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Abstract
The Internet of Things is growing rapidly, to over a trillion (1012) devices in the coming decade.
Powering all of these devices with lithium-ion batteries would put significant strain on the
environment. Energy harvesting is an increasingly popular alternative, but leaves devices with an
unreliable, i.e. intermittent, power supply. In order to be effective despite losing power frequently
and unexpectedly, new programming techniques are required: intermittent computing.

We show that the Task-Oriented Programming (TOP) paradigm is well-suited for intermittent
computing. TOP is a programming paradigm in which programs consist of tasks, which are
combined with task combinators. The mTask language is a DSL embedded in Clean which follows
the TOP paradigm. This work presents an extension to mTask making mTask programs resilient
to intermittency without additional effort from the programmer. We achieve this by implementing
checkpointing infrastructure, logic for when to resume from a checkpoint, and by configuring
communication using MQTT appropriately.

This extension makes mTask the first TOP language with built-in intermittent computing func-
tionality. Additionally, the mTask system is more flexible than other intermittent computing
frameworks. Moreover, combining intermittent computing with multithreading is considerably
more straight-forward using mTask.
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1 Introduction

1. Introduction
From fridges to cars and from phones to thermostats: the number of devices that is connected to the
internet is increasing rapidly. This collection of devices, often called the Internet of Things (IoT),
is as varied as it is vast. The number of IoT devices is expected to surpass one trillion (1012) in the
next decade [1]. IoT devices need electrical power to operate. Currently, this power is often supplied
using a lithium-ion battery, which can store a large amount of power for a long time using little
space. However, they can only be recharged a limited number of times, meaning they typically last
just 5 to 10 years, and cannot easily be recycled. Powering the expected one trillion devices with
lithium-ion batteries would therefore put a significant strain on the environment.

An alternative to using lithium-ion batteries, is to rely on Energy Harvesting (EH): opportunistically
drawing electrical power from the environment, for instance using a solar panel or using the kinetic
energy from a person walking. Although these methods offer cheap energy, they come with an
additional challenge. In most cases, they cannot provide power consistently. A solar panel only
provides power when there is enough sunlight. A podometer harvesting kinetic energy can only
do so while the person wearing it, is walking. When no energy is harvested, the device shuts down.

Due to the way computer memory works, a failing power supply causes significant issues. Typically,
computers use what is called volatile memory to operate. This memory constantly requires power
in order to retain its data. When power is lost, the memory is erased. Computers may also have
non-volatile memory (NVM), but this is often slower and sometimes can only be rewritten a limited
number of times, meaning some amount of volatile memory is required.

As a result, when power is interrupted, a device cannot simply continue what it was doing before
the interruption. By default, it will start over from the beginning of its program. If power interrup-
tions are more frequent than the time it takes to run to completion, the device will not be able to
complete its program. Intermittent computing is the field of research that aims to find solutions for
this challenge.

A key strategy in intermittent computing is to periodically store the information we have in
volatile memory in NVM, i.e. make a checkpoint. When power returns, we can continue from this
checkpoint, instead of having to start over from the beginning. This is not a trivial task however.
For instance, creating a checkpoint takes time and electrical power, reducing effectiveness of the
device, so we do not want to do this too frequently. On the other hand, the more time has passed
since the last checkpoint, the more work is lost. Furthermore, it is not trivial to ensure that relying
on checkpoints does not break correctness of the program.

Moreover, the implementation of strategies that deal with power failures is similar over different
applications, so ideally we want to separate the required code. As an example, we could collect the
instructions for creating a checkpoint into a separate function. This is not enough though, as calls
to this function would still be littered throughout the codebase. This makes the code hard to read
and thereby hard to maintain and prone to errors.

Several frameworks exist that attempt to help the programmer to make their programs intermittent
aware: resilient to unreliable power supply. However, they all come with their own challenges and
limitations, from requiring major programming expertise to not supporting multithreading. We
apply intermittent computing to Task-Oriented Programming (TOP), a relatively new programming
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paradigm, that allows for creating a system where programs are made intermittent aware without
any additional effort from the programmer. More concretely, we extend mTask, a TOP language,
with intermittent computing functionalities.

The remainder of this work is structured as follows. We first give an introduction to TOP (Section 2)
and mTask (Section 3), a TOP language for the IoT. Then, we discuss intermittent computing, what
its challenges are, and the current state of the art (Section  4). Next, our main contribution, an
extension to mTask that makes mTask programs intermittent aware without additional effort from
the programmer (Section 5). We discuss how mTask compares to other intermittent computing
solutions (Section 6) and further research opportunities (Section 7).

2. Task-Oriented Programming
TOP is a programming paradigm where program logic and GUI are generated from a single source.
Other approaches require the programmer to define these manually, or even use multiple different
languages for different parts of an application. TOP allows for creating interactive and distributed
programs while using a declarative programming style.

In TOP, programs consist of tasks, which are combined using task combinators. A task represents
a piece of work that needs to be done. A task in progress has an unstable value or no value. Once a
task completes, its value is stable and can no longer change. Tasks can observe task values of other
tasks through task combinators. There are many different task combinators, which make it possible
to, for instance, only start the next task once the current task has a stable value, select a next task
based on the value of the previous task, or to run tasks concurrently.

Besides task values, tasks communicate using Shared Data Sources (SDSs). A SDS can be, for
example, a part of a file system, a stream of random bytes, or a clock. Tasks can read from and write
to SDSs, giving them a way to communicate to the outside world. In addition, SDSs form another
way for tasks to communicate with each other besides using task values.

The iTask system [2] is an implementation of TOP. It is in active use, both in the academic world,
where it has been actively researched for more than 20 years, and in the industry, where it is for
example used to power coast monitoring software VIIA [3]. The iTask system implements the TOP
paradigm as an embedded Domain-Specific Language (DSL) in host language Clean [4]. The system
runs a webserver with multi-user and distributed computing capabilities to present a GUI. The GUI
consists of interactive webpages, generated from the source code.

We further demonstrate iTask using an example, namely a program that converts between written
and sounding note names [5]. The remainder of this section goes into some music-theoretical detail,
but the important part is that musicians have different names for the same sounds, and this app can
help clarify this difference.

Due to historical and practical reasons, some instruments, e.g. saxophone and trumpet, are
transposing instruments, which means the names they give to notes are shifted compared to non-
transposing instruments. For instance, when someone who plays a B♭-instrument plays what they
call a C, the note they play will sound like a B♭ to non-transposing instruments [6]. Converting
between written and sounding pitches requires some counterintuitive arithmetic which confuses
even experienced musicians, so a tool that helps with this may be of significant value.
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1 :: Pitch = A | B | C | D | E | F | G
2 :: Accidental = Flat | Natural | Sharp
3 :: Key = {pitch :: Pitch, accidental :: Accidental}

Listing 1: Data types for modeling tones/keys.

1 transposeUp :: Key Key -> Key
2 transposeUp key transposeBy = 
3   keyFromInt ((keyToInt key) + (keyToInt transposeBy))
4
5 transposeDown :: Key Key -> Key
6 transposeDown key transposeBy = 
7   keyFromInt ((keyToInt key) - (keyToInt transposeBy))

Listing 2: Functions for transposing (keyToInt and keyFromInt ommitted).

To start, we define some custom data types to represent tones (Listing 1). For brevity, we use the
same data type for tones and keys. We can convert each tone to its index in the 12-tone chromatic
scale, i.e. how many semitones it is above C natural, and use this to transpose one tone by another
tone (Listing 2). Doing this naively means we cannot differentiate between enharmonically equiv-
alent tones, i.e. A♯ and B♭, but we accept this shortcoming for the sake of keeping the example
compact.

For the actual application, we want the user to be able to specify a source key and one or more keys
to calculate written names for (Listing 3). We define two SDSs (lines 1–5), with C as the default value
for the source key (line 2). For each of these data sources, we define a task that updates it (lines 7–
9 and 11–17 respectively). On line 9, we use the built in task updateSharedInformation to change
the value of the SDS that holds the source key. We use the <<@ modifier to add a title to the input
form. On line 14, we use the >>* task combinator to specify a list of possible task continuations.
This combinator first starts the task on the left side. On the right side is a list of continuations,
which consist of a condition over a task value. When a condition holds, that task starts.

In this case, we specify two OnAction continuations, which show up as buttons in the final applica-
tion. One continuation simply provides a way to end the program (line 17). The other continuation
(lines 14-16) adds the user input to the SDS and then uses the >-| task combinator to recursively
call this task again. This combinator first starts the task on the left and once this task has a stable
value, continues with the task on the right. It ignores the result from the task on the left. Restarting
the task causes the input fields to be reset and allows the user to enter another key.

The main functionality of this program is to generate a table showing the different names (Listing 4).
We generate the table as a customly defined HTML table (lines 3–6). For brevity we omit the exact
details of building the table.

Finally, we tie everything together to form a single program (Listing 5). We use the parallel task
combinator -|| to combine the previously defined tasks. This combinator starts both tasks in
parallel and has as result the result of the task on the side with the minus. We use the view from
Listing 4 to transform the data from the SDSs (line 6). The |*| operator combines the SDSs to give
us a single SDS that matches the type of viewAsTransposingTable (line 7).
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 1 sourceKeySDS :: SimpleSDSLens Key
 2 sourceKeySDS = sharedStore "sourceKey" {pitch=C, accidental=Natural}
 3
 4 transposingKeysSDS :: SimpleSDSLens [Key]
 5 transposingKeysSDS = sharedStore "transposingKeys" []
 6
 7 selectSourceKey :: Task Key
 8 selectSourceKey = 
 9   updateSharedInformation [] sourceKeySDS <<@ Title "Select source key"
10
11 addTransposingKey :: Task ()
12 addTransposingKey = 
13   enterInformation [] <<@ Title "Select transposing keys"
14     >>* [ OnAction (Action "Add key") (
15                 hasValue \k-> upd (\ks -> [k:ks]) transposingKeysSDS 
16             >-| addTransposingKey)
17         , OnAction (Action "Quit") (always (shutDown 0)) ]

Listing 3: SDSs and tasks to gather user input.

1 viewAsTransposingTable :: (Key, [Key]) -> HtmlTag
2 viewAsTransposingTable (sourceKey, transposingKeys) =
3   TableTag []
4     [ TheadTag [] [ TrTag [] header ]
5     , TbodyTag [] (map row transposingKeys)
6     ]
7 where
8   header :: [HtmlTag]
9   row :: Key -> HtmlTag

Listing 4: Task for generating the transposing tones table.

Figure 1 shows a screenshot of the resulting application. The UI elements are all automatically
generated from the source code discussed above. The appearance may be a bit austere, but this can
be modified using custom HTML and CSS if desired.

1 calculator :: Task Key
2 calculator =
3       selectSourceKey
4   -|| addTransposingKey
5   -|| viewSharedInformation 
6         [ViewAs viewAsTransposingTable] 
7         (sourceKeySDS |*| transposingKeysSDS)
8
9 Start w = doTasks calculator w

Listing 5: Main task for the transpose calculator.
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Figure 1: Webpage generated by iTask transpose calculator.

3. TOP for the IoT
The IoT is a term used for devices that collect data using sensors and communicate this data over
the internet. IoT devices are typically small, cheap, and limited in processing power and available
energy. Examples of IoT devices include smart watches, RFID tags to identify parts in an industrial
plant, and wirelessly communicating sensors of a climate control system [7]. It is estimated that
the number of IoT devices will grow to over one trillion (1012) in the coming decade [1].

IoT applications typically consist of a number of sensing nodes and a single server, where the
sensing nodes are usually cheap and have little computational power while the server is generally
more powerful. The sensing nodes collect data, which they relay to the server, which processes and
stores it. IoT applications with this setup can typically be considered as consisting of several layers.
1. Perception layer. Data is gathered from the environment with sensing nodes, for instance by

reading out a temperature sensor, recording sound using a microphone, or measuring light
intensity.

2. Network layer. The sensing nodes communicate with the server, for instance to forward data or
receive commands.

3. Application layer. The server processes the data, for instance storing it in a database or sending
commands based on a certain reading.

4. Presentation layer. To allow humans to interact with the system, the server provides an interface,
often in the form of webpages, where information about the system is presented, for instance a
live view of recently gathered data.

In most cases, different parts of an IoT application are implemented using several different
languages and paradigms, e.g. C for programming resource-constrained sensing nodes, SQL for the
database, HTML and PHP for the webpages, and Python to glue it all together. This is also called
tiered programming. In tiered programming, a considerable amount of code is needed to interface
between the different parts of the system.
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The alternative to tiered programming is tierless programming, which the TOP paradigm is
specifically designed for and which has several advantages. In a tierless approach, all of the layers
mentioned above can be created using a single paradigm and a single source. In addition, a large part
of the code that programmers have to write manually in traditional tiered approaches is generated
automatically in TOP, for instance the HTML code and the code for communication. This leads to
a smaller codebase, which in turn leads to fewer errors and lower maintenance effort [8].

The remainder of this section explores the mTask system, which is a TOP language made specifically
for the IoT.

3.1. The mTask system
The mTask system [9] is a DSL embedded in the pure, lazy functional language Clean. Microcon-
trollers are typically not powerful enough to run a high-level system such as iTask, whereas
mTask is designed specifically for the IoT and can work with as little as 2 KiB of RAM. It supports
interrupts and features a scheduler, allowing for minimal power consumption [10]. The mTask
system integrates with the iTask system, which means it is possible to extend iTask programs with
mTask tasks. This setup allows for powerful, useful applications where parts of the application are
executed on edge devices, with all code generated from a single source file. To demonstrate this, a
prototype smart campus application was built using mTask [8].

The mTask system works with clients and a server. The client is typically a resource-constrained
microcontroller on which a light-weight Runtime System (RTS) is installed, which runs mTask
bytecode. The server compiles the mTask program to bytecode and sends this to the client. The
client executes the bytecode and communicates the result back to the server. Although the byte
code is generated at runtime, type-safety is ensured by the Clean compiler. Once a device is set up
with the RTS, it can execute any mTask program without needing to be reprogrammed. Figure 2
shows how the different components of the mTask system work together.

Similar to iTask, programs written in mTask consist of tasks, combined with task combinators. A
subset of the task combinators from iTask is also present in mTask, though they are syntactically
separated. Like in iTask, tasks in mTask either have no value, or a stable or unstable value.

Listing 6 shows a Clean program that uses iTask and mTask to blink an LED at a specified interval.
It was written for a Wemos D1 Mini, for which General Purpose Input-Output (GPIO) pin D4 is
connected to the built-in LED. The program consists of a single iTask task mainTask, which asks the
user to specify a device. When this specification is entered, the mTask task blinkTask is compiled
to bytecode and sent to the device using the build in liftmTask function.

The task blinkTask first specifies that pin D4 will be used as output (line 12). Then, it defines a
function blink taking one argument st (line 13), which consists of the following three basic tasks.
• Write st to the previously specified pin (line 14).
• Wait 500 milliseconds (line 15).
• Call blink recursively (line 16).

Communicates Generates Interacts
Client Server Webpages User

Figure 2: Components of the mTask system.
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 1 Start w = doTasks mainTask w
 2
 3 mainTask :: Task ()
 4 mainTask = enterDevice
 5    >>? \spec -> withDevice spec (\dev -> liftmTask blinkTask dev)
 6    >>* [
 7          OnAction (Action "Reset") (always mainTask)
 8        , OnAction (Action "Stop") (always (shutDown 0))
 9        ]
10
11 blinkTask :: Main (MTask v Bool) | mtask v
12 blinkTask = declarePin D4 PMOutput \ledPin->
13     fun \blink=(\st->
14              writeD ledPin st
15         >>|. delay (lit 500)
16         >>|. blink (Not st)
17     ) In {main=blink true}

Listing 6: iTask and mTask code for blinking an LED.

These three basic tasks are combined with the >>|. combinator, which starts the next task once the
previous task is stable. Finally, line 17 specifies that the main function of this task consists of a call
to blink with argument true.

In the call to delay, the number of milliseconds is wrapped in lit, which lifts it into the mTask
language. In the recursive call, the state is toggled using the mTask function Not.

3.2. Execution model of mTask
After startup, the mTask client enters into the main program loop, which consists three separate
phases: communication, execution, and memory management.

Communication  During the communication phase, the client processes any messages it has
received from the server, which can be e.g. a task to execute, a new value for a shared data source,
or a command to reset. The client acknowledges the server’s messages and sends any return values
it has obtained.

The mTask system does not fix a specific communication method. Rather, it provides an interface,
which can be implemented to support different communication methods. Wi-Fi, TCP, and serial
communication come with the system.

Execution  Tasks are executed using an interpreter and a rewriter. An mTask task starts as an
expression. Expressions are evaluated by the interpreter, which results in a task tree. The rewriter
tries to rewrite task trees, which may result in further expressions to be evaluated by the interpreter.
After a rewrite step, the task value is updated. Task trees are discussed in more detail in Section 3.3.

During the execution phase, one rewrite step is performed for each task for which this is expedient,
i.e. which is not sleeping or otherwise blocked. The steps are small, so tasks can be executed
seemingly in parallel by interleaving tasks. A scheduler determines which tasks should be executed,
balancing timely execution and energy efficiency.
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Memory Management  The mTask RTS reserves a single block of RAM, within which it applies
its own memory management. Task trees are allocated in high address space, task information in
low address space. The task information includes a pointer to the root of the corresponding task
tree, the current task value, and the byte code of the task. The rewriter and interpreter build their
stack on top of the task information, but it does not persist between steps. That is, at the end of
the execution phase, the interpreter stack is empty, so at this point it is safe to change the task
information.

Task trees of finished tasks and unreachable task tree nodes are garbage collected during this phase.

3.3. Task trees
A task in progress is represented by a task tree. The nodes of the tree are task combinators and the
leaves are basic tasks, e.g. delay, rtrn, or writing to a GPIO pin.

For instance the task blinkTask from Listing 6 starts as the expression blink true. After the
interpreter evaluates this expression, we obtain the task tree shown in Figure 3(a). Applied to this
tree, the rewriter first encounters the >>|. combinator in the root node. It then first handles the
left child, where it uses the interpreter to evaluate writeD ledPin st, which as a result toggles
the LED. After this task completes, we can rewrite to obtain the task tree shown in Figure 3(b),
which concludes this rewrite step. Next up is the evaluation of delay (lit 500), after which the
scheduler will not schedule this task until the delay has run out.

4. Intermittent Computing
Intermittent computing is about computing with an unreliable, i.e. intermittent, power supply. By
default, a computer starts the program it is running over from the beginning, meaning it cannot
run to completion when there are frequent power failures. What we want instead is when power
returns, for the device to continue as if a power failure never occurred. This section goes over the
use and importance of intermittent computing, as well as its main challenges.

4.1. Use Cases and Relevance
As discussed in Section 3, the number of IoT devices is expected to exceed one trillion (1012) by the
next decade [1]. Many of these devices are powered using a lithium ion battery. Obtaining lithium
from the earth requires a chemical process that is harmful to the environment. Additionally, these
batteries have a limited lifetime before their performance starts to degrade. Moreover, they are
expensive and difficult to recycle [11].

It is therefore clear that we should try to limit the number of batteries needed. One way to do this,
is to rely on EH: obtaining useful energy from the environment. This can be done in numerous

writeD ledPin st

>>|.

     delay (lit 500)
>>|. blink (Not st)

delay (lit 500)

>>|.

blink (Not st)

(a) Initial task tree. (b) Task tree after rewrite step.
Figure 3: First two task trees for blinkTask from Listing 6.
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ways, for instance using a solar panel, harvesting kinetic energy, or even harvesting energy from
stray radio waves. EH devices typically store the energy they harvest in a capacitor. A capacitor
stores electrical energy just like a lithium-ion battery can, but is cheaper, can be charged faster, is
far less environmentally unfriendly to produce, and has a much longer lifetime. On the other hand,
capacitors are less energy dense and lose up to 20% of their stored energy per day, making them
unsuitable for replacing batteries outright.

The power supply from EH is not as reliable as from a power grid or battery, but it is freely avail-
able, comparatively environment-friendly, and EH devices may keep working for decades without
maintenance.

Several products using EH are already available to consumers. For instance, a button that harvests
energy from being pressed. The harvested energy is used to communicate with a centralized
system, allowing the button to be placed anywhere, without needing any additional wiring or other
installation work and without requiring a battery [12]. There is also a smart watch that combines
energy harvested from body heat and solar energy, so that it never requires charging and can be
worn indefinitely [13].

A possible criticism of intermittent computing is that, even with state-of-the-art technology, a
batteryless device cannot offer the same reliability as the same device with a battery. After all, there
are always periods of time when no energy can be harvested and during these times, a battery-
free device cannot operate while a device with a battery can. In many devices that monitor the
environment however, data collection is only interesting at moments when EH is possible. For
instance, a weather station measuring solar intensity only needs to work when the sun is visible,
meaning there is solar energy to harvest. A step counter only needs to work when the user is
making steps from which kinetic energy can be harvested. Another way to frame this is to say that
absence of power may be considered part of data collection.

4.2. Challenges
There are several challenges to using EH instead of relying on batteries [14], but this work focuses
on the software challenges. In particular, it focuses on creating effective, efficient, and maintainable
software for devices that may lose power regularly and unexpectedly.

The main challenge comes from volatile memory, which is used by virtually all computers for RAM
and registers. Volatile memory needs power to retain data. This means that as soon as the power
fails, the program counter, the system clock, and program memory are lost. Hence, when power is
restored, the device cannot determine what it was working on or what time it is. There also exists
NVM, for instance solid state drives, SD cards, FRAM, and EEPROM, but these types of memory
have much lower reading and writing speed and sometimes also a limited number of write cycles,
meaning we almost always need to use some volatile memory as well.

For small, simple applications a solution could be to periodically store all important variables in a file
in NVM and read them from this file at startup: a checkpoint. However, doing this manually quickly
becomes infeasible for larger applications. As the number of program states grows, it may become
difficult to determine where the program should continue. Which variables need to be stored may
change over time. Most importantly, the code will become bloated with infrastructure ensuring the
volatile memory is saved at the right time. This is further demonstrated in Section 4.3.1.
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For larger applications, it is clear we need an organized way to handle power failure. Ideally, we
also want to take some responsibility away from the programmer and build this resilience into the
compiler, instead of asking the programmer to solve the same problems again for each program.

We can break the challenge of handling intermittent power up into several sub-challenges.

Progress  If the checkpointing interval is larger than the power failure interval, our program
will start from the same point every time there is power and never run to completion. We want to
be able to guarantee progress under as many circumstances as possible.

Correctness  Not all state can safely be checkpointed. Connections to other devices may need
to be re-established and peripherals may need to be re-initialized. Some operating systems use
Address Space Layout Randomization (ASLR), in which case stored pointers are no longer correct
after rebooting. Additionally, the timing of writing the checkpoint can cause incorrectness. If an
instruction has non-volatile side effects, but no checkpoint is made after it is executed, undefined
behavior may occur. This is sometimes referred to as a Write-After-Read (WAR) dependency [15].
See also Section 4.2.1. The intermittent computing infrastructure that is automatically added should
take all of this in account and preserve the correctness of the code provided by the programmer.

Timeliness  Some information is only useful for a limited time. For instance, a temperature
measurement may only be accurate for a few minutes. If a device measures temperature and then
loses power for some time, it should use not use the old measurement to make decisions, as it is
no longer reliable. This requirement is called freshness. Alternatively, instead of the time between
an event and now, we may instead have a requirement for the maximum time between two events.
For instance, a temperature sensor and humidity sensor read at the same time can provide an
estimate for wet bulb temperature. This requirement is called temporal consistency [16]. We want
the programmer to be able to specify these constraints. A power failure not only delays execution,
it may also erase the system clock, meaning there is no means of knowing how old a recovered
value is. Some implementations use dedicated hardware to estimate the amount of time passed.
One way of doing this, is by measuring the amount of power a capacitor has lost, as this happens
reasonably consistently over time. Another method is to save some power to keep powering the
real-time clock, which only takes a tiny amount of power, e.g. ~20 μA on the ESP8266 [17].

Communication  If a message is sent to an intermittently powered device while it is off,
the message is lost. Moreover, if two intermittently powered devices want to communicate, the
probability of them having power at the same time drops drastically as the proportion of uptime
decreases. Specialized communication protocols are needed for effective transmission of data.

Efficiency  Writing to NVM takes up processor cycles, meaning the device has less time to do
actual work. Additionally, this consumes power, which is scarce in EH devices. This means we want
to limit how often we make checkpoints as much as possible. On the other hand, as more time
has passed since the last checkpoint at the moment of a power failure, more work is lost and less
progress is made. Hence, this is a delicate balance.

Usability  Apart from timeliness constraints, power failure logic is largely separate from
program logic. In the majority of cases, we simply want our program to continue as if no power
failure has occurred. Therefore, it makes sense to separate the intermittent computing functionality
into a resuable, program-agnostic framework, e.g. a library with intermittent computing tools, or a
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1 x = 0
2 ...
3 checkpoint()
4 x += 1
5 if x > 1:
6   ...
7 checkpoint()
8 ...

Listing 7: Checkpointing non-volatile state leads to errors.

declarative programming style that abstracts away the intermittent computing functionality. This
way, the programmer is concerned only with the what, and the source code does not get bloated
with the how.

4.2.1. Checkpointing Errors
As discussed in Section 4.2, it is not trivial to preserve correctness when creating and restoring
checkpoints, especially when volatile and non-volatile memory are mixed. One solution is to divide
code into atomic sections that are idempotent. An atomic section is a section of code that must be
executed without interruption and without power failure. If a power failure occurs during an atomic
section, execution should resume from the beginning of the section. A section of code is idempotent
if it can be executed multiple times without changing the outcome of the program.

To illustrate this, see Listing 7, where x represents some non-volatile state. On line 4, x is incre-
mented between checkpoints. If a power failure occurs between these two checkpoints, execution
resumes from the first checkpoint and x is incremented again, meaning the final value of x is
determined by power circumstances. Since x is used in a conditional statement on line 5, this in
turn affects the flow of the entire program.

This problem is sometimes called a Write-After-Read (WAR) dependency: variable x is written (line
4) after it is read (line 1). A possible solution is to execute the read and write as an atomic section,
meaning no checkpoint can occur between line 1 and line 4. Together, lines 1 and 4 are idempotent.
After executing them, the value of x is 1. Conversely, line 4 on its own is not idempotent. Every
time it is executed, the resulting value of x is different.

4.3. Strategies
Creating intermittent computing software remains an open challenge. Over the past decade, several
intermittent computing strategies have emerged, focusing on different challenges. The strategies
can be roughly divided into three categories, discussed in the following three sections.

4.3.1. Explicit Intermittent Computing
It is possible to manually make a program power-failure resistant. Listing 8 demonstrates this via
a Python implementation of a power-failure resistant counter. Upon startup, the program tries to
restore the counter from a file. If this fails, it resets the counter to 0. Though this works, it is easy
to see how even in a high-level language such as Python, the complexity of the code would quickly
reach unmanagable levels for more interesting programs. Basic requirements such as keeping track
of what state needs to be included in the checkpoint, making checkpoints at suitable times, and
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1 def load_checkpoint():
2   try:
3     with open("cp", "r") as f:
4       return int(f.read())
5   except Exception as e:
6     return 0
7
8 def save_checkpoint(state):
9   with open("cp", "w") as f:
10     f.write(state)

1 def main():
2   # Try to restore checkpoint
3   # Returns 0 upon failure
4   counter = load_checkpoint()
5   while True:
6     counter += 1
7     save_checkpoint(counter)
8     ...
9
10     

(a) Checkpointing functions. (b) Main function.
Listing 8: Simple intermittent Python program.

not making too many checkpoints to conserve power, would already clutter the codebase beyond
a usable level.

To further illustrate this point, we discuss boothammer, which provides some infrastructure for
checkpointing [18]. It builds on the Arduino framework, in which programs are based around a
setup function and a loop function. The setup function is run once, after which the loop function
is repeated indefinitely. The boothammer tool inserts itself in the compilation chain to add check-
pointing.

Although boothammer guarantees safety and correctness, programmers need to manually specify
where in their code a checkpoint is saved. The only checkpoint that boothammer adds automati-
cally, is at the end of the loop function. However, the loop function may take an arbitrary amount of
time, for instance if the loop waits for communication. Moreover, to ensure correctness, bootham-
mer creates a checkpoint of the entire RAM, though it does offer an option to only checkpoint
the stack. Without expert programming knowledge, boothammer adds major overhead, increasing
runtime hundredfold in some cases.

The limitations of boothammer are representative for this approach. It is clear then, that not all
applications can be made battery-free with explicit intermittent computing with reasonable effort,
and that more involved frameworks are needed.

4.3.2. Task-Based Programming
In task-based programming (not to be confused with TOP), programmers arrange their code into
tasks [19]. This task structure exists in addition to what the program should do. In this paradigm,
a task is a section of code that should be executed atomically. Additionally, tasks should be
idempotent, so that it is safe to make a checkpoint before and after a task. In addition to dividing
code into tasks, the programmer needs to specify a control flow, i.e. in what order the tasks need
to be executed. In some cases, the programmer also needs to define how tasks can share data [20].

Based on this task structure and control flow, the framework then ensures progress and timeliness.
In task-based programming, it is also possible to schedule tasks dynamically, taking into account
current power availability [20].
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4.3.3. Implicit Intermittent Computing
There are also frameworks which add the intermittent functionality implicitly [21], [22]. These
build on an existing programming language and extend the compiler or the interpreter to add
checkpointing infrastructure based on static analysis.

In some cases, some language constructs are added as well for finer control, for instance allowing
users to manually specify atomic regions [16].

4.4. With Task-Oriented Programming
The TOP paradigm is well suited for implicit intermittent programming. In functional programming
languages, variables are immutable. This means e.g. the problem from Listing 7 does not appear as
such in TOP. Tasks form an abstraction over side effects. That is, tasks themselves may have side
effects, but each step happens atomically.

To illustrate this, consider Listing 9, which shows how the snippet from Listing 7 might be imple-
mented using iTask. Instead of a variable x, we have a SDS xSDS which holds an integer value.
We write 0 to the SDS on line 1 and on line 3, we increment the value by 1. The upd function has
the value that gets written as result. This is captured by the >>* combinator on line 4, which has
a continuation which is only activated if this value is larger than 1. This corresponds to the if-
statement on line 5 in Listing 7.

The important difference compared to Listing 7 is that the update on line 3 happens atomically. If
power fails after the update, but before a checkpoint is made, the SDS is restored to the state saved
in the previous checkpoint. This does not work for external state. If instead of updating a SDS,
we e.g. activate a motor which pushes over a line of dominos, there is no obvious way to restore
this from a checkpoint. This is not something we can solve or want to solve automatically, but
rather something that requires active input from a programmer, for instance in the form of atomic
sections, which are discussed in Section 7.1.

Besides checkpoint safety, the TOP paradigm boasts several other advantages for intermittent
computing. For instance, after each rewrite step, only the task information, the task trees, and some
auxiliary data are in RAM. This results in checkpoints being quite small compared to a checkpoint of
the stack and heap of a program written using an imperative language. Moreover, the rewrite steps
are small, so checkpointing opportunities are very frequent. This means we can postpone making
a checkpoint until power gets quite low, without having to fear power running out unexpectedly.
Furthermore, the mTask RTS can be restarted quickly when power comes back. This is due to the
small checkpoint size and the low overhead.

1     set 0 xSDS
2 >-| ...
3 >-| upd ((+)1) xSDS
4 >>* [ OnValue (ifValue ((>)1) ...), ... ]

Listing 9: Updating state does not lead to a WAR dependency in TOP.
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5. Extending mTask with Implicit Intermittent Computing
Our main contribution is an extension of the mTask system such that mTask programs can operate
intermittently without additional effort from the programmer. We describe our implementation in
Section 5.1 and verify that it works in Section 5.2.

5.1. Implementation
The mTask RTS implementation features a range of software interfaces to separate components
and to tailor the build for different systems. Additionally, features can be altered using compile-
time macros. Currently, it can be built to run in a PC environment or to integrate with the Arduino
ecosystem.

The Clean library gentype is used to serialize objects, needed for saving and sending. As an added
benefit, the gentype library also generates code to deserialize objects as C objects, which we need
as the RTS is implemented in C and the server is implemented in Clean.

As discussed in Section 4.4, we get some intermittent computing challenges for free. The challenges
that remain, are tackled in the sections below. First, in Section 5.1.1, we configure the communi-
cation so that the mTask server and client can communicate despite the client being unreachable
periodically. Then, in Section 5.1.2, we implement creating and restoring a checkpoint. Lastly, in
Section 5.1.3, we implement a policy to use on startup to determine whether we should try to resume
from a checkpoint. All our changes are implemented in the mTask client.

5.1.1. Communication
The mTask RTS provides an interface that allows implementing additional communication methods.
One of the available implementations is an implementation of the MQTT protocol, which is a
communication protocol designed for IoT-like systems. We modify this implementation to work
with intermittent computing.

The MQTT protocol is centered around a message broker. Instead of communicating directly,
participants of the network send messages to and receive messages from the broker. To this end,
MQTT clients — the mTask server and client are both MQTT clients — specify channels on which
they publish messages, i.e. send them to the broker. Other MQTT clients may subscribe to a channel.
Upon receiving a message on a channel, the MQTT broker forwards the message to all MQTT
clients subscribed to this channel. Figure 4 shows a diagram of how the mTask client and server
communicate using MQTT, extending Figure 2.

If a subscriber cannot be reached when a new message is sent, the broker registers this. This is
where the added value of the protocol lies. The broker sends the message as soon as the subscriber
comes back online, thereby ensuring all subscribers receive all messages, regardless of imperfect
connections or power failures.

client_up

client_down client_down

client_up

Client

MQTT broker

Server

Figure 4: The mTask system with MQTT (webpages and user ommitted).
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Ping

Keepalive exceeded

Resume session

SEI exceeded
Connected Disconnected

Expired, broker
sends LWT

Figure 5: The progression of an MQTT session.

Furthermore, the client specifies a Last Will and Testament (LWT) and a Will Delay Interval (WDI)
when setting up a session with the broker. The client specifies on which channel the LWT should
be sent. When the client runs out of power or loses connection for another reason, the broker waits
for the WDI to pass, after which it sends the LWT to all subscribers of the channel and discards the
session.

The MQTT protocol moreover allows for specifying a Session Expiry Interval (SEI). If the SEI is
larger than the WDI, the client may resume its session, meaning e.g. that the broker remembers its
subscriptions, even though the LWT has already been sent. This however is not used in the current
mTask implementation, where the SEI is always set to be the same as the WDI. Figure 5 shows a
diagram of how an MQTT session progresses.

The LWT specified by the client is a disconnect message. This means that upon losing connection,
the client has as long as the specified WDI to come back online before the server discards the session
and sends the LWT, in which case a new session will have to be established. When this happens,
the client discards any state recovered from its NVM and starts up as a blank mTask client.

In the case of mTask, there is a channel for messages from the client to the server, named id/up, and
for messages from the server to the client, named id/down. Here, id is a unique identifier associated
with the client. Figure 6 shows how the mTask server and client set up communication over MQTT.
Here, c_id is the identifier used by the client and s_id is the identifier used by the server. The server
needs to be provided the client’s identifier in order to use the appropriate channels. The server’s
identifier is only needed for the broker to identify the server.

Figure 6(a) shows how the client and server establish connection with the broker. It does not matter
which connects first. The client publishes a message — spec. in the figure — on the up channel with
info about the device, e.g. number of pins and mTask version. As soon as the server subscribes to the
up channel, the broker forwards this message to the server. Then, the server publishes the task on

create session c_id

publish spec. c_id/up

subscribe c_id/down

create session s_id

Client Broker Server

subscribe c_id/up

spec.

publish task

c_id/dow
ntask

Client Broker Server

(a) Establishing connection with broker. (b) Sending task to client.
Figure 6: Messages sent for setting up mTask client and server communication with MQTT.
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 1 prop = MqttClient_PropsAdd(&connect.props);
 2 prop->type = MQTT_PROP_SESSION_EXPIRY_INTERVAL;
 3 prop->data_int = WILL_DELAY_INTERVAL;
 4 rc = MqttClient_Connect(&mqtt_client, &connect);
 5 if (connect.ack.flags & MQTT_CONNECT_ACK_FLAG_SESSION_PRESENT) {
 6     // Resuming session successful
 7     ...
 8 } else {
 9     // Broker did not have a stored session
10     ...
11 }

Listing 10: Code excerpt for setting up MQTT connection.

the down channel, which the broker then forwards to the client. Now, the client may start executing
the task.

Listing 10 shows a relevant fragment from the implementation. The RTS uses the WolfMQTT library
which provides helper functions for building, sending, and reading messages. On lines 1–3 the WDI
is specified. line 4 tries to establish a connection. The result is written to the connection struct
connect. We inspect this result on line 5 to determine whether we were able to resume an existing
session, or whether we need to reset, e.g. because we were offline for too long and the broker has
already sent our LWT to the server.

5.1.2. Checkpointing
We add automatic checkpoints to mTask. Due to the nature of mTask, we can safely create a
checkpoint after each rewrite step (see Section 4.3.3). Checkpoints are written contiguously without
interruption. To restore a checkpoint, we then read the same objects in the same order. Listing 11
shows the implementation for creating and restoring checkpoints. The print and parse functions
are generated by the gentype library. Some details of the implementation have been omitted for
clarity.

Seen side by side, it is clear that restoring a checkpoint mirrors creating a checkpoint. A notable
difference is that when restoring a checkpoint, we may need to patch the pointers to correct for
ASLR. We do this by calculating the offset in address space (lines 23–24) and adding this offset to
each pointer (line 25, ommitted). Additionally, when restoring a checkpoint, we also initialize the
peripherals corresponding to the task (line 26, ommitted). Moreover, restoring a checkpoint may
fail if memory is corrupted (lines 2–3) or if one of the peripherals throws an error. In this case, the
restore function returns false and the client resets.

The data included in a checkpoint is as follows.
• The address of our data, needed for ASLR correction (lines 3–4),
• the task pointer (line 6),
• the heap pointer (line 7),
• the events pointer (line 8),
• the task memory (lines 9–10),
• the task tree memory (lines 11–12), and
• the scheduling queue (lines 13–22).
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 1 void nvm_save(void) {
 2   nvm_open_write();
 3   
 4   print_VoidPointer(mtmem_real)
 5   
 6   print_UInt16(mem_task);
 7   print_UInt16(mem_heap);
 8   print_VoidPointer(events);
 9   for (i=0; i<mem_task; i++)
10     nvm_put(mtmem[i]);
11   for (i=mem_heap; i<memsize; i++)
12     nvm_put(mtmem[i]);
13   print_UInt8(queue_start);
14   print_UInt8(queue_end);
15   for (
16     uint8_t i = queue_start;
17     i != queue_end;
18     i = (i+1)%TASK_QUEUE_SIZE
19   ) {
20     print_VoidPointer(
21       task_queue[i]);
22     }
23
24
25
26
27   nvm_close_write();
28   
29 }

 1 bool nvm_restore(void) {
 2   if (!nvm_open_read())
 3     return false;
 4   void *mtmem_real_old = 
 5     parse_VoidPointer();
 6   mem_task = parse_UInt16();
 7   mem_heap = parse_UInt16();
 8   events = parse_VoidPointer();
 9   for (i=0; i<mem_task; i++) 
10     mtmem[i] = nvm_get();
11   for (i=mem_heap; i<memsize; i++)
12     mtmem[i] = nvm_get();
13   queue_start = parse_UInt8();
14   queue_end = parse_UInt8();
15   for (
16     uint8_t i = queue_start;
17     i != queue_end;
18     i = (i+1)%TASK_QUEUE_SIZE
19   ) {
20     task_queue[i] = 
21       parse_VoidPointer();
22   }
23   pd = ((intptr_t)mtmem_real - 
24         (intptr_t)mtmem_real_old);
25   // Patch pointers
26   // Initialize peripherals
27   nvm_close_read();
28   return true;
29 }

(a) Function for creating a checkpoint. (b) Function for restoring a checkpoint.
Listing 11: Checkpoint saving and restoring functions side by side.

It is possible for power to fail while writing a checkpoint. In this case, we are left with a partial,
invalid checkpoint. To avoid ending up with no usable checkpoints, we apply double buffering. That
is, only after finishing writing the new checkpoint, we invalidate the old checkpoint. We reserve
one byte before writing data to represent the validity of the checkpoint. This way, we always have
a valid checkpoint, at the cost of needing more NVM.

5.1.3. Resuming a session
When the client is powered on, it does not know for how long it has been off. Therefore, we assume
that we should continue from the latest checkpoint. When the client runs a program to completion,
it invalidates both checkpoints, so that it starts as a blank client on the next startup.

If restoring a checkpoint from NVM fails, we check whether the MQTT broker still has a session
for this client. If it does, we end the session, so that the server is informed that the client cannot
continue the task.
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If restoring a checkpoint from NVM passes, we try to resume the MQTT session. If there is no
session, we reset. The broker will have already sent the LWT, meaning we do not need to inform
the server anymore that the client is not resuming the session.

To reset, we invalidate the checkpoints and clear task memory, so that we end up in the blank state
and can accept a new task from a server.

Figure 7 shows how the client decides whether to resume a previous session or to reset.

Success

Success

Fail

Fail

Power on
Restore from

NVM

Resume MQTT
session

Task loop Reset

End MQTT session
if one exists

Figure 7: Decision diagram for restoring a checkpoint.

5.2. Evaluation
We use a build of the mTask RTS for a PC environment and an example program (Listing 12) to
demonstrate that the extension works. In this program, we use a SDS (line 4) to store a number.
The server displays this number on a webpage. Every half second, the edge device increments the
counter. We run the mTask client and server on a laptop running Linux. To simulate power failure
for the client, we use system signal 9 (kill) to suddenly stop execution. As MQTT broker, we use
mosquitto [23], running on the same laptop.

When running mTask with this setup, the mTask client does indeed restore its state from disk, after
which it continues counting from where it was before being shutdown. The MQTT connection
stays open for the specified amount of time and continues the session as designed.

6. Related Work
In this section, we describe this work’s place in literature and describe the advancements it presents
in the fields of TOP and intermittent computing.

6.1. Task-Oriented Programming
With mTask, TOP has become suitable for the IoT [9]. The present work extends the mTask
ecosystem such that programs can be made power-failure resilient with minimal to no additional
work from the programmer. Though other TOP implementations exist, e.g. TopHat [24], this is the
first TOP language expanded with dedicated intermittent computing functionality.
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 1 Start :: !*World -> *World
 2 Start w = doTasks (main <<@ ApplyLayout frameCompact) w
 3
 4 counterShare = sharedStore "counter" 0
 5
 6 main :: Task ()
 7 main = enterDevice
 8    >>? \spec->withDevice spec deviceTask
 9    >>* [ OnAction (Action "Stop") (always (shutDown 0))
10        , OnAction (Action "Reset") (always main)
11        ]
12 where
13   deviceTask :: MTDevice -> Task ()
14   deviceTask dev = liftmTask count dev 
15                -|| viewSharedInformation [] counterShare
16
17 count :: Main (MTask v ()) | mtask, lowerSds v
18 count = lowerSds \counter=counterShare
19  In fun \countfun=(\n->
20          setSds counter (n +. lit 1)
21     >>|. delay (ms 500)
22     >>|. countfun (n +. lit 1))
23  In {main=countfun (lit 0)}

Listing 12: Counter program in mTask.

6.2. Intermittent Computing
With mTask, it is possible to obtain an intermittent-aware program without writing any additional
code. All required checkpointing infrastructure is added by the compiler. This is also possible using
the BFree framework [21], though it requires re-implementing a large part of the CircuitPython
language, making it more costly in terms of work to update and maintain. Since mTask is a TOP
language, it is suitable for intermittent computing by nature and only needs to be extended, not
altered, to enable intermittent computing.

Most intermittent computing frameworks do not support multithreading [19], [20], [21], [22].
Frameworks that do either require a significant amount of additional code [25] or have implemented
multithreading with polling, which is not efficient in terms of energy and computation, i.e. Immor-
talThreads [26]. Additionally, ImmortalThreads is based on C, where creating a safe multithreaded
program is rather convoluted compared to how this is done in TOP. In mTask, multithreading
is achieved through interleaving tasks. The scheduler only schedules tasks which can progress,
meaning mTask does not waste CPU-cycles on busy waiting.

The presented framework allows edge devices to be reprogrammed on the fly thanks to the client-
server setup. Other intermittent computing frameworks require either including the program with
the device on e.g. an SD card [21], or completely fixing the behavior of the device at compile time
[19], [22]. There does exist a kernel targeted at intermittent computing which allows for adjusting
priorities of work based on current power availability, but the way priorities are adjusted is still
fixed at compile time [20].
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7. Future Work
7.1. Atomic Tasks
Much of this work is concerned with alleviating the programmer of the burden of intermittent
computing. There are some scenarios however where we do want the programmer to actively
think about how to deal with unreliable power supply, for instance when it comes to temporal
consistency.

As an example, consider a motor that we want to activate when a button is pressed. If power fails
right after the button is pressed, and only comes back an hour later, we probably do not want to
still activate the motor.

One way to avoid this in mTask is to allow the programmer to specify atomic tasks. If an atomic task
is interrupted by a power failure, it starts over from the beginning of the task, instead of from the
last checkpoint. Consequently, atomic tasks need not be checkpointed, although the task info and
bytecode should still be stored in NVM. Adding atomic tasks to mTask allows more applications to
operate without battery, thereby increasing the utility of the framework.

One way to implement this behavior is to add a task combinator that takes a task and executes
that task atomically. Listing 13(a) shows the type for this combinator. This can be implemented by
altering the rewriter so that rewriting an atomic task is a single step. This way, the atomic task
completes as quickly as possible, as no other tasks are interleaved. On the other hand, this limits
functionality, as atomic tasks cannot be executed in parallel with other tasks with this method.

Alternatively, the atomic task combinator can save a copy of its task, similar to the rpeat combi-
nator. After a power failure occurs, the atomic task combinator starts from the beginning of its task,
using the saved copy. When restoring a checkpoint, the client should check for instances of the
atomic task combinator and remove any task trees in progress.

This approach allows for multithreaded, normal execution of tasks when power is available, but
requires some additional thought with regards to state. Any updates to SDSs are not reverted.
We could save the state of relevant SDSs with the copy of the task, but this also reverts updates
made by other tasks. A safe solution is to disallow atomic tasks to update SDSs, though this limits
functionality. If an atomic task is the only task to update an SDS, reverting to a saved state is safe,
but this is non-trivial to implement.

7.2. Voltage Test
Surbatovich et al. [16] show that atomic sections suffice to specify timeliness for internal state, but
external state poses a more fundamental challenge for intermittent computing. If power fails while
altering the physical world, e.g. while powering some pump, reverting to a previous state may be
undesirable or even impossible.

Ideally, we only start such a task when enough power is available to complete it. With static or just-
in-time analysis of power consumption we can estimate whether we are able to complete a task
with the power currently available. Such a check can be added automatically for atomic tasks. In
addition, basic tasks similar to those in Listing 13(b) can be added to allow the programmer to have
more control over program flow. Many devices allow obtaining the currently available voltage by
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atomic :: MTask v t -> MTask v t
1 remainingPower :: MTask v Real
2 remainingPowerMs :: MTask v Long

(a) Atomic task operator. (b) Minimum voltage condition.
Listing 13: Additional mTask language constructs for intermittent computing.

1 Obs.range(1, :infinity)
2 |> Obs.each(fn i -> GPIO.D4.write (even i))
3 |> Obs.delay(500)

Listing 14: Potato-based pseudo-code for blinking an LED.

reading a pin (line 1). Combined with analysis of power consumption, this can be used to express
the remaining power as an estimate for when, i.e. in how many milliseconds, power will run out
(line 2).

7.3. Functional Reactive Programming
TOP is often compared to Functional Reactive Programming (FRP) [27]. FRP focuses heavily on
events, making it a good candidate for programming for the IoT. Listing 14 shows what code for
blinking an LED may look like in FRP. The code is roughly based on the Potato framework. On
line 1, an infinite stream of integers is generated, wich is used on line 2 to toggle an LED. The |>
operator applies the function on the right-hand side to the argument on the left-hand side.

Potato is an FRP framework for the IoT [28]. It is likely that the insights from this work can also
be implemented in Potato and other FRP frameworks. Potato builds on the Elixir programming
language and it would be interesting to see if it is possible to add intermittent computing to this
system.

7.4. Other Intermittent Computing Concepts
Checkpoint size  Although checkpoints in the mTask system are already quite small compared
to other frameworks, the amount of data that is written for each checkpoint could still be reduced.
Each byte takes power and time to checkpoint, so reducing checkpoint size may significantly
improve performance. In particular, data that has not changed since the last checkpoint can be
skipped when writing a new checkpoint.

An obvious candidate for this in the mTask system is the bytecode, which, in the current setup,
is included in every checkpoint, even though it never changes. Additionally, if instead of check-
pointing the memory as a whole, we checkpoint each task separately, we can skip tasks that have
not changed since the last checkpoint, e.g. tasks that are waiting for a certain condition to hold.

How to determine which data to checkpoint is not obvious. Since mTask uses double-buffering, we
want to checkpoint all data that has changed since two checkpoints ago, not just the data that has
changed since the last checkpoint. When implementing a more complex checkpoint structure, using
a file system is advisable. This way, checkpoints for different tasks can be organized as different
files, thereby also splitting up the double-buffering into smaller chunks.

For further checkpoint size reduction, inspiration may be drawn from state-of-the-art techniques
[29].
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Sleep strategy  The EarlyBird technique shows that waking up the processor before the capac-
itor has fully recharged leads to better results [30]. The mTask system can be expanded with this
technique to allow it to spend less time waiting for energy to harvest.

8. Conclusion
We presented an extension to mTask that makes programs intermittent aware without any
additional effort from the programmer. This is the first TOP language with built-in intermittent
computing.

The mTask approach offers several advantages over other intermittent computing frameworks.
Thanks to the nature of TOP, the intermittent computing functionality can be implemented as an
extension to mTask and does not require significantly changing mTask, meaning it does not require
a large dedicated codebase like e.g. BFree [21]. Furthermore, the client-server setup of mTask allows
reprogramming edge devices on the fly and without exhausting the limited rewrite cycles of flash
memory. Moreover, thanks to the task-tree based evaluation, checkpoints can be made frequently
and without needing the programmer to specify suitable opportunities. Lastly, multithreading in
combination with intermittent computing is supported by mTask and easy to use.

The current implementation does not support programmer-defined atomic tasks, meaning some
requirements cannot easily be implemented using mTask. Furthermore, the mTask system can
benefit from additional functionality, most importantly reading remaining voltage and reduced
checkpoint overhead.
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Abbreviations
ASLR – Address Space Layout Randomization: Technique where the location in memory of objects

is randomized to protect against attacks.

DSL – Domain-Specific Language: Programming language tailored to a specific application, e.g.
SQL which is designed to express database operations, in contrast to a general-purpose program-
ming language, e.g. Python.

EH – Energy Harvesting: Collection of techniques to obtain electrical power from the environment,
e.g. using a solar panel to harvest solar energy or harvesting the kinetic energy from a person
walking.

FRP – Functional Reactive Programming

GPIO – General Purpose Input-Output: A GPIO pin can be controlled by software to be used for
different purposes.

IoT – Internet of Things: Term used to describe devices with sensors or actuators that communicate
over the internet.

LWT – Last Will and Testament: Message specified by an MQTT client that the MQTT broker
sends when the client is lost, i.e. when the client does not communicate for a specified amount
of time.

MQTT: MQ Telemetry Transport. Communication protocol that is often used for the IoT.

NVM – non-volatile memory: Computer memory that does not lose its data upon power loss.

RTS – Runtime System

SDS – Shared Data Source

SEI – Session Expiry Interval: Time the MQTT broker keeps a session alive after losing connection.

TOP – Task-Oriented Programming

WAR – Write-After-Read

WDI – Will Delay Interval: Time the MQTT broker waits after losing connection before sending
the LWT.
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