
Radboud University Nijmegen

Faculty of Science

Bypassing the BIOS supervisor
password

Thesis MSc Cyber Security

Author:

Mark Juvan

s1085396

Supervisor:

dr. Abraham Westerbaan

Second reader:

dr. ing. Pol van Aubel

External supervisor:

ing. Jasper Nota

Amsterdam, August 2024





Abstract

In Lenovo ThinkPads, the crucial Basic Input/Output System (BIOS) set-
tings — such as the boot order, security options, network settings, and more
— may be protected from tampering by means of a supervisor password
(SVP). Without entering this password, the user may only alter the lan-
guage, time, keyboard layout, and other settings that do not affect the boot
process or security. As such, the SVP is an important tool for companies
to ensure laptop configuration is kept as intended, preventing the employees
from changing settings such as the provisioned Operating System (OS) or
otherwise affecting the company or its security posture. When company lap-
tops are resold after being decommissioned, or even stolen, the SVP is often
overlooked and not removed by administrators.

These and other potentially more malicious situations have created a
niche for services of removing the SVP. Victor Voinea is one of the people
who recognized this niche and developed an exploit that can remove the
SVP in certain Lenovo ThinkPad models. He is selling this exploit without
providing the source code or much explanation of why or how it is possible
to remove the SVP. This thesis investigates how the exploit functions, ex-
plaining preliminary knowledge of the Unified Extensible Firmware Interface
(UEFI) and reverse engineering before explaining the SVP removal step-by-
step. We also reproduced the exploit ourselves and released the source code,
which, along with this thesis, aids with understanding the exploit and con-
tributes to the open source community.





I would like to thank and acknowledge many people who supported me with
writing this thesis, but here I will only name a few. Firstly, my university
supervisor, Bram, who ever so patiently encouraged me to deliver something
I am proud of. Secondly, Jasper, Jacopo and all other Secura colleagues,
who supported me in choosing this research topic and offered their technical
knowledge. Lastly and most importantly, my family, my friends and Mojca,
all of whom believed in me when I did not believe in myself. Having started
working on this thesis in a hard time of my life, this chapter of my life is
now closed in no small part thanks to all your support and encouragement. I
am eternally grateful to you all!





Dedicated to my late father, Robert Juvan.
Oči, uspelo mi je!





Contents

1 Introduction 1

2 Preliminaries and Related Work 3

2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 BIOS vs UEFI . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Preliminary Knowledge of UEFI . . . . . . . . . . . . . . . . . 6
2.4 UEFI Specification . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 UEFI PI Specification . . . . . . . . . . . . . . . . . . . . . . 9

3 Reverse Engineering of the Exploit 19

3.1 Dumping the BIOS image . . . . . . . . . . . . . . . . . . . . 19
3.2 Contents of the Exploit Directory . . . . . . . . . . . . . . . . 21
3.3 LenovoTranslateService Driver . . . . . . . . . . . . . . . . . . 24
3.4 EmulatedEepromDxe Driver . . . . . . . . . . . . . . . . . . . 27
3.5 BootOption Driver . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6 Exploit Recreation . . . . . . . . . . . . . . . . . . . . . . . . 37

4 The Bigger Picture 43

4.1 Applying the Exploit . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 The Vulnerability and Protection Mechanisms . . . . . . . . . 44

5 Conclusion 47

Index 49

References 51





Chapter 1

Introduction

On their website, Lenovo states: “The supervisor password protects the sys-
tem information stored in the ThinkPad Setup program. If you have set
a supervisor password, no one can change the configuration” — such as
boot order, power-on password, etc. — “(cont.) of the computer without
the password” [1]. However that does not always prove to be true. Histori-
cally various methods of bypassing the ThinkPad Supervisor Password (SVP)
were available. When the Basic Input/Output System (BIOS) password was
still stored in Complementary Metal-Oxide Semiconductor (CMOS) volatile
memory, the CMOS battery could be removed and thus the memory contain-
ing the password would be wiped [2]. Until 2012 an alternative method was
to short the pins through which the BIOS chip retrieves the SVP from the
dedicated read-only memory (ROM) [3]. For ThinkPads produced between
2012 and 2018 (ThinkPad generations 4 through 8), the SVP was not stored
in ROM anymore and could instead be bypassed by injecting two specific
Driver eXecution Environment (DXE) drivers into the Unified Extensible
Firmware Interface (UEFI) firmware and clearing the Non-Volatile Random
Access Memory (NVRAM) variables of the BIOS. The malicious DXE drivers
remove the part of the Embedded Controller (EC) memory where the SVP
was stored thus bypassing the need for SVP to be entered on the next boot
and allowing the user to access the full BIOS.

1



2 Mark Juvan

The source code of the drivers and the vulnerabilities these drivers exploit
are not publicly available as their author, Victor Voinea, is charging to re-
move the SVP using his exploit [4]. We will refer to this exploit as the Voinea
exploit after its creator. An online BIOS modding community [5] has reverse
engineered and altered the Voinea exploit to bypass the payment restriction
required by the exploit’s author, making the exploit fully self-sufficient and
adding a patcher for ease of use. The way that the exploit works was however
never documented, being the goal of this thesis. We would like to emphasize
that it is not our intention to harm the business of Victor Voinea but that
this thesis is intended to educate the reader on how SVP may be removed on
ThinkPad models, generations 4 through 8. Before attempting to reproduce
any of the steps described, we incentivize the reader to fully understand the
contents of this thesis and apply the knowledge at their own risk.

The rest of this thesis is structured as follows. In Chapter 2 we review
the previous research relevant to this thesis and relevant parts of UEFI spec-
ifications needed to understand the Voinea exploit. We proceed to reverse
engineer the exploit and recreate its functionality in Chapter 3. In Chap-
ter 4 we take a step back and explain how the exploit is applied in practice
and why it is capable of being applied. Chapter 5 is the last chapter of
this thesis, where we reflect on the steps taken, learning about the exploit,
understanding how it works and why. It is concluded by discussing possible
further research.



Chapter 2

Preliminaries and Related Work

2.1 Related Work

When we first obtained the exploit from the Badcaps forum [5], there were
many questions such as why does the exploit work, are there any existing
explanations on how the exploit removes the SVP, et cetera. After a lengthy
search on the Badcaps forum and the allservice forum [4], there were not
many answers to the aforementioned questions. We reached out to some
forum members for clarification, but no answers were received. Thus we de-
cided to take this up as a research topic of this Master Thesis and find the
answers ourselves.

As the source code for the exploit was not obtainable we first acquired
some general reverse engineering knowledge from a book on reverse engineer-
ing by Eliam [6]. Then we moved on to acquiring the knowledge about UEFI.
The first knowledge source were the UEFI [7] and UEFI Platform Initializa-
tion (PI) specification [8], supported by an incredibly complex yet insightful
book Beyond BIOS by Zimer et al. [9], which is targeted towards teaching
UEFI development. A good practical guide to UEFI development was EDK
II Driver Writer’s Guide [10]. After lengthy study of this literature, we fi-
nally moved to the exciting part — getting familiar with the state of the art

3



4 Mark Juvan

of UEFI exploitation. One of the most prominent recent works in the field
is Rootkits and Bootkits by Alex Matrosov [11]. It covers the exploitation
tactics and persistence strategies in both modern rootkits and bootkits.

After this, we were starting to search for more modern and UEFI specific
vulnerabilities that were documented. Alex Matrosov still works extensively
on boot process exploitation, a result of which was recently disclosed Logo-
FAIL vulnerability [12], and holds talks such as Who Watches BIOS Watch-
ers [13], Bypassing Hardware Root of Trust from Software [14], and more that
may be found at his GitHub repository [15]. Synacktiv published two useful
articles, one of them about reverse engineering the password management of
Lenovo [16] and the other discussing a privilege escalation vulnerability in
UEFI [17]. Another researcher that was interested in how Lenovo handles the
SVP is Jethro Beekman, who wrote a blog on the topic [18] and an emulator
to run code in the UEFI environment. Unfortunately we could not use the
emulator to help us with reverse engineering, as it does not implement the
functionality that the exploit uses.

Besides the reverse engineering and exploitation resources, we were also
interested in how the boot process is secured and at which phase of it the
exploit operates. We have already learned some of this from the UEFI PI
specification [8]. However, in practice, we always target the implementation,
which may differ from the specification. This is why we are particularly
interested in how it is implemented in practice, which is explained by the
following articles. The most detailed explanation of the root of trust in the
boot process was found to be from David Kaplan [19]. It is also worth men-
tioning that this blog post has many references we already mentioned, as
well as some more which were reviewed during our research. Another set of
insightful articles was found on eclypsium’s website [20, 21], which describe
the boot process and Secure Boot in detail.



Bypassing the BIOS supervisor password 5

When attempting to move towards practical steps of reverse engineering,
we studied the following articles, which helped us with understanding how
dumping the UEFI image from the flash chip works, provided some insightful
knowledge on Serial Peripheral Interface (SPI) flash memory and PCI devices,
and described reverse engineering in practice [22, 23]. We would also like to
mention the blog post from sudonull [24] about practical reverse engineering
of NVRAM contents. When we were at the stage of starting to write our
exploit replica, the blog from MachineHunter [25] was a useful starting point.

In the rest of this chapter, we will discuss the preliminary knowledge for
the reader to be able to follow along the technical part of this thesis. We will
start with a comparison of UEFI and BIOS, a general introduction to UEFI,
followed by reviewing the relevant contents of the UEFI specifications [7, 8],
supplied with practical knowledge obtained through our research.

2.2 BIOS vs UEFI

BIOS UEFI, although serving similar purposes in computer systems, are dis-
tinct in architecture and functionality. BIOS is the older of the two and has
been a staple in personal computing since its early days. Being an older
firmware architecture implementation, it was coded in 16-bit real mode.

On the other hand, UEFI is a modern firmware interface specification,
providing a more flexible and modular approach to hardware initialization
compared to the rigid process of BIOS. UEFI supports multiple processor
architectures, such as x86, x64, ARM and more [26].

BIOS relies on interrupt calls for hardware communication due to the
lack of a driver model, while UEFI employs a more advanced and extensible
one. UEFI also introduces features like Secure Boot, enhancing system secu-
rity by preventing privileged execution of unauthorized code during bootup



6 Mark Juvan

and runtime in relevant attacker models. Additionally, UEFI’s extensibility
and scalability make it easier to incorporate new features without requiring
a complete firmware replacement.

Another crucial distinction is that BIOS is a concrete implementation,
while UEFI is a specification of the firmware interface that further imple-
mentations may adhere to. In the modern computers, UEFI has almost
entirely replaced BIOS. However as BIOS became a generic term, one may
find it to be used interchangeably with UEFI in literature. Furthermore,
BIOS is commonly used as a term that marks the firmware implementing
the UEFI standard. Thus we will use the term BIOS in our thesis when
referring to the practical implementation of the UEFI specification used in
the laptop we are researching.

2.3 Preliminary Knowledge of UEFI

To truly understand UEFI and how the many of its interconnected compo-
nents work, one must delve deeper into the UEFI specifications. The main
UEFI specification is based on Intel’s Extensible Firmware Interface (EFI)
specification. This is also the reason why some UEFI components are still
named EFI in the UEFI specifications. The UEFI Forum is the maintainer
and owner of these specifications, each of them is contributed to by their
corresponding working group. These consist of BIOS vendors, chip man-
ufacturers, Original Equipment Manufacturers (OEMs) and other industry
leaders such as Intel, Nvidia, Lenovo, et cetera.

The (main) UEFI specification [7] defines the interface between the Op-
erating System (OS) and the platform firmware. Further information about
the relevant parts of UEFI specification can be found in Section 2.4.

The UEFI Platform Initialization (UEFI PI) specification [8] contains



Bypassing the BIOS supervisor password 7

volumes that define which core code and services are required for Pre-EFI
Initialization (PEI), DXE, the basic concepts of PI firmware storage and
Hand-Off Blocks (HOB) implementation, Management Mode (MM) Core
Interface and SMBus implementation. For the purpose of this thesis, the
most interesting part of this specification is the documentation describing
the DXE phase, because the Voinea exploit operates here, as well as the
basic concepts behind PI firmware storage, which are further discussed in
Section 3.2.

The UEFI Forum also maintains the Advanced Configuration and Power
Interface (ACPI) specification, which is the key element in OS-directed con-
figuration and Power Management [27]. This document is not relevant to
the contents of this thesis, but nonetheless an important part of UEFI as its
contents are widely adopted in the vast majority of modern computers.

2.4 UEFI Specification

Various services and protocols must be present in a system implementing the
UEFI specification [7].

2.4.1 UEFI Services and Protocols

• EFI System Table

• EFI Boot Services

• EFI Runtime Services

Besides the services and protocols stated above, there are additional
generic elements which must be present in a UEFI conforming system. EFI
System Table, Boot Services and Runtime Services are the most important
to understand, when working with UEFI and relevant for understanding
the exploit — thus we will discuss them in further sections. Additional



8 Mark Juvan

platform-specific elements can be implemented depending on the platform re-
quirements. Because Lenovo UEFI implementation supports console devices,
EFI_SIMPLE_TEXT_INPUT_PROTOCOL, EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL
and EFI_SIMPLE_TEXT_OUTPUT_PROTOCOL must be implemented, which deal
with console input and output. Other supported elements include configu-
ration infrastructure, graphic console devices, and a pointer device, each of
which require the platform firmware developers to support their respective
protocols.

EFI System Table

EFI System Table contains pointers to structures for working with console
input, output and standard errors, firmware vendor and revision information,
and pointers to the EFI Boot Services table and EFI Runtime Services table,
described below. The EFI System Table is one of the parameters passed to
the main entry point of UEFI drivers. Thus the pointers it contains may be
accessed by all drivers.

EFI Boot Services

The EFI Boot Services table contains a table header along with function
pointers to all of the Boot Services. Some Boot Services used in the exploit
are stated below. To understand them, we should shortly discuss terms like
protocol interface, handle, and drivers in this context. Drivers are executable
files which usually install the corresponding protocol interface — a structure
containing pointer(s) to function(s). These functions are called protocols in
UEFI, and the protocol interfaces get installed to either the Boot Services
table or Runtime Services table. Each protocol is assigned their own handle
upon installation or load, by which this instance of the protocol may be
referred to (along with the protocol’s globally unique identifier (GUID)).
These terms will be explained in more depth in the following sections of this
thesis.
At the end of the DXE phase, ExitBootServices function is called, inva-



Bypassing the BIOS supervisor password 9

lidating all function pointers stored in the Boot Services table, restricting
access to and terminating all Boot Services, and allowing further access only
to runtime protocols.

Let us discuss some functions that the EFI Boot Services table includes
and will be used in the exploit:

• InstallProtocolInterface — Installs a protocol interface to a handle us-
ing a GUID. This allows any other driver or application to access and
use a protocol by referencing their handle and GUID.

• InstallMultipleProtocolInterfaces — Similar as the previous function,
but allows installation of multiple protocol interfaces simultaneously.

• LocateHandle — Search the database for a handle that supports a spe-
cified protocol. This is often used in combination with HandleProtocol,
which uses the information from the former to get a protocol interface.

EFI Runtime Services

The EFI Runtime Services table contains the pointers to all Runtime Ser-
vices. As the name suggests, the pointers to these services persist through
the successful call to ExitBootServices, operating during the runtime of
the computer. These services are valid even after the UEFI OS loader and
later the OS have taken control of the platform. The exploit drivers are how-
ever boot service drivers and run fully in the DXE phase, requiring a reboot
before Runtime Services would even start.

2.5 UEFI PI Specification

2.5.1 UEFI Drivers

UEFI drivers are loaded by the dedicated firmware (boot manager) or by
other UEFI applications which have been loaded by the boot manager be-
forehand. To load a UEFI driver, enough memory is allocated first, then



10 Mark Juvan

various sections of the UEFI driver are copied to that memory. Each of the
memory sections is given memory protection corresponding to the type of its
contents — code or data. Then control is passed to the entry point of the
driver. Once the UEFI driver returns a value or calls ExitBootServices,
its execution is finished and control is returned back to the component that
loaded the driver.

The difference between runtime drivers and boot service drivers is that
the latter are unloaded when ExitBootServices is called, freeing their re-
sources for future use. On the other hand, the runtime drivers are available
even during the OS runtime.

In the UEFI PI specification [8], additional types of drivers are specified,
such as DXE drivers and PEI drivers. Even though the names are different,
these drivers can still be divided into either runtime or boot service driver
types. For future reference, the Voinea exploit contains two DXE drivers,
which are boot service drivers. With this in mind, the DXE driver model
will be discussed in more detail in Section 2.5.6.

2.5.2 UEFI PI boot process

To understand which phase of the boot process the exploit works in, we will
review the boot process, described in the UEFI PI specification [8] and shown
in Figure 1. The goal of the boot process is not just finding and launching the
OS, but also discovering and initialising the hardware present, and providing
an interface to the hardware for the OS via UEFI drivers.

In the presence of Intel BootGuard (which is present on the ThinkPads
vulnerable to the Voinea exploit), the boot process is also responsible for
ensuring that only trusted code is ran, such as drivers written by the OEMs,
the ROM code and the bootloader. Below, we will indicate how each stage
checks the security of the next stage, and where the root of trust lies.



Bypassing the BIOS supervisor password 11

Figure 1: Universal Extensible Firmware Interface (UEFI) Platform Initial-
ization (PI) boot process [8].

2.5.3 Pre-UEFI phase

When the ThinkPad is powered on, before the UEFI boot process begins, its
Central Processing Unit (CPU) starts in a reset loop, from which it cannot
escape itself. Bringing it out of this dormant state is the responsibility of
another chip (on the CPU’s greater chipset), the Converged Security and
Manageability Engine (CSME). When the chipset is powered on, the CSME
starts executing code from its ROM, which is immutably fused on the chipset
die and acts as the root of trust of the whole boot process. This code sets
up the CSME execution environment and derives the platform keys, loads
firmware from the flash memory, verifies it against a fused Intel public key
and executes it on the CSME. When the CSME firmware is done, the CSME
interrupts the CPUs reset loop and executes the Initial Boot Block (IBB)
from a fixed offset in memory.



12 Mark Juvan

Depending on which kind of BootGuard is enabled, the next steps vary.
BootGuard is not to be confused with Secure Boot. The latter although
being named similarly comes in effect much later in the boot process, in the
DXE phase (Section 2.5.6). The prior has two modes that can be enabled:
Verified Boot and Measured Boot. If none is enabled, CSME asks the power
management controller to bring the host CPU out of the reset loop and boot
continues with the IBB execution.

If Verified Boot is enabled, several steps are taken to ensure that the
Trusted Computing Base (TCB) can be extended to the UEFI firmware —
each component in the chain cryptographically verifies the next one. If such
verification fails, the boot procedure will be blocked and noted in the Trusted
Platform Module (TPM).

A less restrictive mode is Measured Boot, which executes the verification
and measures (i.e. logs) the results in the TPM, while allowing the platform
to continue booting regardless of the verification outcome. At every step,
each component will be measured to TPM so that it can be attested to in
the future. This means that when Measured Boot is used, it is left to the
OEM or OS to pay attention to this in the later stages of the boot process
(DXE and onward), and operate accordingly in case of errors. After this part
is executed, the CPU is taken out of the reset loop and begins executing the
IBB which also has to be verified or measured beforehand.

2.5.4 Security (SEC) Phase

IBB execution is responsible for checking the authenticity of the OEM code
by verifying it through the Intel Authenticated Code Module (ACM) code.
In this phase, the processor transitions to protected mode and configures the
CPU caches as temporary Random Access Memory (RAM) — a technique
known as Cache-As-RAM — for execution, since the actual RAM has not
been initialized yet. Additionally, it handles various ACPI sleep states which



Bypassing the BIOS supervisor password 13

are a separate topic with its own specification and complexity.

2.5.5 Pre-EFI Initialization (PEI) Phase

The PEI phase is responsible for initialising the CPU, CPU chipset, mem-
ory and mother board. After the SEC phase is complete, the boot process
continues with the PEI phase. This is comprised of the PEI Foundation — a
binary which runs as the core of PEI phase and a set of Pre-EFI Initialization
Modules (PEIMs). The Foundation is responsible for ensuring that PEIMs
can communicate with each other and for providing a runtime environment
with some PEI services to those PEIMs.

The PEIMs are responsible for all hardware initialization such as the
memory discovery and configuration — getting computer RAM available for
use and swapping from Cache-As-RAM to RAM usage. Additionally, each
PEIM must be verified before execution, which becomes a problem as we
do not yet know what is the root of trust for the verifier here. Since IBB
is trusted prior to its execution, additionally verifying PEI seems redundant
as it is a part of IBB. However, if the TCB is not established through the
BootGuard mechanism, PEI is self-trusted and acts as the root of trust itself.

Following the PEI, the DXE must be set up. In this context, the PEI
has two tasks. The first is to verify the OEM Boot Block (OBB). While the
IBB was verified beforehand and completes its role during the PEI phase, the
OBB — which contains DXE code — is expected to take over the execution
and security flow. Verification should be completed before exiting the PEI
phase. This can be done either by verifying the whole OBB, or taking a
shortcut and verifying one part of DXE, which can then be further used to
verify each of DXE parts before they are executed. The second task of PEI
is to setup and execute the DXE.



14 Mark Juvan

2.5.6 Driver Execution Environment (DXE) Phase

The DXE phase is where the biggest part of the platform configuration is
done, as it can execute full fledged binaries which expose functionality be-
tween and to each other. During this phase we have three main components
running: DXE Foundation, DXE Dispatcher and DXE Drivers.

The EFI Boot Services table and EFI Runtime Services table that were
discussed in Section 2.4.1 are available through the EFI System Table man-
aged by DXE Foundation. The DXE Foundation is similar to the PEI Foun-
dation, acting as the core of the phase and making sure the drivers have all
necessary information and the environment set up for proper functioning.
Additionally this is where the information about the PEI execution is passed
to. With this information, it functions without any need for further execu-
tion of any PEI code.

DXE Dispatcher discovers and executes the DXE Drivers from the avail-
able firmware volumes according to their dependencies and the apriori list
of the volume.There are two main mechanisms for determining the order of
executing DXE drivers. The first is an apriori file, which contains a list of the
DXE driver GUIDs in the (strong) order in which they should be executed.
There can be at most one apriori file per firmware volume, and it is legal to
have zero apriori files in a firmware volume. If it exists, this file resides at
the start of each firmware volume and provides assurance for deterministic
execution. However such files do not usually contain all of the drivers in the
volume.

Once the DXE drivers from the apriori file have been loaded and exe-
cuted, the dependency expressions (DEPEX) of the remaining DXE drivers
in the firmware volumes are evaluated to determine the order in which they
will be loaded and executed. This is the other mechanism contained in each
driver’s dependency section. This (weak) type of execution order may result



Bypassing the BIOS supervisor password 15

in different execution orders, depending on how the DXE Dispatcher resolves
the dependencies of the drivers present.

DXE Drivers are many modular pieces of code and the bulk of the execu-
tion in the DXE phase. Their functionality ranges from System Management
Mode (SMM) set-up and execution to network driver and boot disks man-
agement. Since the Voinea exploit mainly relies and exploits parts of this
phase, we will explain what types of DXE drivers exist and how these drivers
are loaded.

Driver Main Entry Point

Each driver has a main entry point, which is where the execution starts. In
terms of ordinary (object oriented) programming languages, this would be
the ‘main’ function.

The entry point is called with two arguments. The first parameter is
the image handle and the second is a pointer to the system table. Through
the latter, the driver has access to standard input and output handles, Boot
Services, Runtime Services and anything else it requires for correct execution.

The goal of this function is to initialize and prepare the environment, in-
teract with other drivers, create and respond to events (directly or by setting
up callback functions), call other functions of the driver and perform any
other functions the driver may serve. Any driver may also install a protocol
to memory, writing the pointer of a structure containing one or more function
pointers to the boot service or runtime table, along with its GUID and han-
dle. Through this table, other drivers may access the exposed functionalities
of the driver. This installation may happen at any point in the execution
of the driver. Commonly this is done in the main entry point of the driver,
but nothing prevents the protocol from being installed from another proto-
col’s execution. It should be noted that the installation of a protocol does



16 Mark Juvan

not mean it is immediately executed but rather that it is prepared for other
drivers to interact with it.

As the main entry point is in many cases ran before the protocols it
requires are installed, dependency expressions may be used to ensure that the
protocols with the required GUIDs will be installed. However some system
table structures may not be available at that time, such as ConOut (Console
Out) — used for console output, so the debug functionality for developing
the driver main entry point is limited. This also holds, of course, for all
functions that the entry point calls.

Driver Protocols

Protocols are a way for drivers to expose their functionality to other drivers,
and conversely, a way for drivers to consume the functionality of other drivers.
From a practical standpoint, these are just functions that are saved to mem-
ory, along with their pointers being stored to a database for future use —
to draw a parallel from conventional programming languages, these can be
imagined as libraries that one may import by knowing their GUID and han-
dle. Note that multiple functions may be available under one protocol GUID,
as the protocols are installed as a part of an interface, which is implemented
in C as a named structure.

During boot, all driver main entry points are ran, which consequently
install driver protocols from each driver. These protocols are later called
by other drivers by using LocateProtocol or LocateHandleBuffer to obtain
the protocol pointer from EFI_SYSTEM_TABLE by providing their GUID and
handle. Generally protocols are loaded by the entry point and the functions
it further calls, but nothing restricts a protocol itself from loading further
protocols and accessing their functionality (as we will see in Section 3.6.1).



Bypassing the BIOS supervisor password 17

DXE Driver and Protocol Development Gotchas

During the reproduction of the Voinea exploit, we found that many rules
have to be adhered to when re-implementing a driver that is already a part
of DXE. To make sure its code will be ran, the Voinea exploit relies on over-
riding the existing drivers and their protocols. Most of these rules apply to
the implementation of the protocols and their installation. Any deviation
from these rules result in the laptop turning on but staying frozen on a black
screen without any error messages or error beeps, making it much harder
to debug. From our development experience, we conclude that this happens
because of the dependency expressions of other drivers that require the pro-
tocol and call it with a certain format of parameters. The following rules
were discovered through development and may not be complete.

The driver must install any protocols that the original driver installs —
either with InstallProtocolInterface or InstallMultipleProtocolInterfaces. All
protocols must have the exact same function signature as the original imple-
mentation. The protocols must be installed on the correct handle and with
the same protocol GUID. It should be noted that UEFITool [28] does not
format the GUIDs in the same way as they are written in memory. Thus the
developer should be careful to avoid making a mistake when re-implementing
a driver by copying the GUID from the tool directly rather than copying the
hex-code.

It is not required to implement any HandleProtocol service calls or any
event creation related service calls, as these only have direct effect on the
driver being implemented and not on the execution of other drivers. Fur-
thermore, in our case we do not need a full working BIOS, so there is no
need to correctly implement the original functionality of the driver. This
means that the exploit does not rely on external events but rather only de-
pending on being executed itself.



18 Mark Juvan

When loading a protocol, an instance of the protocol is installed to
the provided ImageHandle. If the return value of the called protocol is
EFI_SUCCESS, the protocol is not unloaded from memory. If the protocol re-
turns certain error codes, such as EFI_INVALID_PARAMETER and EFI_UNSUPPORTED,
the current instance of the protocol is unloaded from memory. This is impor-
tant when calling protocols from other drivers multiple times, as the protocol
may need to be loaded again before attempting to use it.

Print utilities, such as EDKII’s Print (which internally uses the Sys-
temTable’s ConOut) and SystemTable->ConOut->OutputString must not
be placed in the main entry point of the driver. This makes the laptop frozen
on a black screen after being turned on, making it impossible to debug. As
mentioned before, this is due to the main entry point of the driver being ran
before the protocols are ran, but also before the ConOut object is initialized,
thus making it impossible to reference and use to debug the behaviour of the
main entry point functions. By the time the protocols are referenced how-
ever, all System Table structures are already initialized. This means that it
is possible to use print statements in the protocols, which makes debugging
a lot easier.

2.5.7 Post DXE phases — BDS, TSL and RT Phases

After ExitBootServices is called in the DXE phase, the boot process tran-
sitions to the Boot Device Selection (BDS) phase. The OS, such as Microsoft
Windows, is started by locating the EFI system partition and running the
Windows Boot Manager (bootmgrfw.efi). Following this is the Transient Sys-
tem Load (TSL) phase, where the OS loader like winload.efi initializes the
execution environment for the kernel, loading the kernel module and termi-
nating the Boot Services. Finally, the RunTime (RT) phase is where the
OS runs and only certain EFI Runtime Services are still available, which are
important for reading UEFI variables, shutdown, and more.



Chapter 3

Reverse Engineering of the

Exploit

After having sufficient understanding of UEFI, DXE and the boot process,
we are ready to start reverse engineering the Voinea exploit to find out what
vulnerability it exploits.

3.1 Dumping the BIOS image

The (UEFI) BIOS image is stored on an SPI flash chip. In our case the
SPI flash chip is soldered to the motherboard. To retrieve the contents of
such a chip, a dedicated programmer capable of communicating via the SPI
protocol is required. Before retrieving the contents, we disconnect all battery
units and hard drive from the laptop as a safety precaution. For dumping the
memory contents or flashing new images, we used the CH341A programmer
with a SOP8 clamp (as seen in Figure 2).

19



20 Mark Juvan

Figure 2: CH341A programmer.

The BIOS dump can then be retrieved with the flashrom utility [29] as
seen in the command output below.

$ sudo flashrom --programmer ch341a_spi -r bios_dump.bin

flashrom v1.2 on Linux 6.8.0-40-generic (x86_64)

flashrom is free software, get the source code at https://flashrom.org

Using clock_gettime for delay loops (clk_id: 1, resolution: 1ns).

Found Winbond flash chip "W25Q128.V" (16384 kB, SPI) on ch341a_spi.

Reading flash... done.

An unmodified copy of the BIOS dump should be stored as a backup in
case anything goes wrong during the flashing and exploit process. This dump
contains all the data on the chip and can be opened with UEFITool.

As seen in Figure 3, the dump consists of various regions, of which we
are interested only in the BIOS region, which contains BIOS drivers and
NVRAM memory, among other things. Upon boot, the contents of this chip



Bypassing the BIOS supervisor password 21

are fetched and executed by the CPU as explained in the Pre-UEFI Sec-
tion 2.5.3.

Figure 3: UEFITool view of the Basic Input/Output System (BIOS) image
dump.

3.2 Contents of the Exploit Directory

After extracting the exploit from the compressed archive obtained from the
Badcaps forum [5], we are met with the following files:

$ tree -L 2 patch

patch

|-- autopatch.py

|-- DXE

| |-- BootOption.ffs

| ‘-- LenovoTranslateService.ffs

‘-- VOLUMES

‘-- NVRAM_EfiSystemNvDataFvGuid.vol

The autopatch.py is a Python script that takes an (UEFI) BIOS dump
as input, applies the contents of the DXE and VOLUMES directories to it,
and then outputs an altered BIOS dump. It uses UEFIReplace (a part of
the UEFITool functionality) internally to replace the drivers and memory
volumes with those of the same name. This Python script is not a part of
the exploit created by Victor Voinea, but an effort by Knucklegrumble from
Badcaps forum [5], which makes applying the exploit easier to do. The same
behaviour could be achieved by e.g. using UEFITool [28] directly, altering
the drivers and NVRAM memory through its graphical user interface.



22 Mark Juvan

In the VOLUMES directory, there is an NVRAM volume file. Commonly
the NVRAM volume file contains various variables in a key-value format,
including the boot order variables, GUIDs of certain protocols and hashes.
Without clearing the NVRAM, the exploit does not work, and the laptop
does fails to boot, even though the driver part of the exploit stays intact.
Our assumption is that this is due to some checksums of the drivers or hash
of the whole BIOS image being stored in the NVRAM, but upon changing
some of the drivers these checksums are altered and thus preventing boot.
Additionally, without clearing NVRAM, Secure Boot is an additional factor
preventing us from using our own drivers. Thus we replace the NVRAM con-
tents with an empty NVRAM volume. This volume only contains the Lenovo
splash image and the Lenovo public key. Replacing the current NVRAM with
the empty one effectively clears the variables stored in the NVRAM. The first
time the laptop is started after NVRAM is cleared, the values of the NVRAM
get repopulated through a series of four reboots, after which the laptop boots
normally.

The BootOption.ffs and LenovoTranslateService.ffs are DXE boot
service driver firmware file system volumes. The .ffs extension indicates
these are Firmware File System volumes, which contain the dependency, ver-
sion and user interface section, as well as the PE32+ image section, which
contains the binary image of the driver and is of most interest to us. Figure 4
shows how the BootOption.ffs files look when analyzed with UEFITool.
Because the output of compiling our own drivers with the EDKII frame-
work [30] is an .efi file, it has to be transformed into a .ffs format, for us
to be able to replace it. During the thesis research, we developed our own
script (genWhole.sh) to automate this conversion. Additionally, we created
another script (build_and_make_ffs.sh) to automate building our exploit
replica, patching the BIOS dump, and flashing the testing computer in one
go. These are available on the public project GitHub repository [31].



Bypassing the BIOS supervisor password 23

Figure 4: BootOption.ffs opened in UEFITool.

Continuing with the reverse engineering process, we can extract the PE32
driver images and import them to Ghidra, an open source software main-
tained by the NSA [32]. Ghidra helps us with disassembling (turning binary
data into assembly instructions) and decompiling (turning binary data into
C-like pseudocode) the binary image, making reverse engineering much eas-
ier. The PE32+ binary file format is similar to the PE32 format of the Win-
dows executables, with slight differences in the section headers. Because of
this, Ghidra can decompile the driver images as PE32. The produced decom-
piled code is somewhat readable, with enough reverse engineering experience.
It must be noted however, that even though Ghidra decompilation is accu-
rate, it does not have direct support for the environment and libraries that
UEFI uses, resulting in hard-to-comprehend function calls, common GUIDs
used in UEFI, references to memory objects outside of current memory space
and other missing UEFI specific functionality.

The Ghidra plugin efiSeek [33] adds some UEFI-specific functionality,
which made reverse engineering much easier. Even though this plugin is
extremely useful, it does not implement all UEFI features and is not the
golden ticket. For example Ghidra does not automatically attempt to disas-
semble and decompile all memory regions but rather only those that it sees
a possible direct reference to or with a possible jump instruction destination
in already decompiled code. The starting decompiled code depends on the
section headers defined at the beginning of the file. This means a lot of
manual reverse engineering effort, time and additional UEFI knowledge was
required to figure out these details. Some lessons learned and pointers for
future UEFI reverse engineering were discussed in Section 2.5.6 of this thesis.



24 Mark Juvan

In the rest of this chapter we will dive into how the original LenovoTrans-
lateService driver functions, and how the exploit alters this functionality.
Next, we will explain how the original EmulatedEepromDxe driver works
and its role in the exploit. Finally we will dissect the exploit’s BootOption
driver, which is where the call to clear the SVP is located.

3.3 LenovoTranslateService Driver

Before reverse engineering the exploit driver which replaces LenovoTrans-
lateService driver, it is interesting to find out what the original functionality
is and why this driver was chosen for the exploit. The original Lenovo-
TranslateService driver was reverse engineered in the past [18] and serves
the purpose of translating an American Standard Code for Information In-
terchange (ASCII) string into keyboard scan codes, for the purposes of later
hashing the keyboard scan codes and comparing them with the SVP stored
in the EC. LenovoTranslateService driver installs a protocol with GUID
e3abb023-b8b1-4696-98e1-8eedc3d3c63d, which provides this functional-
ity. Although we understand the functionality of LenovoTranslateService, we
are uncertain why the ASCII string need be translated into the keyboard scan
codes before hashing, rather than hashing the ASCII password string directly.

Given the purpose of the LenovoTranslateService driver, we can assume
it was chosen because it is called early in the boot process, as well as be-
cause such a function is not needed at any point during the exploit — we are
not trying to actually login to the BIOS as a supervisor but rather wipe the
password from memory. Figure 5 shows what the password prompt looks like.

In the Voinea exploit, the LenovoTranslateService driver protocol serves
as the user interface for the exploit. When the SVP prompt appears, the user
may enter any password, after which the text shown in Figure 6 is displayed.



Bypassing the BIOS supervisor password 25

Figure 5: Password prompt for entering the Basic Input/Output System
(BIOS) settings.

Figure 6: User interface of the exploit.

The user is prompted to input the key matching the hardware ID, which
is randomly generated with each run of the exploit. In the original exploit
process, the user must contact Voinea with the hardware ID to obtain such
a key. However, in the version of the exploit obtained from the Badcaps
forum [5], this check has been removed. We speculate that this functionality
might have been located in the loops portrayed in figure 7. From the the re-
maining for loops in our exploit version, we can assume that in the first loop
all leading spaces and tabs were removed, then all leading 0’s are removed
in the second loop and lastly all leading numerical characters are removed in
the last loop — which suggests the original exploit required keys that most
likely started with a letter or a special character.



26 Mark Juvan

Figure 7: Code snippet of potentially removed key checking algorithm.

The user may thus just input whichever key and press Enter. At this
point, the LenovoTranslateService protocol calls the BootOption protocol as
can be seen in decompiled source code (Figure 8).

Figure 8: Call from LenovoTranslateService protocol to BootOption protocol.

Before diving into the functionality of BootOption exploit driver and
protocol, let us first review the contents and functionality of the Emulat-
edEepromDxe driver, as its protocol is loaded and used by the BootOption
driver.



Bypassing the BIOS supervisor password 27

3.4 EmulatedEepromDxe Driver

The EmulatedEepromDxe driver is an original driver provided by Lenovo and
used in the exploit for its already defined functionality of overwriting Elec-
trically Erasable Programmable Read-Only Memory (EEPROM) memory. It
is responsible for installing the EepromRead and EepromWrite protocols. As
the names suggest, the EepromRead allows any driver to read from EEP-
ROM memory, while EepromWrite protocol enables writing to EEPROM
memory. This is important due to the SVP residing in a part of an EC,
which is treated as EEPROM memory.

3.4.1 Main Entry Point

Figure 9: Main entry point of the EmulatedEepromDxe driver.

As discussed before, the main entry point prepares the environment, followed
by installing the protocol interface in line 24–25 of Figure 9. We can see that
the protocol gets installed to the null handle, meaning that a new handle will
be created and the protocol will be installed to it. The installed interface is at
the &PTR_DAT_80000300 — pointer at the memory address 0x8000030, the
content of which can be seen on the left side of the Figure 9. It points to the



28 Mark Juvan

offset 0824, which is where the EmulEepromRead protocol implementation
is located.

3.4.2 EmulEepromRead

Figure 10: EmulEepromRead function from the EmulatedEepromDxe driver.



Bypassing the BIOS supervisor password 29

The function signature is derived from the SynAcktiv blog [16]. Such a func-
tion signature is not easily obtained and must be deducted from function
behaviour when reverse engineering an application for the first time. This
information has sped up the research on this part of the driver significantly.
With this in mind, let us review what the arguments passed to the function
are. The first argument is a pointer to the protocol interface structure itself,
declared as ‘this’. The second argument bankno indicates a starting offset in
memory, also referred as the bank number in the continuation of this thesis,
which is set to 0x57 in the case of the exploit. The third argument defines
the offset in the bank (which is a 0x100 byte sized block of memory), and
the fourth argument is used as a buffer for returning the read value.

In line 42, we see another function being called, named perform_read.
Depending on passed parameters, this function calls various other subfunc-
tions further down, which ultimately end up calling
EFI_CPU_IO2_PROTOCOL->IO.Read (such as in Figure 11), on IO Ports 0x1634
and 0x1630. While it is not crucial for the understanding of the exploit, cu-
rious readers may wonder the purpose of these IO Ports. Synacktiv explains
that both ports can be used for both reading and writing, albeit commonly for
different purposes. For further explanation, we direct the reader to “IOPort
Reversing” chapter of their blog [16]. Through the use of these functions,
one may read the contents of the emulated EEPROM — in our case the EC
containing the password value.

3.4.3 EmulEepromWrite

Similarly to read functionality in EmulEepromRead, the EmulatedEepromDxe
driver implements the writing functionality as EmulEepromWrite. The pointer
to the implementation of EmulEepromWrite function is stored in the same
structure, after the EmulEepromRead pointer, as can be seen in Figure 12.
When LocateProtocol is called with the GUID of the EmulatedEepromDxe



30 Mark Juvan

Figure 11: Reading from IO ports 0x1630 and 0x1634.

protocol (82b244dc-8503-454b-a96ad0d2xe00bf86a), the interface that gets
returned is the pointer to this structure. This will be important to under-
stand the decompiled code in the BootOption protocol below. While it may
seem logical and easy to understand in hindsight, it was not at all trivial to
determine at the time of research and took a long time to figure out. A major
point of confusion while attempting to reproduce the exploit was that there
is another GUID saved right next to the GUID of the EmulEeprom protocol
interface (as seen in Figure 13). At first, we concluded that one GUID refers
to EmulEepromRead and the other to EmulEepromWrite. Later we discov-
ered that the other GUID is in fact not referring to the EmulEepromWrite
but something else entirely different and not used as a part of this exploit.

Figure 12: Storage of implementation structure in memory.

The EmulEepromWrite function itself is quite similar to that of EmulEep-
romRead, with the exception that the write performs the write operations in
place of read operations. Both of these functions are used by the exploit to



Bypassing the BIOS supervisor password 31

Figure 13: Two Globally Unique Identifiers (GUIDs) residing next to each
other in memory.

effectively read and write the EC memory. During the research, these were
used to read various parts of the EC memory to understand where the SVP
is stored and what other variables are stored in the EC. Further explanation
and examples may be found in the exploit recreation Section 3.6.

3.5 BootOption Driver

The BootOption driver is where most of the exploit logic lies. Starting with
the main entry point of the driver and stepping through the function calls
(Figure 14), we can see that a protocol interface is installed to the EFI Boot
Service table. This interface is implemented at offset 0x084c (marked with
red), with the GUID 5962af91-4456-419f-a7b9-1f4f892ab0f6 (marked
with blue).



32 Mark Juvan

Figure 14: BootOption install protocol call in Ghidra.

As shown in Figure 8 above, we see that this is indeed the same GUID
that gets located and executed from the exploit’s LenovoTranslateService
protocol.

3.5.1 BootOption Protocol

In the start of the protocol (Figure 15), we see that the EmulatedEepromDxe
protocol interface is loaded with LocateProtocol. Note that the pointer that
is returned from the LocateProtocol is the pointer to the structure (as seen
in Figure 12) in which the pointer to EmulEepromRead is stored.

Figure 15: Calling LocateProtocol to obtain EmulatedEepromDxe protocol
interface pointer.

If the protocol is successfully located, the text “Press Space...” is printed
on the screen in line 56 of Figure 15. Then a keyboard stroke is being captured
with a do-while loop in lines 57-62 of Figure 15, then saved to the local_c8



Bypassing the BIOS supervisor password 33

variable. After this, another keystroke is prompted with text “Press Space
once more...” being printed to the screen. The purpose of pressing spacebar
twice is not clear after reverse engineering this driver, as only the second
keystroke is checked to be the spacebar or the unicode character U+FFA4.
It is not clear why the unicode character is allowed beside the spacebar
which the user is prompted for. After this keystroke is accepted and saved to
local_c8 variable, the contents of this variable are checked. If the keystroke
was indeed the spacebar character, then the exploit’s main functionality is
ran (function WriteEverythingIn0x57 on line 96 in Figure 16).

Figure 16: “Press Space once more...” prompt and call to write everything.



34 Mark Juvan

WriteEverythingIn0x57 Function

Figure 17: WriteEverythingIn0x57 function in Ghidra decompiled view.

This is the core of the exploit, where the SVP gets removed. At first glance,
we see that there is a call to the function located at address pvVar1 + 8.
The content of pvVar1 is actually the location of the EmulatedEepromDxe
protocol interface. As seen in Figure 12, this is a pointer to the EmulEep-
romWrite function — explaining the “+8” when calling the write function.
Thus we can begin to understand what the exploit is writing to the EC. The
first parameter of the function is a pointer to the structure, the second is the
memory bank number, the third is the index in that memory bank we would
like to write to, and the last is what we would actually like to write. We see
that the index is being looped from 0x0 to 0x100 — iterating over all indices
in the bank. However the second and last parameter are unclear at first,
shown as unaff_RDI and unaff_RSI. This is due to Ghidra decompilation
not recognizing the function calling convention of UEFI and thus RDI and
RSI are not included in the function signature. To understand what these
parameters might be, we can check the assembly code before the function is
being called.



Bypassing the BIOS supervisor password 35

Figure 18: Disassembly listing before function call.

In the Ghidra disassembly listing (Figure 18) we find that 0x57 is moved
into EDI register, which means that 0x57 is the bank number that is being
written into. We can also conclude that this is the bank in which the SVP is
stored, as overwriting this section removes it. Moreover, the last parameter
contains a pointer to data being written to the EC — the pointer is referring
to a memory location in the executable file. Upon arranging the data into a
structure with 0x100 UINT8 fields, we can inspect the contents of that stru-
cure. Most of the fields are null bytes, with the exception of some seemingly
random values that do not reflect any human readable language. The data
structure contents may be found in the recreation Section 3.6.2 of this thesis.

After experimentation with overwriting different parts of the 0x57 mem-
ory bank, we observed odd behaviour: when this memory bank is overwritten
with either all 0 or all 1 bits, the SVP still gets removed. It is worth noting
that not all bits may be read or written to — the last 8 bytes of each bank
are protected and were proven to be the checksums of their memory banks.
When attempting to write something to these memory positions, we get a
EFI_ACCESS_DENIED return status, as seen in Figure 19. When the data in
the bank does not add up to the same checksum during boot, a message is
shown before the Lenovo logo is displayed, resulting in a message “Invalid
RFID Serialization Information Area” [34] (Figure 20). This message how-
ever does not stop the boot process in any way. The data that the Voinea
exploit writes to the memory bank does not trigger the warning we did, which
may serve as an explanation as to why the contents written seem odd and
do not represent any common format.



36 Mark Juvan

Figure 19: Error return status when attempting to write to the last 8 bytes
of a memory bank.

Figure 20: “Invalid RFID Serialization Information Area” message during
boot.



Bypassing the BIOS supervisor password 37

3.6 Exploit Recreation

To understand the exploit’s technique better, verify our prior analyses and
to open source the exploit, we created an exploit replica. This consists of the
required code for removing the SVP in the same way that the Voinea exploit
does this. The complete code of the exploit replica may be found at the
following GitHub page: https://github.com/null-cell/ThinkPad-SVP-

removal.

3.6.1 LenovoTranslateService Recreation

Figure 21: LenovoTranslateService recreation source code.

As the Voinea exploit only uses the LenovoTranslateService driver as the
frontend, we recreated only the necessary part of it without all the text be-
ing printed out. This was the first UEFI driver that we have created and thus

https://github.com/null-cell/ThinkPad-SVP-removal
https://github.com/null-cell/ThinkPad-SVP-removal


38 Mark Juvan

it was useful to test how it works before going more in depth with recreating
the BootOption exploit driver.

Starting from UefiMain (line 45 in Figure 21), first the GUIDs are de-
fined, after which the protocol is installed in line 56. The definition of the
protocol is defined in the LTSProt function in line 16. First a print is done
here to signal when the protocol has successfully loaded. Then we attempt
to locate the BootOption protocol and if successful, run it in line 28.

The reader might be confused by the return of EFI_SUCCESS value even
in the event of failing to locate the BootOption protocol. This must be done,
lest the laptop will freeze as an error return value is treated as a failure
of the BIOS. Additionally some error messages result in the protocol being
unloaded from memory. The debugging is quite difficult when the laptop is
frozen, as there is no return value or error messages to indicate what is going
wrong. This, coupled with no fast way of replacing the driver with a newer
version — each BIOS flash takes at least 5 minutes — meant that debugging
took a significant amount of time and numerous attempts. However after
this was working correctly, we could finally call the exploited BootOption
protocol, have the exploit run and then start recreating it.

3.6.2 BootOption Recreation

When recreating the BootOption driver, we wanted to be able to also ex-
plore all of the memory bank’s contents, not just recreate the original exploit
driver. Thus there is more functionality here, that we will explain in parts.
First, the UefiMain (line 195 in Figure 22) is the entry point of our exploit.



Bypassing the BIOS supervisor password 39

Figure 22: BootOption recreation — UefiMain function source code.

Here the protocol GUID is defined (it is important that this GUID is the
same as the GUID of the original BootOption protocol from Lenovo). Then
the protocol interface (BOProt) is installed to the image handle. Let us take
a look at how the EEPROM structure gets created and then what is located
at the start of BOProt function (Figure 23).

Figure 23: BootOption recreation definition of EmulatedEepromDxe protocol
structure and start of BOProt.



40 Mark Juvan

In lines 17 and 18 of the Figure 23, both function signatures for the Eep-
romRead and EepromWrite are defined (corresponding to EmulEepromRead
and EmulEepromWrite from the sections above). Then these are defined in a
structure, which is used for the mEmulatedEepromProtocol pointer. In line
33, this pointer is populated with the pointer to the EmulatedEepromDxe
protocol by means of LocateProtocol. Now we have access to the EmulEep-
romRead and EmulEepromWrite. By testing an arbitrary read in line 40, we
confirm that this indeed works as intended. In line 44 we can see the values
that were taken from the Voinea exploit, which originally overwrite the mem-
ory bank 0x57. To be able to test the contents of the memory bank easier,
we created a while loop with four different options which can be picked by
pressing the corresponding keys (line 52 in Figure 24).

When pressing “2”, data from the Voinea exploit are used for writing to

Figure 24: BootOption recreation while loop with option selection.

the memory bank (bankno variable) — lines 64 to 78 in Figure 25. When
“1” is pressed, the memory bank gets filled with all ones — lines 81 to 96 in
Figure 25. When “0” is pressed, the memory bank gets filled with all zeros
— lines 98 to 111 in Figure 25.



Bypassing the BIOS supervisor password 41

Figure 25: Options 0, 1 and 2 in BOProt while loop.

The last option of this protocol is to read from the memory bank (lines
113 to 130 in Figure 26). To do this, the user can press “r”. Then Eep-
romRead is called in a loop for all 0x100 bytes in the bank and the value is
printed on the screen.

Figure 26: Read option in BOProt while loop.



42 Mark Juvan

If the user presses any other key, the loop exits and the protocol returns
the EFI_SUCCESS value.

To emphasize the result of the options above: pressing “0”, “1”, or “2” suc-
cessfully removes the SVP. Thus, we have successfully recreated the Voinea
exploit.



Chapter 4

The Bigger Picture

As we understand all parts of the exploit now, let us take a step back to
review how the exploit functions as a whole and why it is even allowed to
work.

4.1 Applying the Exploit

After dumping the BIOS image from our laptop as explained in Section 3.1,
we are ready to alter the dumped image. The altered BIOS image will contain
two modified exploit drivers and have its NVRAM volumes wiped. To alter
the image we can use either UEFITool [28] or Knucklegrumble’s autopatch
script [5] which works by checking for contents of the patch folder and cor-
rectly applying changes to both the drivers in the image and the volumes by
utilizing UEFIReplace.

When the altered image is created, we flash it on the BIOS EEPROM
much the same way we dumped the image. For details, see Section 3.1. Then
the laptop can be connected to a charger and booted up. Since the NVRAM
is cleared, laptop boots up four times before anything is shown to the screen,
which repopulates the NVRAM variables. It is not clear why it requires four
reboots, but our assumption is that the environment needs to have certain

43



44 Mark Juvan

variables set before boot, so each reboot sets values of the variables it can, be-
fore needing to reboot and being able to set further values. Then the Lenovo
logo is displayed on screen and we press the “F1” key to continue to the SVP
prompt. The exploit LenovoTranslateService protocol is one of the protocols
called between entering the SVP and the verification of our input, effectively
interrupting the flow of verification with our own exploit. Since the exploit
operates without the need of a working BIOS, the exploit waits indefinitely
for the user to turn off the laptop, and as a result, our input never gets ve-
rified against the actual SVP. Thus, we can input any key, press Enter and
then the LenovoTranslateService prompt of the exploit is displayed. We can
input any key as the passphrase, press Enter, and the BootOption protocol
is called. The exploit prompts us to press space bar twice, then to turn the
laptop off. At this point the SVP is successfully removed and the original
BIOS dump must be reflashed to the BIOS chip. After the reflashing is suc-
cessful, we power on the laptop and enter the BIOS menu without needing
to provide any passwords. The removal of the SVP can also be seen in the
security tab, where the SVP is shown as disabled (Figure 27).

4.2 The Vulnerability and Protection Mecha-

nisms

At this point one wonders what is supposed to stop the user from doing any
of this in the first place? The first line of defense against an attacker with
physical access and the ability to flash the BIOS chip over SPI could be
physical write protection with e.g. hardware write protect jumper [21]. This
hardware countermeasure prevents physical flashing of the chip. However as
it is a hardware countermeasure, it may also be physically removed or by-
passed. While this is not present — as is the case with the testing laptop —
a hardware write (as we are doing) is possible and notions of trusting Secure
Boot should be aborted This is because Secure Boot operates by checking



Bypassing the BIOS supervisor password 45

Figure 27: Supervisor password disabled after successfully ran exploit.

the signatures of system components (such as EFI drivers, applications, OS,
etc.) against keys stored in the signature database (db), revoked signatures
database (dbx), and Key Enrollment Key database (KEK). As those keys
may be altered (or in our case removed altogether by wiping the NVRAM),
Secure Boot does not help against attackers with physical access.

Intel BootGuard (Verified Boot and Trusted Boot) is a security mech-
anism which runs earlier in the boot process, verifying the SEC and PEI
phases. For further boot phases such as DXE, the OEM must implement
their own verification mechanism on top of BootGuard. In most implemen-
tations, the DXE driver storage regions are hashed, and that hash is matched
against a hash stored in a region protected by BootGuard. However in the
ThinkPad T460 BIOS image, the hash is not checked properly as any of the
firmware file systems in this BIOS region may be altered and the boot is
achieved nonetheless. We do not know exactly where the issue of Lenovo’s



46 Mark Juvan

code verification lies. However our trial and error experiments confirmed that
any driver from the region containing the exploit drivers could be modified
(to change its hash) and the boot would proceed, meaning that there indeed
is an issue with the code verification from Lenovo.
Another layer of defense against physical tampering are anti-tampering mech-
anisms. Even though there is an anti-tamper switch present on the laptop’s
motherboard, it is not very effective. When the laptop is opened, the switch
is released. This only prevents the flashing of the BIOS chip, however the
anti-tamper switch may be held or taped down to bypass this restriction.
Many more effective, more destructive and evidence collecting anti-tampering
mechanisms exist. An example of a destructive tamper response is deleting
the contents of certain memory regions or chips when the anti-tampering
mechanism is triggered. Evidence of tampering may be collected by imple-
menting tamper-evidence labels or coatings. The anti-tamper switch may
be replaced with more intricate measures such as humidity or light sensors,
which, combined with more effective tamper responses, create a more effec-
tive first line of defense against physical attackers.

To summarize, while NVRAM is designed to be editable by the end user,
the BIOS regions should be protected by signature and hashing mechanisms,
such as OEM code verification and Intel BootGuard. Together, these mech-
anisms are indended to protect against unsigned drivers from being added to
the BIOS flash memory and current drivers from being modified. However,
they do not work as intended in practice. The boot process may be further
protected with Secure Boot, but in practice, physical access renders Secure
Boot useless, as Secure Boot is aimed at protecting against the software al-
terations of the BIOS.

It must be noted that many of these mechanisms require additional man-
ual setup and pose a challenge to less technically savy users. This results in
these mechanisms being mostly used in a corporate setting, if at all.



Chapter 5

Conclusion

Throughout the research for this thesis, we have managed to understand
why it is possible to remove the SVP of the 4th to 8th generation ThinkPads
with physical access and how the Voinea exploit does this. Additionally we
successfully recreated the exploit to prove full comprehension of the exploit’s
mechanism as well as open-sourcing the exploit for public use, which was not
the case before.

To be able to approach and reverse engineer the Voinea exploit, a deep
understanding of the UEFI and UEFI PI specifications was required. As
there are not many peer reviewed publications on UEFI exploitation and the
field being very narrow, there was much to discover and deduce by ourselves.
Starting with the knowledge obtained from the specifications, literature on
bootkits, learning with the open source UEFI implementation and various
conference talks along with their publications, it took significant time to
get the initial foothold into the world of UEFI. To truly understand the
Voinea exploit, it also took significant knowledge of reverse engineering, a
lot of which came from books, various blog posts, conference presentations
and whatever else research we could find on the topic, along with the aid of
experienced colleagues and experimentation. Combining all aforementioned
knowledge and methods, we began to put the pieces of the puzzle together

47



48 Mark Juvan

and understanding what exactly it is that the exploit does. Afterwards, we
recreated the exploit ourselves, to verify that we truly comprehend all aspects
of the exploit. During this last phase, which took more time than expected,
we also discovered multiple quirks and rules of reproducing DXE drivers, as
explained in Section 2.5.6. Finally we discussed and reviewed which errors
allow for the exploit to function — lack of physical write protection of the
BIOS flash memory, unutilized signing mechanisms and badly implemented
code verification mechanism by Lenovo on top of Intel BootGuard. Each of
these mechanisms have their own shortcomings, however by implementing
all of them correctly, Lenovo could improve the defense in depth and signifi-
cantly improve the security of their laptops.

There are many points of research that we did not have time to delve
deeper into during this thesis but may be pursued in the future. Even though
we know that this exact exploit does not work on newer ThinkPads as the
SVP is stored elsewhere, the first and perhaps most obvious future research
topic is to investigate whether the code verification mechanism is also incor-
rectly implemented by Lenovo on newer ThinkPad models and other laptops
on the market. To achieve this, it will be helpful to pinpoint the exact issue
with Lenovo’s code verification mechanism that allows unsigned DXE drivers
to run. Another significantly valuable research project would be creating a
UEFI PI emulator that correctly emulates boot service DXE drivers. Such an
emulator would aid reverse engineering of bootkits and UEFI exploits signif-
icantly. Additionally, there are still some open questions from our research,
such as what is the reasoning behind seemingly random contents that Voinea
writes in the memory bank, which, as our recreated exploit shows, is not
needed. Topics such as these will be a point of future research and interest,
with the goal of contributing and improving the security of some of the most
privileged execution environments of the modern computers.



Index

ACPI, 7, 12
ASCII, 24

BIOS, 1–6, 17, 19–22, 24, 25, 38,
43–46, 48

CMOS, 1
CPU, 11–13, 21
CSME, 11, 12

DXE, 1, 7–10, 12–15, 17–19, 21,
22, 45, 48

EC, 1, 24, 27, 29, 31, 34, 35
EEPROM, 27, 29, 39, 43

GUID, 8, 9, 15–17, 22–24, 29–32,
38, 39

IBB, 11–13

NVRAM, 1, 5, 20–22, 43, 45, 46

OBB, 13
OEM, 6, 10, 12, 13, 45, 46
OS, 6, 9, 10, 12, 18, 45

PEI, 7, 10, 13, 14, 45
PEIM, 13
PI, 3, 4, 6, 7, 9–11, 47, 48

RAM, 12, 13
ROM, 1, 10, 11

SEC, 12, 13, 45
SPI, 5, 19, 44
SVP, 1–4, 24, 27, 31, 34, 35, 37,

42, 44, 47, 48

TCB, 12, 13
TPM, 12

UEFI, 1–12, 18, 19, 21, 23, 34, 37,
47, 48

49



50 Mark Juvan



References

[1] Lenovo. Types of password for ThinkPad — lenovo.com. [Accessed 09-
06-2024]. url: https://support.lenovo.com/at/en/solutions/
ht036206.

[2] How to Clear CMOS to Reset BIOS Settings in Systems with Intel&reg;...
— intel.com. [Accessed 20-08-2024]. url: https://www.intel.com/
content/www/us/en/support/articles/000025368/processors.

html.

[3] David Zou. BIOS Password Bypass — davidzou.com. [Accessed 09-06-
2024]. url: https://davidzou.com/articles/bios- password-

bypass.

[4] Victor Voinea. Service Forum : Unlocking all new Thinkpads T440..T495,
P53, X1 Extreme, etc. — allservice.ro. [Accessed 09-06-2024]. url:
https://www.allservice.ro/forum/viewtopic.php?p=11382#

11382.

[5] Knucklegrumble. LENOVO BIOS AUTO-PATCHER for Supervisor
Password Removal — badcaps.net. [Accessed 09-06-2024]. url: https:
//www.badcaps.net/forum/troubleshooting-hardware-devices-

and- electronics- theory/troubleshooting- laptops- tablets-

and-mobile-devices/bios-requests-only/78215-lenovo-bios-

auto-patcher-for-supervisor-password-removal.

51

https://support.lenovo.com/at/en/solutions/ht036206
https://support.lenovo.com/at/en/solutions/ht036206
https://www.intel.com/content/www/us/en/support/articles/000025368/processors.html
https://www.intel.com/content/www/us/en/support/articles/000025368/processors.html
https://www.intel.com/content/www/us/en/support/articles/000025368/processors.html
https://davidzou.com/articles/bios-password-bypass
https://davidzou.com/articles/bios-password-bypass
https://www.allservice.ro/forum/viewtopic.php?p=11382#11382
https://www.allservice.ro/forum/viewtopic.php?p=11382#11382
https://www.badcaps.net/forum/troubleshooting-hardware-devices-and-electronics-theory/troubleshooting-laptops-tablets-and-mobile-devices/bios-requests-only/78215-lenovo-bios-auto-patcher-for-supervisor-password-removal
https://www.badcaps.net/forum/troubleshooting-hardware-devices-and-electronics-theory/troubleshooting-laptops-tablets-and-mobile-devices/bios-requests-only/78215-lenovo-bios-auto-patcher-for-supervisor-password-removal
https://www.badcaps.net/forum/troubleshooting-hardware-devices-and-electronics-theory/troubleshooting-laptops-tablets-and-mobile-devices/bios-requests-only/78215-lenovo-bios-auto-patcher-for-supervisor-password-removal
https://www.badcaps.net/forum/troubleshooting-hardware-devices-and-electronics-theory/troubleshooting-laptops-tablets-and-mobile-devices/bios-requests-only/78215-lenovo-bios-auto-patcher-for-supervisor-password-removal
https://www.badcaps.net/forum/troubleshooting-hardware-devices-and-electronics-theory/troubleshooting-laptops-tablets-and-mobile-devices/bios-requests-only/78215-lenovo-bios-auto-patcher-for-supervisor-password-removal


52 Mark Juvan

[6] E. Eilam. Reversing: Secrets of Reverse Engineering. Wiley, 2011. isbn:
9781118079768. url: https://books.google.nl/books?id=_78HnPPRU_
oC.

[7] Unified Extensible Firmware Interface (UEFI) Forum. UEFI Speci-
fication 2.10 documentation — uefi.org. [Accessed 09-06-2024]. url:
https://uefi.org/specs/UEFI/2.10/index.html.

[8] Unified Extensible Firmware Interface (UEFI) Forum. UEFI Platform
Initialization Specification 1.8 documentation — uefi.org. [Accessed 09-
06-2024]. url: https://uefi.org/specs/PI/1.8/index.html.

[9] V. Zimmer, M. Rothman, and S. Marisetty. Beyond BIOS: Develop-
ing with the Unified Extensible Firmware Interface, Third Edition. De
Gruyter, Incorporated, 2017. isbn: 9781501505836. url: https://

books.google.nl/books?id=oSpDDgAAQBAJ.

[10] UEFI Driver Writer’s Guide — github.com. [Accessed 19-08-2024].
url: https://github.com/tianocore/tianocore.github.io/

wiki/UEFI-Driver-Writer%27s-Guide.

[11] A. Matrosov, E. Rodionov, and S. Bratus. Rootkits and Bootkits: Re-
versing Modern Malware and Next Generation Threats. No Starch Press,
2019. isbn: 9781593278830. url: https://books.google.si/books?
id=xzGLDwAAQBAJ.

[12] The Far-Reaching Consequences of LogoFAIL — binarly.io. [Accessed
19-08-2024].

[13] Who Watches BIOS Watchers? — binarly.io. [Accessed 19-08-2024].
url: https://www.binarly.io/blog/who-watches-bios-watchers.

[14] Publications/Conferences/Bypassing Hardware Root of Trust/offcon2019_final.pdf
at master · REhints/Publications — github.com. [Accessed 19-08-2024].
url: https://github.com/REhints/Publications/blob/master/
Conferences/Bypassing%20Hardware%20Root%20of%20Trust/offcon2019_

final.pdf.

https://books.google.nl/books?id=_78HnPPRU_oC
https://books.google.nl/books?id=_78HnPPRU_oC
https://uefi.org/specs/UEFI/2.10/index.html
https://uefi.org/specs/PI/1.8/index.html
https://books.google.nl/books?id=oSpDDgAAQBAJ
https://books.google.nl/books?id=oSpDDgAAQBAJ
https://github.com/tianocore/tianocore.github.io/wiki/UEFI-Driver-Writer%27s-Guide
https://github.com/tianocore/tianocore.github.io/wiki/UEFI-Driver-Writer%27s-Guide
https://books.google.si/books?id=xzGLDwAAQBAJ
https://books.google.si/books?id=xzGLDwAAQBAJ
https://www.binarly.io/blog/who-watches-bios-watchers
https://github.com/REhints/Publications/blob/master/Conferences/Bypassing%20Hardware%20Root%20of%20Trust/offcon2019_final.pdf
https://github.com/REhints/Publications/blob/master/Conferences/Bypassing%20Hardware%20Root%20of%20Trust/offcon2019_final.pdf
https://github.com/REhints/Publications/blob/master/Conferences/Bypassing%20Hardware%20Root%20of%20Trust/offcon2019_final.pdf


Bypassing the BIOS supervisor password 53

[15] GitHub - REhints/Publications: Conference slides and White-papers
— github.com. [Accessed 24-08-2024]. url: https://github.com/

REhints/Publications.

[16] Bruno Pujos. A journey in reversing UEFI Lenovo Passwords Man-
agement — synacktiv.com. [Accessed 08-07-2024]. url: https://www.
synacktiv . com / en / publications / a - journey - in - reversing -

uefi-lenovo-passwords-management.

[17] Through the SMM-class and a vulnerability found there. — synack-
tiv.com. [Accessed 14-08-2024]. url: https://www.synacktiv.com/
en/publications/through-the-smm-class-and-a-vulnerability-

found-there.

[18] Jethro Beekman. Reverse Engineering UEFI Firmware — jbeekman.nl.
[Accessed 08-07-2024]. url: https://jbeekman.nl/blog/2015/03/
reverse-engineering-uefi-firmware/.

[19] @depletionmode - 2 of 1; half a nybble of another - Understanding
modern UEFI-based platform boot — depletionmode.com. [Accessed 14-
08-2024]. url: https://depletionmode.com/uefi-boot.html.

[20] Paul Asadoorian. The Keys to the Kingdom and the Intel Boot Pro-
cess - Eclypsium | Supply Chain Security for the Modern Enterprise —
eclypsium.com. [Accessed 14-08-2024]. url: https://eclypsium.com/
blog/the-keys-to-the-kingdom-and-the-intel-boot-process/.

[21] Ariella Robison. Firmware Security Realizations - Part 3 - SPI Write
Protections - Eclypsium | Supply Chain Security for the Modern Enter-
prise — eclypsium.com. [Accessed 19-08-2024]. url: https://eclypsium.
com/blog/firmware-security-realizations-part-3-spi-write-

protections/.

[22] Moving From Common-Sense Knowledge About UEFI To Actually Dump-
ing UEFI Firmware - SentinelLabs — sentinelone.com. [Accessed 19-
08-2024]. url: https://www.sentinelone.com/labs/moving-from-

https://github.com/REhints/Publications
https://github.com/REhints/Publications
https://www.synacktiv.com/en/publications/a-journey-in-reversing-uefi-lenovo-passwords-management
https://www.synacktiv.com/en/publications/a-journey-in-reversing-uefi-lenovo-passwords-management
https://www.synacktiv.com/en/publications/a-journey-in-reversing-uefi-lenovo-passwords-management
https://www.synacktiv.com/en/publications/through-the-smm-class-and-a-vulnerability-found-there
https://www.synacktiv.com/en/publications/through-the-smm-class-and-a-vulnerability-found-there
https://www.synacktiv.com/en/publications/through-the-smm-class-and-a-vulnerability-found-there
https://jbeekman.nl/blog/2015/03/reverse-engineering-uefi-firmware/
https://jbeekman.nl/blog/2015/03/reverse-engineering-uefi-firmware/
https://depletionmode.com/uefi-boot.html
https://eclypsium.com/blog/the-keys-to-the-kingdom-and-the-intel-boot-process/
https://eclypsium.com/blog/the-keys-to-the-kingdom-and-the-intel-boot-process/
https://eclypsium.com/blog/firmware-security-realizations-part-3-spi-write-protections/
https://eclypsium.com/blog/firmware-security-realizations-part-3-spi-write-protections/
https://eclypsium.com/blog/firmware-security-realizations-part-3-spi-write-protections/
https://www.sentinelone.com/labs/moving-from-common-sense-knowledge-about-uefi-to-actually-dumping-uefi-firmware/
https://www.sentinelone.com/labs/moving-from-common-sense-knowledge-about-uefi-to-actually-dumping-uefi-firmware/


54 Mark Juvan

common- sense- knowledge- about- uefi- to- actually- dumping-

uefi-firmware/.

[23] Moving From Manual Reverse Engineering of UEFI Modules To Dy-
namic Emulation of UEFI Firmware - SentinelLabs — sentinelone.com.
[Accessed 19-08-2024]. url: https://www.sentinelone.com/labs/
moving-from-manual-reverse-engineering-of-uefi-modules-

to-dynamic-emulation-of-uefi-firmware/.

[24] Sudo Null Company. Sudo Null - Latest IT News — sudonull.com.
[Accessed 19-08-2024]. url: https://sudonull.com/post/89317-
NVRAM-device-in-UEFI-compatible-firmware-part-one.

[25] How to make custom UEFI Protocol — dev.to. [Accessed 19-08-2024].
url: https://dev.to/machinehunter/how-to-make-custom-uefi-
protocol-3ikp.

[26] Unified Extensible Firmware Interface (UEFI) Forum. UEFI FAQs |
Unified Extensible Firmware Interface Forum — uefi.org. [Accessed 09-
06-2024]. url: https://uefi.org/faq.

[27] ACPI Specification 6.5 documentation — uefi.org. [Accessed 09-06-
2024]. url: https://uefi.org/specs/ACPI/6.5/01_Introduction.
html.

[28] Nikolaj Schlej. LongSoft/UEFITool: UEFI firmware image viewer and
editor — github.com. [Accessed 09-06-2024]. url: https://github.
com/LongSoft/UEFITool.

[29] flashrom README; flashrom documentation — flashrom.org. [Accessed
24-08-2024]. url: www.flashrom.org.

[30] GitHub - tianocore/edk2: EDK II — github.com. [Accessed 13-08-2024].
url: https://github.com/tianocore/edk2.

[31] GitHub - null-cell/ThinkPad-SVP-removal: Open-source Thinkpad Gen
4-8 supervisor removal drivers. — github.com. [Accessed 24-08-2024].
url: https://github.com/null-cell/ThinkPad-SVP-removal.

https://www.sentinelone.com/labs/moving-from-common-sense-knowledge-about-uefi-to-actually-dumping-uefi-firmware/
https://www.sentinelone.com/labs/moving-from-common-sense-knowledge-about-uefi-to-actually-dumping-uefi-firmware/
https://www.sentinelone.com/labs/moving-from-common-sense-knowledge-about-uefi-to-actually-dumping-uefi-firmware/
https://www.sentinelone.com/labs/moving-from-manual-reverse-engineering-of-uefi-modules-to-dynamic-emulation-of-uefi-firmware/
https://www.sentinelone.com/labs/moving-from-manual-reverse-engineering-of-uefi-modules-to-dynamic-emulation-of-uefi-firmware/
https://www.sentinelone.com/labs/moving-from-manual-reverse-engineering-of-uefi-modules-to-dynamic-emulation-of-uefi-firmware/
https://sudonull.com/post/89317-NVRAM-device-in-UEFI-compatible-firmware-part-one
https://sudonull.com/post/89317-NVRAM-device-in-UEFI-compatible-firmware-part-one
https://dev.to/machinehunter/how-to-make-custom-uefi-protocol-3ikp
https://dev.to/machinehunter/how-to-make-custom-uefi-protocol-3ikp
https://uefi.org/faq
https://uefi.org/specs/ACPI/6.5/01_Introduction.html
https://uefi.org/specs/ACPI/6.5/01_Introduction.html
https://github.com/LongSoft/UEFITool
https://github.com/LongSoft/UEFITool
www.flashrom.org
https://github.com/tianocore/edk2
https://github.com/null-cell/ThinkPad-SVP-removal


Bypassing the BIOS supervisor password 55

[32] Ghidra — ghidra-sre.org. [Accessed 24-08-2024]. url: https://ghidra-
sre.org.

[33] GitHub - DSecurity/efiSeek: Ghidra analyzer for UEFI firmware. —
github.com. [Accessed 24-08-2024]. url: https://github.com/DSecurity/
efiSeek.

[34] English Community-Lenovo Community — forums.lenovo.com. [Ac-
cessed 19-08-2024]. url: https://forums.lenovo.com/t5/ThinkPad-
Tablets/thinkpad-tablet2-bios-errors-0188-invalid-rfid-

serialization-2201-Machine-UUID-is-invalid/m-p/3275897.

https://ghidra-sre.org
https://ghidra-sre.org
https://github.com/DSecurity/efiSeek
https://github.com/DSecurity/efiSeek
https://forums.lenovo.com/t5/ThinkPad-Tablets/thinkpad-tablet2-bios-errors-0188-invalid-rfid-serialization-2201-Machine-UUID-is-invalid/m-p/3275897
https://forums.lenovo.com/t5/ThinkPad-Tablets/thinkpad-tablet2-bios-errors-0188-invalid-rfid-serialization-2201-Machine-UUID-is-invalid/m-p/3275897
https://forums.lenovo.com/t5/ThinkPad-Tablets/thinkpad-tablet2-bios-errors-0188-invalid-rfid-serialization-2201-Machine-UUID-is-invalid/m-p/3275897

	Introduction
	Preliminaries and Related Work
	Related Work
	BIOS vs UEFI
	Preliminary Knowledge of UEFI
	UEFI Specification
	UEFI PI Specification

	Reverse Engineering of the Exploit
	Dumping the BIOS image
	Contents of the Exploit Directory
	LenovoTranslateService Driver
	EmulatedEepromDxe Driver
	BootOption Driver
	Exploit Recreation

	The Bigger Picture
	Applying the Exploit
	The Vulnerability and Protection Mechanisms

	Conclusion
	Index
	References

