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Summary

An increasing number of companies make use of cloud computing. Cloud orchestration
tools exist to make this easier. Kubernetes is an orchestration tool that helps set up and
manage cloud clusters. Using Kubernetes requires correct setup and configuration. If
this is not done correctly, the cluster is susceptible to attacks. There are many scenarios
where the cluster is misconfigured, leading to an attacker entering the cluster. After
entering the cluster, the attacker can laterally move within the cluster to find sensitive
information or gain control over some system. This research aims to find a way to
identify and prevent lateral movement in the Kubernetes cluster.

We investigated whether seccomp, a Linux kernel sandboxing facility that can log
and block system calls (syscalls), could be used to achieve this. Two clusters were set up:
a cluster using Role-Based Access Control (RBAC) for security and a cluster using both
RBAC and seccomp. These two clusters are tested with two attacks performed from a
compromised pod in the cluster. Additionally, we investigated whether the performance
of the attacks is affected by the privileged status of the compromised pod. The findings
indicate that seccomp does not work in privileged pods. However, seccomp does work
in unprivileged pods.

Although seccomp can be used to log and block syscalls, blocking syscalls is not
possible in every scenario. If we block a syscall used in either the creation procedure
or the regular usage of the pod, the pod cannot function correctly. While we can block
syscalls outside of these, we cannot prevent attacks that only use unblockable syscalls.

While blocking is not possible in every scenario, logging is possible in every scenario.
We encountered a problem, however, as the attacks only used syscalls that are also used
during the regular usage of the pod. In such cases, it is difficult to distinguish between
attacks and regular usage of the pod. A possible direction for future work might be to
combine the logs with additional information to make distinguishing between attacks
and regular usage easier.

Overall, we conclude that seccomp can be used in specific scenarios. Syscalls not
required by the pod can be blocked. If lateral movement only consists of unblockable
syscalls, the lateral movement cannot be prevented. Lateral movement that consists of
blockable syscalls, however, can be prevented. Logging can be done in a broader range
of situations, but combining it with additional information is necessary to distinguish
between attacks and regular usage of the pod.
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Chapter 1

Introduction

Currently, an increasing number of companies make use of the cloud [1]. One reason for
this is that the cloud provides easy scalability of resources. If the demand for resources
changes, the number of resources can easily be scaled up or down. The cloud can be seen
as a network of virtual machines (VMs) that can perform a task or multiple tasks. This
can be the same task, but it can also be a different task. Depending on the demand of
a task, it is possible to activate more or fewer computers in the network. This could be
arduous to perform manually, but cloud orchestration tools exist to help with this. One
such tool is Kubernetes, which can help set up and manage cloud clusters. Kubernetes
is used to easily manage, control, and update the network of machines in the cloud.

Using Kubernetes requires correct setup and configuration. Otherwise, the Kuber-
netes cluster is susceptible to attacks [2, 3]. There are various scenarios in which the
cluster has some misconfiguration or exploitable default value that can be used by at-
tackers [4]. An attacker could use a known vulnerability or a misconfigured port to
access a pod in a Kubernetes cluster [5]. After gaining initial access, attackers can try to
access other pods and nodes in the cluster, which is called lateral movement. This allows
them to retrieve valuable data, compromise additional systems, or find a system where
privilege escalation can be used [4]. To ensure that the Kubernetes cluster is secure, it
is necessary to identify when lateral movement occurs in the cluster. When identifying
such movement (or even the presence) of attackers, we must also find a way to prevent
lateral movement. Therefore, the goal of this thesis is to answer the following question:

How can lateral movement in Kubernetes be identified and prevented?

We expect that seccomp can provide an answer to this question. Seccomp is a Linux
kernel sandboxing facility that can log and block system calls (syscalls). Syscalls enable
the interaction between an application and the underlying Linux kernel [6]. Any action
performed by a pod in the cluster uses multiple syscalls. With seccomp, it is possible
to log and block specific syscalls, restricting what the pods in the cluster are allowed
to do. Therefore, seccomp might be useful to identify and prevent lateral movement in
Kubernetes.
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After describing the related work on cloud security and attack detection and preven-
tion in Section 1.1, Chapter 2 shows essential information to understand cloud computing
and Kubernetes. Chapter 3 explains Kubernetes security and the attacker model used
for our experiment. Afterwards, Chapter 4 explains the experimental setup and the
attacks used to test seccomp as our method for identifying and preventing lateral move-
ment. The results of the experiments are shown in Chapter 5. Finally, chapters 6 and 7
discuss and conclude this research.

1.1 Related work

This section describes relevant research in cloud security. Moreover, we describe relevant
research regarding detecting and preventing attacks based on logs and network traffic
outside the scope of the cloud. We look at three areas of study:

• Studies focusing on decreasing the response time

Some studies looked at decreasing the response time to attacks in the cloud [7,
8]. They created a prediction model, which looks at past and current events to
predict upcoming events. Based on this prediction, the remediation steps could
be pre-computed before a potential attack occurs. Correct predictions allow for a
decreased response time.

• Studies focusing on syscalls

Instead of decreasing the response time, it is also possible to look at syscalls and
their logs (syslogs). One study trained a prediction model in the context of Ku-
bernetes using the syslogs instead of event logs [9]. They pre-computed the reme-
diation steps of a predicted attack to speed up the remediation process. Another
study focused on using syscalls to detect specific attacks on Kubernetes containers
[10]. They used machine learning to learn what syscalls are used in cryptomining.
After understanding what syscalls were used, the system could be monitored for
these syscalls. However, they mentioned that this solution is subject to obfusca-
tion techniques. Instead of machine learning, another study used an existing tool
named Falco [11]. Falco uses rules and checks if the behavior in the Kubernetes
cluster adheres to the rules. If this is not the case, Falco creates an alert.

Other studies also looked at syscalls outside the context of the cloud. One study
focused on short sequences of syscalls in Unix [12]. Two other studies focused on
using a Markov Model for the likelihood of the sequence of syscalls. One of them
takes the context into account for the likelihood [13], whilst the other takes the
arguments of the syscalls into account for the likelihood [14].

• Studies focusing on network traffic

Aside from decreasing response time or focusing on syscalls, some studies looked
at using network traffic to detect and prevent attacks. One study looked at mon-
itoring the network traffic in the cluster using an additional container in every
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pod [15]. This container records the network traffic of the pod and sends it to an
external sensor. Another study, however, claims that using such containers adds
possible vulnerabilities [16]. Instead of sidecar containers, another study examined
Kubernetes’ built-in network policies [17]. These network policies can be used to
regulate what incoming and outgoing network traffic is allowed.

These studies focused on various solutions for the detection and prevention of attacks.
Our research focuses specifically on using syscalls to detect and prevent attacks in the
cloud. We investigate whether it is possible to log and block syscalls using seccomp.
This can help in the detection and prevention of attacks. In summary, the contributions
of this work are as follows:

• An investigation of how lateral movement is performed in Kubernetes.

• A method (seccomp) for identifying and preventing syscalls.

• Experiments on two clusters, showing the impact of seccomp.
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Chapter 2

Cloud and Kubernetes

To understand how to identify and prevent lateral movement by attackers in Kubernetes,
it is essential first to understand how the cloud and Kubernetes work. Section 2.1
explains some basic information regarding the cloud. Afterwards, Section 2.2 elaborates
on some concepts regarding cloud security. Finally, Section 2.3 explains the basics of
Kubernetes.

2.1 Cloud basics

Before the cloud became widely used [1], the data was stored locally on the used device.
Cloud computing delivers IT resources, both computing power and storage space, over
the internet with pay-as-you-go pricing. This means there is no need to invest in data
centers or physical servers, as they are owned and managed by the cloud provider.
Using cloud computing, scaling the number of resources depending on demand is easier.
The cloud enables access to stored data from anywhere, as long as there is an internet
connection [18, 19].

This section introduces some advantages of cloud solutions over on-premise solutions,
i.e., reliability, scalability, and elasticity. Additionally, some core cloud concepts are
explained, i.e., load balancing, containers, and storage. These subsections are based on
my interpretation of research papers on cloud computing [18, 19] and the ‘AWS cloud
practitioner’ course [20].

2.1.1 Reliability, scalability, and elasticity

The cloud provides several advantages over on-premise solutions. On-premise solutions
require local data centers and physical servers. They could lose the stored data when a
physical or digital problem occurs. It is possible to use multiple data centers and servers
isolated from each other to store the data reliably. If a problem occurs, another data
center still holds the data. However, this could be expensive. When using cloud com-
puting, buying local data centers for backups is unnecessary. Multiple storage locations
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generally provide reliability without excessive costs, both for storing data and for the
availability of the application.

Additionally, on-premise solutions require a fixed number of resources to be chosen
at the start. It is possible to decide on the maximum number of resources to achieve
maximum availability. This is often unnecessary and results in many idle resources.
Instead, it is possible to determine the average number of resources. In this case, the
costs for idle resources are minimized. However, this results in a shortage of resources
when demand rises above the average. In the cloud, it is possible to easily scale the
resources up or down, depending on demand. By doing this, the costs can be minimized,
and efficiency can be maximized.

2.1.2 Load balancing

Balancing the workload depends on the architecture. In cloud computing, a decoupled
architecture is used. This means that the front end is decoupled from the back end.
When requests arrive at the front end, the requests need to be balanced over different
instances.1 Afterwards, the requests need to be handled by the back end. In the decou-
pled architecture, the requests go through an intermediary, meaning there is no direct
contact between the front and back end. The intermediary balances the requests over
the available back-end instances. As a result, the intermediary is called a load balancer.
As the load balancer distributes the load, the front-end instances do not need to be
informed about the specific back-end instances, and vice versa.

2.1.3 Containers

To properly run an application, the application needs the code of the application. The
application code also depends on the operating system (OS). Part of these dependencies
differ when using a different OS. These elements must be set up correctly to ensure the
application runs properly.

Containers are used to make this setup easier. A container takes the code and
dependencies together as one self-sufficient package. As the container contains everything
needed to run the application, it is possible to run the application on any system with
the expected OS. Knowing what OS is used still matters when containers are used, as the
foundation and possible dependencies differ. A significant advantage, however, is that
the consistency of the underlying environment (aside from the OS) is less of a concern,
as anything that is required is contained in the container.

Containers can be used to run applications in the cloud. An orchestration tool can
be used when running multiple container replicas. One such tool is Kubernetes, which
is explained in more detail in Chapter 3.

1Instances are virtual servers that run within a cloud environment.
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2.1.4 Storage and databases

There are different options for storing data in the cloud: block storage, object storage,
and file storage. Depending on the goal, a different method could be more beneficial.

Block storage

In block storage, data is stored as blocks. Only the necessary blocks are updated when
part of the data is changed, while the other blocks stay the same. This kind of storage
is useful when files need many small changes.

Object storage

In object storage, data is stored as objects. Every object consists of the data, metadata,
and a key. In contrast to block storage, a change in the object requires the entire
object to be updated and not only the changed part. In exchange for the less efficient
modification of files, the data can be retrieved quicker and scaled (almost) infinitely.

File storage

In file storage, data is stored as blocks. In that regard, it is the same as with block stor-
age. The difference is that block storage only makes the files available on one instance,
whilst file storage makes the stored files available on multiple instances.

2.2 Cloud security

This section introduces the core concepts regarding the security of a cloud cluster.
This concerns responsibility, user permissions, networking, compliance, and monitoring.
These subsections are based on my interpretation of research papers on cloud computing
[18, 19] and the ‘AWS cloud practitioner’ course [20].

2.2.1 Shared responsibility model

When using the cloud to run applications and store data, both the cloud provider and
the customer running the applications are responsible for security. The cloud provider
has to provide the security of the cloud and all the infrastructure it uses. The customer
is responsible for the security in the cloud. This concerns using the correct settings,
encrypting sensitive data, etc.

2.2.2 User permissions and access

In cloud computing, creating users, groups, and roles is possible. When creating such an
entity, certain permissions can be granted. Specific users can be granted permissions to
perform certain tasks, but granting these permissions to an entire group of users is also
possible. Permissions can also be connected to roles. In this case, roles can be assigned
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to a user or group to provide permissions connected to the role. To ensure security, the
principle of least privileges can be used, which means permissions should be minimized
to what is strictly necessary.

2.2.3 Networking

Inside the cloud, it is possible to regulate what instances are publicly accessible and what
instances are only privately accessible. This can be achieved through a Virtual Private
Cloud (VPC). Inside the VPC, different subnets can be created to group instances to-
gether. Combined with network rules, these subnets can determine who can access the
instances. Instances that should be publicly accessible are placed in a public subnet.
Instances that should not be publicly accessible are placed in a private subnet and can
only be accessed from the private network. For instance, front-end instances need to be
accessed by the public and are placed in the public subnet. At the same time, back-end
instances, inaccessible to the public, are placed in the private subnet.

2.2.4 Compliance

When using the cloud, it is crucial to think about compliance. If data is not allowed
to leave the country, it is necessary to restrict what data centers are used to run the
application or store the data. Customers can specify where the data can(not) be stored,
and the cloud provider uses data centers that match the requirements. If this is not
done properly, compliance requirements could be violated.

2.2.5 Monitoring and analytics

Monitoring can be used to observe the cluster of instances. This is useful for analyzing
the normal usage of the cluster and seeing if things can be improved. Monitoring can
also give insight into when an attacker gets into the cluster. Subsection 3.1.5 explains
more about how monitoring and logging are important in security and how they can be
done in Kubernetes.

2.3 Kubernetes basics

Kubernetes is a container orchestration tool that helps deploy, manage, and update
complex distributed systems in the cloud. It can provide high availability of services
through automatic recovery in case of failures. Additionally, it enables the user to
scale up or down quickly, depending on the situation. A Kubernetes cluster consists of
different nodes that belong to one of two categories: head nodes on the control plane
and worker nodes on the data plane. Head nodes allow the user to control the cluster
and manage what happens, whilst the worker nodes run the applications for which the
cluster is created. A basic architecture of a Kubernetes cluster can be seen in Figure
2.1. The architecture shows one head node and two worker nodes. Inside the nodes, the
components of the specific nodes can be seen. The main objects and node components
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are explained in the subsections below. These subsections are based on my interpretation
of various sources: research papers on Kubernetes [3, 5], books on Kubernetes operations
[21, 22], the ‘A Cloud Guru Certified Kubernetes Administrator’ course [23], and some
websites about Kubernetes and Docker [24, 25].

Node 1 Node 2

kube-scheduler kube-controller-manager

CLOUD PROVIDER API

CRI CRI

CONTROL PLANE

CLUSTER

etcd kube-api-server

scheduler Controller Manager

cloud-control-manager

kubelet kube-proxy kubelet kube-proxy

pod pod

pod

pod

Figure 2.1: The architecture of a Kubernetes cluster with one head node and two worker nodes.2

2.3.1 Kubernetes objects

In Kubernetes, a variety of objects is used. These objects are used to set the desired
state of the cluster. Some important objects are node, pod, namespace, replicaSet,
daemonSet, deployment, and service. For the sake of clarity, we cover all of these
objects. For our experiment, it suffices to understand nodes, pods, and namespaces.

Node

A node is a VM with the basic necessities to run containers. There are head nodes and
worker nodes, which will be explained in more detail in subsections 2.3.2 and 2.3.3. In
short, a head node has a manager role, whilst the worker nodes perform the tasks that
need to be done. The worker nodes have pods running on them to run these tasks. It is
possible to add restrictions regarding which pods can run on a node. This can be done

2This image comes from https://kubernetes.io/docs/concepts/architecture/ under the license:
Creative Commons Attribution 4.0 International license. It is created by the Linux Foundation®.
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by adding a taint to the node, which means no pod will be scheduled on the tainted
node.

Pod

A pod is a collection of one or more containers (which are explained in Subsection 2.1.3).
An advantage of multiple containers in a pod is that the containers inside the same pod
share storage, specifications, and IP address. Having the same IP address means the
containers are considered the same system from a networking aspect, leading to easy
communication between the containers.

Even though having multiple containers in the same pod provides advantages, it
results in disadvantages regarding controlled scaling. Generally, scaling up or down is
done by changing the number of pods. If one pod contains both a web server container
(front end) and a database container (back end), they cannot be scaled separately. When
more front-end instances are needed because of an increased number of simultaneous
users, the pod is duplicated. Assuming the database is still sufficient, increasing the
number of back-end instances is unnecessary. In this case, however, the number of front-
end and back-end instances are both increased, whilst the goal was only to increase the
number of front-end instances. This leads to less control and higher costs.

To have more fine-grained control, it is generally advised to only have one container
in a pod. This way, it is possible to scale resources more precisely. For example, in
the situation above, duplicating the pod containing only the web server results in more
front-end instances, without changing the number of back-end instances. This achieves
the desired result without the additional costs of unnecessarily increasing the number of
back-end instances.

Namespace

There is always a default namespace present in a cluster. It is, however, possible to
create additional namespaces. A namespace is a cluster within a cluster. The objects
within a namespace are isolated from objects outside of the namespace. This enables
proper organization and grouping within a cluster. A namespace can be used to have
separate environments (e.g. development environment and production environment).

ReplicaSet

Kubernetes is generally used to run multiple container replicas, as there is no need to use
Kubernetes when only one container is necessary. As mentioned above, these containers
run on pods. A replicaSet specifies the desired number of pod replicas. The pods that
are created and maintained by the replicaSet follow the pod template specified in the
replicaSet spec field. This template includes the label that specifies what pods are
part of the replicaSet. This means if the desired number of replicas is set to three,
there will always be three replicas. If one gets terminated or fails, a new one is created
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to return to three. Similarly, if too many replicas are present with the specified label,
the surplus is deleted to get down to three.

DaemonSet

A special version of replicaSet is the daemonSet. A daemonSet creates a replica of the
specified pod on every node. This takes into account the special scheduling rules; if a pod
would typically not be scheduled on a node (because of taints and lack of tolerations),
this will still not happen when using a daemonSet.

Deployment

A deployment provides an abstraction over replicaSets. On top of the functionality
that replicaSets provide, deployments provide functionality such as scaling, rolling
updates, and rolling back to previous versions. Because of the added functionality and
level of abstraction, deployments are typically used instead of replicaSets.

Service

A service adds an abstraction layer on top of pods. A service is used to expose
an application without the need to understand exactly which pods are used for this
application. This is useful as pods are replaced with other pods in case of failure. These
new pods have different IP addresses, which can be problematic to keep track of. Using a
service solves this problem. By providing all the pods with a proper label, the service
can reroute any traffic for the application to any of the pods with the corresponding label.
The service automatically tries to balance the load over the available pods. This shows
that using services removes some complexity. There are four types of services:

1. ClusterIP services expose applications inside the cluster network. Only other
pods inside the cluster can access the application.

2. NodePort services expose applications outside the cluster network. Users and
applications can access the application from outside the cluster.

3. LoadBalancer services expose applications outside the cluster network. The
difference with NodePort services is that LoadBalancer services use an ex-
ternal cloud load balancer, which only works when the cloud platform supports
this functionality.

4. ExternalName services use the externalName field. The externalName field
contains the Domain Name System (DNS) name on which the application can be
accessed. The application runs outside the cluster and can normally be accessed
through this (lengthy) DNS name. By using this service, the application can be
accessed without the need for the entire DNS name.
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2.3.2 Head nodes

Head nodes (also known as control plane nodes) allow the user to control the cluster.
Head nodes manage the worker nodes in the cluster and act as the brain of the cluster.
Depending on the size of the cluster, the number of head nodes might vary. Generally,
the number is equal to three or five. On the head nodes, there are five components: API
server, etcd, scheduler, controller manager, and cloud controller manager.

API server

The API server is the front end of the Kubernetes control plane. It receives requests such
as YAML3 [26] configuration files to state the desired state of the application. These
requests are authenticated, authorized, and processed. Afterwards, they are stored in
etcd to be processed and used. All requests to the control plane come through here.

etcd

The entire cluster’s configuration and state are stored in etcd (also known as the cluster
store). The etcd system contains the key-value store for the entire Kubernetes clus-
ter. Additionally, it provides optimistic concurrency, ensuring that race conditions and
overwriting changes made by other nodes cannot occur.

Scheduler

After creating Kubernetes objects such as pods and deployments, they still need to run
on nodes in the cluster. The scheduler is responsible for finding a proper node to run the
task. This process considers multiple aspects such as node taints, (anti-)affinity rules,
available resources, etc. The scheduler looks for unscheduled objects and finds the best
nodes to run them.

Controller manager

The controller manager contains Kubernetes-specific logic. As mentioned before, Ku-
bernetes has automatic recovery. This is done through reconciliation control loops. The
controller manager executes these loops. This is necessary for some objects to function
correctly, such as replicaSets, deployments, and services. When more replicas are
necessary, the controller manager enforces the creation of additional replicas. All actions
performed by the controller manager are to achieve the cluster’s desired state.

Cloud controller manager

The cloud controller manager contains cloud-specific logic. The exact logic depends on
the underlying cloud used for the cluster. They are connected to the cloud provider’s
API. This enables Kubernetes to be cloud-agnostic and function correctly with multiple

3Some examples of YAML files can be seen later in this research, starting from Listing 3.2.
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cloud providers. For instance, when creating a node, the information about the node

needs cloud-specific information. In such a case, the cloud controller manager interacts
with the cloud provider’s API [27].

2.3.3 Worker nodes

Aside from head nodes, there are also worker nodes (also known as data plane nodes).
The head node manages the worker nodes, whilst the worker nodes perform the work
required in the cluster. Every node can run one or multiple pods. On all nodes, there
are some essential components: kubelet, kube-proxy, and container runtime.

Kubelet

Kubelet is an agent that runs on every node. It communicates with the API server on the
head node about the node’s status. Additionally, it updates the head node regarding
the containers currently running on the node and what containers should be running
there. If this does not match, kubelet runs the reconciliation loop and informs the head
node about it.

Kube-proxy

Kube-proxy is an agent that runs on every node. It enables all containers, pods, and
nodes to communicate without problems. Additionally, it handles the routing and load-
balancing of tasks that need to be performed by pods.

Container runtime

The container runtime allows the direct execution of containers in a cluster. There are
various container runtimes such as Docker or containerd. The container runtime must
comply with the Container Runtime Interface (CRI).
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Chapter 3

Kubernetes security and the
attacker model

This chapter details Kubernetes’ security, syscalls, and the attacker model. Section 3.1
explains Kubernetes’ security and the required components to achieve it. Subsequently,
Section 3.2 provides information on the syscalls and how monitoring these can help
identify and prevent attacks. Finally, Section 3.3 explains the attacker model, which is
necessary to understand our experimental setup in Chapter 4.

3.1 Kubernetes security

This section introduces the core concepts regarding the security of Kubernetes, i.e.,
cluster setup, hardening, supply chain security, runtime security, and monitoring and
logging. These subsections are based on my interpretation of various sources: research
papers on Kubernetes security [2, 15], books on Kubernetes operations [21, 22], and the
‘A Cloud Guru Certified Kubernetes Security Specialist’ course [28].

3.1.1 Cluster setup

In a Kubernetes cluster, various components must be installed and work together. Ku-
bernetes makes it easier to manage all this, but there is still room for errors and wrong
configuration. This subsection goes into detail about networkPolicy, CIS benchmark,
and binary verification.

NetworkPolicy

When setting up a cluster, communication between different components is vital. Kuber-
netes has the NetworkPolicy object to ensure proper communication whilst considering
security. A NetworkPolicy is an object that controls the flow of network communication
inside the cluster. The NetworkPolicy can be used to define what traffic is or is not
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allowed for certain pods. This concerns both incoming and outgoing traffic. This shows
that a NetworkPolicy can isolate pods from unneeded traffic.

CIS benchmark

The Center for Internet Security (CIS) benchmark is a set of standards and best practices
regarding cluster setup. Kube-bench is a tool that checks the Kubernetes cluster against
the CIS benchmark. This makes clear how well the cluster is set up. The output of kube-
bench provides possible steps that can be taken to improve the cluster.

Binary verification

When installing Kubernetes binaries1 manually, checking if they are tampered with is
generally advised. Not all binaries found online are secure. The official Kubernetes
website provides checksum files to check if the used binary was secure or tampered with.
By performing this check, it is possible to ensure that the installed binaries are secure.

3.1.2 Hardening

The components in a Kubernetes cluster have specific permissions. These permissions
enable the components to perform the tasks they need to perform. There is a risk,
however, that components have more permissions than they need. Hardening the cluster
focuses on minimizing the permissions to only the required ones. This subsection goes
into detail about seccomp, serviceAccount, Role-Based Access Control, standard
ports, Kubernetes updates, host OS security, and AppArmor.

Seccomp

Seccomp, a Linux kernel sandboxing facility that can log and block syscalls, is easily
integrated with Kubernetes. There are two versions of seccomp: original seccomp and
the enhanced version seccomp-BPF. Kubernetes supports the latter, which provides more
freedom in specifying what syscalls are (not) allowed. For conciseness, in this paper, we
refer to seccomp-BPF with seccomp.

Seccomp uses profiles with rules regarding what syscalls are (not) allowed in a pod.
When creating a pod, the seccompProfile needs to be specified. Depending on the
profile, it is possible to log or block the specified syscalls made by the pod [29, 30].
When blocking syscalls, it is essential to consider what syscalls are necessary for the
pod to function correctly. If they are needed by the pod, blocking these syscalls is not
possible, but it is possible to log them.

Different approaches are possible. Listing 3.1 shows an allowlist approach, where the
default action is to return an error, and only the specified syscalls are allowed. Some
syscalls are replaced with dots to shorten the example. Only the specified syscalls are
allowed in the allowlist approach, whilst any other syscall is blocked using the default

1Binaries are machine-readable files that a computer needs to execute a program.
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action. Attackers cannot exploit any blocked syscalls. This approach requires figuring
out what syscalls should be allowed [31].

Aside from an allowlist approach, a blocklist approach allows the action by default,
and only the specified syscalls are blocked. In this approach, only the syscalls that are
known to be exploitable would be blocked. A disadvantage, however, is that attackers
might find a way to utilize other syscalls for their attacks. It is possible to forget about
exploitable syscalls or not know about specific exploits yet.

Listing 3.1: Allowlist seccomp profile where only the specified syscalls are allowed.

1 {
2 ” de fau l tAct i on ” : ”SCMPACT ERRNO” ,
3 ” s y s c a l l s ” : [
4 {
5 ”names ” : [
6 ” accept4 ” ,
7 ” ep o l l wa i t ” ,
8 ” p s e l e c t 6 ” ,
9 ” futex ” ,

10 ”madvise ” ,
11 ” e p o l l c t l ” ,
12 ”getsockname ” ,
13 . . .
14 ” s e t i t im e r ” ,
15 ”wr i tev ” ,
16 ” f s t a t f s ” ,
17 ” getdents64 ” ,
18 ” pipe2 ” ,
19 ” g e t r l im i t ”
20 ] ,
21 ” ac t i on ” : ”SCMPACTALLOW”
22 }
23 ]
24 }

ServiceAccount

To give pods access to the Kubernetes API, Kubernetes uses the serviceAccount object.
If an attacker gains access to such a serviceAccount, depending on the permissions of
the serviceAccount, the attacker can access the Kubernetes API. To ensure this cannot
easily happen, it is crucial to adequately define the permissions of the serviceAccount.
The first step to achieve this is to keep the permissions of serviceAccounts minimal.
This includes splitting up permissions over multiple serviceAccounts and not giving
multiple permissions to a single serviceAccount. Role-Based Access Control (RBAC)
is used to define a serviceAccount’s permissions.

Role-Based Access Control

Kubernetes makes use of RBAC. This means that permissions can be assigned to specific
(Cluster)Roles. These (Cluster)Roles can be bound to users, groups, or serviceAccounts
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through a (Cluster)RoleBinding. A Role specifies permissions only inside the specified
namespace. A ClusterRole specifies permissions that work in the entire cluster, regard-
less of the namespace.

By using RBAC properly, it can be ensured that every user, group, and serviceAccount
has the proper permissions without having unneeded permissions. As it is possible to
bind multiple (Cluster)Roles to a single entity, the permissions can be assigned to sepa-
rate (Cluster)Roles. This provides fine-grained control over providing only the required
permissions. This is coherent with the principle of least privilege mentioned in Subsec-
tion 2.2.2.

Standard ports

Kubernetes uses some standard ports. An attacker could try to see if such standard ports
are open and if they can be exploited. The impact of such attacks can be diminished by
using network segmentation and firewalls. According to the official Kubernetes website,
some standard ports are [32]:

• 6443: Kubernetes API server

• 2379-2380: etcd

• 10250: kubelet API

• 10259: kube-scheduler

• 10257: kube-controller-manager

• 30000-32767: NodePort services

Kubernetes updates

One of the basic dangers of using software is unpatched vulnerabilities because of out-
dated software. Older versions could contain vulnerabilities that have not been patched
yet. Therefore, it is important to keep Kubernetes up to date.

Host OS security

When creating a pod, the containers are specified in the spec field. The containers run
in the container environment by default. This isolates the container from the host2 with
no access to the host’s resources. It is possible, however, to run containers in the host
environment. It is possible to activate privileged mode on the pod level. Additionally,
it is possible to allow access to the host’s resources on the container level through the
hostIPC, hostNetwork, and hostPID fields. These options provide access to the host’s
resources, which can be useful for actions such as monitoring. Doing so, however, entails
security issues and should only be done when absolutely necessary.

2In case of Kubernetes, the host is the node
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AppArmor

AppArmor is a Linux security kernel module. It provides granular access control for
programs running on Linux systems and can be used to control and limit what a program
can do in the host OS. AppArmor uses profiles, which are sets of rules defining what a
program can or cannot do. There are two modes:

1. Complain mode:
Generate a report of what the program is doing without actually preventing the
program from doing these things.

2. Enforce mode:
Prevent the program from doing anything the profile does not allow.

To use AppArmor, profiles must be enabled on all nodes. A pod that uses AppArmor
cannot be started if this is not enabled.

3.1.3 Supply Chain Security

Aside from cluster setup and hardening, it is also important to consider the security
of third-party software. Various aspects must be checked and validated. This subsec-
tion goes into detail about images, allowlisting registries, static analysis, and
vulnerability scanning.

Images

Images are the blueprints of containers. Images contain many software components. Any
piece of software can contain vulnerabilities that an attacker could exploit. To reduce
the odds of vulnerabilities, removing any unnecessary software and having up-to-date
versions is vital. Aside from software vulnerabilities, it is also essential to know where
the images come from. Attackers could create images with malicious software, which
should be avoided.

Additionally, it is possible to validate that the actual images are not tampered with.
Kubernetes allows appending the hash to the image inside the container spec field. If
this hash is correct, there is no problem. If this hash is incorrect, the image has been
tampered with. In this case of the latter, the pod is created, but the image is not
downloaded.

Allowlisting registries

An image registry is a service that stores container images. It can be used to download
container images to a cluster quickly. When running a container, the node automatically
downloads the image from the registry. However, if an attacker controls such a registry,
the images cannot be trusted to be secure. To prevent this, it is possible to make a list
of what registries are allowed to download images from. This can be done by using OPA
Gatekeeper, which is explained in Subsection 3.1.4.
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Static analysis

Static analysis means analyzing the source code and Dockerfiles used to create images.
Through the analysis, potential security issues can be found. There are some factors to
watch out for in the Dockerfile:

1. Ensure that the last USER created in the Dockerfile is not root. If it is root, the
entire container process runs as root.

2. Specify the specific version instead of using the :latest tag in the FROM directive.
Its version is unclear if the :latest tag is used.

3. Make sure that the Dockerfile does not install unnecessary software or tools. These
only provide additional software with possible vulnerabilities without adding actual
helpful functionality.

4. Use Kubernetes secrets to pass sensitive data (e.g. passwords, API keys) to the
container at runtime. If sensitive data is stored in the image, it is easier for an
attacker to access it.

Aside from checking the Dockerfile, it is also possible to perform static analysis on
Kubernetes resources. Files such as the YAML manifests are used to create resources.
When checking such files, there are some factors to watch out for:

1. Avoid running as root.

2. Specify the specific version instead of using the :latest when specifying the image
version. If the :latest tag is used, its version is unclear, and newer (unchecked)
versions may be automatically downloaded.

3. Ensure containers do not use host namespaces or privileged mode unless absolutely
necessary. If an attacker compromises the container, there is no direct possibility
for him to attack the host.

Vulnerability scanning

A Kubernetes cluster contains many containers and images, all containing software.
When a lot of software is used, the odds of vulnerabilities being present increase [33].
Vulnerability scanning is used to scan for known vulnerabilities. In Kubernetes, tools
such as Trivy can be used. Trivy scans the cluster for vulnerabilities and creates a report
listing the vulnerabilities, where they are, and their risk.

It is possible to automate vulnerability scanning by using an admission controller.
Admission controllers intercept requests to the Kubernetes API and approve, deny, or
modify them. One such controller is the ImagePolicyWebhook controller. This controller
intercepts the request of creating a pod and scans the used image on vulnerabilities.
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3.1.4 Runtime security

Another important aspect of improving Kubernetes’ security is to secure the runtime.
This subsection goes into detail about securityContext, OPA gatekeeper, secret, and
runtime sandbox.

SecurityContext

In the specification of a pod, there is a field called securityContext. This field allows
special security and access control settings for the pods. There is also a securityContext
field in the specification of containers. This field allows special security and access con-
trol settings for the specific container. If there are multiple containers in a single pod,
other containers are not influenced by this. The different levels provide a separate list
of settings that can be set, where some settings are present in both lists.

OPA Gatekeeper

The Open Policy Agent (OPA) Gatekeeper allows for enforcing highly customizable
policies on any Kubernetes object. These policies are defined using the OPA constraint
framework. For example, it is possible to force all pods to specify resource limits. If
a pod is created without the resource limits, it is denied until it specifies the resource
limits. Similarly, it can be used to list what image registries are allowed or not, as
mentioned in Subsection 3.1.3.

Secret

Secrets can store sensitive data in a key-value map format where the value is base64
encoded. This data can be passed to containers at runtime by using an environment
variable or mounted volume. The sensitive data is secured better by using Secrets.

Runtime sandbox

A runtime sandbox provides a specialized runtime. This runtime has additional layers
of isolation and greater security but (usually) has reduced performance. Any workload
that is not trusted can be run on the runtime sandbox to ensure it does not impact any
other part of the system. Some examples are gVisor or Kata containers. Both of
these create a sandbox to run the application.

3.1.5 Monitoring and logging

Aside from securing and hardening the cluster, it is essential to have measures in place for
when an attacker still gets in, as was mentioned in Subsection 2.2.5. By using monitoring
and logging, it is possible to visualize what happens inside the cluster. This can help
recognize when an attacker is attacking the cluster. This subsection goes into detail
about behavioral analytics and audit logging.

23



Behavioral analytics

Observing what is going on in the cluster and identifying abnormal events is important.
This can be done manually, but some tools can help with this. One tool that can
help is Falco [34]. Falco monitors Linux syscalls and generates alerts about suspicious
activity. Rules are used to decide what activity is considered suspicious. Additionally,
it is possible to specify what information should be included in the alert, meaning it
is possible to create a tailor-made alert with the knowledge required for remediation.
Falco is explained in more detail in Subsection 3.2.2.

Audit logging

Audit logs are chronological records of events in the Kubernetes cluster. This can be
used for both real-time threat detection and post-incident analysis. In Kubernetes, the
audit policy can be set up as required and every rule can be defined as desired. It is
possible to specify the level of detail of the logs. Additionally, it is possible to define
what Kubernetes objects the rules apply to and in what namespace. A subset of audit
logging is syscall logging.

3.2 Kubernetes syscall monitoring

Syscalls enable the interaction between an application in the Kubernetes cluster and the
underlying Linux kernel [6]. A syscall is performed whenever an application performs
an action. This holds for all actions and is a good measure for identifying attacks. For
example, some attacks spawn a new process from inside the container. This makes use
of the execve syscall [35, 36]. Similarly, the openat syscall is used to open a file in a
certain location through a specified path [37]. Besides, there are also attacks where the
attacker escapes the container and changes the root directory using the chroot syscall
[16, 38].

Monitoring the Kubernetes cluster is necessary to ensure proper security [39, 40].
This can be done through various methods, such as network traffic monitoring or syscall
monitoring. Our research focuses on syscall monitoring, for which the reason is discussed
in more detail in Section 4.1. Monitoring the syscalls needs to be done on the Linux
kernel level. This can be done through eBPF, which is explained in Subsection 3.2.1.
Afterwards, Subsection 3.2.2 mentions eBPF-based tools that can be used for syscall
monitoring in Kubernetes.

3.2.1 Extended Berkeley Packet Filter

Extended Berkeley Packet Filter (eBPF) can extend the kernel’s capabilities without
tinkering with the kernel source code itself. Instead, eBPF programs are written in
bytecode. These programs are loaded into the kernel when an event triggers a hook,
without changing the kernel source code. A hook is a kind of sensor. Aside from using
pre-defined hooks, such as hooks for syscalls or function entry/exit, custom hooks are
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also possible. When a process triggers an event where a hook is placed, the eBPF program
is run [41, 42].

Figure 3.1: An eBPF hook on the execve syscall.3

As can be seen in Figure 3.1, it is possible to put a hook specifically on the execve

syscall. Before this syscall is executed, the hook is triggered. This causes the eBPF

program to be executed first. Afterwards, the actual execve syscall is executed.
By using eBPF, there are a lot of possibilities that could be explored. For our research,

monitoring and filtering network traffic could be interesting. Moreover, eBPF can help
observe and visualize what is happening in the cluster. The information gained from
this makes it possible to kill malicious processes or restrict actions.

3.2.2 Syscall tools

Various tools based on eBPF are available to monitor the syscalls. Every tool has its pros
and cons. Some tools are easier to integrate with Kubernetes than others. One tool that
is integrated with Kubernetes is seccomp [29], which was explained in Subsection 3.1.2.
Aside from seccomp, an extensive list of tools that can be integrated with Kubernetes is
found on [43]. These tools could be helpful, but they focus on monitoring the cluster at
the application level. Instead, we want to focus on the underlying syscalls on the kernel
level.

Another list containing eBPF-based tools that focus on the underlying syscalls is
found on [44]. This list contains tools not made with Kubernetes in mind, making the
integration harder. Other tools on the list use eBPF to look at network traffic. The
list contains various options that can work properly in Kubernetes and can be used for
syscall monitoring, but it is infeasible to investigate all of them in-depth. Therefore,
aside from seccomp, we only looked at Falco [34].

3This image comes from https://ebpf.io/what-is-ebpf/ under the license: Creative Commons
Attribution 4.0 International License.
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Falco

Similarly to seccomp, Falco is a tool that also uses rules. Falco only provides possi-
bilities for logging when rules are violated, without the possibility to block them. A
rules.yml file can be created. When running Falco with the specified rules, the behav-
ior in the cluster is checked on whether these rules are violated. By logging any action
that violates the rules, Falco is a useful tool for detecting attackers in the cluster. This
allows abnormal behavior to be visualized and the generation of alerts in real time [34].

It is possible to use Falco rules for Kubernetes audit logs or syscall logs [45]. When-
ever Falco observes an event, the rules are checked to see if this event is allowed or
not. The desired output format can differ depending on the implementation and how
the following process needs to be done.

An example rule can be seen in Listing 3.2 [46]. This rule checks if a non-shell
program spawned a shell.4 Macros can be used to make the rule more readable. A
macro functions like a variable that can be used in the rule.

Listing 3.2: A Falco rule in YAML that checks if a shell was spawned.

1 − macro : con ta ine r
2 cond i t i on : con ta ine r . id != host
3

4 − macro : spawned process
5 cond i t i on : evt . type = execve and evt . d i r=<
6

7 − r u l e : r u n s h e l l i n c o n t a i n e r
8 desc : a s h e l l was spawned by a non−s h e l l program in a conta ine r .

Container en t rypo in t s are excluded .
9 cond i t i on : con ta ine r and proc . name = bash and spawned process and proc .

pname e x i s t s and not proc . pname in ( bash , docker )
10 output : ” Sh e l l spawned in a conta ine r other than ent rypo int ( user=%user .

name c on t a i n e r i d=%conta ine r . id container name=%conta ine r . name s h e l l=%
proc . name parent=%proc . pname cmdline=%proc . cmdline ) ”

11 p r i o r i t y : WARNING

3.3 Attacker model

Our research aims to find a way to detect and prevent lateral movement in a Kubernetes
cluster. Lateral movement occurs when an attacker is already inside the cluster. Because
of this, the original point of entry into the cluster is out of the scope of our research.
All attack attempts in the scope of our research are based on the assumption that
the attacker has compromised a pod in the cluster. This means the attacker has root-
level filesystem access in the compromised pod, providing the attacker complete control
over the filesystem in the compromised pod, as well as the capability to utilize all the
permissions of the compromised pod to interact with the Kubernetes cluster.

Lateral movement can be done on pod and node level. On pod level, this means that
the attacker can gain access to another pod from the compromised pod. On node level,

4A shell enables interaction with the OS by entering and executing text commands.

26



the attacker can gain access to another node from the compromised pod. To ensure that
the node level lateral movement is consistent, the compromised pod is on the first worker
node of the cluster for every attack.

We assume the attacker compromises a pod with the permissions to perform every
possible action on pods, pods/exec, and pods/log in the developer namespace. This
choice is motivated by the scenario from [38], where this is claimed to be a common
setup. The possible actions for these three resources are as follows [47]:

• pods: create, delete, deletecollection, get, list, patch, and update. These
actions enable the compromised pod to create, delete, change, and inspect pods.

• pods/exec: create and get. These actions enable the compromised pod to use
the kubectl exec POD -- COMMAND command. This executes the COMMAND in the
POD [48].

• pods/log: get. This action enables the compromised pod to use the kubectl

logs POD command. This outputs the logs of the POD.

Aside from the permissions to perform these actions, the compromised pod also has the
permissions to get and list pods and namespaces cluster-wide. These permissions
enable the compromised pod to inspect all pods and namespaces in the cluster.

Two different scenarios are considered concerning the compromised pod:

1. The attacker has compromised a privileged pod.

2. The attacker has compromised an unprivileged pod.

A privileged pod can access the host’s resources and kernel capabilities. This is not
the case in an unprivileged pod. This could potentially impact the attack and defense
capabilities.

In conclusion, for our research, we assume that the attacker has root-level filesys-
tem access within the compromised pod. The attacker can utilize all the permissions
of the compromised pod. The attacks are tested from a privileged and unprivileged
compromised pod.
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Chapter 4

Methods

This chapter explains the methods used in our research to investigate the identification
and prevention of lateral movement in Kubernetes. Section 4.1 explains the pros and
cons of two different monitoring methods and which one is used in the proposed solution.
Afterwards, Section 4.2 describes the experiment’s setup. Finally, Section 4.3 explains
the two attacks performed during the experiment.

4.1 Network traffic monitoring versus syscall monitoring

Two methods that could be used for monitoring were considered. Subsection 4.1.1 de-
scribes how network traffic monitoring in the Kubernetes cluster could be done, including
an explanation of why this method is not chosen. Subsection 4.1.2 describes how syscall
monitoring in the Kubernetes cluster could be done, explaining why this method is
chosen over the alternative.

4.1.1 Network traffic monitoring

This method monitors the network traffic between pods. The idea is to monitor the
cluster’s regular traffic between pods for a while to create a baseline. Afterwards, the
traffic is continuously monitored to check whether the traffic differs from the baseline.
If the monitored traffic differs too much from the baseline, it is seen as an anomaly, and
an alert is created.

Our research has not pursued the use of network traffic monitoring. This is because
using network traffic monitoring to identify and prevent lateral movement entails a few
challenges:

1. It is time-consuming to set up a proper baseline. An extensive cluster is needed to
set up an interesting baseline, which must be monitored for some time.

2. As the created cluster would be run inside the context of a specific company, the
baseline contains a certain bias and could make it difficult to generalize to other
companies or situations.
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3. It may be difficult to decide when the monitored traffic differs too much from the
baseline and what margin of difference is allowed.

4. Network traffic must be interpreted to understand whether it is dangerous. This re-
quires extensive knowledge of network traffic to understand whether the abnormal
traffic is dangerous.

4.1.2 Syscall monitoring

This method monitors the syscalls used in the cluster. Every action done in the Ku-
bernetes cluster uses syscalls, which cannot be circumvented. Extensive explanations of
what every syscall does and how they work can be found on [49].

This method could be achieved by creating a baseline and performing anomaly detec-
tion, which results in similar challenges as mentioned in Subsection 4.1.1. Our research
does not investigate using machine learning and establishing a baseline to perform syscall
monitoring. Instead, we choose to monitor the syscalls based on seccomp profiles. If any
pod tries to perform a syscall, the profile is checked on whether this syscall is allowed.
If it is allowed, there is no problem. If it is not allowed, the action is blocked or logged
for later inspection. Our research focuses on a manually created seccomp profile. We do
not focus extensively on what syscalls should or should not be blocked, as the focus is
more on the effectiveness of seccomp.

4.2 Experimental setup

To test the effectiveness of seccomp, we looked at small-scale Kubernetes-like environ-
ments like Minikube or Kind. These small-scale alternatives are good for testing the
solution without making it too complex. Using full Kubernetes is unnecessarily complex
for these tests. Kind is installed on an Ubuntu VM. The official Kubernetes tutorial of
seccomp uses Kind as the environment [29]. As it is clear that seccomp works in Kind,
we used Kind for the experiment.1

The experimental setup consists of several levels. The MacBook provided during the
project is the foundation. On this MacBook, we run VMWare Fusion, which allows us
to spin up VMs [50]. Inside VMWare Fusion, we run an Ubuntu VM using an Ubuntu
22.04.4 Desktop iso [51]. When setting up the Ubuntu VM, the default settings were
mostly used. We only changed the memory size to ensure enough memory to test the
clusters. We run Docker and Kind on the Ubuntu VM to create the clusters. Finally,
kubectl is required to interact with the created clusters. The exact steps for installing
Docker, Kind, and kubectl can be found in Appendix A.

1Another option is to use Minikube, but it is unclear if seccomp works properly in Minikube. As it
was clear that seccomp works in Kind, no time was spent investigating this alternative.
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4.2.1 Clusters

The clusters are created with a configuration file and name: kind create cluster

--config=config.yml --name=cluster-name. The name flag is used to specify the
name of the cluster to differentiate between the different clusters. The config flag is
used to specify what configuration file to use when setting up the cluster. For this
experiment, two clusters are created:2

1. no-sec cluster: This cluster uses RBAC (introduced in Section 3.1.2) to specify
who has what permissions. These permissions are not always configured correctly,
leading to exploitable flaws in the cluster. It does not make use of seccomp but
rather depends solely on RBAC.

2. seccomp cluster: This cluster makes use of seccomp (introduced in Section 3.1.2)
to secure the cluster. The cluster uses RBAC to provide the exact same permissions
as the no-sec cluster. Seccomp is used to prevent flaws from being exploited.

As shown in Figure 4.1, the clusters consist of a single control plane node and two
worker nodes. The only difference between the clusters is that the seccomp cluster uses
seccomp profiles. This does not influence the layout of the cluster itself, resulting in
both clusters having the same layout.

The manifest file of the no-sec cluster only specifies the number of nodes with-
out any additional information, as seen in Listing 4.1. This file (named no-sec.yml)
is used to create the no-sec cluster: kind create cluster --config=no-sec.yml

--name=no-sec.
The manifest file of the seccomp cluster specifies the number of nodes as well. Ad-

ditionally, the file shows an extra mount to the seccomp profiles for every node, as
seen in Listing 4.2. Using this mount, we only need one place to change the profiles
instead of making changes on every node. The manifest file (named seccomp.yml)
is used to create the seccomp cluster: kind create cluster --config=seccomp.yml

--name=seccomp.

Listing 4.1: Manifest file in YAML for the no-sec cluster.

1 ap iVers ion : kind . x−k8s . i o / v1alpha4
2 kind : C lus te r
3 nodes :
4 − r o l e : cont ro l−plane
5 − r o l e : worker
6 − r o l e : worker

2When multiple clusters are created, kubectl works on the cluster that was created last. To
change between different clusters, kubectl’s context needs to be changed: kubectl config use-context

kind-CLUSTER-NAME.
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Figure 4.1: Layout of the no-sec and seccomp clusters with one head node and two worker
nodes. The pods can be seen inside the nodes.

Listing 4.2: Manifest file in YAML for the seccomp cluster.

1 ap iVers ion : kind . x−k8s . i o / v1alpha4
2 kind : C lus te r
3 nodes :
4 − r o l e : cont ro l−plane
5 extraMounts :
6 − hostPath : ” . / p r o f i l e s ”
7 conta inerPath : ”/ var / l i b / kube l e t /seccomp/ p r o f i l e s ”
8 − r o l e : worker
9 extraMounts :

10 − hostPath : ” . / p r o f i l e s ”
11 conta inerPath : ”/ var / l i b / kube l e t /seccomp/ p r o f i l e s ”
12 − r o l e : worker
13 extraMounts :
14 − hostPath : ” . / p r o f i l e s ”
15 conta inerPath : ”/ var / l i b / kube l e t /seccomp/ p r o f i l e s ”
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To finish creating the clusters, additional Kubernetes components are necessary. We
use serviceAccounts, (Cluster)Roles, and (Cluster)RoleBindings to enable Role-Based
Access Control, for which the same manifest files are used for both clusters. We also
need pod manifest files to create the admin and compromised pods. As the pods in
the seccomp cluster use seccomp profiles, there are some differences regarding the pod

manifest files between the two clusters.

ServiceAccounts, (Cluster)Roles, and (Cluster)RoleBindings

After creating the clusters, all the pods shown in Figure 4.1 are created except the
compromised-pod and admin pods. To create these pods, it is first necessary to create
the required serviceAccounts, (Cluster)Roles, and (Cluster)RoleBindings. This is done
using kubectl create -f FILE NAME with the manifest files in listings 4.3 and 4.4.

Listing 4.3: Manifest file in YAML for the my-admin serviceAccount.

1 ap iVers ion : v1
2 kind : ServiceAccount
3 metadata :
4 annotat ions :
5 kubernetes . i o / en force−mountable−s e c r e t s : ” t rue ”
6 name : my−admin
7

8 −−−
9

10 ap iVers ion : rbac . au tho r i z a t i on . k8s . i o /v1
11 kind : ClusterRole
12 metadata :
13 name : my−admin−r i g h t s
14 r u l e s :
15 − apiGroups : [ ” ” ]
16 r e s ou r c e s : [ ” ∗ ” ]
17 verbs : [ ” ∗ ” ]
18

19 −−−
20

21 ap iVers ion : rbac . au tho r i z a t i on . k8s . i o /v1
22 kind : ClusterRoleBinding
23 metadata :
24 name : my−admin−r i g h t s
25 s ub j e c t s :
26 − kind : ServiceAccount
27 name : my−admin
28 apiGroup : ””
29 namespace : d e f au l t
30 r o l eRe f :
31 kind : ClusterRole
32 name : my−admin−r i g h t s
33 apiGroup : rbac . au tho r i z a t i on . k8s . i o
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Listing 4.3 shows the manifest file for a serviceAccount named my-admin. This
serviceAccount is bound to the ClusterRole my-admin-rights. This ClusterRole pro-
vides cluster-wide permission to perform any action on any resource in the cluster. This
means that pods with the my-admin serviceAccount can do anything with any resource
in the cluster.

Listing 4.4 shows the manifest file for a namespace called developers. It also shows
a serviceAccount in this namespace called developer-sa. This serviceAccount is
bound to the ClusterRole developer-role-ns and the Role developer-role-pod. The
ClusterRole provides cluster-wide permission to get and list namespaces and pods in
the cluster. The Role provides permission in the developers namespace to perform any
action on pods, pods/exec, and pods/log. What these permissions entail was explained
in Section 3.3.

Listing 4.4: Manifest file in YAML for the developer-sa serviceAccount.

1 ap iVers ion : v1
2 kind : Namespace
3 metadata :
4 name : deve l ope r s
5

6 −−−
7

8 ap iVers ion : v1
9 kind : ServiceAccount

10 metadata :
11 namespace : deve l ope r s
12 name : deve loper−sa
13

14 −−−
15

16 ap iVers ion : rbac . au tho r i z a t i on . k8s . i o /v1
17 kind : ClusterRole
18 metadata :
19 name : deve loper−ro l e−ns
20 r u l e s :
21 − apiGroups :
22 − ””
23 r e s ou r c e s :
24 − namespaces
25 − pods
26 verbs :
27 − get
28 − l i s t
29

30 −−−
31

32 ap iVers ion : rbac . au tho r i z a t i on . k8s . i o /v1
33 kind : Role
34 metadata :
35 name : deve loper−ro l e−pod
36 namespace : deve l ope r s
37 r u l e s :
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38 − apiGroups :
39 − ””
40 r e s ou r c e s : [ ” pods ” , ”pods/ exec ” , ”pods/ log ” ]
41 verbs : [ ” ∗ ” ]
42

43 −−−
44

45 ap iVers ion : rbac . au tho r i z a t i on . k8s . i o /v1
46 kind : ClusterRoleBinding
47 metadata :
48 namespace : deve l ope r s
49 name : deve loper−ro l e−binding1
50 r o l eRe f :
51 kind : ClusterRole
52 name : deve loper−ro l e−ns
53 apiGroup : rbac . au tho r i z a t i on . k8s . i o
54 s ub j e c t s :
55 − kind : ServiceAccount
56 name : deve loper−sa
57 namespace : deve l ope r s
58

59 −−−
60

61 ap iVers ion : rbac . au tho r i z a t i on . k8s . i o /v1
62 kind : RoleBinding
63 metadata :
64 namespace : deve l ope r s
65 name : deve loper−ro l e−binding2
66 r o l eRe f :
67 kind : Role
68 name : deve loper−ro l e−pod
69 apiGroup : rbac . au tho r i z a t i on . k8s . i o
70 s ub j e c t s :
71 − kind : ServiceAccount
72 name : deve loper−sa
73 namespace : deve l ope r s

Pod creation in the no-sec cluster

After creating the required serviceAccounts, we created pods that define their per-
missions using one of these serviceAccounts. The created pods use a simple nginx

container, often used for web applications, to keep the experiment environment simple
for demonstration purposes.

Listing 4.5 shows the manifest file for the admin pod on the second worker node.
Line 6 shows that this pod has the my-admin serviceAccount, which means it has the
permissions connected to this serviceAccount. Additionally, it has a volume mount
to the node. This means that the /mnt/important-data directory on the pod is the
same as the /important directory on the node. Section 4.3.2 shows how mounted files
and directories could be affected during an attack. Finally, this pod is placed on the
no-sec-worker2 node, as specified in line 18.
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Listings 4.6 and 4.7 show the manifest files for the unprivileged and privileged
compromised-pod pods, respectively. The only difference between the two pods is
whether they are privileged. In both manifest files, line 7 shows that the pods have
the developer-sa serviceAccount, which means they have the permissions connected
to this serviceAccount. In Listing 4.6, line 11 shows that the pod is placed on the
no-sec-worker node. Similarly, in Listing 4.7, line 13 shows that the pod is placed on
the no-sec-worker node as well. Thus, the compromised-pod pod is on another node
than the admin pod in all tested attack scenarios. This is done to show whether the
attacks are affected by what node the pods are on.

Listing 4.5: Manifest file in YAML for the admin pod.

1 ap iVers ion : v1
2 kind : Pod
3 metadata :
4 name : admin
5 spec :
6 serviceAccountName : my−admin
7 volumes :
8 − name : important−data
9 hostPath :

10 path : / important
11 con ta i n e r s :
12 − name : nginx
13 image : nginx
14 volumeMounts :
15 − name : important−data
16 mountPath : /mnt/ important−data
17 hostNetwork : t rue
18 nodeName : no−sec−worker2

Listing 4.6: Manifest file in YAML for the unprivileged compromised-pod pod.

1 ap iVers ion : v1
2 kind : Pod
3 metadata :
4 name : compromised−pod
5 namespace : deve l ope r s
6 spec :
7 serviceAccountName : deve loper−sa
8 con ta i n e r s :
9 − name : nginx

10 image : nginx
11 nodeName : no−sec−worker
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Listing 4.7: Manifest file in YAML for the privileged compromised-pod-priv pod.

1 ap iVers ion : v1
2 kind : Pod
3 metadata :
4 name : compromised−pod
5 namespace : deve l ope r s
6 spec :
7 serviceAccountName : deve loper−sa
8 con ta i n e r s :
9 − name : nginx

10 image : nginx
11 s ecur i tyContext :
12 p r i v i l e g e d : t rue
13 nodeName : no−sec−worker

Pod creation in the seccomp cluster

The process for the seccomp cluster is similar to that of the no-sec cluster. The pod

manifests require additional lines to use the seccomp profiles. The actual profiles need
to be created to ensure they are recognized when creating the pod. When creating the
seccomp profiles, it is possible to log, allow, or block syscalls.

Listing 4.8 shows the seccomp profile in the audit.json file. By setting the default
action to LOG, this profile creates logs for any syscall that is not explicitly specified. The
profile allows the specified syscalls (read and write) to be made without logging them.
This is done because every key press when typing results in one log for both read and
write. As this results in many logs that do not provide any relevant information, we
decided not to log them. No syscalls are blocked through this profile.

Many logs were created even without read and write being logged. Linux suppresses
a part of the logging by default to prevent overwhelming amounts of logs. To see all
the syscalls used during this experiment, we turned off the suppression: sudo sysctl

-w /kernel/printk ratelimit=0 [52]. The logs for syscalls are located in a special file
on the VM: /var/log/syslog. Using the tail -f /var/log/syslog command in the
VM makes it possible to see these logs in real time [29].

Listing 4.9 shows the seccomp profile in the block.json file. This profile allows any
syscall not explicitly specified by setting the default action to ALLOW. The profile blocks
the specified syscalls, resulting in an error when one of them is executed.
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Listing 4.8: The seccomp profile in the audit.json file.

1 {
2 ” de fau l tAct i on ” : ”SCMP ACT LOG” ,
3 ” s y s c a l l s ” : [
4 {
5 ”names ” : [
6 ” read ” ,
7 ”wr i t e ”
8 ] ,
9 ” ac t i on ” : ”SCMPACTALLOW”

10 }
11 ]
12 }

Listing 4.9: The seccomp profile in the block.json file.

1 {
2 ” de fau l tAct i on ” : ”SCMPACTALLOW” ,
3 ” s y s c a l l s ” : [
4 {
5 ”names ” : [
6 ” execve ” ,
7 ”openat ” ,
8 ” chroot ”
9 ] ,

10 ” ac t i on ” : ”SCMPACT ERRNO”
11 }
12 ]
13 }

Listing 4.10 shows the manifest file for the admin-seccomp pod. It is similar to the
manifest in Listing 4.5, with the addition of lines 17-20. These lines make sure that this
pod uses the seccomp profile specified in the audit.json file.

Listing 4.11 shows the manifest file for the compromised-pod-seccomp pod. It is
similar to the manifest in Listing 4.6, with the addition of lines 11-14. These lines make
sure that this pod uses the seccomp profile specified in the audit.json file.

Listing 4.12 shows the manifest file for the compromised-pod-priv-seccomp pod.
It is similar to the manifest in Listing 4.7, with the addition of lines 13-16. These lines
make sure that this pod uses the seccomp profile specified in the audit.json file.

As can be seen, the manifest files for the pods are exactly the same as the manifest
files for the no-sec cluster, with the same serviceAccount defined. The only difference
is the added lines specifying the seccomp profiles. These three manifest files use the
profile in the audit.json file, shown in Listing 4.8, to perform logging. We also tested
the attacks with the profile in the block.json file, shown in Listing 4.9, to perform
blocking.
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Listing 4.10: Manifest file in YAML for the admin-seccomp pod.

1 ap iVers ion : v1
2 kind : Pod
3 metadata :
4 name : admin−seccomp
5 spec :
6 serviceAccountName : my−admin
7 volumes :
8 − name : important−data
9 hostPath :

10 path : / important
11 con ta i n e r s :
12 − name : nginx
13 image : nginx
14 volumeMounts :
15 − name : important−data
16 mountPath : /mnt/ important−data
17 s ecur i tyContext :
18 s eccompPro f i l e :
19 type : Loca lhost
20 l o c a l h o s t P r o f i l e : p r o f i l e s / audi t . j s on
21 hostNetwork : t rue
22 nodeName : no−sec−worker2

Listing 4.11: Manifest file in YAML for the unprivileged compromised-pod-seccomp pod.

1 ap iVers ion : v1
2 kind : Pod
3 metadata :
4 name : compromised−pod−seccomp
5 namespace : deve l ope r s
6 spec :
7 serviceAccountName : deve loper−sa
8 con ta i n e r s :
9 − name : nginx

10 image : nginx
11 s ecur i tyContext :
12 s eccompPro f i l e :
13 type : Loca lhost
14 l o c a l h o s t P r o f i l e : p r o f i l e s / audi t . j s on
15 nodeName : no−sec−worker
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Listing 4.12: Manifest file in YAML for the privileged compromised-pod-priv-seccomp pod.

1 ap iVers ion : v1
2 kind : Pod
3 metadata :
4 name : compromised−pod−priv−seccomp
5 namespace : deve l ope r s
6 spec :
7 serviceAccountName : deve loper−sa
8 con ta i n e r s :
9 − name : nginx

10 image : nginx
11 s ecur i tyContext :
12 p r i v i l e g e d : t rue
13 s ecur i tyContext :
14 s eccompPro f i l e :
15 type : Loca lhost
16 l o c a l h o s t P r o f i l e : p r o f i l e s / audi t . j s on
17 nodeName : no−sec−worker

4.3 Attacks on the clusters

This section explains what attacks are performed to test the clusters introduced in
Section 4.2. As mentioned in Section 3.3, the attacker has compromised a pod in the
cluster. The compromised pod has the developer-sa serviceAccount connected. This
means that the compromised pod has the permissions to perform any action on pods,
pods/exec, and pods/log in the developer namespace. Additionally, the compromised
pod also has the permissions to get and list pods and namespaces cluster-wide. As the
attacker has compromised this pod, the attacker also has these permissions.

Both attacks include a step that requires creating a pod on the cluster. To do this,
the attacker must install kubectl on the compromised pod. The commands for this are
mentioned in Appendix A.1.2, but they are repeated here (without sudo, as the attacker
has root access on the compromised pod):

• curl -LO "https://dl.k8s.io/release/$(curl -L -s \
https://dl.k8s.io/release/stable.txt)/bin/linux/amd64/kubectl"

• install -o root -g root -m 0755 kubectl /usr/local/bin/kubectl

After installing kubectl, it is possible to use kubectl to interact with the cluster.
A manifest file is needed to create a pod. This file can be created by using the cat

command, which is already installed. The following construction can be used to create
a pod manifest file in YAML named file.yml:
cat <<EOF >> file.yml

manifest code

EOF
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4.3.1 Attack 1: Find and retrieve secret information in a pod

This attack aims to find resources like secrets or configMaps for which the attacker
does not have the permissions to access them. With the permissions of the compromised
pod, it is impossible to see the content if these resources directly. This attack makes use
of the fact that volumes mounted on other pods can also be mounted on pods created
by the attacker. As the attacker has the permissions to create pods and access their
logs, he can use this to retrieve the content of those resources.

The attack uses the compromised pod’s permissions to get and list all pods in the
entire cluster. These permissions are used to inspect the pods and see if some pod

has an interesting volume mount. When inspecting the admin pod, it can be seen
that a configMap named kube-root-ca.crt is mounted. Based on the permissions
of the developer-sa serviceAccount, the attacker should not have permission to see
the content of this configMap. To retrieve the content of the configMap anyway, the
attacker creates a pod that mounts the kube-root-ca.crt configMap using the pod

manifest in Listing 4.13. The created pod executes the command in line 14, printing the
content of the specified file (the configMap) to the standard output [53]. The content of
the standard output can be found in the logs of the pods, to which the attacker does have
access. The logs of the attack1 pod can be inspected using the following command:
kubectl logs attack1.

To summarize, this attack makes use of the compromised pod’s permission to get
and list all the pods in the cluster, as well as creating a new pod in the developers

namespace and accessing its logs. The attack does not require the permission to enter
the newly created pod (which is provided through permissions on pods/exec).

Listing 4.13: Manifest file in YAML for the attack1 pod.

1 ap iVers ion : v1
2 kind : Pod
3 metadata :
4 name : attack1
5 namespace : deve l ope r s
6 spec :
7 volumes :
8 − name : con f i g−volume
9 configMap :

10 name : kube−root−ca . c r t
11 con ta i n e r s :
12 − image : busybox
13 name : pr int−configmap
14 command : [ ”/ bin / sh ” , ”−c ” , ” cat / e t c / c on f i g /∗” ]
15 volumeMounts :
16 − name : con f i g−volume
17 mountPath : / e t c / c on f i g
18 r e s t a r tP o l i c y : Never
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4.3.2 Attack 2: Gain node-level access on another node

This attack aims to gain root-level filesystem access on the node. It is based on an
existing attack [38]. A pod is created using the pod manifest in Listing 4.14. To specify
on what node this pod should be created, the nodeName field in the pod specification
is used. Line 22 shows that this pod is created on the no-sec-worker2 node. Line
23 shows that this pod is created on the seccomp-worker2 node. Depending on what
cluster is being attacked, the corresponding line is used. These are the nodes on which
the admin and admin-seccomp pods are, respectively.

The manifest is used to create a pod, which can be used to break out to the node

level. The volume mount in the manifest establishes a connection between the /host

folder on the pod and the root directory of the node. Aside from the volume mount, the
only requirement is that the bash command can be performed on the pod. The bash

command enables the attacker to execute commands in the pod [54]. For simplicity, the
attack pod uses a simple Ubuntu container that sleeps forever without performing other
actions.

To access the created pod, the attacker uses kubectl exec -it attack2 -- bash.
This executes the bash command in the attack2 pod [48]. When inside the pod, the
root directory can be changed: chroot /host bash. This command changes the root
directory for the current process to the /host folder and enables the attacker to execute
commands in this folder. Because of the volume mount, this is equal to changing the
root directory of the pod to the root directory of the node. Therefore, the attacker has
now achieved root-level filesystem access on the node.

With root-level filesystem access on the node, the attacker can interact with the
Kubernetes cluster with the node’s permissions. This does require installing kubectl

again. This can be done with the commands mentioned in Section 4.3. To interact with
the cluster, it is necessary to state the configuration file:
kubectl --kubeconfig=/etc/kubernetes/kubelet.conf COMMAND. If the configura-
tion file is not specifically stated when using kubectl, the interaction with the cluster
fails.

Aside from interacting with the cluster, accessing any file or folder on the node is
also possible. This includes files and folders mounted on all the pods on the node. If a
pod uses the content of such a mounted file, it is possible to affect that pod by changing
or removing the file. It also allows for inspecting the content of these files, which could
be prohibited and blocked if tried by other means.

This attack makes use of the compromised pod’s permission to create a new pod and
enter it with kubectl exec. The attack does not require the permission to access the
logs of the pod (which is provided through permissions on pods/log). It could make
use of the permission to get and list all the pods in the cluster, as this could provide
information about what node contains interesting information.
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Listing 4.14: Manifest file in YAML for the attack2 pod.

1 ap iVers ion : v1
2 kind : Pod
3 metadata :
4 name : attack2
5 namespace : deve l ope r s
6 spec :
7 volumes :
8 − name : host−f s
9 hostPath :

10 path : /
11 con ta i n e r s :
12 − image : ubuntu
13 name : attacker−pod
14 command : [ ”/ bin / sh ” , ”−c ” , ” s l e e p i n f i n i t y ” ]
15 s ecur i tyContext :
16 p r i v i l e g e d : t rue
17 a l l owPr i v i l e g eE s c a l a t i o n : t rue
18 volumeMounts :
19 − name : host−f s
20 mountPath : / host
21 r e s t a r tP o l i c y : Never
22 nodeName : no−sec−worker2
23 nodeName : seccomp−worker2
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Chapter 5

Results

As seen in Table 5.1, the attacks are successful in every case. Seccomp did not prevent
the attack in any scenario. One reason for these results is that seccomp does not work
in privileged pods. This means that seccomp cannot be used when the attacks are
performed from a privileged compromised pod. When the attacks are performed from
an unprivileged compromised pod, seccomp can be used. However, the problem is that
blocking certain syscalls, with the seccomp profile in the block.json file shown in Listing
4.9, causes the compromised pod to fail during the creation phase. Section 5.2 explains
this in more detail.

Cluster Compromised pod Attack 1 Attack 2

unprivileged ✓ ✓
no-sec

privileged ✓ ✓

unprivileged ✓ ✓
seccomp

privileged ✓ ✓

Table 5.1: Attack outcomes across all test scenarios of this experiment, where a ✓ implies a
successful attack and a × would have implied a failed attack.

In contrast, it is possible to use the seccomp profile in the audit.json file shown in
Listing 4.8. This does not block any syscall but provides logs of what syscalls are used
at what time, excluding the read and write syscalls. As no syscalls are blocked, the
compromised pod starts up properly, and it is possible to log the syscalls. However, not
blocking the syscalls means that the attacks work the same as they did on the no-sec

cluster. Therefore, the attacks that work on the no-sec cluster also work on the seccomp
cluster. The only difference is that it is possible to see the logs of what happens during
the attack.

For both clusters, the attacks are performed from an unprivileged and a privileged
compromised pod to see if this impacts the attack or defense. The results of the no-sec
cluster are elaborated on in Section 5.1, whilst the results of the seccomp cluster are
elaborated on in Section 5.2.

43



5.1 Results no-sec cluster

5.1.1 Results no-sec cluster: Attack 1

The attack works similarly for the unprivileged and privileged compromised pods, lead-
ing to the same results. The steps are shown below, with step 7 showing that it is
possible to retrieve the content of the configMap without having the permission to see
its content. This attack shows that the attacker can access information on the cluster
for which the attacker does not have permission.

1. Install kubectl with the commands mentioned in Section 4.3 to interact with the
cluster.

2. Retrieve all pods: kubectl get pods -A.

3. Inspect the pods to find interesting mounted information: kubectl get pods

admin -n default -o yaml. This shows that the admin pod has the
kube-root-ca.crt configMap mounted.

4. Try to see the content of the configMap directly: kubectl get configmaps. This
results in an error because of a lack of permissions.

5. Create the manifest file attack1.yml in Listing 4.13 using the commands men-
tioned in Section 4.3.

6. Create the pod with the pod manifest: kubectl create -f attack1.yml. The
created pod executes the “/bin/sh -c cat /etc/config/*” command to print
the content of the configMap to the standard output.

7. Use kubectl logs attack1 to see the output of the previous step, i.e., the content
of the mounted configMap:

Figure 5.1: The content of the configMap as output of the kubectl logs command.

By inspecting the existing pods in step 3, it is possible to determine what resources
there are in the cluster. The compromised pod does not have the required permissions
to see all resources. As mentioned in step 4, trying to see the content of the configMap
resulted in an error. Using the attack1.yml file to create the attack1 pod makes it
possible to work around this lack of permissions. This attack shows that it is possible
to see the content of the configMap, whilst it should not be possible according to the
permissions.
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5.1.2 Results no-sec cluster: Attack 2

The attack works similarly for the unprivileged and privileged compromised pods, lead-
ing to the same results. The steps are shown below, with step 7 showing that it is
possible to gain node-level access on the second worker node. This indicates that lateral
movement on the node level is possible. The attacker can do various things from the
node, as shown in steps 8 and 9.

1. Install kubectl with the commands mentioned in Section 4.3 to interact with the
cluster.

2. Retrieve all pods: kubectl get pods -A.

3. Inspect the pods to find interesting mounted information: kubectl get pods

admin -n default -o yaml. This shows that the admin pod has the /important
folder mounted.

4. Create the manifest file attack2.yml in Listing 4.14 using the commands men-
tioned in Section 4.3. Line 23 needs to be removed to ensure the nodeName corre-
sponds to the no-sec cluster.

5. Create the pod with the pod manifest: kubectl create -f attack2.yml. The
created pod only sleeps and performs no other action. There is a connection
between the /host folder on the pod and the root directory on the no-sec-worker2
node. This means that the /host folder on the pod is the same as the root directory
of the node. All files and folders are the same, so changing a file in the /host folder
does the same with that file in the root directory of the node.

6. Use kubectl exec -it attack2 -n developers -- bash to enter the pod. The
attacker can now execute commands in the attack2 pod.

7. Inside the attack2 pod, execute the chroot /host bash command. This changes
the current process’s root directory to the /host folder. Because of the connection
between this folder on the pod and the root directory of the node, the current
process’s root directory is changed to the root directory of the node. This causes
the attacker to gain node-level access to the second worker node.

8. The attacker can interact with the cluster using the permissions of the no-sec-worker2
node: kubectl --kubeconfig=/etc/kubernetes/kubelet.conf COMMAND. By spec-
ifying the configuration file, the attacker can use kubectl as regular to perform
any command, as long as the permissions allow it.

9. Instead of interacting with the cluster, it is possible to access the files and folders.
From step 3, it can be inferred that the /important folder on the node is used in
the admin pod. Various things can be done with the files in this folder. Below are
some examples how the attacker can interact with the files:
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(a) The attacker can use ls to see the files in the current (/important) folder,
showing two files. With cat, the content of these files can be seen, as shown
in Figure 5.2.

Figure 5.2: Using the cat command to see the content of the files.

(b) The attacker can use vim to change the content of a file. Here, cat is used
to show the changed content before and after changing the file, as shown in
Figure 5.3.

Figure 5.3: Using the vim command to change the content of the files.

(c) The attacker can use vim to create an entirely new file. Afterwards, ls shows
that a new file is created. Here, cat is used to show the content of this new
file, as shown in Figure 5.4.

Figure 5.4: Using the vim command to create new files.

The attacker can inspect the existing pods to determine what files and folders
are used and on what node they can be found. Using the attack2.yml file to cre-
ate the attack2 pod enables the attacker to gain root-level filesystem access to the
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no-sec-worker2 node. With root-level filesystem access, the attacker can create new
files. Additionally, the attacker can inspect, change, or delete existing files on the node.
This concerns both files mounted on pods, as well as files necessary for the proper func-
tioning of the node. For instance, it is possible to make the node crash by removing
every file: rm -rf / --no-preserve-root [55]. We experimentally verified that these
actions can be performed.

5.2 Results seccomp cluster

At the start of this chapter, we already mentioned that seccomp did not prevent any of
the attacks. For the privileged compromised pod, this is because seccomp does not work
in privileged pods. For the unprivileged pod, this is because the relevant syscalls cannot
be blocked. When we tried creating a pod that blocks syscalls such as execve, openat,
or chroot, we got an error. Therefore, syscalls needed when creating the pod cannot
be blocked. Besides, when the pod is used by a developer to perform specific actions,
the pod requires certain syscalls. Any syscalls required by the pod during normal usage
cannot be blocked.

The main steps of attack 1 can be summarized as creating a pod and checking the
logs of a pod. The main steps in attack 2 can be summarized as creating a pod and
entering a pod. These steps are also performed during normal usage of the pod when
a developer has to do their work. Because of this, it is rather difficult to block syscalls
required by these actions. However, logging is still possible, as shown in sections 5.2.1
and 5.2.2.

5.2.1 Results seccomp cluster: Attack 1

This section explains both the attack and its results, as well as the logs collected through
seccomp.

Attack

The attack works precisely as the attack on the no-sec cluster shown in Section 5.1.1.
The only difference is in step 3: instead of the admin pod, we use the admin-seccomp

pod.

Logging

It is possible to monitor the syslogs to see what is going on in the unprivileged compro-
mised pod. However, seccomp does not work with privileged pods. For the unprivileged
compromised pod, the syslogs can be accessed on the VM in the /var/log/syslog file.
Using the tail -f /var/log/syslog command makes it possible to see these logs in
real time.

Checking these logs results in a long list of logs. A small sample of logs for creating
a pod is shown in Figure 5.5. The main focus of every log entry is the used syscall at the
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beginning of every third line. As can be seen in the figure, syscalls 13 (rt sigaction),
59 (execve), 158 (arch prctl), 204 (sched getaffinity), and 257 (openat) are used
when creating a pod. More syscalls are used, but not shown here, adding up to 46 unique
syscalls.

Figure 5.5: Sample of the syslogs when creating a pod.

When the attacker reads the logs of a pod, the syslogs can also be monitored. When
reading the logs of a pod, the syscalls match those we saw in the syslogs of creating a
pod, excluding two. In every step of the attack, there are various syscalls. This includes
syscalls execve and openat. As mentioned in Section 3.2, these syscalls are also used
in other attacks.

These logs show that, even though the attack cannot be blocked, logging can be
used to see what syscalls are used in every step of the attack. One problem, however,
is that the steps of this attack consist of regular usage of the pod. The same steps can
be performed when a developer has to do their work. Because of this, it is difficult to
distinguish between a developer performing an action and an attacker performing it.

5.2.2 Results seccomp cluster: Attack 2

This section explains both the attack and its results, as well as the logs collected through
seccomp.

Attack

The attack works precisely as the attack on the no-sec cluster shown in Section 5.1.2.
The only difference is in the pod and node names. Instead of the admin pod, we use the
admin-seccomp pod. Instead of the no-sec-worker2 node, we use the seccomp-worker2
node.

48



Logging

It is possible to monitor the syslogs to see what is going on in the unprivileged compro-
mised pod. However, seccomp does not work with privileged pods. For the unprivileged
compromised pod, the syslogs can be accessed on the VM in the /var/log/syslog file.
Using the tail -f /var/log/syslog command makes it possible to see these logs in
real time.

Checking these logs results in a long list of logs. Steps 1-5 used in attack 2 were
similar to steps in attack 1, resulting in similar logs. Steps 6-9 differ from attack 1
and involve entering a self-created pod. When the attacker enters the attack2 pod and
interacts there, the syslogs can also be monitored:

• Step 6: Entering the pod using kubectl exec results in the usage of 43 syscalls
(excluding read and write).

• Step 7: Changing the root only shows four syscalls: 24 (sched yield), 35 (nanosleep),
202 (futex), and 281 (epoll pwait).

• Step 8: Interacting with the cluster (get pods -A) only shows three syscalls: 35
(nanosleep), 202 (futex), and 281 (epoll pwait).

• Step 9: Interacting with a folder and file mounted on a pod results in seven syscalls:
15 (rt sigreturn), 24 (sched yield), 35 (nanosleep), 39 (getpid), 202 (futex),
234 (tgkill), and 281 (epoll pwait).

In step 7, the root is changed in an unmonitored node. We experimentally verified
that changing the root makes use of the chroot (161) syscall. In the logs of step 7,
we could only see four syscalls, not including the chroot syscall. This shows that the
monitoring does not show the exact actions of the attacker when the attacker enters an
unmonitored pod from the compromised pod. Additionally, steps 8 and 9 also show a
small number of syscalls. This indicates that the attacker is outside the confines of what
logging can see properly after entering a self-created pod.

These logs show that, even though the attack cannot be blocked, logging can be used
to see what syscalls are used in most steps of the attack. We can see, however, that in
steps 6-9, logging does not achieve the desired results. Another problem is that the steps
of this attack consist of regular usage of the pod. The same steps can be performed when
a developer has to do their work. Because of this, it is difficult to distinguish between a
developer performing an action and an attacker performing it.
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Chapter 6

Discussion

This research focuses on using seccomp to identify and prevent lateral movement in
the Kubernetes cluster. Section 6.1 explains the key findings. Afterwards, Section 6.2
describes the limitations encountered during this research. Finally, Section 6.3 elaborates
on what could be done in the future to continue and improve research in this field.

6.1 Key findings

The results indicate that seccomp cannot be used in every scenario to identify and
prevent lateral movement, which is shown in Table 6.1. Two main categories can be
distinguished: unprivileged compromised pod and privileged compromised pod. As can
be seen, seccomp does not work in privileged pods. This is because privileged pods

run in unconfined mode, disabling seccomp [29]. Seccomp works in most scenarios when
used in unprivileged pods. However, logging does not always provide useful information
in these cases, as it is hard to distinguish between regular usage and an attack. This
information could be combined with other information to provide better insights, which
is elaborated on in the section below.

6.1.1 Unprivileged compromised pod

In the unprivileged compromised pod, it is possible to use seccomp. This resulted in
various problems regarding the blocking and logging functionalities provided by seccomp.

Use seccomp for blocking

Blocking the syscalls using seccomp proved to be difficult. Certain syscalls are necessary
to start up a pod. These syscalls cannot be blocked; otherwise, the pod does not start
up and results in an error during the creation phase. If these syscalls are used during
attacks, using seccomp to block the attack is impossible.

Aside from the syscalls used during the creation phase, there are also syscalls used
during the regular usage of the pod. A pod has specific tasks and exists for a reason.
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Action
Unprivileged

compromised pod

Privileged

compromised pod

Syscalls used in the creation phase × ×
Syscalls used in regular usage

of the compromised pod
× ×

Blocking

Other syscalls ✓ ×
Syscalls used in the creation phase ✓ ×
Syscalls used in regular usage

of the compromised pod
✓ ×

Logging

Other syscalls ✓ ×

Table 6.1: Outcomes of blocking and logging specific syscalls with seccomp, where a ✓ implies the
action can be performed successfully and a × implies the action cannot be performed successfully.

The syscalls that the pod needs to function correctly cannot be blocked. If these syscalls
are used during the attacks, using seccomp to block the attack is impossible.

If attacks use syscalls that are not needed during the creation of the pod nor the
regular usage of the pod, seccomp could provide proper protection against those attacks.
Logging can be used to find out what syscalls are used during the creation phase and
regular usage. We can create a seccomp profile with an allowlist approach. In the profile,
we allow the necessary syscalls, and we use BLOCK as the default action to block all other
unnecessary syscalls. Any attack using any of the blocked syscalls gets blocked by this
method.

Blocking did not work for the two attacks tested in this research. Primarily, this
is because trying to block the execve, openat, and chroot syscalls caused a problem
during the creation phase. Even if this was not the case, the attacks consisted of actions
that could also be performed during the regular usage of the pod. In scenarios where
the attack uses different syscalls, it could be possible to block them properly.

Use seccomp for logging

Aside from blocking the syscalls, it is also possible to log them. Logging can be done for
all syscalls. Syscalls that are used during the creation phase do not pose any problems.
The main problem with logging lies in the syscalls used during regular usage of the pod.
Any syscall used during regular usage cannot be blocked, but it is possible to log them
instead. However, the logs do not always provide meaningful information. If we use
certain syscalls during regular usage of the pod, we will often see these syscalls in the
logs. If an attacker performs the same actions using the same syscalls, it is hard to
distinguish between the regular usage of the pod and an attacker performing an attack.
This means that using the logs to identify attacks would result in many false positives.

It would be possible to combine logging with other measures, such as the working
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schedule. Using different accounts for different employees can be used to check whether
the situation is normal or suspicious. For instance, when an account belonging to one
of the developers is used while they are not working, this seems rather suspicious. On
the contrary, when that same account is used when the developer is supposed to be
working, it is just a regular case and poses no problem. This method is an example
of RBAC-A, which is a combination of Role-Based Access Control and Attribute-Based
Access Control [56]. There might be possibilities to use the logging in combination with
additional information to utilize the logs created through seccomp properly.

Similarly to blocking, logging would be possible with syscalls not used during the
creation of the pod nor the regular usage of the pod. However, in this case, blocking
would also be possible. Depending on the desired result, it is possible to use either
logging or blocking for such syscalls.

Logging did work for the two attacks tested in this research. The resulting logs
showed what syscalls were used in the attacks. As mentioned before, the two attacks
consisted of actions that could also be performed during regular usage of the pod. Be-
cause of this, it is difficult to say how useful the logs were. If a developer performs
these actions, the logs would look the same. Therefore, using seccomp to identify lateral
movement seems complicated. It is possible to use identify lateral movement, but in
cases where logging might provide useful information, it is also possible to use blocking
instead of logging.

6.1.2 Privileged compromised pod

As mentioned in sections 5.2 and 6.1, seccomp does not work in privileged pods [29].
We found no clear specification of why the developers designed it like this. Still, we
assume that this is because privileged pods have the capabilities to change or remove
the restrictions the seccomp profile imposes anyway. This makes seccomp redundant
and possibly misleading on privileged pods, as we cannot be sure that the profile is
always active on the pod. As Kubernetes’ documentation shows, privileged pods disable
not only seccomp, they also disable other security measures like AppArmor and SELinux

[57]. This shows that the Kubernetes architecture, as it currently exists, cannot use
these security measures at all in privileged pods.

Additionally, privileged pods provide many permissions. In most cases, not all of
these permissions are necessary, and the needed permissions can be provided through
other means than making the pods privileged. In such cases, it would be best practice
to use the other method and minimize the number of privileged pods. However, some
pods require the permissions provided through being privileged. Creating such privileged
pods needs to be considered carefully. Even though it would be better if seccomp could
work properly in privileged pods, we want to minimize the number of privileged pods

anyway. Because of this, seccomp not working in privileged pods is not too big of a
problem.
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6.2 Limitations

While performing this research, we encountered a few limitations. The most significant
limitation of our research is the limited attack scenario coverage. The two attacks
demonstrated the opportunities and challenges of seccomp in Kubernetes environments.
However, this does not encompass all possible scenarios. Seccomp’s effectiveness depends
on the overlap between syscalls used during lateral movement and syscalls used during
the creation phase and regular usage of the pods. Depending on the scenario, it might
be possible to use seccomp in combination with other security mechanisms, such as
RBAC-A, to achieve better results.

Another important limitation is that this study mainly focused on seccomp. Aside
from seccomp, other tools could help in the identification and prevention of lateral move-
ment in Kubernetes. Seccomp is not sufficient to solve this problem. A combination of
techniques might be necessary to achieve the optimal results, which was not investigated
during this research.

This research is also limited by the fact that the attacks were performed on self-
created clusters in an experimental setting. The findings might not be applicable in
real-world settings, where the scale, variability of workloads, and the heterogeneity of
the infrastructure could influence the results.

Finally, this research is limited because pods created during the attacks do not have a
profile. Seccomp profiles are not mandatory to implement when creating a pod. Results
might differ when logging and blocking is possible inside a pod created by the attacker.
Implementing mandatory seccomp profiles could improve the security and effectiveness
of logging and blocking.

6.3 Future work

Based on our research, a few directions can be investigated. This section describes these
directions in more detail.

Alternative attacker models

As briefly mentioned in the first point of the limitations, the limited attack scenario
coverage impedes our judgement regarding seccomp’s effectiveness. One possibility to
look at in the future is to perform similar research but with a different attacker model.
Using a different attacker model, seccomp might be usable to achieve the desired result.

Focus on specific attack syscalls

During our research, it became clear that many syscalls are connected to just a single
process. It could be interesting to investigate which syscalls or chains of syscalls are used
in attacks regularly. Focusing on chains of syscalls could result in different possibilities
regarding blocking and logging.
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Alternative tools

Instead of using seccomp, it is possible to take a different approach. This can be con-
sidered on two levels:

1. The field of syscall monitoring has tools aside from seccomp. These tools might
provide different approaches, resulting in different results. This could improve the
results or result in similar challenges and issues connected to syscalls.

2. Another option is to investigate possibilities outside the field of syscall monitoring.
One possibility is to look at network traffic monitoring, already introduced in
Section 4.1.

This research focused on syscall monitoring and briefly looked at network traffic moni-
toring. There might be other techniques that can be used to identify or prevent lateral
movement in Kubernetes. Exploring and investigating these methods could be interest-
ing for further research.

Attacks through Docker

Running the Kind cluster uses Docker. We Accessed the pods and nodes using kubectl,
which is inside the context of the cluster. It would also be possible to enter the node using
docker exec -it NODE-NAME COMMAND-NAME. It uses a user called kubernetes-admin.
This user has permissions that differ from those of the entered node. Investigating
the possibilities of attacks through Docker and defenses against such attacks might be
interesting in the future.

Machine learning

We manually looked at what syscalls to block, whilst machine learning could potentially
help with this. Machine learning might be a good tool to determine what syscalls should
be blocked. One study already used machine learning to find patterns in the syscall
usage of crypto mining attacks [10]. The study focused on a pattern of syscalls, which
means it did not only look at single syscalls. Seccomp looks at single syscalls without
considering the context or pattern. It might be interesting to investigate whether using
the context or patterns of syscalls could attain better results regarding the identification
and prevention of lateral movement. Machine learning might also be used in different
methods like anomaly detection.
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Chapter 7

Conclusions

This research aimed to investigate the identification and prevention of lateral movement
in the Kubernetes cluster using seccomp. This was done using two clusters and two
attack scenarios based on the attacker model. The results of this study show that
seccomp is not usable in every scenario. Seccomp cannot be used in privileged pods. In
the context of unprivileged pods, seccomp can be used, but it depends on the scenario
whether it is helpful in identifying and preventing lateral movement.

The tested attacks used syscalls that are also used during the creation phase and
regular usage of the compromised pod. Our research showed that using seccomp to block
these syscalls is impossible. Blocking syscalls used during container creation makes it
impossible to create the compromised pod before the attack can even be tested. Blocking
syscalls used during the regular usage of the compromised pod makes it impossible for
pod to function correctly. Therefore, these syscalls cannot be blocked. It is possible,
however, to block any other syscall, which means that seccomp can be used to block
specific attacks that use such syscalls. For this to be an option, the attack must use
at least one syscall not used in container creation nor during regular usage of the pod.
Another option would be to focus on chains of syscalls instead of single syscalls. This
might provide different results in what we can and cannot block.

Aside from blocking, this research showed that using seccomp for logging the syscalls
was possible in unprivileged pods. The problem with this, however, is that it is ques-
tionable how informative the logs are. If the attack uses syscalls that are also used in
regular usage of the pod, it is not easy to distinguish between attacks and regular us-
age. Combining logging with other measures could make this easier. As mentioned in
Section 6.1.1, combining the information from logging with RBAC-A could improve the
effectiveness of using seccomp. Using the additional information, it might be possible to
distinguish between attacks that resemble regular usage of the compromised pod and the
actual regular usage of the compromised pod. Another option would be to use anomaly
detection and machine learning to distinguish them.

Logging in combination with additional information could provide information about
lateral movement in the Kubernetes cluster. Another case where seccomp could be
helpful in logging is when the attacks use syscalls that are not part of the regular usage
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of the compromised pod. However, using seccomp to block these syscalls would also be
possible under these circumstances. Instead of only identifying the lateral movement, it
would be possible to prevent the lateral movement directly.

In our experiment, we created two clusters with Kind, as seccomp works in Kind.
There was no clear information about whether seccomp works in Minikube, indicating
that not all Kubernetes ecosystem tools support every possible security mechanism.
Because of this, it is crucial to choose the correct tools and security mechanisms when
working with Kubernetes.

In summary, in our attacker model, our research shows that seccomp cannot be used
to prevent lateral movement in every scenario. In contrast, seccomp can be used to
identify lateral movement in the context of unprivileged pods. However, it is important
to consider the limitations of this study, such as the limited attack scenario coverage,
the experimental setting, and the focus on seccomp. It might be necessary to combine
seccomp logging with additional information to minimize the number of false positives
when identifying lateral movement. Other techniques to identify or prevent lateral move-
ment in Kubernetes may exist but were not found in our research. Future research is
needed to understand the effects of these techniques better.

56



Acknowledgments

First of all, I would like to express my deepest appreciation to my external supervisor
at Sue, Nathan Keyaerts, for his valuable guidance, support, and provided knowledge
throughout my research. We had regular meetings to discuss progress and ideas, which
contributed to the success of this research. I would like to extend my sincere thanks to
my internal supervisor at Radboud University, Pol van Aubel. The regular meetings in
which we discussed progress, ideas, and feedback were extremely helpful for the progress
of this research. Thanks should also go to Reinier Goeman within Sue for his support,
open communication, and encouragement during the process. I am also grateful to all
my fellow interns and co-workers at Sue for their valuable contributions. Their help,
knowledge, and support proved very helpful to this research. Finally, a special thanks
to Harald Vranken, my second assessor, for his willingness and expertise to assess my
research.

57



References

[1] N. Sfondrini, G. Motta, and A. Longo, “Public cloud adoption in multinational
companies: A survey,” in 2018 IEEE International Conference on Services Com-
puting (SCC), IEEE, 2018, pp. 177–184.

[2] M. S. I. Shamim, F. A. Bhuiyan, and A. Rahman, “XI commandments of ku-
bernetes security: A systematization of knowledge related to kubernetes security
practices,” 2020 IEEE Secure Development (SecDev), pp. 58–64, 2020.

[3] S. I. Shamim, “Mitigating security attacks in kubernetes manifests for security best
practices violation,” in Proceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, 2021, pp. 1689–1690.

[4] F. Minna, A. Blaise, F. Rebecchi, B. Chandrasekaran, and F. Massacci, “Under-
standing the security implications of kubernetes networking,” IEEE Security &
Privacy, vol. 19, no. 5, pp. 46–56, 2021.

[5] P. Mytilinakis, “Attack methods and defenses on Kubernetes,” M.S. thesis,
Πανεπιστ ήµιo Πειραιώς, 2020.
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Appendix A

Appendix

A.1 Installation steps of Docker, Kind, and Kubectl

This section explains the exact steps required to install Docker, Kind, and kubectl, as
we have done in our research.

A.1.1 Installing Docker

To install Docker, the instructions on the official Docker website were followed [58]:

• sudo apt-get update

• sudo apt-get install ca-certificates curl

• sudo install -m 0755 -d /etc/apt/keyrings

• sudo curl -fsSL https://download.docker.com/linux/ubuntu/gpg \
-o /etc/apt/keyrings/docker.asc

• sudo chmod a+r /etc/apt/keyrings/docker.asc

• echo "deb [arch=$(dpkg --print-architecture) \
signed-by=/etc/apt/keyrings/docker.asc] \
https://download.docker.com/linux/ubuntu \
$(. /etc/os-release && echo "$VERSION CODENAME") stable" | \
sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

• sudo apt-get update

• sudo apt-get install docker-ce docker-ce-cli containerd.io \
docker-buildx-plugin docker-compose-plugin

When trying to use Docker, Docker complained about not having permission to do
something. Running Docker as root is not allowed, so it did not fix the problem. To fix
the problem, the following commands were used [59]:

63



• sudo chmod 660 /var/run/docker.sock

• sudo addgroup --system docker

• sudo adduser #USERNAME docker

• newgrp docker

Originally, chmod 666 was used. This allows the current user, group, and everyone else
to read and write the specified file. As this is not a good practice, we set the last digit
to 0. This fixed the issue without giving every other user the same permissions.

A.1.2 Installing Kind and Kubectl

After installing Docker, Kind was installed according to the instructions on the Kind
GitHub [60]:

• [ $(uname -m) = x86 64 ] && curl -Lo ./kind \
https://kind.sigs.k8s.io/dl/v0.22.0/kind-$(uname)-amd64

• chmod +x ./kind

• sudo mv ./kind /usr/local/bin/kind

To use Kind, kubectl is also required. To install kubectl, the following commands were
used [61]:

• curl -LO "https://dl.k8s.io/release/$(curl -L -s \
https://dl.k8s.io/release/stable.txt)/bin/linux/amd64/kubectl"

• sudo install -o root -g root -m 0755 kubectl /usr/local/bin/kubectl

After these steps, Kind can be used to create small clusters. However, there were not
enough resources when creating a cluster with more than two nodes. This is a known
issue and can be solved by adding two lines to the /etc/sysctl.conf file [62]:

• fs.inotify.max user watches = 524288

• fs.inotify.max user instances = 512

To enforce the changed settings, the VM needs to be restarted. After restarting the VM,
there were no problems when creating a cluster with multiple nodes.
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