fm×n
4093 , B ∈ Fn×o

4093)
C ← zero matrix of size m× o
for c← 0 to m do

for r ← 0 to o do
for k ← 0 to n do

C[c][r]← C[c][r] +A[c][k] ·B[k][r]

C[c][r]← C[c][r] mod 4093

return C

Algorithm A.5 MEDS ‘pi’ function πA,B(G)

function pi(A ∈ Fm×m
4093 ,B ∈ Fn×n

4093,G ∈ Fk×mn
4093)

G′ ← matrix (array) of size k ×mn
for i← 0 to k do

G′[i ·mn, (i+ 1) ·mn]← matrix mul(A,G[i ·mn : (i+ 1) ·mn])
G′[i ·mn, (i+ 1) ·mn]← matrix mul(G[i ·mn : (i+ 1) ·mn],B)

return G′

Algorithm A.6 MEDS ‘SF’ function

function SF(G ∈ Fk×mn
4093)

M ← matrix of size k × k
for r ← 0 to k do

M [r · k, (r + 1) · k]← G[r ·mn, r ·mn+ k]

M−1 ← mat inv(M)
if M−1 = ⊥ then

return ⊥
return matrix mul(M−1,G)

97

Algorithm A.7 MEDS matrix systemizer

function systemize(A ∈ Fm×n
4093 , rmax, do swap, do backsub)

ret← m · do swap
for r ← 0 to rmax do

// Attempt to make the diagonal element non-zero

if do swap then
z ← 0
for r2 ← r to m do

z ← z or A[r2][r]

if z = 0 then
ret← r
for i← 0 to r do

A[i][r], A[i][n− 1]← A[i][n− 1], A[i][r]

for r2 ← r + 1 to m do
if A[r][r] = 0 then

for c← r to n do
A[r][c]← (A[r][c] +A[r2][c]) mod 4093

if A[r][r] = 0 then
return −1

// Normalize row r such that A[r][r] = 1

v ← GF inv(A[r][r])
for c← r to n do

A[r][c]← (A[r][c] · v) mod 4093

// Eliminate A[r2][r] for r2 > r

for r2 ← r + 1 to m do
for c← r to n do

v ← (A[r][c] ·A[r2][r]) mod 4093
A[r2][c]← ((A[r2][c]−v) + 4093) mod 4093

// Return if we do not need to do back substitution

if !do backsub then
return ret

// Perform back substitution

for r ← rmax − 1 to 0 do
for r2 ← 0 to r do

v ← (A[r][r] ·A[r2][r]) mod 4093
A[r2][r]← ((A[r2][r]−v) + 4093) mod 4093
for c← rmax to n do

v ← (A[r][c] ·A[r2][r]) mod 4093
A[r2][c]← ((A[r2][c]−v) + 4093) mod 4093

return ret

98

Appendix B

Benchmark Results

In this appendix, we present the benchmarking results for all implementations
of MEDS on two different platforms: the ARM Cortex-A72 and the Apple M2.
We benchmark each of the three parameter sets that we consider: MEDS-
21595, MEDS-55520, and MEDS-122000. For each benchmark, we consider
the reference, low-level optimized, and high-level optimized implementations.
For each implementation, we also consider the optimized hash structure
variant described in Section 4.5.

The ARM Cortex-A72 measurements are taken on a Raspberry Pi 4 Model B
with the CPU running at 1.5 GHz. Frequency scaling is disabled to ensure
consistent results. The results are shown in Tables B.1, B.2, and B.3.

The Apple M2 measurements are taken on a Mac Mini (2023). All benchmarks
are run on one of the four performance cores, clocked at 3.49 GHz. The
results are shown in Tables B.4, B.5, and B.6.

99

Table B.1: MEDS-21595 benchmarking results on the ARM Cortex-A72 for
all implementations (reference and optimized variants). The values represent
the number of megacycles required to execute that algorithm. ‘New Hash
Structure’ refers to the optimized hash structure described in Section 4.5.

Variant Keygen Sign Verify

Reference 8.0 (×1.0) 890.7 (×1.0) 889.8 (×1.0)

Reference (New Hash Structure) 8.0 (×1.0) 892.0 (×1.0) 889.5 (×1.0)

Low-Level 2.8 (×2.9) 248.2 (×3.6) 229.8 (×3.9)

Low-Level (New Hash Structure) 2.8 (×2.9) 235.5 (×3.8) 217.1 (×4.1)

High-Level 8.0 (×1.0) 255.4 (×3.5) 252.2 (×3.5)

High-Level (New Hash Structure) 8.0 (×1.0) 242.2 (×3.7) 237.6 (×3.7)

Table B.2: MEDS-55520 benchmarking results on the ARM Cortex-A72 for
all implementations (reference and optimized variants). The values represent
the number of megacycles required to execute that algorithm. ‘New Hash
Structure’ refers to the optimized hash structure described in Section 4.5.

Variant Keygen Sign Verify

Reference 22.7 (×1.0) 3623.8 (×1.0) 3628.2 (×1.0)

Reference (New Hash Structure) 22.6 (×1.0) 3622.2 (×1.0) 3633.0 (×1.0)

Low-Level 7.2 (×3.2) 927.9 (×3.9) 878.3 (×4.1)

Low-Level (New Hash Structure) 7.2 (×3.2) 880.4 (×4.1) 832.1 (×4.4)

High-Level 22.6 (×1.0) 1166.9 (×3.1) 1163.4 (×3.1)

High-Level (New Hash Structure) 22.6 (×1.0) 1120.7 (×3.2) 1116.8 (×3.2)

Table B.3: MEDS-122000 benchmarking results on the ARM Cortex-A72 for
all implementations (reference and optimized variants). The values represent
the number of megacycles required to execute that algorithm. ‘New Hash
Structure’ refers to the optimized hash structure described in Section 4.5.

Variant Keygen Sign Verify

Reference 71.0 (×1.0) 13748.9 (×1.0) 13731.4 (×1.0)

Reference (New Hash Structure) 71.0 (×1.0) 13749.6 (×1.0) 13723.3 (×1.0)

Low-Level 16.6 (×4.3) 2794.5 (×4.9) 2693.8 (×5.1)

Low-Level (New Hash Structure) 16.7 (×4.3) 2653.6 (×5.2) 2550.3 (×5.4)

High-Level 71.2 (×1.0) 3820.6 (×3.6) 4130.7 (×3.3)

High-Level (New Hash Structure) 71.2 (×1.0) 3672.1 (×3.7) 3991.3 (×3.4)

100

Table B.4: MEDS-21595 benchmarking results on the Apple M2 for all
implementations (reference and optimized variants). The values represent
the number of megacycles required to execute that algorithm. ‘New Hash
Structure’ refers to the optimized hash structure described in Section 4.5.

Variant Keygen Sign Verify

Reference 3.0 (×1.0) 345.6 (×1.0) 345.5 (×1.0)

Reference (New Hash Structure) 3.0 (×1.0) 352.7 (×1.0) 352.6 (×1.0)

Low-Level 1.0 (×3.0) 93.9 (×3.7) 84.6 (×4.1)

Low-Level (New Hash Structure) 1.0 (×3.0) 72.3 (×4.8) 62.7 (×5.5)

High-Level 3.0 (×1.0) 89.8 (×3.8) 93.3 (×3.7)

High-Level (New Hash Structure) 3.0 (×1.0) 67.9 (×5.1) 71.1 (×4.9)

Table B.5: MEDS-55520 benchmarking results the Apple M2 for all imple-
mentations (reference and optimized variants). The values represent the
number of megacycles required to execute that algorithm. ‘New Hash Struc-
ture’ refers to the optimized hash structure described in Section 4.5.

Variant Keygen Sign Verify

Reference 8.8 (×1.0) 1469.8 (×1.0) 1469.0 (×1.0)

Reference (New Hash Structure) 8.8 (×1.0) 1469.8 (×1.0) 1469.5 (×1.0)

Low-Level 2.3 (×3.8) 335.3 (×4.4) 314.8 (×4.7)

Low-Level (New Hash Structure) 2.4 (×3.7) 255.7 (×5.7) 234.2 (×6.3)

High-Level 8.8 (×1.0) 372.2 (×3.9) 386.8 (×3.8)

High-Level (New Hash Structure) 8.8 (×1.0) 291.8 (×5.0) 309.3 (×4.7)

Table B.6: MEDS-122000 benchmarking results the Apple M2 for all im-
plementations (reference and optimized variants). The values represent the
number of megacycles required to execute that algorithm. ‘New Hash Struc-
ture’ refers to the optimized hash structure described in Section 4.5.

Variant Keygen Sign Verify

Reference 22.6 (×1.0) 4877.7 (×1.0) 4878.4 (×1.0)

Reference (New Hash Structure) 22.6 (×1.0) 4970.7 (×1.0) 4876.4 (×1.0)

Low-Level 5.1 (×4.4) 948.6 (×5.1) 899.4 (×5.4)

Low-Level (New Hash Structure) 5.1 (×4.4) 719.9 (×6.8) 671.6 (×7.3)

High-Level 22.6 (×1.0) 1193.6 (×4.1) 1247.8 (×3.9)

High-Level (New Hash Structure) 22.6 (×1.0) 963.1 (×5.1) 10160.3 (×0.5)

101

	Introduction
	Context
	Motivation
	Scope
	Related work
	Contributions
	Outline

	Preliminaries
	Notations
	Matrix Equivalence Digital Signature (MEDS)
	Signature schemes
	Codes and Matrix Code Equivalence (MCE)
	Sigma protocol and Fiat-Shamir transform
	Parameter sets
	MEDS algorithms

	ARMv8, Cortex-A72, and NEON
	Vectorization and SIMD
	Cortex-A72 Micro-Architecture

	Optimizing cryptographic schemes
	Branching and conditional execution
	Data-dependent memory access
	Non-constant-time operations
	Preventing timing attacks with Valgrind and Timecop

	Modular reduction
	Barrett reduction

	Profiling
	Profiling techniques
	Cycle counting

	MEDS profiling results
	Measurement setup
	Result analysis

	Methodology
	Modular reduction
	Choosing k for Barrett reduction
	Implementation
	Freeze operation

	Low-level optimization
	Matrix multiplication
	Matrix systemizer
	Isometry derivation

	High-level optimization
	Parallelization of datatypes and supplemental algorithms
	Parallelization of commitment computations
	Limitations

	Bitstream filling
	Hash structure
	Hash structure optimization
	Implementation

	Non-constant-time implementations
	Finite field inversion
	Matrix systemizer

	Results
	Low-level optimizations
	Theoretical and actual speedup factors

	Profiling implementation variants
	Overall performance
	Comparison to similar schemes
	Discussion

	Conclusions
	Future Work
	Further optimization possibilities
	Additional research topics

	MEDS Algorithms
	Notations and functions
	Notations
	Functions

	Main algorithms
	Supplemental algorithms

	Benchmark Results

