MASTER THESIS DATA SCIENCE

RADBOUD UNIVERSITY NIJMEGEN

Applying Learned Sparse Retrieval

Author: First supervisor/assessor:
Tom Rust Prof. Dr. Ir. Djoerd Hiemstra
51040068

Second assessor:
Prof. Dr. Ir. Arjen de Vries

June 25, 2024

Abstract

Machine learning algorithms are achieving better results each day and are
gaining popularity. The top-performing models are usually deep learning
models. These models can absorb vast amounts of training data, improving
prediction results. Unfortunately, these models consume a large amount of
energy, which is something that not everyone is aware of. In information
retrieval, large language models are used to provide extra context to queries
and documents. Since information retrieval systems typically have large
datasets, a suitable deep learning model must be chosen to find a balance
between accuracy and energy usage. Learned sparse retrieval models are an
example of these deep learning models. These models work by expanding
all documents to create the optimal document representation that allows
this document to be found correctly. This step is done before creating the
inverted index, allowing for conventional ranking methods such as BM25.

With this research, we compare different learned sparse retrieval models
in terms of accuracy, speed, size and energy usage. We also compare them
with a full-text index. We see that on MS Marco, the learned sparse retriev-
ers outperform the full-text index on all popular evaluation benchmarks.
However, the learned sparse retrievers can consume up to 100 times more
energy whilst creating the index, which then has a higher query latency, and
it uses more disk space. For WT10g we see that the full-text index gives
us the highest accuracies whilst also being more energy efficient, using less
disk space and having a lower query latency.

We conclude that learned sparse retrieval has the potential to improve ac-
curacy on certain datasets, but a trade-off is necessary between the improved
accuracy and the cost of increased storage, latency, and energy consumption.

Contents

1 Introduction 3
1.1 Motivation 3
1.2 Research 3
1.3 Content 4

2 Background 5
2.1 Vocabulary Mismatch Problem 5
2.2 Information Retrieval Steps)

2.2.1 Documents 6
222 Inverted Index 6
223 Ranking 6
2.24 Reranking oL 6
2.2.,5 Evaluation 6
23 Datasets e 7
231 MSMarco. 7
232 WTI0g e 7
24 SparsevsDense.o 8
2.5 Learned Sparse Retrieval 8
2.5.1 Machine Learning 9
2.5.2 Latency 9
2.5.3 Largedocuments 9
2.6 Zero-shot Retrieval 10
2.7 Learned Sparse Retrieval Models 10
2.7.1 Sparta 10
2.72 Splade 11
2.8 Environmental Impacto 11
2.9 Environmental Impact of Learned Sparse Retrieval 11
2.9.1 Electricity Consumption 12
2.9.2 Terminology 12
2.9.3 Measuring Tools 12

3 Experiments

3.1 Using Sparta on MS Marco Passage
3.1.1 Fine-tuning the Sparta Model
3.1.2 Imnference
313 Index
3.14 Query
3.1.5 Evaluation 0 ..

3.2 Measuring Electricityo
3.21 Fine-tuning Lo Lo
3.2.2 Inference
3.2.3 Index and Querying
3.24 Evaluation

3.3 Evaluating MS Marco with BM25.

34 BM25on WT10go oo

3.5 Using Spartaon WT10g

3.6 Splade

3.7 Pretrained Spladeo

3.8 Long Documents

4 Results

4.1 Evaluation Scoreso

4.2 Emergy Usages o i

4.3 Index Size and Query Latency

4.4 Comparisono

5 Conclusions

6 Future Work

6.1 Fine-tuning on MS Marco Document
6.2 Sequential Dependence Models
6.3 Significance testingo
6.4 Fine-tuning Lo o

A Appendix
A.1 Sample from experiment 3.1.2
A.2 CodeCarbon output example

14
15
15
16
16
16
16
17
17
18
18
18
18
19
19
20
20
21

22
22
24
25
27

28

29
29
29
29
30

Chapter 1

Introduction

1.1 Motivation

The rise of neural networks and deep learning has had a lot of impact on
machine learning tasks. However, it was only until the introduction of BERT
[14] that deep learning was properly introduced in the field of information
retrieval.

We zoom in on two important steps in the information retrieval pipeline:

1. First stage retrieval: Efficiently capture the top N most relevant doc-
uments for a query.

2. Re-ranking: Using expensive but accurate methods, try to re-rank
these top N documents.

For this thesis, we are interested to try to use the knowledge from the
re-rankers and store this in an inverted index. This is called learned sparse
retrieval [42] and some models (such as Splade [15] and DeepCT [11]) have
achieved near state-of-the-art scores on the MS Marco dataset, whilst being
much more efficient [39]. However, these are still large language models,
so they still consume a large amount of energy. We also investigate the
increased cost in energy usage, disk usage and latency, such that a balance
can be found between accuracy and cost.

1.2 Research

Learned sparse retrieval seems like a promising method to use for the Open
Web Search! index [21]. Learned sparse retrieval requires large amounts of
computing power to create the inverted index, but once the index is created,
ranking can be done using conventional methods such as BM25. Because of
this focus on efficiency, it is much more suitable to run on consumer grade

"https://openwebsearch.eu/

https://openwebsearch.eu/

hardware. It is also possible to use the learned sparse retrieval model to ex-
pand the queries, however this would mean that specialized hardware would
be required for each single query. Hence, we do not use query expanding.

Unfortunately, Open Web Search does not have proper training data.
So we can not fine-tune our network on the Open Web Search dataset. An
alternative is to use a zero shot approach [56], where we use a model that is
fine-tuned on MS Marco. The idea is that it then generalizes to a different
dataset. Our research question is:

e RQ1: Can we achieve better quality retrieval by using a learned sparse
retrieval method compared to using a standard inverted index?

e RQ2: How much energy is needed to compute the indexes in RQ17
e RQ3: How large are the indexes generated in RQ17?

e RQ4: What is the query latency when querying on indexes in RQ17?

For RQ1, we plan to do the experiments on the WT10g dataset [2],
as this should be a good representation of the web [53]. This includes a
small test set of 100 query / document pairs. We compare different inverted
indexes with a BM25 ranker in terms of ranking and in terms of energy
usage. For evaluating the quality of ranking we use MRR, NDCG, MAP,
recall, and precision. To compare energy usage for RQ2, we use CodeCarbon
[9] to measure the energy usage during all experiments.

1.3 Content

This thesis is focused on applying learned sparse retrieval on real datasets.
Our goal is to aid in making the decision to use a learned sparse retrieval
method when creating an information retrieval system. In chapter 2 we
explain the background concepts required to understand learned sparse re-
trieval. This includes an overview of the information retrieval pipeline (sec-
tion 2.2), some information on commonly used datasets (section 2.3) and
an introduction to learned sparse retrieval (section 2.5). Next to that, we
explain the concept of zero-shot retrieval in section 2.6 and provide some
common background on the environmental aspect of information retrieval
in section 2.9.

In chapter 3 we explain the setup of our experiments, in which we com-
pare different learned sparse retrieval models with BM25 baselines on the MS
Marco and WT10g datasets. We compare the results of these experiments
in chapter 4.

In the conclusions (chapter 5) we answer our research questions. Some
possible improvements for learned sparse retrievers on datasets with long
documents are given in chapter 6.

Chapter 2

Background

In this chapter, we explain the information retrieval pipeline in section 2.2.
Some background information on the MS Marco and WT10g dataset is given
in section 2.3. In section 2.5 we explain how learned sparse retrieval can help
solve the vocabulary mismatch problem (as explained in section 2.1). After
that, we give some background on the environmental impact of information
retrieval in section 2.9.

2.1 Vocabulary Mismatch Problem

One of the classic problems in NLP is the lexical ambiguity [26]. Languages
are ambiguous, things or concepts can be described by different words. This
means that two different words can have the same meaning, when a query
is done on a word (School) and a synonym of that word (University) is in
a document, we might also want that document to be retrieved. This is
called the vocabulary mismatch problem. Unfortunately, this is unlikely to
happen with traditional ranking methods such as BM25.

2.2 Information Retrieval Steps

In this section, we describe some steps that are present in information re-
trieval systems. See Figure 2.1 for a visual representation.

Re-Ranking

Y

only happens
once

Ranking

Documents Inverted index Results

Figure 2.1: Information retrieval pipeline

2.2.1 Documents

The first step in an information retrieval system is getting all documents. We
need to capture all available documents that we want to query on. Typically,
web crawlers do this, some readily available examples are MS Marco [43]
and WT10g [2]. Next to that, an important part of this step is to get the
documents in a common format. See section 2.3 for more information on
these datasets.

2.2.2 Inverted Index

Once we have successfully captured and stored our documents. We want to
create an inverted index. This is a large index that basically for each word
captures in which documents it occurs and how often [10]. This inverted
index can be stored on disk, so it only has to be created once. An index
that is created directly from the documents is also called a full-text index
[36].

2.2.3 Ranking

In the ranking step, we get a query and we want to return the top N matching
documents. For this, usually a relatively simple BM25 [50] algorithm is
used. This is an efficient algorithm that can find documents that have words
matching the words in a query. BM25 takes the length of the document,
average document length and relative word frequency in consideration when
ranking.

2.2.4 Re-ranking

The first ranking steps narrowed down the number of possible candidates.
However, in this step, expensive re-rankers are used to find the best match-
ing documents among the N candidates. Typically, this is done by a BERT
powered reranker [44]. These rerankers can provide additional meaning and
context to the documents, and we can overcome the vocabulary mismatch
problem. For example, by linking entities in the text with the abstract from
Wikipedia page [18, 48] belonging to this entity. The rerankers only consider
the documents that were selected in the ranking step (section 2.2.3). Unfor-
tunately, these algorithms are very costly and require specialized hardware
(such as graphic processing units) to be executed. This has to be done for
every query, so not only does it consume a large amount of electricity, it also
increases query latency.

2.2.5 Evaluation

After retrieving a set of documents, there are some evaluation metrics that
we can use to determine the retrieval quality. For the queries that we want

to evaluate, we have an ordered list of the documents that should be found
when doing a query. This is also known as grels. As mentioned in section
1.2, we use the following methods for evaluation: MRR (Mean Reciprocal
Rank) [33], NDCG (Normalized Discounted cumulative gain) [24], MAP
(Mean Average Precision) [8], recall and precision.

2.3 Datasets

In this section, some background information is given on the datasets that
are used in this paper. We explain their origin, and we give the size of the
datasets and common evaluation methods.

2.3.1 MS Marco

MS Marco was released in 2016, it has two variants: document and passage.
The document dataset contains 3.2 million documents, and it has 367 thou-
sand training queries, with each having one matching document. The MS
Marco passage dataset contains passages of the documents in the document
dataset. This results in a larger dataset with 8.8 million documents (or
passages), to train on these passages there are 503 thousand queries with
most having only one matching passage. The MS Marco passage dataset
has an average passage length of 56 words'. The average number of distinct
words is 42. MS Marco contains web document and Bing query relevance
pairs that have been released by Microsoft. For our experiments, the MS
Marco passage dataset is used, evaluation is done using 6980 queries that
have labelled query relevance pairs. The official evaluation measure is the
mean reciprocal rank for the first 10 results. However, it is common to also
use the recall at 1000 and the normalized discounted cumulative gain at the
first 10.

2.3.2 WT10g

WT10g, also known as webtrack is, like the name implies, a 10 GB dataset.
It contains 1.69 million documents that are crawled from the internet. WT10g
has an average document length of 562 words, the average number of dis-
tinct words is 259. Both these values are higher than MS Marco. WT10g
is constructed in such a way that it should represent the internet, special
care is taken to select documents that have relations with other documents
and to support a wide spread of queries [3]. WT10g was released in 2000,
so it is not the most recent dataset. WT10g is evaluated using the precision
at the first 30 and the mean average precision. WT10g has a very small
development set that can be used for evaluating. This contains 400 queries

"https://github. com/microsoft/MSMARCO-Passage-Ranking/blob/master/stats.
txt

https://github.com/microsoft/MSMARCO-Passage-Ranking/blob/master/stats.txt
https://github.com/microsoft/MSMARCO-Passage-Ranking/blob/master/stats.txt

and was made by information retrieval researchers, of these 400 only 100
queries are used for scoring?.

2.4 Sparse vs Dense

In the information retrieval pipeline that was explained in section 2.2.2, the
documents are sparsely encoded. This means that each document is encoded
as a very large vector, where each element in the vector represent a word.
The value for each element represents the number of times this word appears
in our document. Next to sparse retrieval, there also exists dense retrieval
[25]. With dense retrieval, we have a smaller but very dense vector from
which we cannot easily grasp information. The main advantage of sparse
retrieval is that we can create a conventional (inverted) index. Because
of this, we can use simple methods such as BM25 [50]. With this we can
retrieve documents quickly and we can inspect biases. Another difference is
that storing a dense index may require 70 times as much storage compared
to a (non-learned) sparse index [7].

2.5 Learned Sparse Retrieval

With learned sparse retrieval, we try to learn information captured by neu-
ral re-rankers (see section 2.2.4) and store this in the inverted index. This
idea was first introduced in 2018 by Zamani et al [60]. This means that
the expensive re-ranking part is less important, and it may even be omitted
completely. It does mean that building an inverted index becomes a GPU
task, which means it becomes more expensive and it takes much longer.
However, this is a one time operation, so we only need access to GPU hard-
ware for this task. Another advantage is that the machine learning model is
no longer limited by the documents that are selected in the initial ranking
stage (see section 2.2.3).

There are different implementations of learned sparse retrieval models,
some of them are explained in section 2.7. What all models have in common
is that they have an encoder that encodes a document into a vector. This
encoder can have some extensions, such as a Multi-Layer Perceptron [51]
or a distillation [23] layer which expands the terms in a document, for ex-
ample using an external model such as DocT5Query [45]. Another possible
extension is the use of a BERT model (also being referred to as a masked
language model) to alter the term weights based on the BERT output. The
second thing that they have in common is that they all have a method to
keep the output vector sparse. This basically limits the number of different
words that can occur in a generated document. Finally, since we are talking

2These can be downloaded from https://github.com/castorini/anserini-tools/
tree/master/topics-and-qrels/topics.adhoc.451-550.txt

https://github.com/castorini/anserini-tools/tree/master/topics-and-qrels/topics.adhoc.451-550.txt
https://github.com/castorini/anserini-tools/tree/master/topics-and-qrels/topics.adhoc.451-550.txt

about learned models, we need a certain set of training data. Some models
use labels generated by humans, others use labels that are created by other
rankers (such as a BM25 model with a neural re-ranker). In that case, we are
basically transferring knowledge from the neural re-ranker onto our learned
sparse model. This is also known as transfer learning [46].

2.5.1 Machine Learning

When we regard learned sparse retrieval models from a machine learning
perspective, we can say that a learned sparse retriever predicts the impor-
tance of a term in a document. This is done for each term in the vocabulary,
so it is not limited to terms in the document. To optimize this prediction,
models use a loss function that typically is a combination of the ranking
loss [6] and the regularization loss. The ranking loss measures how many of
the selected documents (using the learned sparse retriever) are relevant for
a query, and the regularization loss captures the “sparsity” of the inverted
index. Since this regularization loss is not always perfect, when making
predictions, the models also have a maximum number of words that are in
the new document representation. The words with the highest scores are
chosen. For this the letter k is used, a typical value is 400. So this means
that the new representation of a document has at most 400 different words.

It has been shown that the amount and quality of “hard negatives” can
significantly boost the performance of representation learning models [1, 30].
Learned sparse retrieval is a form of representation learning, since we are
trying to represent our documents in such a way that our rankers can make
better predictions [5].

2.5.2 Latency

One downside of using learned sparse retrieval models is that they tend to
increase the size of the created inverted indexes. This can result in an index
that is more than 10 times the size of a non-generated index for MS Marco
[42]. This larger inverted index also means that query latency can be 40
times larger (see Table 4.5). This issue is pointed out by Lassance et al.
[28] They propose to use a T'wo-Step version of Splade to decrease the query
latency.

2.5.3 Large documents

With this research, we apply learned sparse retrieval models to a large set
of documents. The WT10g dataset that is used has an average document
length of 562 words (see section 2.3.2). This is larger than the typical pas-
sages that are used for evaluating information retrieval models, MS Marco
for example has an average length of 56 words. Nguyen et al. propose

several methods for learned sparse retrieval methods to handle larger docu-
ments [41]. Their approach is to split the large document up into multiple
smaller ones, make the calculations on the smaller documents, and then
merge the results back together into a new representation of the original
document. They claim that the max-score aggregation method is the most
robust. They also explain a sequential dependence model [40] approach,
based on this max-score method that can outperform the naive max-score
method.

2.6 Zero-shot Retrieval

Machine learning models require large amounts of training data to make
accurate predictions. However, in the field of information retrieval, this is
often quite difficult to obtain [12, 55]. Because of this, most neural informa-
tion retrieval models train on the MS Marco dataset, since this dataset has
a very large training set (see section 2.3.1). So the actual dataset that the
model will retrieve data from may be very different from MS Marco, so the
model should be able to generalize as best as possible. This technique of
using a model on data that it has not seen before (for example in a training
set) is called zero-shot retrieval. Strictly speaking, BM25 is also a zero-shot
retrieval method, since it does not have a training phase. Research has been
done to investigate the performance of learned sparse retrieval in a zero-shot
scenario by Thakur et al [56]. This has shown that from the learned sparse
retrieval models, Spladev2 performed the best on the BEIR benchmark.

2.7 Learned Sparse Retrieval Models

In this section, we explain Splade and Sparta, both are learned sparse re-
trieval model families.

2.7.1 Sparta

Sparta (Sparse Transformer Matching) was introduced in 2020 [61], it does
not do query expansion, and it offers the possibility for knowledge distilla-
tion. Sparta tries to predict the word scores that rank the correct document
as high as possible, this is similar to Splade (see section 2.7.2), where they
predict the importance of a word in a document. Sparta uses a masked
language model for both term scoring and document expansion. As a sparse
regularizer, Sparta uses a naive approach to keep the top k words that have
the highest score. Typically, for k a value of 400 is used. We train and
evaluate a version of Sparta on MS Marco in section 3.1.

10

2.7.2 Splade

Splade was introduced in 2021 [17]. Since the release, some changes have
been made to improve on the original model, such as Splade v2 [15]. Splade
uses the BERT masked language model to alter the term weights. What
sets Splade apart from other learned sparse retrieval models is that Splade
uses the FLOPS regularizer [47] to control the sparsity. A FLOPS regu-
larizer minimizes the number of floating point operations when making a
representation, this leads to sparser representations.

To overcome the vocabulary mismatch problem (see section 2.1), doc-
ument expansion is added to the Splade pipeline to add more context to
documents. DistilSplade-max has been shown to perform significantly bet-
ter than the default Splade model. In this model, the hard negatives used
for training are mined using a distillation technique. We experiment with a
Splade model in section 3.6.

2.8 Environmental Impact

Both deep learning and environmental awareness are two popular topics with
a lot of interest from the scientific community. Because of this, it is not a
surprise that research has been done to determine the environmental effects
of deep learning models. Desislavov et al. has shown that the inference
costs of a deep learning model can be up to 10 times the cost of training the
model [13].

Next to that, the AI sector is also focused on creating sustainable Al
[57]. Their main goals are to create awareness for the environmental effects
of AI models, but also for social economic effects [4]. Part of this includes
a framework to measure environmental impact of any experiment [20]. In
such a way, researchers are immediately confronted with the consequences
of their experiment choices.

2.9 Environmental Impact of Learned Sparse Re-
trieval

To minimize carbon emissions, Scells et al. proposes to reduce, reuse and
recycle as much as possible [52]. The nature of learned sparse retrieval leans
itself perfectly for this. Since the resource-intensive GPU calculations are
only required for computing the index, whilst this index can be queried in a
much more efficient way. Secondly, the datasets that are used to fine-tune
the models are all based on MS Marco and these are available online?. This
means that reusing these datasets is relatively easy.

3For example, the msmarco_multiple_negative is available on huggingface https://
huggingface.co/datasets/sentence-transformers/msmarco-hard-negatives

11

https://huggingface.co/datasets/sentence-transformers/msmarco-hard-negatives
https://huggingface.co/datasets/sentence-transformers/msmarco-hard-negatives

2.9.1 Electricity Consumption

As explained in section 2.5, one of the advantages that learned sparse re-
trieval provides us is that the resource-intensive GPU computations are done
when creating the inverted index. This also makes it easier to compute
the electricity usage, since these tasks are run on our own hardware. Re-
searchers, such as Strubell et al. [54] compute the carbon emissions from
their energy measurements and compare tasks based on the amount of car-
bon emissions. However, since the carbon emissions are region dependent
[27] and thus should not be a concern when comparing implementations, we
decided to focus on electricity usage. From electricity usage, it is always
possible to compute the carbon emissions using tools such as Electricity
Maps®.

2.9.2 Terminology

As explained in section 2.9.1, we focus on electricity usage. We use the terms
energy and electricity interchangeably (even though this is not strictly ac-
curate, since electricity is a form of energy). We make a distinction between
power (P) and energy (E) [34]. Energy is the amount of work done, for which
we typically use the unit kilowatt-hour or kWh. When we are comparing
different appliances, power may be used. This is the amount of energy that
is used per time unit, this most likely is in watt (W) or Kilowatt (kW). See
equation 2.1 for the relation between energy (E in kWh), power (P in kW)
and time (t in hours)

E=Pxt (2.1)

2.9.3 Measuring Tools

Nowadays, most processors support power measuring. Tools query the power
usage of the processors at certain intervals and combine this to compute the
total energy usage (using the equation 2.1). It is important to note that
these tools will always make an estimate. Furthermore, different processing
units may be optimized for different tasks, or even for running tasks at very
large scales, so measuring electricity may never be perfect.

For this research, we use the CodeCarbon tool [9]°. This tool can mea-
sure the CPU, GPU, and RAM power usages. To measure GPU energy
usage, it uses the NVIDIA Management Library. This means that it can
very accurately measure power usage from the graphics cards. To measure
the power usage of the processor, the Intel RAPL interface is used. This can
also quite accurately measure the power usage of the processor. The RAPL
interface seems to measure the total power usage of a processor, so when a

‘https://wuw.electricitymaps.com/
"https://github.com/mlco2/codecarbon

12

https://www.electricitymaps.com/
https://github.com/mlco2/codecarbon

multiple-core processor is used, it measures the power of all cores. Finally,
to measure the RAM power usage, it is assumed that every 8 GB of RAM
uses 3 watts (so 0.375 watt per GB of RAM). Other things like storage or
internet usage are not taken into account.

13

Chapter 3

Experiments

Ultimately, we want to create an improved inverted index using a learned
sparse retrieval model. However, this index may become much larger. This
means that performing queries takes more time, but we also require a larger
amount of storage to store the index. Another aspect is that creating such
an index takes longer, and it consumes more resources.

In these experiments, we investigate these variables, such that potential
users of a learned sparse retrieval model can make an informed decision
on which learned sparse retriever to use. Our experiments are done using
both the MS Marco dataset and the WT10g dataset (see section 2.3). In
the experiments, we measure the time it takes and estimate the energy
usage using CodeCarbon (see 2.9.3). When evaluating the rankers, we use
the suggested evaluation methods for both MS Marco and WT10g. This
means that we evaluate on MRR@10, R@1000, nDCG@10, PQ30 and MAP
(see section 2.2.5). When doing this, we can also evaluate the zero-shot
performance of our trained models on WT10g (see section 2.6).

Some changes to the original learned sparse retrieval framework! were
made to support the WT10g dataset, for example. The new code can be
found on GitHub?.

For the experiments, we use the Radboud csedu cluster?, this has up to
80 GB of memory and 5 RTX 2080 Ti graphic cards with an Intel Xeon
Intel(R) Xeon(R) Silver 4214. We use a different server for CPU tasks (such
as indexing and querying), this server does not have graphics cards, and it
uses an Intel Xeon E5-2670 CPU with up to 32 GB of memory. To use the
Radboud cluster, a repository with examples is available on GitLab?.

"https://github. com/thongnt99/learned-sparse-retrieval
*https://github.com/tomrusteze/learned-sparse-retrieval
Shttps://wiki.icis-intra.cs.ru.nl/Cluster
‘https://gitlab.science.ru.nl/trust/learned-sparse-retrieval-scripts

14

https://github.com/thongnt99/learned-sparse-retrieval
https://github.com/tomrusteze/learned-sparse-retrieval
https://wiki.icis-intra.cs.ru.nl/Cluster
https://gitlab.science.ru.nl/trust/learned-sparse-retrieval-scripts

3.1 Using Sparta on MS Marco Passage

To become familiar with creating an inverted index using a learned sparse
retrieval method, we follow the experiments using the unified framework
from Nguyen et al. [42]> We do the experiments using Sparta (see section
2.7.1) on the MS Marco passage dataset. Running this experiment consists
of 5 steps:

1. Fine-tuning the Sparta model

2. Running inference on the Sparta model

3. Creating an inverted index using these score
4. Run queries on the created index

5. Evaluate the query results

Some of these steps will have great similarities with the basic information
retrieval steps (see section 2.2), some differences include that we already
have a collection of documents, and we do not perform re-ranking. Next to
that, we are also interested in evaluating the results.

In the following sections, we explain the steps that we have taken to
get results. Note that we used the MS Marco passage dataset, this means
that we do not have the entire documents. When using the WT10g dataset,
we are talking about documents. So it may also be interesting to run this
experiment on the MS Marco document dataset. However, This is more
computationally intensive. Note that we chose Sparta for this experiment
because it can give us a good learned sparse retrieval baseline since Sparta
can be seen as the naive approach to learned sparse retrieval.

3.1.1 Fine-tuning the Sparta Model

In this step, we get the Sparta model and fine-tune it using the query rel-
evance evaluations from the MS Marco dataset. More specifically, we use
the sparta_msmarco_distil configuration from the learned-sparse-retrieval frame-
work from Nguyen et al. [42] This is heavily based on the original Sparta
experiments, but with some slight changes in training data and hyperpa-
rameters. Running this step using 2 graphic cards and a per-device batch
size of 4 took around 8 hours.

In an ideal scenario, it would be easier to re-use a pretrained model.
However, not all models used in these experiments have a pretrained model
that is ready to use. So it is necessary to do some fine-tuning, furthermore,
the learned-sparse-retrieval framework has no proper support for pretrained
models.

Shttps://github.com/thongnt99/learned-sparse-retrieval

15

https://github.com/thongnt99/learned-sparse-retrieval

3.1.2 Inference

In this step, we use the just-trained model to predict the words and their
scores for each document. So this is the step where we compute the actual
sparse vectors. The idea is that these words represent the document in the
best way possible. In this way, we prepare our documents for the inverted
index step (see section 2.2.2). Inference takes the most amount of time and
computing power. We use the ir_datasets [38]® framework to easily obtain
the dataset.

Running this step took around 5 hours using 5 graphic cards with a batch
size of 64 on MS Marco passage, however, this is very likely to scale based
on the input dataset. Both the length of the individual documents and the
number of documents may influence this. The output of this experiment
is a large file (around 100 GB) with text and terms for each document. A
small extract of this can be found in appendix A.l1. Note that the words
sometimes contain hashtags (#). This is because the documents are using
the BERT word pieces vocabulary.

3.1.3 Index

In this step, we create an inverted index using Anserini [31]7. More specifi-
cally, we use a modified version® that supports our input with pairs of words
and scores. Our input is pretokenized (our document is already split up into
different words), and it may contain hashtags because of the BERT notation.

3.1.4 Query

In this step, we run queries on the created Anserini index [58, 59]. We
use the MS Marco passage small development set?. Running these queries
(6980) took roughly 1 hour. Our index is tokenized by BERT, so before
querying, we also tokenize the query using a BERT tokenizer. We do not
perform query expansion, since this is not something that we are interested
in for this research.

3.1.5 Evaluation

Here, we evaluate the results that we got on the queries in step 4 (see
section 3.1.2) with the relevance results. We do this using the ir-measures
framework [37]!. We evaluate our queries on recall at the first 1000 results,

Shttps://ir-datasets.com/index.html
"https://github.com/castorini/anserini
Shttps://github.com/thongnt99/anserini-1lsr
“https://ir-datasets.com/msmarco-passage.html#msmarco-passage/dev
Ohttps://ir-measur.es/en/latest/

16

https://ir-datasets.com/index.html
https://github.com/castorini/anserini
https://github.com/thongnt99/anserini-lsr
https://ir-datasets.com/msmarco-passage.html#msmarco-passage/dev
https://ir-measur.es/en/latest/

mean reciprocal rank@10, precision@30, average precision and normalized
discounted cumulative gain@10.

See Table 4.1 for the results, we see that they are very similar to the
results from Nguyen et al. (MRR@10 = 35.3, R@1000 = 96.8). These small
differences can be explained by different training environments and testing
setups.

3.2 Measuring Electricity

Since getting insight into the energy usage of learned sparse retrieval models
is an important part of this thesis, we measure the electricity usage in this
and all following experiments. As explained in section 2.9.3, there are tools
that we can deploy to measure electricity usage with varying levels of accu-
racy. To determine the energy usage of building a learned sparse retrieval
index, we run an experiment very similar to the one explained in section 3.1.
One notable difference is that we now use a different configuration, which
represents the experiment that was used in the original Sparta paper [61],
this experiment is called sparta_original. Nevertheless, this experiment has
the same structure as section 3.1.

3.2.1 Fine-tuning

This Sparta model is fine-tuned on an MS Marco model with additional
negatives. This experiment was run with 5 graphic cards, 32 processors and
80 GB memory. See appendix A.2 for the final transmitted EmissionsData
output. With this data, we can create Table 3.1 to show the energy usage
for this step. As a sanity check, we can compare the estimated GPU energy

GPU (kWh)

CPU (kWh)

RAM (kWh)

Total (kWh)

Time

13.63

0.78

0.87

15.28

18.4 hours

Table 3.1: Energy usage according to CodeCarbon for fine-tuning Sparta

usage with a simple calculation. Since we have 5 RTX 2080 Ti’s that have
used 13.63 kWh in 18.4 hours. This means that one RTX 2080 Ti uses 148
watts on average (see equation 3.1). This is within the official 260 watts
power rating'!. It also makes sense that the graphics card is not running at
its peak power for the entire time.

13.63/18.4/5 = 0.148 kW = 148 W (3.1)

Yhttps://www.nvidia.com/nl-nl/geforce/graphics-cards/compare/?section=
compare-20

17

https://www.nvidia.com/nl-nl/geforce/graphics-cards/compare/?section=compare-20
https://www.nvidia.com/nl-nl/geforce/graphics-cards/compare/?section=compare-20

3.2.2 Inference

Running inference on the MS Marco dataset (8.8 million documents) to
create the sparse vectors was faster than fine-tuning. We used the same 5
RTX 2080 Ti setup to do these computations. See Table 4.1 for the energy
usage.

When we now compute the average power for a single graphics card, we
see that with only 48 watts, it is considerably less than in section 3.2.1,
where it was 148 watts.

1.19/4.99/5 = 0.048 kW = 48 W (3.2)

3.2.3 Index and Querying

The index and query steps do not require a graphics card. Next to that,
they also take a lot less time to compute. So because of this, they naturally
use a lot less energy. See Table 4.1 for the energy usages for the index step.
We index the entire MS Marco passage dataset (8.8 million documents) and
use the queries from the small development set (6980 in total).

3.2.4 Evaluation

See Table 4.1 for the scores, these scores are a bit lower than the improved
Sparta model used in section 3.1.

3.3 Evaluating MS Marco with BM25

In order to evaluate the performance of a generated inverted index using
a learned sparse retrieval method. It may be useful to compare it with a
full-text index. In both cases, we use BM25 to query the inverted index.
In this experiment we build an index using the MS Marco passage dataset,
we then perform queries on this created index using BM25. For the BM25
parameters k; and b we use the values 0.82 and 0.68 respectively. These
parameters are tuned for MS Marco passage dataset [32]. We then evaluate
the query results in the same way that we do in section 3.1.5.

See Table 4.1 for the scores and Table 4.3 for the energy measurements,
we see that the scores are a bit lower than the Sparta models, however, the
energy consumption is also much lower. We also present the query latency
and size of the index in Table 4.5.

As a sanity check, we compare these scores with a BM25 baseline on
MS Marco [35]. We see that both the recall and MRR are within 0.05 of
the scores in the paper (MRR@10 = 0.1840, R@1000 = 0.8526). A small
difference that is most likely caused by slightly different values for ki and b.

18

3.4 BM25 on WT10g

In section 3.3 we query on a full-text index using BM25. This gives us
a baseline for comparing the index size, time/energy to create the index,
query latency and evaluation scores. As explained in section 2.3.2, WT10g
is evaluated on the mean average and precision for the first 30 results.

In this experiment, we create the index, query it and then evaluate the
scores. The three statistics that we are mainly interested in are the evalu-
ation scores, energy usage and the index size. See Table 4.4 for the energy
measurements of running BM25 on WT10g.

Since WT10g is considerably smaller than MS Marco, it is much faster.
We only have 400 test queries, which are processed at a rate of 117 queries
per second. The scores are visible in Table 4.2. We see that our mean
average precision of 0.1951 is very close to results in literature [19] (MAP =
0.1842).

3.5 Using Sparta on WT10g

In section 3.1 we trained a Sparta model to recreate the MS Marco index.
Next to that, in section 3.4 we experimented with the WT10g dataset. In
this experiment, we combine these two experiments by creating an index for
WT10g using Sparta. Since the passages in WT10g are larger than in the
MS Marco dataset, we do multiple experiments with values of 400 and 1600
for k (see section 2.5.1). We can also set the parameter for the maximum
input length (m). As a default, this is set at 256. We do some experiments
with a maximum input length of 512. Setting this higher is not possible,
since this is a limitation of the BERT model.

We again use the sparta_msmarco_distill model. See Table 4.2 for the eval-
uation scores and Table 4.4 for the energy usage. We see that our scores
differ a bit from using BM25 on WT10g. An important thing to note is that
Sparta has been fine-tuned on MS Marco, which contains much smaller doc-
uments. So it may not be able to capture information from larger documents
as good as smaller passages.

When we directly compare the different scores for different values of k, we
see that a higher value yields slightly better results. However, the indexing
time (and energy consumption) has increased quite a lot. Furthermore, the
index generated with k£ = 1600 is also much larger (see Table 4.6).

Comparing different values for m, we see that the index size is increased
massively. This is most likely because, with a higher value of m, the model
can grasp more information.

19

3.6 Splade

One of the most popular learned sparse retrieval models is Splade, since
Splade has proven to be very effective, and it uses the most advanced tech-
niques (See section 2.7.2 for more information). In this experiment, we use
a variant of the Splade model to create an index on the MS Marco dataset
and the WT10g dataset. It is also possible to use a pre-trained model of
Splade!?, we do this in section 3.7. We use the splade_asm_msmarco_distil_lops_0
.1.0.08 configuration to do our experiments. See Table 4.1 for the evaluation
scores on MS Marco and Table 4.3 for the energy usage.

We see that for MS Marco this Splade model performs slightly worse
than the baselines in the paper, most likely this is because of a slightly
different configuration that is used for both experiments. The difference is
about 0.07 for both MRR@10 and R@1000 (MRR@10 = 0.3790, R@1000
= 0.9800). Furthermore, we do not use query expansion, which may also
influence the final scores.

We have also tried the splade_msmarco_multiple_negative configuration. This
results in lower evaluation scores, but also a much smaller index compared
to the splade_asm_msmarco_distil flops_0.1_0.08 configuration.

3.7 Pretrained Splade

As explained in section 3.1.1, we needed to fine-tune the models for them
to work properly. This is one of the limitations of the framework that was
used up until this experiment. So to solve this, we use the Splade framework
[16]'3. This framework has support for all pretrained Splade models that are
published by the authors!'4. We experiment with using the splade—v3—doc and
splade—cocondenser—ensembledistil configurations. The Splade framework was
altered slightly to support energy monitoring, hugging face authentication
and the WT10g dataset. These are trivial modifications, for which no code
is provided. The scores for MS Marco can be found in Table 4.1. We see that
the differences between the splade—cocondenser—ensembledistil configuration and
the model that is fine-tuned by us (flops configuration) is minimal. However,
we also see that the recently released splade—v3—doc model [29], which is
suited for scenarios without query expansion, outperforms all other models
on MS Marco. Furthermore, the scores on WT10g can be found in Table 4.2,
the models were run on WT10g with a value of 512 for m (see section 3.5).
We see that splade—v3—doc again outperforms the Splade models. However,
it can not beat some Sparta models or the BM25 benchmark.

2https://huggingface.co/naver/splade_v2_distil

Bhttps://github.com/naver/splade

M Currently 20 models are published (June 4th 2024). They can be found at https:
//huggingface.co/naver?search_models=splade

20

https://huggingface.co/naver/splade_v2_distil
https://github.com/naver/splade
https://huggingface.co/naver?search_models=splade
https://huggingface.co/naver?search_models=splade

3.8 Long Documents

As explained in section 3.5, learned sparse retrievers can only process 512
words of a document. Furthermore, in our case, they are pretrained on MS
Marco, which has an average word length of 56. So we use a naive approach
to split WT'10g into passages.

1. We split all documents into passages with a length of up to n words.
2. All passages are expanded by splade—v3—doc.

3. We aggregate passages from the same document back into a single
document.

See section 2.5.3 for more information.

After some tests, we decided to use a value of 400 for n. Values under 200
take over twice as long to compute and also give us lower scores. Because
of the increased amount of passages, the runtime and energy consumption
for the inference steps is quite a bit higher compared to using splade—v3—
doc (see Table 4.4). Furthermore, we use the mean scores to aggregate the
passages, since this seems to perform the best in our scenario. In Table 4.2
we see the scores of this experiment. We see that the original splade—v3—doc
outperforms the altered model for long documents.

We re-used a naive implementation to split and aggregate documents,
based on the implementation by Nguyen et al.[41].

21

Chapter 4

Results

In this chapter, we compare all experiments on different aspects. First, we
look at the scores for both MS Marco passage and WT10g in section 4.1.
Then we look at the energy usage for each experiment in section 4.2. In
section 4.3 we compare the different models based on the index size and
query latency. Finally, we consider all these different aspects together in
section 4.4.

4.1 Evaluation Scores

In this section, we evaluate the performance of our trained models. See Table
4.1 for the scores on MS Marco and Table 4.2 for the scores on WT10g. Note
that most of the learned sparse retrievers are not pretrained, but fine-tuned
in our experiments. This means that their weights may differ slightly from
models used in other papers, also influencing the final scores.

When we compare the scores on MS Marco, we see that Spladeys_qoc
(see experiment 3.7) outperforms the other models, most by quite a margin.
This is not a big surprise, since the Spladey3.qo. model is the latest version
of Splade. Which is the best-performing model family according to Nguyen
et al. [42] Furthermore, it is optimized for use without query expansion.

On the other hand, when we take WT10g as the dataset, we see that
BM25 gives us the highest scores. A possible explanation is that our custom
web parser is not as good as the parser from Anserini. Another explanation
could be that learned sparse retrievers are unable to handle larger docu-
ments. In experiment 3.5, we have seen that the BERT limit of 512 also
holds for the input for learned sparse retrievers. So documents with more
than 512 words may lose some information when they are being used in a
learned sparse retriever. To overcome this limitation, we tried to split the
larger documents into smaller passages in experiment 3.8. This did not re-
sult in better scores. However, the Sparse regularizer from Splade can not
work properly in this scenario, since it can not consider multiple passages.

22

Furthermore, it could be possible that the learned sparse retrievers can not
improve on BM25 when they are used in a zero-shot scenario. This may
happen because they do not generalize well enough. Moreover, it could be
that the smaller passages in the training data from MS Marco are too differ-
ent from the larger documents in WT10g. Additionally, WT10g is 16 years
older than MS Marco, which may mean a difference in document content.
Both WT10g and MS Marco contain web data, however, WT10g contains
actual web pages (with HTML tags that have to be stripped) whereas MS
Marco contains passages of text.

Model MRR@10 | R@1000 | nDCG@10 | P@30 | MAP
BM25 0.1881 0.8614 0.2357 0.0187 | 0.1965
Spartacriginal 0.2900 0.8992 0.3466 0.0229 | 0.2983
Spartagistil 0.3511 0.9720 0.4162 0.0272 | 0.3574
Spladegops 0.2981 0.9303 0.3558 0.0239 | 0.3056
Spladepuitiple-negative | 0.2641 0.9116 0.3146 0.0221 | 0.2717
Spladecocondenser 0.2926 0.9330 0.3522 0.0240 | 0.3015
Spladeys_doc 0.3620 0.9778 0.4355 0.0278 | 0.3775
Table 4.1: Evaluation scores for different models on MS Marco
Model MRR@10 | R@1000 | nDCG@10 | P@30 | MAP
BM25 0.5686 0.6889 0.3325 0.2167 | 0.1951
Spartagriginal 0.3798 0.2938 0.1857 0.1103 | 0.0675
Spartadistil, — 400, m — 256 0.5164 0.4163 0.2752 0.1603 | 0.1163
Spartadistil, — 400, m — 256 0.5332 0.4349 0.2924 0.1727 | 0.1262
Spartadistil, — 1600, m — 510 0.5643 0.5118 0.3165 0.1857 | 0.1462
Spladegops 0.4141 0.3841 0.2414 0.1463 | 0.0985
Splademultiple-negative 0.2920 0.3550 0.1676 0.1060 | 0.0788
Spladecocondenser 0.3905 0.4530 0.2125 0.1450 | 0.0996
Spladeys.doc 0.4716 0.4926 0.2747 0.1683 | 0.1259
Spladeys.doc (long documents) | 0-4576 0.3989 0.2214 0.1293 | 0.0897

Table 4.2: Evaluation scores for different models on WT10g

23

4.2 Energy Usages

Here we compare our different experiments based on energy usage. We do
not consider the energy usage of fine-tuning a model, since models already
have pre-trained models which should be used. In Table 4.3 we see that
BM25 consumes much less energy, this is something that was to be expected
since we do not have the expensive inference step. We do see that creating
an index on MS Marco with any learned sparse retriever takes roughly the
same amount of energy. This is approximately 90 times as much compared
to creating a full-text inverted index. It is also interesting to see that the
pretrained models consume more energy, whilst taking less time. This could
be because of differences between the Splade framework and the learned
sparse retriever framework.

The energy usage for creating indexes on WT10g can be found in Table
4.4, we again see that BM25 is by far the most energy-efficient option, and
also the quickest. There is quite a difference between the energy usage for
different learned sparse retrievers. In general, we see that the models with
larger values for k£ and m have a higher power consumption. We also see
that the experiment with long documents (see section 3.8) consumes more
resources, this makes sense since it has to expand a lot more documents.

It should be noted that due to cluster limitations, the number of available
graphic units that were used for each experiment was not always the same.
This can result in different energy usage.

Model Inference (kWh) | Index (kWh) | Total (kWh) | Total time (h)
BM25 0.000 0.021 0.021 0.3
Spartaoriginal 1.640 0.215 1.855 6.5
Spartagistil 1.637 0.215 1.852 6.8
Spladegops 1.799 0.078 1.877 5.2
Splademutiplenegative | 1.490 0.031 1.521 45
Spladecocondenser 2.330 0.038 2.368 4.3
Spladeys-doc 2.310 0.063 2.373 4.8

Table 4.3: Energy usage for different models when creating an index for MS
Marco

24

Model Inference (kWh) | Index (kWh) | Total (kWh) | Total time (h)
BM25 0.000 0.010 0.010 0.1
Spartagriginal 0.627 0.082 0.709 2.7
Spartadistily, — 400, m — 256 0.589 0.044 0.633 2.2
Spartadistily, _ 1600, m — 256 0.690 0.173 0.863 3.9
Spartadistil, — 1600, m — 512 1.168 0.157 1.325 5.2
Spladegops 0.685 0.031 0.716 2.2
Splademyltiple-negative 1.013 0.012 1.025 3.1
Spladecocondenser 1.468 0.020 1.488 2.7
Spladeys.doc 1.510 0.024 1.534 2.9
Spladeys doe (long documents) | 4-265 0.012 4.277 8.9

Table 4.4: Energy usage for different models when creating an index for
WT10g

4.3 Index Size and Query Latency

As a final aspect, we compare the created indexes in terms of size and query
latency. Measuring the index size is done by looking at the disk usage for
all index files created by Amnserini. To get the query latency, we get the
number of queries per second that are processed by Anserini. With this, we
calculate the query latency. For the results, see Table 4.5 for the index sizes
and latency on MS Marco and Table 4.6 for the index sizes and latency on
WT10g.

We see that the full-text indexes are typically much smaller than the
indexes generated by the learned sparse retrievers. However, this hugely de-
pends on the learned sparse retriever and dataset that is used. Indexes from
Splade seem to be much smaller than those generated from Sparta. Most
likely this is because the flops regularizer (see section 2.7.2) from Splade
works better than the naive approach from Sparta (see section 2.7.1). We
see that this trend is visible for both MS Marco and WT10g, with a single
exception for the Splademyitiple-negative model O WT10g, here we see that the
index is smaller than the full-text index. Most likely this is because the
Splade model can not capture all information from the original document
(due to the limit) and the produced document becomes smaller than the orig-
inal document. This phenomenon is not visible on the MS Marco dataset.
Perhaps because the average number of distinct words for this dataset is
42, whilst this is 259 for WT10g (see section 2.3). It is however interesting
to see that the inference step for the Spladenuitiple-negative model consumed
much more energy than the inference step for the Spladeg,,s model. This

25

may mean that more computations were done to create a smaller document
representation.

It should be noted that the query latency can differ quite a lot on different
hardware. Even though all the experiments are done on the same cluster,
the only thing that we should look at is the relative difference between
experiments. When we inspect the query latency for the different models on
the MS Marco dataset, we see that queries on indexes generated by Sparta
models roughly take 40 times as long as queries using a full-text index.
When we compare the full-text indexes with indexes generated by Splade
models, we see that the indexes generated by a Splade model can be up to
10 times as long (depending on which Splade model is used). Comparing
the different latencies on the WT10g dataset, we see that the full-text index
has the lowest query latency. When we compare this with the Splade and
Sparta generated indexes, we see that query latency for Splade generated
indexes is about 2-3 times as long and for the Sparta generated indexes it is
about 6 times as long. All queries on an index created by a learned sparse
retriever use a BERT tokenizer. So this increases their latency by a bit.
Furthermore, the indexes generated by learned sparse retrievers are larger,
so because of this, queries are more likely to take longer.

Model Index size (GB) | Query latency (ms)
BM25 0.6 12

Spartacriginal 9.1 588

Spartagistil 9.3 500

Spladegops 3.5 167
Splademultiple-negative | 1.9 50

Spladecocondenser 3.1 63

Spladeys_doc 2.5 216

Table 4.5: MS Marco index sizes and query latency for different models

26

Model Index size (GB) | Query latency (ms)

BM25 0.7 16
Spartaoriginal 3.0 111
Spartadistily, — 400, m — 256 1.8 91
Spartadistil;, _ 1600, m — 256 6.3 83
Spartadistily, _ 1600, m — 512 9.3 105
Spladegops 0.9 56
Splademultiple-negative 0.5 36
Spladecocondenser 0.7 53
Spladeys.doc 1.0 91
Spladeys.doc (long documents) | 1.7 43

Table 4.6: WT10g index sizes and query latency for different models

4.4 Comparison

When we combine the different aspects of the results (evaluation scores,
energy usage, disk usage and query latency), we see that for MS Marco,
a Splade model can provide quite a significant gain in evaluation scores
whilst sacrificing some disk usage and query latency. However, the biggest
difference is that it can take more than 100 times as much energy to compute.
Whether this performance boost is worth it, depends on the scenario.

Looking at WT10g, we see that the BM25 retriever outperforms the
learned sparse retrievers on all evaluation benchmarks, whilst also being
more energy efficient and having a better query latency. Hence, using a
learned sparse retriever for this dataset would not make sense. As mentioned
in section 4.1, learned sparse retrievers seem to perform worse on larger
datasets, which may explain this difference.

27

Chapter 5

Conclusions

In conclusion, we have successfully created a testing environment to measure
the following aspects of generating inverted indexes (with or without using
learned sparse retrieval models): Quality of ranking, electricity used when
creating the index, query latency and index size. This setup was used to test
different learned sparse retrieval models of the Splade and Sparta families
on both the MS Marco and WT10g datasets.

To answer RQ4, query latencies from queries on the full-text index are
lower than those from queries run on an index generated by a learned sparse
retriever. In a best-case scenario, the latency of a query on a learned sparse
retriever index is around 2-3 times as long. For RQ3, we inspect the size of
the generated index. We see that the generated indexes from learned sparse
retrievers tend to consume a bit more disk space, however, this depends on
the number of words that the original document has.

To inspect the energy usage of learned sparse retrievers as asked in RQ2.
We see that creating an index using a learned sparse retriever consumes
roughly 100 times more energy than creating an index directly on the doc-
uments, whilst also taking longer and requiring special hardware.

When evaluating the scores on MS Marco, we see that our best per-
forming learned sparse retriever, Spladeys.qoc, has higher scores on all used
benchmarks compared to a full-text index. On the other hand, this is not
the case for the evaluation of the WT10g dataset. Here, the full-text index
has the highest scores on all benchmarks. It seems that the documents from
WT10g and MS Marco are too different for the learned sparse retrieval mod-
els to work in a zero-shot scenario. To conclude RQ1: for the MS Marco
dataset, it may be beneficial to use a learned sparse retriever to improve
the quality of retrieval, even though this means a larger query latency, more
disk usage and higher energy consumption. The evaluation scores are much
higher compared to using a full-text index. Nevertheless, when indexing the
WT10g dataset. It would be better to not use a learned sparse retriever.
Since the full-text index scores higher on all aforementioned benchmarks.

28

Chapter 6

Future Work

In our experiments, we used a learned sparse retriever that is fine-tuned
on the MS Marco passage dataset, this has an average word length of 56
words. Furthermore, the maximum number of words that can be processed
by a learned sparse retriever per document is 512. This is a limitation when
learned sparse retrievers are used to generate the words for documents larger
than 512 words. In this chapter, some options are given to minimize this
problem.

6.1 Fine-tuning on MS Marco Document

An initial approach would be to fine-tune the learned sparse retriever using
the MS Marco document dataset. This contains large documents, with on
average, 1131 words per document [49]. However, some internal structures
of the learned sparse retriever, such as the document encoder, may also limit
the number of words per document that the model accepts.

6.2 Sequential Dependence Models

In section 3.8 we experiment with splitting a document into multiple pas-
sages, after which we merge them back into a single document using a naive
method. Alternatively, we could use sequential dependence models [40].
These seem to outperform naive methods when merging passages into doc-
uments [41]. This paper comes with a GitHub repository with examples®.

6.3 Significance testing

We have not done any significant testing on the evaluation. With this, we
could determine if the difference in evaluation scores is due to randomness

"https://github.com/thongnt99/1sr-long

29

https://github.com/thongnt99/lsr-long

or because one model is better than the other. This would be especially
interesting on the WT10g dataset since this has a much smaller evaluation
set. To compute this, we would try to dispute the null hypothesis Hj.
This hypothesis would say that there is no difference between two retrieval
methods A and B. If we can show based on data that Hy does not hold,
then we can say that either A consistently outperforms B or B consistently
outperforms A [22].

6.4 Fine-tuning

As explained in section 2.5, we explain that the models are sometimes fine-
tuned using mined hard negatives. This would mean that the training
data can be generated by a different model. So if we could find a pow-
erful reranker that scores well on the WT10g dataset, we could use this
to generate the training data to fine-tune a learned sparse retriever. This
technique of transfer learning [46] could be more effective than our current
zero-shot approach.

30

Bibliography

1]

Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Dipendra
Misra. Investigating the role of negatives in contrastive representation
learning, 2021.

Peter Bailey, Nick Craswell, and David Hawking. Engineering a multi-
purpose test collection for web retrieval experiments. Information Pro-
cessing € Management, 39(6):853-871, 2003.

Peter Bailey, Nick Craswell, and David Hawking. Engineering a multi-
purpose test collection for web retrieval experiments. Information Pro-
cessing € Management, 39(6):853-871, 2003.

Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and
Shmargaret Shmitchell. On the dangers of stochastic parrots: Can
language models be too big? In Proceedings of the 2021 ACM Confer-
ence on Fairness, Accountability, and Transparency, FAccT 21, page
610-623, New York, NY, USA, 2021. Association for Computing Ma-
chinery.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation
learning: A review and new perspectives. IEFE Transactions on Pat-
tern Analysis and Machine Intelligence, 35(8):1798-1828, 2013.

Wei Chen, Tie-Yan Liu, Yanyan Lan, Zhi-Ming Ma, and Hang Li. Rank-
ing measures and loss functions in learning to rank. Advances in Neural
Information Processing Systems, 22, 2009.

Xilun Chen, Kushal Lakhotia, Barlas Oguz, Anchit Gupta, Patrick
Lewis, Stan Peshterliev, Yashar Mehdad, Sonal Gupta, and Wen tau
Yih. Salient phrase aware dense retrieval: Can a dense retriever imitate
a sparse one?, 2022.

Gordon V. Cormack and Thomas R. Lynam. Statistical precision of
information retrieval evaluation. In Proceedings of the 29th Annual
International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR 06, page 533-540, New York, NY,
USA, 2006. Association for Computing Machinery.

31

[9]

[10]

[11]

[12]

[14]

[15]

[16]

[17]

Benoit Courty, Victor Schmidt, Sasha Luccioni, Goyal-Kamal, Mari-
onCoutarel, Boris Feld, Jérémy Lecourt, LiamConnell, Amine Saboni,
Inimaz, supatomic, Mathilde Léval, Luis Blanche, Alexis Cruveiller,
ouminasara, Franklin Zhao, Aditya Joshi, Alexis Bogroff, Hugues de La-
voreille, Niko Laskaris, Edoardo Abati, Douglas Blank, Ziyao Wang,
Armin Catovic, Marc Alencon, Christian Bauer, Lucas-Otavio, JPW,
and MinervaBooks. mlco2/codecarbon: v2.4.1, May 2024.

D. Cutting and J. Pedersen. Optimization for dynamic inverted index
maintenance. In Proceedings of the 13th annual international ACM SI-
GIR conference on Research and development in information retrieval,
SIGIR ’90, page 405411, New York, NY, USA, 1989. Association for
Computing Machinery.

Zhuyun Dai and Jamie Callan. Context-aware term weighting for
first stage passage retrieval. In Proceedings of the 43rd International
ACM SIGIR conference on research and development in Information
Retrieval, SIGIR 20, pages 1533-1536, New York, NY, USA, 2020.
Association for Computing Machinery.

Hamed Damirchi, Cristian Rodriguez-Opazo, Ehsan Abbasnejad,
Damien Teney, Javen Qinfeng Shi, Stephen Gould, and Anton van den
Hengel. Zero-shot retrieval: Augmenting pre-trained models with
search engines, 2023.

Radosvet Desislavov, Fernando Martinez-Plumed, and José Hernandez-
Orallo. Trends in ai inference energy consumption: Beyond the
performance-vs-parameter laws of deep learning. Sustainable Comput-
ing: Informatics and Systems, 38:100857, 2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding, 2019.

Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane
Clinchant. Splade v2: Sparse lexical and expansion model for informa-
tion retrieval, 2021.

Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane
Clinchant. From distillation to hard negative sampling: Making sparse
neural ir models more effective, 2022.

Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant.
Splade: Sparse lexical and expansion model for first stage ranking.
In Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR 21, page

32

[18]

[19]

2288-2292, New York, NY, USA, 2021. Association for Computing Ma-
chinery.

Emma J. Gerritse, Faegheh Hasibi, and Arjen P. de Vries. Entity-aware
transformers for entity search. In Proceedings of the 45th International
ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR 22, page 1455-1465, New York, NY, USA, 2022. As-
sociation for Computing Machinery.

Parantapa Goswami, Massih-Reza Amini, and FEric Gaussier.
Language-independent query representation for ir model parameter es-
timation on unlabeled collections. In Proceedings of the 2015 Inter-
national Conference on The Theory of Information Retrieval, pages
121-130, 09 2015.

Peter Henderson, Jieru Hu, Joshua Romoff, Emma Brunskill, Dan Ju-
rafsky, and Joelle Pineau. Towards the systematic reporting of the
energy and carbon footprints of machine learning, 2022.

Gijs Hendriksen, Michael Dinzinger, Sheikh Mastura Farzana, Noor Af-
shan Fathima, Sebastian Schmidt Maik Frobe, Saber Zerhoudi, Michael
Granitzer, Matthias Hagen, Djoerd Hiemstra, Martin Potthast, and
Benno Stein. Impact and development of an open web index for open

web search. Journal of the Association for Information Science and
Technology, 1-9(n/a), 2023.

Djoerd Hiemstra. Using Language Models for Information Retrieval.
Phd thesis - research ut, graduation ut, University of Twente, Jan 2001.

Sebastian Hofstatter, Sophia Althammer, Michael Schréder, Mete
Sertkan, and Allan Hanbury. Improving efficient neural ranking models
with cross-architecture knowledge distillation, 2021.

Kalervo Jarvelin and Jaana Kekéldinen. Cumulated gain-based evalu-
ation of ir techniques. ACM Trans. Inf. Syst., 20(4):422-446, oct 2002.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell
Wu, Sergey Edunov, Danqi Chen, and Wen tau Yih. Dense passage
retrieval for open-domain question answering, 2020.

Robert Krovetz and W. Bruce Croft. Lexical ambiguity and information
retrieval. ACM Trans. Inf. Syst., 10(2):115-141, apr 1992.

Alexandre Lacoste, Alexandra Luccioni, Victor Schmidt, and Thomas
Dandres. Quantifying the carbon emissions of machine learning, 2019.

Carlos Lassance, Hervé Dejean, Stéphane Clinchant, and Nicola Tonel-
lotto. Two-step splade: Simple, efficient and effective approximation

33

[36]

of splade. In Nazli Goharian, Nicola Tonellotto, Yulan He, Aldo Lipani,
Graham McDonald, Craig Macdonald, and Iadh Ounis, editors, Ad-
vances in Information Retrieval, pages 349-363, Cham, 2024. Springer
Nature Switzerland.

Carlos Lassance, Hervé Déjean, Thibault Formal, and Stéphane Clin-
chant. Splade-v3: New baselines for splade, 2024.

Phuc H. Le-Khac, Graham Healy, and Alan F. Smeaton. Contrastive
representation learning: A framework and review. IEEFE Access,
8:193907-193934, 2020.

Jimmy Lin, Matt Crane, Andrew Trotman, Jamie Callan, Ishan Chat-
topadhyaya, John Foley, Grant Ingersoll, Craig Macdonald, and Sebas-
tiano Vigna. Toward reproducible baselines: The open-source ir repro-
ducibility challenge. In Nicola Ferro, Fabio Crestani, Marie-Francine
Moens, Josiane Mothe, Fabrizio Silvestri, Giorgio Maria Di Nungzio,
Claudia Hauff, and Gianmaria Silvello, editors, Advances in Informa-
tion Retrieval, pages 408-420, Cham, 2016. Springer International Pub-
lishing.

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-Hong Yang, Ronak
Pradeep, and Rodrigo Nogueira. Pyserini: A python toolkit for re-
producible information retrieval research with sparse and dense repre-
sentations. In Proceedings of the 44th International ACM SIGIR Con-
ference on Research and Development in Information Retrieval, SIGIR
21, page 2356—2362, New York, NY, USA, 2021. Association for Com-
puting Machinery.

Tie-Yan Liu. Learning to rank for information retrieval. Foundations
and Trends®) in Information Retrieval, 3(3):225-331, 2009.

Kadan Lottick, Silvia Susai, Sorelle A. Friedler, and Jonathan P. Wil-
son. Energy usage reports: Environmental awareness as part of algo-
rithmic accountability, 2019.

Xueguang Ma, Ronak Pradeep, Rodrigo Nogueira, and Jimmy Lin.
Document expansion baselines and learned sparse lexical representa-
tions for ms marco vl and v2. In Proceedings of the 45th International
ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’22, page 3187-3197, New York, NY, USA, 2022. As-
sociation for Computing Machinery.

Y. S. Maarek and F. Z. Smadja. Full text indexing based on lexical
relations an application: software libraries. In Proceedings of the 12th

34

[37]

[40]

[41]

[44]

[45]

[46]

Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, SIGIR ’89, page 198-206, New York,
NY, USA, 1989. Association for Computing Machinery.

Sean MacAvaney, Craig Macdonald, and Iadh Ounis. Streamlining
evaluation with ir-measures. In Matthias Hagen, Suzan Verberne,
Craig Macdonald, Christin Seifert, Krisztian Balog, Kjetil Ngrvag, and
Vinay Setty, editors, Advances in Information Retrieval, pages 305-310,
Cham, 2022. Springer International Publishing.

Sean MacAvaney, Andrew Yates, Sergey Feldman, Doug Downey, Ar-
man Cohan, and Nazli Goharian. Simplified data wrangling with
ir_datasets. In SIGIR, 2021.

Antonio Mallia, Joel Mackenzie, Torsten Suel, and Nicola Tonellotto.
Faster learned sparse retrieval with guided traversal. In Proceedings of
the 45th International ACM SIGIR Conference on Research and De-
velopment in Information Retrieval, SIGIR 22, page 1901-1905, New
York, NY, USA, 2022. Association for Computing Machinery.

Donald Metzler and W. Bruce Croft. A markov random field model
for term dependencies. In Proceedings of the 28th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’05, page 472-479, New York, NY, USA, 2005. Asso-
ciation for Computing Machinery.

Thong Nguyen, Sean MacAvaney, and Andrew Yates. Adapting learned
sparse retrieval for long documents. In Proceedings of the 46th Inter-
national ACM SIGIR Conference on Research and Development in In-
formation Retrieval, SIGIR 23, page 1781-1785, New York, NY, USA,
2023. Association for Computing Machinery.

Thong Nguyen, Sean MacAvaney, and Andrew Yates. A unified frame-
work for learned sparse retrieval, 2023.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary,
Rangan Majumder, and Li Deng. MS MARCO: A human-generated
MAchine reading COmprehension dataset, 2017.

Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with bert,
2020.

Rodrigo Nogueira, Jimmy Lin, and Al Epistemic. From doc2query to
doctttttquery. Online preprint, 6(2), 2019.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE
Transactions on Knowledge and Data Engineering, 22(10):1345-1359,
2010.

35

[47]

[48]

[54]

[55]

Biswajit Paria, Chih-Kuan Yeh, Ian E. H. Yen, Ning Xu, Pradeep
Ravikumar, and Barnabds Péczos. Minimizing flops to learn efficient
sparse representations, 2020.

Nina Poerner, Ulli Waltinger, and Hinrich Schiitze. E-BERT: Efficient-
yet-effective entity embeddings for BERT. In Trevor Cohn, Yulan He,
and Yang Liu, editors, Findings of the Association for Computational
Linguistics: EMNLP 2020, pages 803-818, Online, November 2020.
Association for Computational Linguistics.

Ronak Pradeep, Rodrigo Nogueira, and Jimmy Lin. The expando-
mono-duo design pattern for text ranking with pretrained sequence-to-
sequence models, 2021.

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance
framework: Bm25 and beyond. Foundations and Trends(®) in Informa-
tion Retrieval, 3(4):333-389, 2009.

Dennis W Ruck, Steven K Rogers, and Matthew Kabrisky. Feature
selection using a multilayer perceptron. Journal of neural network com-
puting, 2(2):40-48, 1990.

Harrisen Scells, Shengyao Zhuang, and Guido Zuccon. Reduce, reuse,
recycle: Green information retrieval research. In Proceedings of the 45th
International ACM SIGIR Conference on Research and Development
i Information Retrieval, SIGIR 22, page 2825-2837, New York, NY,
USA, 2022. Association for Computing Machinery.

Ian Soboroff. Does wt10g look like the web? In Proceedings of the
25th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’02, page 423-424, New
York, NY, USA, 2002. Association for Computing Machinery.

Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and
policy considerations for deep learning in nlp, 2019.

Nandan Thakur, Nils Reimers, Andreas Riicklé, Abhishek Srivastava,
and Iryna Gurevych. Beir: A heterogenous benchmark for zero-shot
evaluation of information retrieval models, 2021.

Nandan Thakur, Kexin Wang, Iryna Gurevych, and Jimmy Lin. Sprint:
A unified toolkit for evaluating and demystifying zero-shot neural sparse
retrieval, 2023.

Aimee Van Wynsberghe. Sustainable ai: Ai for sustainability and the
sustainability of ai. AI and Ethics, 1(3):213-218, 2021.

36

[58]

[59]

[60]

[61]

Peilin Yang, Hui Fang, and Jimmy Lin. Anserini: Enabling the use
of lucene for information retrieval research. In Proceedings of the 40th
International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR ’17, page 1253-1256, New York, NY,
USA, 2017. Association for Computing Machinery.

Peilin Yang, Hui Fang, and Jimmy Lin. Anserini: Reproducible ranking
baselines using lucene. J. Data and Information Quality, 10(4), oct
2018.

Hamed Zamani, Mostafa Dehghani, W. Bruce Croft, Erik Learned-
Miller, and Jaap Kamps. From neural re-ranking to neural ranking:
Learning a sparse representation for inverted indexing. In Proceedings of
the 27th ACM International Conference on Information and Knowledge
Management, CIKM ’18, page 497-506, New York, NY, USA, 2018.
Association for Computing Machinery.

Tiancheng Zhao, Xiaopeng Lu, and Kyusong Lee. Sparta: Efficient
open-domain question answering via sparse transformer matching re-
trieval, 2020.

37

Appendix A

Appendix

A.1 Sample from experiment 3.1.2

{
77id77: 779’77
7text”: ”"One of the main reasons Hanford was selected as a
site for the Manhattan Project ’s B Reactor was its
proximity to the Columbia River, the largest river flowing
into the Pacific Ocean from the North American coast.”
7vector”: {
"han”: 2.686464786529541,
H#H#ford”: 2.602689743041992,
"manhattan”: 2.571538209915161,
”7largest”: 2.4362142086029053,
"reactor”: 2.414797067642212,
"b”: 2.1998252868652344,
”columbia”: 2.174396514892578,
”project”: 2.1703920364379883,
”biggest”: 2.1618852615356445,
“river”: 2.0818800926208496,
”where”: 1.996505618095398,
"reactors”: 1.9707117080688477,
"nyc”: 1.9564570188522339,
"nuclear”: 1.948696494102478,
"rivers”: 1.8943818807601929,
7ocean”: 1.8765983581542969,
”located”: 1.8681899309158325,
"why”: 1.8174678087234497,
"reasons”: 1.8168331384658813,
”location”: 1.729302167892456,
?pacific”: 1.7047481536865234,
7flows”: 1.6737322807312012,
}
}

Example word scores output from the Sparta model. Only the top 22 results
are kept (out of a total of 400).

38

A.2 CodeCarbon output example

EmissionsData (
timestamp="2024—04—23T11:54:05",
project_name="codecarbon ’,
run_id="ea889bad—e800—49f2—bb47—-50f6e27379¢c6 ",
duration=66313.9405298233,
emissions=5.4121288612118015,
emissions_rate=8.161374241933051e—05,
cpu_-power=42.5,
gpu_power=0.0,
ram_power=47.07496976852417,
cpu-energy=0.7830239961678791,
gpu_energy =13.625636186333587,
ram_energy =0.8665060176565875,
energy_-consumed=15.275166200158056,
country_name="The Netherlands’,
country_iso_code="NLD’ |
region="gelderland ’,
cloud_provider="",
cloud_region="",
os="Linux—5.19.0—-46—generic—x86_64—with—glibc2 .35,
python_version="3.10.6"
codecarbon_version="2.3.5",
cpu-count =32,
cpu_model="Intel (R) Xeon(R) Silver 4214 CPU @ 2.20GHz’,
gpu_count=>5,
gpu_model="5 x NVIDIA GeForce RTX 2080 Ti’
longitude=5.8593,
latitude=51.8421,
ram_total_size=125.53325271606445,
tracking_.mode="machine’,
on_cloud="N",
pue=1.0

)

Output of CodeCarbon for fine-tuning Sparta. See the CodeCarbon docu-

mentation for an explanation of the columns!.

"Mttps://mlco2.github.io/codecarbon/output.html

39

https://mlco2.github.io/codecarbon/output.html

	Introduction
	Motivation
	Research
	Content

	Background
	Vocabulary Mismatch Problem
	Information Retrieval Steps
	Documents
	Inverted Index
	Ranking
	Re-ranking
	Evaluation

	Datasets
	MS Marco
	WT10g

	Sparse vs Dense
	Learned Sparse Retrieval
	Machine Learning
	Latency
	Large documents

	Zero-shot Retrieval
	Learned Sparse Retrieval Models
	Sparta
	Splade

	Environmental Impact
	Environmental Impact of Learned Sparse Retrieval
	Electricity Consumption
	Terminology
	Measuring Tools

	Experiments
	Using Sparta on MS Marco Passage
	Fine-tuning the Sparta Model
	Inference
	Index
	Query
	Evaluation

	Measuring Electricity
	Fine-tuning
	Inference
	Index and Querying
	Evaluation

	Evaluating MS Marco with BM25
	BM25 on WT10g
	Using Sparta on WT10g
	Splade
	Pretrained Splade
	Long Documents

	Results
	Evaluation Scores
	Energy Usages
	Index Size and Query Latency
	Comparison

	Conclusions
	Future Work
	Fine-tuning on MS Marco Document
	Sequential Dependence Models
	Significance testing
	Fine-tuning

	Appendix
	Sample from experiment 3.1.2
	CodeCarbon output example

