Incremental Consistency of the
Predicator Set Model

Ivan Alejandro Balbh Carranza

University of Nijmegen
The Netherlands

... Aquienes amoy

son todo en mi vida:

Chelita, Jorge, Rosita, Edwin,
Patty, G&sar y Mara Ancglica,
Angelica Reyna,

Lillian y nuestros hijos

Contents

Preface

I ntroduction

| Incremental topicsand updates

1 Incrementation on databases
1.1 Incremental Background.
1.2 Incremental performance L.
1.3 IncrementandPSM. oL

2 Databaseupdate

2.2 Aboutknowledgeanddata.
2.3 Update approachesondatabases.

3 Updateprocess
3.1 Theprocess.
3.2 The update processonaPSMscheme.

Il Incremental consistency in PSM

4 Incremental Techniqueson data bases
4.1 The PredicatorSetModel
Definition 4.1.1 Information Structure
Definition 4.1.2 PSM Scheme properties
4.2 Constraintchecking. 0.
4.3 PopulationupdateinaPSMscheme

5 Incrementation in a PSM schemeduring life
5.1 PSMschemeevolution.
5.2 Determiningacheckarea

Definition 5.2.1 The chainofupdates
5.3 The environmentalgorithm.
5.4 Check environmentand constraints.

6 Incrementation in a PSM scheme during modelling process
6.1 Update heuristicsinaPSMscheme.
6.2 Objecttypeupdate.
6.2.1 Facttypeupdate.
6.2.2 Atomic Objecttypeupdate.

7 Incrementation in a PSM scheme during transfor mation
7.1 Transformation at conceptuallevel
7.2 Transformation at relational database level.
7.3 Tranformation to less expressive data modelling techniques . . .

Conclusions

Bibliography

65

65

67

List

11
3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2
7.3
7.4
7.5

of Figures

Example of validation of a tupleupdate. 18
The update process. 24
Example of specialization 29
Example of generalization 30
Representation of a power type in a simple relation type 31
Representation of a sequence type in a simple relationtype . . . 31
Example of scheme of countries and theircities. 33
The original populationvalues. 34
The updated populationvalues 34
Groupingto EC membership. 38
The extendedscheme 39
Totalroles. 40
Insertion of new populations. 40
A single fact type uniqueness constraint 42
Derivated facttype 43
Unigueness combination. 43
Example of equal constraint. 44
Example of occurrence constraint. 45
Example of contradicting occurrences 46
Example of facttypeupdate. 49
Example ofaschemewithORN. 50
Augmented scheme withnew ORN. 51
Incorrectupdate withORN. 52
Non Global Fact Population Scheme 54
Example ofentitytype L 55
The begin situation. 58
Example of an extended scheme 59
Example of an updated scheme. 59
Transformation at relational level 60
Example of a tree representation of a relational database. 61

5

7.6
7.7
7.8
7.9

Example of scheme with relational database. 63

Updated scheme and relational database 64
Updated scheme and relational database 65
Updated scheme and relational database 66

Preface

This thesis is the outcome of the research that was part of my graduation in computer
science at the Catholic University of Nijmegen in the Netherlands.

In assignment of the Department of Information Systems of the university, it was my
task to write this report on the incremental consistency of the predicator set model.

Here, | would like to thank my attendant Dr. Ir. Theo van der Weide who has spent a
rather large part of his valuable time on my research and who also helped me to achieve
these results.

| also want to thank all those people here in the Netherlands ("Wat een kikkerlandje!’)
and especially those abroad (! A toda mi gente euPewho helped and supported

me to complete this research and my whole study.

lvan Alejandro Balbh Carranza
Nijmegen, February 1994

Abstract

The Predicator set mod@PSM)is a powerful data modelling technique that makes
possible the representation of complex information structures. This model is an ex-
tension ofNIAM and is a general platform for object-role models. Conventional
data modelling techniques allow only flat structures and are not capable of representing
complex structures in a natural way lilRSM does.

An information structure is represented on a scheme which, after checking the corre-
sponding constraints, is supposed to be consistB¥8M facilitates the implemen-
tation of cCasetools which also are intended to detect inconsistencies. By updating
an information structure we need to maintain an consistent scheme; this is rather an
NP-complete problem [7].

By applying some heuristics to the predicator set model it is possible to determine the
consistency of some scheme.

The strategy to be followed is to check just a limited control of the scheme that results
after extending or shrinking de original scheme.

10

| ntroduction

The predicator set mod@PSM) is an extension ofNIAM , an existing data mod-
elling technique, and is widely used in the conceptualization of information structures.

The efficiency requirements in programming languages and in databases grow stronger.
In programming languages and also in context free grammars it is possible to add or
remove some parts of an existing structure without the need of checking the whole
work again. Some programming languages recompile just the part that has been added
or the remaining program if some part has been deleted and not the whole program.

In PSM the constraints are important for the identification purposes. The validity
of these constraints in the whole context, after a possible update, has to be checked
and, by following some heuristics, it might be possible to determine whether or not the
resulting scheme, stays consistent.

In the first part of this thesis, the comprehensinarementatiorwill be explained.

Also the relation of incrementation with databases is shown.

In the first chapter a description of the incremental subject in programming languages
will be given. The incremental approach is applied to the need of updating databases.
The second chapter gives a description of the issues that appears by including new
requirements in a database.

In the third chapter, a sequence order of the update process is described, in order to
take into account the steps that will be followed in the updatefd&dMscheme. This

will be considered in different stages in the next chapters.

Chapter four describes shortly, the predicator set model. This chapter also shows how
constraint checking takes place oP&Mscheme.

In the second part of this thesis, the incremental consistencyREM scheme is
analysed, followed by proposed heuristics.

Chapter five focus more on complex interactions between the relationschips on a scheme
during life and, the heuristics to be followed for updating a scheme incrementally within

a certain environment.

11

Chapter six offers a mean of applying these heuristics by steps on different stages
during the modelling process.

Finally, chapter seven focus on the incrementation issues [B& M scheme during
transformation, where also guidelines are given for updating a relational database
scheme.

12

Part |

| ncremental topicsand updates

13

Chapter 1

| ncrementation on databases

Incremental issues have become a challenge in the research of programming languages
and also in the development of databases.

Incremental issues mean series of regular consecutive additions, or a positive or nega-
tive change in the value of one or more of a set of variables. In databases this can be
seen as an extending or shrinking of one information structure in parts. In this thesis,
schemes of information structures will be analysed. Increment, in a sense of checking
the relations of objects modules within a program, deals with the analysis how they
influence each other in order to gain efficiency and to save time.

For the incrementation matter a lot of research has been done, especially in program-
ming languages and context free grammars.

Each programming language has a different approach to this issue or a different way
to describe the dependence relationship between objects.

1.1 Incremental Background

In programming languages, the incremental problem becomes clear as the maintenance
of a program is measured in relation to the time that it takes to update some part of it,
and as time seems to be wasted in recompiling programs that have been modified be-
cause of a default or just because a new part has been added; The action of re-compiling
the whole program becomes worthless.

Researchers make strenuous efforts to let the system discover by itself that these
relationshipslo exists and, at this point, two thinking streams are depicted.

The first one is to let the user indicate all the dependencies to the system; this is well
known to be the cheapest way, but the inconsistency possibility must be taken into
account because the user can omit some dependency or just consider a dependancy to
be irrelevant.

In programming languages lik&urbo Pascal’ for example, the 'users relation’ has

15

CHAPTER 1. INCREMENTATION ON DATABASES

to be given in advance. The relationships between what has to be imported and what
has to be exported have to be given for the sake of the user. Another example is the
programming languag€’ that uses of ‘'make files’ to determine the correspondent
relations between objects.

The second one is to let the system determine the dependency between objects. What
would be the impact on the system when changing one object?. There are also two
possibilities; either the system works with explicit specifications - in that way it is
always known what happens exactly at each variation, or let the system work slower -
in this case a result might be faster.

This second approach is quite expensive because of the complex calculations that have
to be done, and also because of the research that strives to this feature. This has lead to
the Object Orientecapproach where all changes in objects must be processed locally.

Computer science used to emphasize on processing data, while later the emphasis
switched to the development of databases. A database in the early days used to be just
the ability to provide data to a program, the input, and to get the result, the output.
Programming languages have been helpful in the development of databases. Nowadays
a lot of research has been done in order to improve computer languages which support
relational databases. Also, a lot of research has been done in order to improve our
knowledge of context free grammars.

Context free grammars can also be seen as programs in which two parsing methods
can be distinguishedthe bottom-upandthe top-downapproaches. Both of them
strive toward the analysis of the relationships between objects. Research on generating
environments is motivated by the exploration of the incremental behaviour of such
environments [8]. Programming environments are mutually unrelated collections of
languages; independent tools available on an arbitrary computer like editors, debuggers
and compilers [15].

1.2 Incremental performance

The programming languag&odula-2’ gives an approximation to the solution of

the incremental problem. The concept of introducing modules is the solution of the
program size-related problem. Modules allow program components to be kept in
libraries. These modules are already compiled, so it can be avoided to duplicate work
when writing any programg that uses the same code.

These programs can import these modules from a library and re-use them without the
need of recompiling [16].

The solutions given by the programming languages offer a survey and categorization
of a number of proposals, but this does not mean that one of them is the best solution.
In databases the problem seems to have surrounding matters that can lead to further
abstraction.

16

1.3. INCREMENT AND PSM

1.3 Increment and PSM

Imagine one wishes to build, use and maintain an information structure, translated on
a relational database. Of course, by mantaining the structure one mean the updating of
this structure when more requirements are imposed ourtiverse of discours@JoD)
at conceptul level. This matterleads to the question of adding or removing information,
or contradicting the existing constraints in order to make an update succeed and perhaps
contradicting theconceptualization principle

The Predicator Set Model (PSM) is an extension of the Predicator Model which on its
turn is a formalization of the data modelling technighdAM [11].
The PSM is a data modelling techniqgue which do not violate the conceptualization
principle that states a conceptual scheme deals exclusively with the UoD and aims at
the representation of data at high level.

A very important issue for further incremental analysis is the relation type. A rela-
tion type in the Predicator Set Model is considered to be a set of predicators, where
a predicator is the combination between an object type and a role; the populations
are the states of the UoD. Unfortunately not all populations correspond to real states
of the UoD and therefore some have to be ignored, this happens when imposing the
constraints on an information structure that limits the validity of some states.

These constraints are called static. Formal definitions and further description about
PSM can be found in [12].

The incremental approach is then meant to reduce the number of transactions that
results from updating object types or populations #SM scheme. The completely

new scheme does not have to be evaluated, only the added parts or the remaining
scheme if some part has been removed.

To check whether or not the update succeeded by no contradicting the existing con-
straints of the original scheme only the static constraints will be analysed. These
constraints are categorized in hierarchy and must obey their own independency rules.
The hierarchy of the static constraints is as follows:

Uniqueness constraint

Total role constraint

Subset constraint

Exclusion constraint

e Occurrence constraint

The update of a structurddSM scheme must take place in steps. This seems to be
intuitively desired since there are no specific heuristics that prevent possible disturbing

17

CHAPTER 1. INCREMENTATION ON DATABASES

or variation of the information structure. Also for this purpose, the use of the history
of the information structure is quite important. For each update Bi5&# scheme

the result must be checked to avoid keeping worthless information. In order to achieve
this result, the interface has not been changed. As example see the figure 1.1 where
the insertion of a tuple in a database has to be first validated. The tuple must satisfy
the constraints, otherwise the tuple will be rejected.

derivated facttype o of R

I 00
add Tuple <x ; X, to R

R

Figure 1.1: Example of validation of a tuple update

18

Chapter 2

Database update

In this chapter, one of the principal functions of a database management will be
considered: the update.

Anupdate takes place at differentlevels, but in this thesis more attention will be focused
on PSMpatterns.

The problem of updating databases in steps has been considered to be difficult for
a long time. Given a view (where the operands are base relations, whose tuples are
actually stored), the question arises - considering both theorical and practical issues -
what the result of an update would be on this view.

2.1 Whereto adapt after an update?

A database is a dynamic structure; performing variations on it must be possible.
However, functionality of a database implies the whole structure should be checked
again after an update in order to guarantee consistency at conceptual as well at relational
level.

Conventional relational database design methods divide the database problem into
logical and physical design phases. In the logical design phase, normalization is used
to generate a scheme that satisfies dependency constraints, and therefore, certain update
anomalies are avoided.

Normalization tends to break existing relations into smaller pieces, and does not take
into account the user query and the update patterns. Therefore the resulting scheme
may be very inefficient for processing frequently executed queries. In the physical
design phase, the physical storage characteristics of the data are carefully chosen in
order to optimize collectively the performance of all queries [5].

In this thesis some heuristics are proposed to reduce the area in the database which
has to be adapted. Thus more effectiveness can be obtained by a local adaption. The
determination of the adaption area, which will be called lengaronmentvill be done

with the help of heuristics proposed in section 5.2.

19

CHAPTER 2. DATABASE UPDATE

2.2 About knowledge and data

Database management systems usually offer a means of expressing simple pieces of
information that are best thought of as knowledge rather than data. There is a subtle
difference between data and knowledd®ata is a mutable information that may be
changed as the result of an incoming update.

The notionknowledgewhich has been introduced in the beginning of the eighties, is

a set of statements that describe the thruths of the actual world plus a set of constraints
that describe statements that must be true in all possible worlds and statements that
ought to be true (in all possible worlds).

In this sense, the closed world assumption will be taken into account. As a matter of

fact, in the traditional database world the database schemes, integrity constraints, view
definitions and also the closed world assumption itself are considered to be knowledge,
which means that they cannot be changed by ordinary updates. The tuples residing in
relations are the data portion of a traditional relational database.

2.3 Update approaches on databases

Incomplete information occurs when, there is insufficient knowledge about the state
of the world, due to the fact that there might be more than one database (or internal
representation) candidate to represent the current state of the world.

In the database world, one can imagine the user keeping a set of relational databases.
He knows that one of these databases corresponds to the actual state of the world, but
needs more information in order to know which database is the correct one.

There are undoubtedly different and numerous approaches to perform updates but at
last, heuristic guidelines will be the leading ones. This becomes clear as it gives a
powerful estimating tool for the different possible states of the world. Just one critical
question will always remain:

How is one to incorporate these heuristics into an update algorithm. Anyhow, one of
the most common ways to update a database has been to create special query languages
like the fourth generation query language SQL.

However, traditional relational update languages are not sufficiently powerful when
dealing with incomplete information. The traditional languages also lack semantics
that are sufficiently formal for a rigorous examination of the properties of these lan-
guages.

The world changes - that is the turning by which databases may change too, and,
therefore have to be updated. In this sense, conceptual data modelling techniques
aim at the representation of data at high level of abstraction. Conventional conceptual

20

2.3. UPDATE APPROACHES ON DATABASES

data modelling techniques likeNIAM, ER, IFO, or NE have to violate the
conceptualization principle when dealing with objects with a complex structure. In
orderto representthese objects, conceptually irrelevant choices have to be made. This
implies overspecification which can be translated into adaptation of the UoD. The
PSM disposes of sufficiently powerful construction mechanisms that avoid facing
these kind of problems.

21

CHAPTER 2. DATABASE UPDATE

22

Chapter 3

Update process

In this section, the process of how an update in a database takes place is described.
Performing updates in a database means not only adding subjects but also deleting
useless information or modifying structures at conceptual and/or relational level.

3.1 Theprocess

Every time a user requests an update, these requests are made against the basic relations;
the user only sees the portions of the basic relations which are stored in the files where
no constraints are violated. Figure 3.1 shows the update process.

The request processor accepts the request, parses the request, and changes it into an
internal representation. If the system contains security modems, then, the security
constraints will be checked in the whole process. Depending on this phase, an update
operation can be accepted or rejected.

The update generator checks the request according to the constraints by following
heuristics or policies defined in advance. Finally, this request goes into the file
processor which will perform the necessary changes in the database, but will send a
message to the user in order to verify the update request. In this way not only the
environment of the system will be checked, but also the integrity constraints, inference
rules and the real world information.

3.2 Theupdate processon a PSM scheme

Due to this research, this process will be applied carefuly if&&dM scheme where

three different stages have to be taken into account.

Incremental update during life where the most restructuring of populations will take
place. When a tuple population is added, deleted or modified, the scheme on which
the tuple has to fit may contain the necessary constraints which not contradict the tuple
and, the tuple update may have to go in concordance with the scheme constraints in

23

CHAPTER 3. UPDATE PROCESS

Update Request

Request processor| ~>__

Eventualy
Security
Update Generator Modems
Status _ -
(Heuristic)

File processor /

Data Base

Figure 3.1: The update process

order to make the update succeed.
However, if there is constraint contradiction, the scheme or part of it will become the
target for reviewing. This leads to the second stage.

The second stage is the analysis of consistency during the modelling process of a
PSM scheme, where updates take place emphasizing the effects of the constraints
check and scheme modification.

Another point to bear in mind is that by updating a scheme, the scope of control might
be as short as possible avoiding oversizing and/or overpowering of the scheme.

The update process in the last stage regards another attention because of the level on
which it takes place. At this point, the strategical heuristics have been followed and
straight comparisons of the resulting relational database schemes have to be done.
After each update, these relational schemes are modified and kept in order to be reused
in the next update.

24

Part ||

| ncremental consistency in PSM

25

Chapter 4

| ncremental Technigues on data bases

In this chapter the basics of the Predicator Set MGBM) are given, they will not
be extendendly explained. For further information aboutR&M theory, see [12)].
These heuristic techniques will be approached in three different ways:

1. Transformatiom in # SMscheme during life.
2. Transformatiom in £ SMscheme during modelling process.

3. Transformatiom in £ SMscheme during transformation.

4.1 ThePredicator Set M odel

In PSM a schem& = (Z,C) consists of an information structufeand a set of
constraints”. Any population of the scheme must fit within the information structure
and satisfy the requirements specified’in

Definition 4.1.1 Information Structure

In the information structure, the following constructors are noted:
1. Afinite setP of predicators
2. A setO of object types”L € O.

3. A partitionF of the setP. The elements af are called fact types . Fact types
are also object types, therefafec O.

4. A setG of power types Power types are also considered object types, therefore
gco.

27

CHAPTER 4. INCREMENTAL TECHNIQUES ON DATA BASES

5. A functionBase : P — O. The base of a predicator is the object part of that
predicator.

6. Afunctioner : G — O. This function yields the element type of a power type.

7. A partial orderspec C A x O on object types, capturingpecialization A is
the set of atomic object typesand is defined a® \ (¥ U G). There are two
types of atomic object types:
entities (€ = A\ £) andlabels (£).
sub is a partial order of atomic object types, with the convention ilsab b is
interpreted ag is a subtype ob. Note that the namatomiconly refers to being
undividable in the sense of not consisting of predicators (as fact types are).[14]

8. A partial ordercen C A x O on object types, expressimggeneralization The
auxiliary function
Fact 1 P — F

is defined by:
Fact(p) =f<=pef

A fact type is called objectified, if it occurs as the base of a predicator. A
predicator is called an objectification, if its base is a fact type.
The setH contains all objectifications:

H = {p€p|Base(p)€F}

Each element afl has an associated (unique) top elemenpater familiasand
it is found by applying the function: A — A.
This function satisfies:

(@) a sub b= N(a)=T11(b)
(b) @ # M(a) = a sub M (a)

Concluding an information structugeis a tuple(?, O, Sub, F, Base,).

Definition 4.1.2 PSM Scheme properties
Population

A populationPop of an information structur& assigns ir© a set of values of the uni-
versal domain to each object, conform the structure as prescrilf&hidF, respecting
the subtype hierarchsub. This is denoted as:

Vo ped [Sub y = Pop(x) C Pop(y)]

28

4.1. THE PREDICATOR SET MODEL

This is referred to as the subtype rule.
The population of a composed object type is a set of tuples. A tupla fact typef
is a mapping of all its predicators to values of the appropiate type:

\V/fe}"vtePOP (1) Vpes[t(p) € Pop(Base(p))]
This is referred as to the conformity rule.
Specialization

Specialization which ilNIAM is referred to as subtyping, is @ mechanism for repre-
senting one or more (possibly overlapping) subtypes of an object type. Specialisation
is only to be applied on specific instances of an object type of those instances for which
certain facts are to be recorded.

Specialization will be treated as common subtyping for constraint checking. Figure
4.1 shows an example of specialization.

The next section shows that for incremental updates, the subtypes do not affect con-
straints during life unless new constraints are required because of the new populations,
or because possible failure of the identifiability.

flesh- plant-
eating eating

{{

Figure 4.1: Example of specialization

29

CHAPTER 4. INCREMENTAL TECHNIQUES ON DATA BASES

Generalization

Generalization is a mechanism that allows the creation of new object types by uniting
existing object types. For generalization it is typically required that the generalized
object type is covered by its constituent object types (or specifiers). For constraint
check purposes, the same heuristics as for specialisation will be followed. Figure 4.2
shows an example of generalization.

has price is price of

Figure 4.2: Example of generalization

Power types

The concept of power types RSMforms the data modelling counterpart of power
sets in conventional set theory. An instance of a power type is a set of instances of its
element type. Such an instance is identified by its elements, just as a set is identified
by its elements in set theory.

In this context, only static constraints will be analysed for consistency purposes. These
constraints, from which forbidden populations are excluded, will be the kernel of this
research.

Power types issues are not computer supported, that means that in order to express
power types on a relational database, a translation to a more simple and well supported
ordinary relation type must take place in advance as shown in figure 4.3.

Sequence types

Sequence typing offers the opportunity to represent sequences, builtfrom an underlying
element type. This notion is not elementary in PSM, as it is expressible in terms of

30

4.1. THE PREDICATOR SET MODEL

Convoy

has-name is-name-of

This power type is translated to NIAM as:

contains is-contained-in has-name is-name-of

Figure 4.3: Representation of a power type in a simple relation type

generalisation.[12] The example of figure 4.4 shows how a sequence type can be
translated to a well representational relation type; This figure has been taken from
[10].

&

element-

Sequence type sequence
q yp added-to extend-with

Figure 4.4: Representation of a sequence type in a simple relation type

31

CHAPTER 4. INCREMENTAL TECHNIQUES ON DATA BASES

4.2 Constraint checking

In this section an existing information structure diagram with its corresponding popu-
lation and constraints is given. The representing scheme of this information structure
will be updated in two ways:

The first one will be related to the population where data has to be added, removed or
replaced, due to changes in the UoD of the user requirements.

During validation and verification, it must be checked whether or not the new infor-
mation is valid and consistent. Updates in this sense are considered to be addition,
modification or deletion. When updating only instances, such systems are considered
to be traditional or snapshot systems because they do not take into account any concept
of time. As a consequence, during an update of a state, the former state cannot be
retrieved [2].

The second one will be related to the scheme itself. In evolving information systems,
scheme specifications, activity models and behaviour specifications can be updated.
The information systems allow updates like recording, correction and forgetting of
all information recorded in the system [2]. This kind of scheme updates will be not
considered on this research. This means time will be disregarded as an evolving factor
for an information structure.

The scheme can not only be extended with new object types and with new relations to
that scheme but also with new populations.

Indentation of object types and fact types leads to removal of a part of the population
and loss of information. Most models consider only retrieval transactions but no update
transactions such as deletion, insertion and modification.

4.3 Population update in a PSM scheme

In this section the updating of an existiRgSMscheme is analysed. The framework for
update is divided in three levels: event level, recording level and correction level [2].
For purpose of constraints checking and further update analysis, the time factor will not
be considered. Since new events becomes requirements for a datdBS&ddsaheme

will be extended with new object types, and new populations will be added.

Consider the next example where an incremental update is required. Imagine one has
a relational database for Europe, consisting of countries with their cities. The capitals
are marked. A country has a least one city. We assume that city-names are unique, so
they appear in just one country.

Having created the scheme for Europe as shown in figure 4.5, all of a sudden a war
breaks out in Yugoslavia and this country does not exist anymore and new countries
have arisen.

32

4.3. POPULATION UPDATE IN A PSM SCHEME

One has to check whether or not the scheme will have to be adapted, starting with a
constraint check. The constraints must be checked separately and putinto a declarative
form.

Consistency checking must be restricted to a section of the database as small as possible,
keeping the response time during updates acceptable.

pl p2

p3

p4

Figure 4.5: Example of scheme of countries and their cities

The original population values of the relational database are shown in figure 4.6.

The values of the instances in both fact typesdg have to be updated because of the
splitting of the ethnical regions inside of Yugoslavia. For these tables this means that
Yugoslavia have to be replaced by one of the country-names Croatia, Small Yugoslavia,
Slovenia, Macedonia and Bosnia.

At first, the tuple (Yugoslavia, Belgrado) is removed from fact typef. |If
constraint checking would take place at this point, an inconsistency would be
found; the subset constraint is violated. To solve this problem, the tuples
(Yugoslavia, Belgrado), (Yugoslavia, Lyubliana), (Yugoslavia, Zagreb),
(Yugoslavia, Sarajevo), (Yugoslavia, Skopje) in fact typeg also have to be re-
placed by the new update tuples.

Executing the constraint check now would not reveal any inconsistencies. The update
of this relational scheme is not complete at all. Due to the change of information needs,
a new population should be added. As a result, new tuples will be introduced on fact
type f. This is shown in figure 4.7.

The insertion of a new tuple in fact tygeresults in checking of predicatgr because

it is a total role. Predicatgr, is not checked because it is not total.

The uniqueness constraints are checke@ndp, are both unique; this means names
repetition on both sides are not allowed.

Before executing the subset constraint checking, the tuples in facytypse to be
added. Adding a new tuple in fact typeequires the checking of the total rolesand

pa.

33

CHAPTER 4. INCREMENTAL TECHNIQUES ON DATA BASES

9
Country | City

Country City

Holland Amsterdam

] Holland | Amsterdam
France Paris -
) Holland | Nijmegen
Yugoslavia | Belgrado

France Paris

France Calais
Yugoslavia| Belgrado
Yugoslavia| Ljubliana
Yugoslavia| Zagreb
Yugoslavia| Sarajevo
Yugoslavia| Skopje

Figure 4.6: The original population values

f g
Country City Country | City
Holland Amsterdan Holland | Amsterdam
France Paris Holland | Nijmegen
S.Yugoslavia| Belgrado France Paris
Slovenia Ljubliana France Calais
Croatia Zagreb S.Yugoslavia| Belgrado
Bosnia Sarajevo Slovenia | Ljubliana
Macedonia| Skopje Croatia Zagreb
Bosnia Sarajevo
Macedonia| Skopje

Figure 4.7: The updated population values

Because of the uniqueness constraintggrcity-names repetition is not allowed.

34

4.3. POPULATION UPDATE IN A PSM SCHEME

In this example three different constraints have been checked: total, uniqueness and
subset constraints. The checking also took place in that order:

1. Total-roleto determine &kind of environmento see how far an update will take
place on a scheme.

2. Uniguenesso remove invalid populations and
3. Remaining constraints

These ideas will be worked out in the next chapters.

35

CHAPTER 4. INCREMENTAL TECHNIQUES ON DATA BASES

36

Chapter 5

| ncrementation in a PSM scheme
during life

In this chapter the populations of a scheme will be analysed in order to see the
modification steps that results by an update request. Heuristics will be proposed
to reduce the environment in the database where the adaption will take place. Fur-
thermore, an algorithm will be given for determining an area where constraints have
to be checked. Different constraint types will be analysed how to be checked after an
update.

5.1 PSM scheme evolution

To obtain heuristics for determining the check area, an example has been used. Con-
sider the structure of figure 5.1 where the update on it consists of grouping countries
according to their membership to the European Community (EC). This means, in order
to update the structure, the former object type on which the new relation will be built
has first to be searched.

For this purpose, object tygeountryis chosen. The new relations are denoted as sub-
types. Each country on this database should be member or not of the EC. By executing
the constraints checking at this point, no inconsistencies are found. The sub-typing
update did not affect the consistency and did not contradict the other constraints at all.
Just new populations are created referring memberschip.

Consider now new requirements for this information structure be from sportive ground,
on which each city has a football club and each country has 'representative’ footbal
players. All players belong to a football club.

In figure 5.2, a new tuple will be added to the football players population with the
knowledge of the dutch player Koeman plays for the dbalbcelonafrom Spain.

The tuple(Koeman, Holland) will be added on fact typé. If constraint checking
would take place at this point, the first inconsistency would appear: the constraint

37

CHAPTER 5. INCREMENTATION IN A PSM SCHEME DURING LIFE

pl b2

Figure 5.1: Grouping to EC membership

contradict each other.

As conclusion it can be said that in order to execute this update: the club Barcelona
might have been also recorded. This also means the city Barcelona might have been
recorded. Consequently, the country Spain might have been also recorded in advance.
Finally it must be determine whether or not Spain is a EC-member.

A Chain of updates should have taken place in advance. By adding the tuple
(Koeman, Holland) in fact typeh, predicatorsps and ps were checked. Country
Holland was already recorded.

Because of the total role on predicatpysandpg, also a tuple must be added on fact
type:. Predicatorgg and p;o are also total and a tuple population in fact tygead to

be added. In this case there is no uniqueness constraint, so the remainig constraints can
be checked. By meantime, all the populations become kept and if some inconsistency
would appear then it could be easily to update (remove, add or correct) the population
of the corresponding fact types.

5.2 Determining a check area

The comprehensiorChain has been introduced. By updating the population on a
PSMscheme, a sequence of updates is originated and the next analysis of this update
behaviour can be noticed: Thenvironmenton which the update will take place have

to be determined. The update takes place through the whole environment.

38

5.2. DETERMINING A CHECK AREA

Football

Football
players
(name)

p10

p2

p4

Figure 5.2: The extended scheme

Definition 5.2.1 The chain of updates

Let 7 be a non-empty set @ with total(r): see figure 5.3.
pi € Pand: € N forma Chain if:

total(pi) A p2 € Fact(p1) A Base(pz) ~ Base(ps)
A total (p3) A pa € Fact(p3) A Base(pa) ~ Base(ps)
A total (ps)...

The Chain S corresponds to the next formula:

\V/l <i < length(s)-2, i € N and pleS[tOtal (pi)/\pH—l € Fact (pi)/\Base (pi—l—l) ~ Base (pi_|_2)]

39

CHAPTER 5. INCREMENTATION IN A PSM SCHEME DURING LIFE

Figure 5.3: Total roles

The same formula can be applied to determine the update environment if other con-
straints are concerned. In that case, the parantetak can be substituted by the
corresponding constraint.

In the situation of figure 5.4

Figure 5.4: Insertion of new populations

If a new population is put omase (p1), then a complete update can be originated
throughout thechain In other words, the environment on which the update will take
place is determined at first.

This heuristic is quite relevant also for purpose of extendiffSM scheme with a
fact type or with an object type as in the next part will be explained.

40

5.3. THE ENVIRONMENT ALGORITHM

5.3 Theenvironment algorithm

To determine the checking environment, the next heuristic algorithm is proposed:
The Chain is extended :

1. Throughout all total roles where in the next fact type an update takes place.

2. The predicator (let € P, If V., total(7), p ¢ 7), where there is a relationschip
of the new element ip.

If there is a constraint in the chain: constraifs . .. p,} where ap; can be
found which is related with a predicator or a fact type beyond the chain, then the
chain will be extended to that fact type.

The extension of the environment is upto the next object type if:

e The element in the predicator of the next first fact type already was recorded in
the population of the adyacent object type.

e The extension goes upto the next object type if the element still has to be added.

It holds then as algorithm:

iflor2or3

thenextension of the environment

elsereprocess the algorithm from step 1 for the next update.

As a consequence:

All the constraints must be checked independently; In case there are no more
updates, the algorithm will stop.

If an update takes place by influence of a constraint, then all the constraints on
that fact type must be checked. If as consequence of this action, new populations
must be added to an object type, the algorithm will start again from the first step.

If the algorithm stops then the checking environment has been determined.

After each insertion, the new fact types and object types have to be checked again
in order to extend the environment according to the algorithm.

41

CHAPTER 5. INCREMENTATION IN A PSM SCHEME DURING LIFE

5.4 Check environment and constraints

In this section, the constraints will be first treated separatelly. Incrementation at this
stage is concern to the populations. Therefore, the concordance betwee constraints and
update instantiations might harmonize.

Total role constraint

A population that satifies this constraint must be checked by:

| Pop (Base(q)) = [J Pop (my(Fact(q)))

q€eT q€eT
Just the updated population must be checked, the former population was suppose to
be correct. By no inconsistency with other remaining constraints the tuple will be
recorded.

For the total role constraint, the old information is in fact not relevant for being kept,
just the new element of the update is important for control checking of remaining
constraints.

Uniqueness constraint

For the uniqueness constraintB®Mschemes, two types can be recognized: Unique-
ness constraints whete(Unique(é) A ¢ C P) does not exceed the boundaries of a
single fact typef (see [12]). On that way, the uniqueness constraint is bound to the
relation(¢(6) = f). The elementary fact type is given in figure 5.5.

Figure 5.5: A single fact type uniqueness constraint

In this case, the uniqueness constraint is checked independently like in the european
databes example, where name repetitions are not allowd. By adding an elgrteent
object typeA then the next heuristics can be followed:

Search alb, € Pop (74(p)) with a3 = b;. In case that no, is found then:; can be
added, otherwise no update will take place becayseas already recorded.

The second type is the uniqueness constraint for derivated types.

Let o be a non-empty set of predicatosse P where it holds:

f (U) = UC(U) P fe Facts (o) f

42

54. CHECK ENVIRONMENT AND CONSTRAINTS

Then, by adding an arbitrary tuple to the resulf ¢¢), just the elements in the update
tuple will be checked that corresponds to the combination of edgég-¢f This is
shown in figure 5.6:

o

I |

Figure 5.6: Derivated fact type

Let¢ (o) = R, whereR is the derivated fact type. Let € o add(x, , x3) to R, for
a derivated fact type, the next situation must be taken into account:

if 21 =2
thentuple was recorded
elsemenace of constraint violation.

Infigure 5.7, an example of the uniqueness constraint with derivated fact types is given:

r S t

The derivated fact type is ’p ‘q ‘ ‘ ‘ ‘

Figure 5.7: Unigqueness combination

Unique (o) Whereo = { r, t}. The semantic of figure 5.7 is :

£(0) = 0 p=gng=s (f9)

43

CHAPTER 5. INCREMENTATION IN A PSM SCHEME DURING LIFE

By adding a new tupléas, az, a3, as) to this derivated fact type, the combination on
rolesr and¢ must be checked, that means repetition of thees populations on this set
are not allowed. For purpose of scheme evolution, the incremental approach concerns
now about the question of what information to keep as intermediate result in order to
re-use it for later checking.

When a scheme is updated, it consequently becomes bigger. New populations with
new restriction arises. It is then worthless to keep all the invalid former populations
unless no memory costs are important. For a low budget’ memory it is better to make
a choice of what is going to be kept in memory. For the uniqueness constraint, the
population which concerns the uniqueness combination must be kept, the rening values
which do not take part of this combination does not have to be recorded, the derivated
fact type guarantees the consistency.

Set constraints

Let o andr set of predicators, for the set constraints

Subset, (0, 7), exclusiony (o, 7), equal, (o, T)

it holds checking of constraint consistency by searching a mapping between the predi-
cators ino which concerns the constraint as shown in the graph of figure 5.8:

Figure 5.8: Example of equal constraint

44

54. CHECK ENVIRONMENT AND CONSTRAINTS

Occurrence frequency constraint

This is merely a restriction constraint. Lebe a non-empty set of predicators involve
on this constraint. This is denoted as:

frequency (o ,n ,m)

By adding a new tuple, it will be checked whether or not the new tuple appears at least
n and at mostn times in this set.

Inthis case, keeping of old information by updates is not required, even if this constraint
is applied in combination with other constraints.

Figure 5.9 gives an example of occurrence constraint.

Figure 5.9: Example of occurrence constraint

It can be possible that for this constraint, contradicting occurrences are placed. The
schemes under these situations must keep a valid population that satisfies both occur-
rences as shown in figure 5.10.

45

CHAPTER 5. INCREMENTATION IN A PSM SCHEME DURING LIFE

Population for f : Population for g :
<a, by > <a, by >
<a, by > <a, b, >
<aj b, > <ag, by >
<a,,b, >

<a.,,b, >

Figure 5.10: Example of contradicting occurrences

46

Chapter 6

| ncrementation in a PSM scheme
during modelling process

In this section, the update of an information structure at scheme level during the mod-
elling process will be analysed. At this point an update would not seem to be necessary
since the information structure at this level is not finished at all. Nevertheless as long
as new specifications arise or forgotten items must be included or deleted, the scheme
takes new proportions.

When an additional fact type or object type is inserted between two object types, it
is customary not to leave just extra space between the corresponding items but it is a
preamble to analyse whether or not the insertion will succeed.

In order to determine the consistency of the new resulting scheme, the incremental
approach will be applied, in this context tBdject Relation NetworKORN of each
resulting scheme by each update step will be kept for further comparison with the next
first update on the same scheme. TBRN makes it possible to visualise complex
operations on information structures, which are necessary to determine the semantics
of some graphic constraints.

The nodes of this network ar¢x ~ |- gen(x)}, wherer ~ is the sef{y | + ~ y} of

all object types that are type related withAn edge, labelleg is drawn from nodeV

to nodeM iff p is a predicator withase(p) € N andract(p) € M. This implies that the
leaves of this network contain only elements fréha- F. All non- leaves correspond

to fact types [12].

6.1 Updateheuristicsina PSM scheme

For this purpose the next heuristics will be applied:

1. The environment on which the update will take place has to be determined. One
must try to keep the size of this environment as small as possible in order to make

a7

CHAPTER 6. INCREMENTATION IN A PSM SCHEME DURING
MODELLING PROCESS

the sub-scheme area of control limited.
2. This environment, after some update must remdentifiable

3. The resulting scheme must pepulatable

Theorem 6.1

Suppose schenteis identifiable and also populatable, then:
(@)
Identifiable[Environment(update)] = Identifiable[new scheme]
(b)

Populatable[Environment(update)] = Populatable[new scheme]

Where new scheme is the result after updating scheme

Before the proof of this theorem can be formalised, the delimiters around these heuris-
tics might be defined. Therefore it is convenient to analyse the behaviour of the check
environment in advance.

The space used by anvironmenis the scope of the update; This update can be of
two types:

¢ When a fact type is updated and
¢ When an Atomic object type is updated

6.2 Object type update

The object type update consists of a Fact type update and an atomic object type update.
The environment must be determined in those two cases and the identifiability and the
populatibility must be checked for the new scheme.

6.2.1 Fact typeupdate

Since new requirements are being specified, adding a binary fact type is the most trivial
way of relating two object types. By adding a binary fact type, the environment will
be extended by the two connected object types. By adding an arbitamyfact type
between (different) objects, the environment will be extended with all those connected
object types.

Furthermore, after adding the fact types, the constraints can be added, which may
influence the environment size.

It can be concluded that by adding a new fact type, the environment of constraint
checking is determined by:

48

6.2. OBJECT TYPE UPDATE

Figure 6.1: Example of fact type update

1. All object types on which the new constraint is supposed to be related with.

2. All fact types that are connected with the object types mentioned above via a
chain

The three heuristics previously mentioned can now be worked out.
Environment

In this environment, all the constraint connections between the different fact types must
be checked. This will be executed according to the environment algorithm. It might
be possible that a constraint must be added to the scheme; in that case, the checking
will then be continued with another constraints on the same object types.

In case of insertion of an 6.2, ti@RNchanges automatically, taking care that the new
scheme remains correct. The semantic of figure 6.2 is:

{la) =Ch=c (g h)

Assume object typed;, ..., A, are connected with fact tyge
The predicators ofd,, ..., A, are the only ones which are concerned with all con-
straints.

Only for theuniqueness constraint, all fact types of the whole scheme are important.
In this caseall existent unigueness-combinationgtudsefact types must be checked.

f(a) =Chzcne=c (g hopa f)

In the figure 6.3, itis shown that it is possible to deduce a selection of new predicators
in the uniqueness constraint. In other words, it can easily be seen which predicator
cannot exist in the uniqueness constraint.

49

CHAPTER 6. INCREMENTATION IN A PSM SCHEME DURING
MODELLING PROCESS

The ORN of this scheme is:

OERORENO

Figure 6.2: Example of a scheme with ORN

The originalORNcan be kept to make ne®@RNs with the added predicator(s) and
with the new fact type(s). The origin@RNthen will be kept as long as the né&»RN
has no more joinable descendants (or otherwise the@RNwould be incorrect).

Only if a correctORNwould result, in other words, @@RNwith joinable descendants,
the formerORNwill be replaced by the new one. Figure 6.4 shows an adding with
its correspondin@®RNwith no joinable descendants. Thus, the environment can be
limited by observing th©RNduring the evaluation of the uniqueness constraint.

|dentifiability

In this section the new scheme and BN must be checked for identifiability by
structural identification:

50

6.2. OBJECT TYPE UPDATE

The ORN of this scheme is:

Figure 6.3: Augmented scheme with new ORN
1. Each label type should occur in some total role constraint:
Voec 3, ¢ p totai(ryec [Base(p) = Ap € 7]
2. All entities can be identified:
Ve e [Identifiable (z)]

where the predicattdentifiableis defined by:

(@) If x is alabel type, themdentifiable (x).

51

CHAPTER 6. INCREMENTATION IN A PSM SCHEME DURING
MODELLING PROCESS

The ORN of this scheme is:

b
(e

Figure 6.4: Incorrect update with ORN

(b) If « is a composed object type (or generally a set of predicators) then

Vyer [Identifiable (Base(p))]

(c) If z is an entity type, then there are two cases:
i. If zisasubtype, thenisidentifiable if its associated pater familias
is. In addition, there should be a unique subtype defining rule.

ii. If xis nota subtype, thencan be identified, if there exists a set
of predicators that can be used for this purpose, a identifief:for

-7#0

— unique(7)

52

6.2. OBJECT TYPE UPDATE

— Identifiable(7)
— VteFact(+) Jp € Compl (r,2) [unique(p) A total(p)]
The setCompl(7, z) of co-roles with respect to is defined as

Compl(r,z) = {p € | JFact(7)\7| Base(p) = x}

This checking is quite feasible since the added fact type belongs to an existing object
type which is supposed to be Identifiable. If the Object type is identifiable then also
the fact types that belong to it. The formula should then be applied only within the
environment check.

Populatability

The updated scheme must be checked for populatability. Only a fact type has been
added, the checking is done by:

LocFactPop(Z) = vfe]: Jpop| IsPop (Z,Pop) A Pop(f) # ¢]

Populatability at the fact level is a stronger property than at atomic level as it will be
shownin the next section. Ifthe shemeigFactPop(Z) thenis als@.ocAtomPop(Z).
Adding a new fact type, does not influence the populations in other fact types. This
meansilobFactPop(X) remains to be valid.

Adding an atomair object type, does not influence@hebFactPop(Z) as well, be-
cause it is not even connected with the graph.

But, adding a constraint, may influence the scheme on a way that € actPop()

will loose validity. This is shown in figure 6.5.

Let f :{ (a1,01)} ¢ : {{a1,b1)}thenthe tupléas, b:) may only existin facttypef or
in fact type ¢, but not in both because of the exclusion constraint.

6.2.2 Atomic Object type update

For the update of an information structurewith new object types at scheme level, the
same procedure as in the previous section will be applied. There is an small variation
in the environment determination step:

Environment

Determine the kind of the new atomic object types, the possible classes are:

1. Labd type: In this case, the analysis of possibilities to joining or splitting with
other label types are done. An existing label type could be splitted in more label
types on wich the new label type could be joined with. At this point the step
seven of theNIAM process can be applied. Further can be seen whether the
new label type belongs or can be put under another former label type.

53

CHAPTER 6. INCREMENTATION IN A PSM SCHEME DURING
MODELLING PROCESS

T

With the exclusion constraint, the scheme is not GlobFactPop :

- =

g

Figure 6.5: Non Global Fact Population Scheme

2. Entity type: In this part, the rules dNIAM holds also foPSMwhere three
cases must be analysed:

(a) Object types will be treated as entity types.

(b) Ifthereis no Generalization or Specialization then determine similarly
entity types for possible joining.

(c) Determine possible Generalizations or Specializations of the new entity
types with the existing entity types. If there is a Specialization or

Generalization then add the new entity type in this new Gen/Spec
structure with their corresponding constraints.

3. Determine the relationschips with all object types with the new atomic object

type. Translate these relationschips in fact types which can be unary, binary, or
n-ary.

4. The new fact types will be checked per fact type according to the heuristics of

the previous section. Thus, the new constraints will be added and the neccesary
constraints will be checked within the environment.

For adding one entity type, it is necessary to add two fact types and the corresponding
uniqueness constraints. After this checking, the whole update must be checked for

54

6.2. OBJECT TYPE UPDATE

identifiability.

All these entity type updates could lead to confusions because of the additional fact
types and uniqueness constraint combinations which also belong to an update of an
entity type. To solve this problem, all entity types will be considered like in figure 6.6.

new

/>~ -

- Existing

This can be simplified to :

O

Figure 6.6: Example of entity type

55

CHAPTER 6. INCREMENTATION IN A PSM SCHEME DURING
MODELLING PROCESS

|dentifiability

Only the object types will be checked to see whether or not they are identifiable. This
is done by:

Supposer is the new object type, then it can be concludeédntifiable(x) if all
components of are identifiable:

Vyex[Identifiable (Base (p))]

To ensure termination of this checking, the same procedure as for fact type update must
be executed.

Populatability

For populatability only the fact types will be checked to see whether or not they are
G obFact Pop. The same procedure checking as for fact type update must be exe-
cuted.

The framework for the prove of theorem 6.1 has been given. Update of the differnt
types, identifiability and populatability have been analysed independently. It can be
then concluded:

Proof of theorem 6.1:

The analysis of this section provides an outline of a proof for:
Let 2’ be the new scheme, retrieved from the schemadter updating.

(a) For Identifiability :
Identifiable[Z]A Identifiable[Environment(update)] = Identifiable[Y]
(b) For Populatability :

Populatable[Z]A Populatable|[Environment(update)] = Populatable[Y]

56

Chapter 7

| ncrementation in a PSM scheme
during transformation

Incremental consistency oflBSM scheme can be achieved by applying a sequence
of heuristics that concerns updates of fact types or atomic object types as shown in the
previous chapter. In this section an approach of a transformatioR&M scheme at
internal level will be given.

Transformation is a wide concept, meaning it deals with different aspects in databases
as well as in other issues.

In the incremental consistency BfSM schemes, it can be said that there are three
kinds of transformations:

1. Transformation at conceptual level.
2. Transformation at relational database level.
3. Transformation to another less expressive modelling technique (language).

This paper intents to describe the effects of the incremental patterns, this is explained
in the second item. The third item deserves more accurate attention but is not quite in
the scope of this research. Now first a review of transformation at conceptual level.

7.1 Transformation at conceptual level

In this section, the transformation caused by updateBR8M scheme will be dealt

with. Until now, the analysis of updates was focused on checking the consequences
of adding objects or populations when more requirements were imposed to a system;
these updates took place in steps, but the possible operations on the scheme were not
taken into account.

As depicted in [3], data transformation is a dichotomy; transformation of data schemes
and transformation of data operations.

57

CHAPTER 7. INCREMENTATION IN A PSM SCHEME DURING
TRANSFORMATION

At the updating aPSM scheme because of new requirements, the possibility of
changing the original structure of the relationschips exists. So the possibility that
a binary relationschip might become a ternary one or anotkey one, has to be
considered.

To enforce and support extending of the system at conceptual &M counts

with constructors like: Power types, Sequence types, Generalisation and Specialisa-
tion which will be treated as common objects in order to be able to apply the proposed
algorithm to make the update succeed.

Step four of the information analysis BIIAM gives the corresponding techniques
which also can be used for tHeSM schemes.

In addition of the splitting and re - grouping techniques, there are also the formal
relational type transformations:

¢ Relationschip - to - object reduction
Object - to - relationschip composition.

e Nesting / flattening.

e Object - to - role reduction
Role - to - object composition.

Consider the next examples, where a summary of these techniques is shown. The start
situation in figure 7.1 is the relation betweelasendate

Figure 7.1: The begin situation

Consider now the scheme to suffer from variations because of the introduction of new
requirements; then, the entitylass can be extended to the next situation (see figure
7.2).

Due to theNIAM steps, this extended scheme presents some redundances that have
to be removed (as shown in figure 7.2).

The constraint checking takes place in steps as is explained in the previous chapter.
Combination of possible new constraints will also be checked within the checking
environment.

58

7.1. TRANSFORMATION AT CONCEPTUAL LEVEL

Lecture

Figure 7.3: Example of an updated scheme

59

CHAPTER 7. INCREMENTATION IN A PSM SCHEME DURING
TRANSFORMATION

7.2 Transformation at relational database level

In this section a consistel*SM scheme with its corresponding relational database
scheme will be updated. Once the conceptual model has been specified in a suitable
language, an efficient realisation can (automatically) be derived, using a specification
language that is more machine oriented [14].

To update a scheme means also to update its relational database scheme, this is achieved
by performing operations on the scheme. Figure 7.4 shows the steps to be followed.

S
R relational data base scheme
PSM scheme
add / remove
/ Incremental
Update .
Pdate___ modify Update
S’
7 .
new R new relational data base scheme
PSM scheme

Figure 7.4: Transformation at relational level

The originalPSM schemesS is related to the relational databaRe The relational
databas®’ is related to a nel? SMschemesS'.

It must not be taken for granted that this specific relational database is the only can-
didate for representing the conceptual mdger any other model. The incremental
update provides the new relational databi@swiith all record instances of the original
relational database scheme, which it has 'saved’ before the update took place.

How the transformation process can be guided in order to generate structures having
certain predefined characteristics (like redundancy, optionals of size of the generated
structure) can be found in [14]. In that chapter will also be a description of how a data
structure can be recognised as a tree consisting of node of predicators. In this sense,
the terminology used in this chapter concerning the relational representation will be
referred to as a forest. Figure 7.5 shows an example of a tree representation.

This tree representation corresponds to relation fypedrep, Cop], which in the

60

7.2. TRANSFORMATION AT RELATIONAL DATABASE LEVEL

B Ll
f g
The forest representation of this scheme is :

" (Y

f 9
b % gs n3

Figure 7.5: Example of a tree representation of a relational database

graphis:[{q,r}, {p}rep, {s}op].
The next heuristics will be applied to achieve this tranformation:

I nput:
e A consistenPSM schemesS.
e Aforest R of S.

¢ A sequencéJ of update commands.
U will be applied to S.

Output:
¢ Anew consistenPSMscheme S..
e Amapping R on R’ for S.
e Are - arrange database which contains the new updates.

These heuristics can be achieved by applying the next steps:

61

CHAPTER 7. INCREMENTATION IN A PSM SCHEME DURING
TRANSFORMATION

Step 1:

Analyse the updatds, verifying whether or not the neRSMschemeS' they produce
IS correct:

e Produce the nel?SM schemeS', checking the constraints within the check
environment, this environment can be determined according to the environment
algorithm as described in Chapter 4.

¢ Reorganize the forest associated winto reflect the updates.
It must be keptin mind that the updates in some information strugtunest be
classified in advance. If the update concerns basically populations, then follow
the 'during life’ approach; If as consequence of population updates the structure
7 must change, then the 'during modelling process’ approach is advised. All
these updates concern constraint checking for which the environment algorithm
can be used.

e Initiate the mapping betweeR and R’ with operations to:

1. Modify the current relation database schd®ieading toR’. At this point,
the updated structure has taken new proportions for which is desirable to
restrict the possibilities for generation of new forests.
The new generated forest fércan be get by applying each object type of
the graph to the algorithm:
proc GenerateForest(Z):Forest; as proposed in [14].

2. Verify whether or not the current states, augmented with the new constraints,
are consistent with the proposed changes.

e Reprocess step 1 to continue the reorganization of the new schemes.
Step 2:

e Compare the resultinf SM scheme to the old one in order to continue the
generation of operations to:

1. Check constraints with operations concerning uniquen@sdy iden-
tifiability, populatability, total and other constraints.

2. Map the old representatioR onto the new representatioR’ for S'.
A forest alternative has been chosen and due to the incremental guidance,
the mapping is meant not to compare the resulting forest sizes but rather
to check whether the leaves of the former forest can be re-used in the new
one.

3. Map each record instaneeof R onto a consistent’ of R’.

62

7.2. TRANSFORMATION AT RELATIONAL DATABASE LEVEL

Consider the next example (figure 7.6), whel@ @M scheme with its corresponding
relational database is given.

The consequence of an update in the relational database is shown in figure 7.7.

of being-of owned-by owning

Owner-record Company-record
[car, person] [model , company]
B — -
Model-record Person-record

[car , model] [person, city]
e -

Colour-record
[car, colour]
_=

Figure 7.6: Example of scheme with relational database

The Atomic object type$Personand Communityhave been extended with new object
types which also will have to be included in the new relational database. See figure
7.7.

As shown in the previous examples, just one of the records has to be changed and one
new record has to be added.

This can also be seen by using the tree structure of the relational database scheme,
where the forest displays the resulting transformation which has been achieved in
reduced steps. Figure 7.8 shows the tree representation concerning 7.6. Figure 7.9
shows the tree representation of the updated scheme.

Usually, the records generated by the objects outside of the environment remain in the
same way in the new scheme.

63

CHAPTER 7. INCREMENTATION IN A PSM SCHEME DURING
TRANSFORMATION

of being-of owned-by owning

colour
(code)

Owner-record Company-record

[car, person] [model , company]

S —— -

Model-record Person-record

[car , model] [person, city, phone OP]
e -

Colour-record City-record

[car, colour] [city, nr-in-habitants]

B — S

Figure 7.7: Updated scheme and relational database

Due to the incremental approach, these untouched records can be 'saved’ in order to
be reused in the new relatiodfdSMscheme.

The relation type which corresponds to the tree representation of figure 7.8 is:

[Car,[Model, Company|rep, Colour, [Person, City] op].
The relation type which corresponds to the tree representation of figure 7.9 is:

[Car, [Model, Company] rep, Colour, [[Person, phone op], [City, habitants op| op]].

64

7.3. TRANFORMATION TO LESSEXPRESSIVE DATA MODELLING
TECHNIQUES

Figure 7.8: Updated scheme and relational database

7.3 Tranformation to less expressive data modelling
techniques

The power ofPSM becomes eclipsed by the lack of expressiveness in computer
languages that support the direct translation fle®IMschemes to relational database
management schemes.

To obtain these relational databasB¥SM schemes should first be translated to a
less expressive data modelling technique NdIAM , because computer support does

exist for this model.
This is rather a very expensive issue, on which reserarch has not finished and which

therefore might be subject for future research.

65

CHAPTER 7. INCREMENTATION IN A PSM SCHEME DURING
TRANSFORMATION

Figure 7.9: Updated scheme and relational database

Conclusions

In this thesis the current situation of incremental updates in databases has been de-
picted.

Different approaches like in the programming languages are the guidelines to update
databases in parts, avoiding double work by checking the whole program. In this case,
the wholePSMscheme.

Verification of PSM schemes, which are based on NIAM schemes, is a NP-problem;
the possibility of several levels of inconsistency in these schemes exists, therefore they
cannot be implemented efficiently in CASE-tools.

The constraints checking ofRSMscheme for an incremental update has been done
on three different levels: during life, during modelling processing and during transfor-
mation.

Heuristics for updating # SM scheme have been proposed. Before an update takes
place, an environment check must be determined in order to limit the check area.

The comprehensio@hain has been introduced. The part of the scheme which is out

of the chain, remains untouched and does not need to be checked again.

A selection of the partial results of the incremental update process has been saved in

order to increase the efficiency of the same update process. This selection is made by

the chain determination.

The proposed heuristics can be applied to improve the relational database scheme as
well.

67

CHAPTER 7. INCREMENTATION IN A PSM SCHEME DURING
TRANSFORMATION

68

Bibliography

[1] Paolo Atzeni and Riccardo Torlone. Updating intensional predicates in datalog.
Data and Knowledge Engineering 8992.

[2] H.A. Proper E. Falkenberg, J.Oei. Evolving information systems: Beyond tempo-
ral information systemsSION. University of Nijmegen, The Netherlanti892.

[3] Prof. E. Falkenbergntroduction to Information Analysi&Katholieke Universiteit
Nijmegen, Nederland, 1991.

[4] jrJ. Bubenko and A. Olie. Information Systems: Theorical and formal aspects
Elsevier science publishing company, INC, 1985.

[5] Magdi Kamel and Susan Davidson. Semi-materialization: a technique for opti-
mizing frequently executed querie®ata and Knowledge Engineering $991.

[6] A. Laender M. Casanova, L. Tucherman. Algorithms for designing and main-
taining optimazed relational representations of entity-relationschip schétias.
scientific center IBM Brazil, Computer Science department, Federal University
of Minas Gerais1990. Brazil.

[7] Th. van der Weide P.van Bommel, A.ter Hofstede. Semantics and verification of
object roles models. Technical report, 1993. The Netherlands.

[8] J. Rekers. Parser generation for interactive environments. Technical report, 1992.
University of Amsterdam.

[9] I. Sommerville.Software Engineering, third editioddison-Wesley Publishing
Company, 1990.

[10] A. ter Hofstede. Grondslagen van informatie systemen, pakatholieke uni-
versiteit Nijmegen, Nederland993.

[11] A.H. ter Hofstede and T. van der Weide. Expressiveness in conceptual data
modelling. Datak 159 1993. Elsevier, The Netherlands.

[12] A.H. ter Hofstede Th. van der Weidd=ormalisation of techniques: chopping
down the methodology jungleKatholieke Universiteit Nijmegen, Nederland,
1993.

69

BIBLIOGRAPHY

[13] M.B. Thuraisingham. Towards the design of a secure data / knowledge base
management systerata and Knowledge Engineering $990.

[14] P. van Bommel and Th. van der Weide. Reducing the search space for conceptual
schema transformatiomata and Knowledge Engineering 8992.

[15] M.C. van den BrandA generator for incremental programming environments
cip-data kon.bib. The Hague, The Netherlands, 1992.

[16] N. Wirth. Programming in Modula-2Springer - Verlag, 1992.

70

| ndex

Atomic Object type update, 49
bottom-up, 16

chain, 35

compilers, 16

conceptual level, 53
constraint, 17

context free grammars, 16

data modelling, 17
database management, 19
databases, 15

debuggers, 16

derivated fact type, 38

editors, 16

Entity Relationship, 20
environment, 44
environment algorithm, 36
evolution, 33

Exclusion constraint, 17

fact type, 25
Fact type update, 44

generalization, 26, 27
heuristic techniques, 25

identifiable, 46

IFO, 20

incremental consistency, 53
Incrementation, 15
information structure, 25

Modula-2, 16
NF, 20

NIAM, 17, 20

Object Oriented, 16

Object Relation Network, 43
Object type update, 44
object types, 25
Occurrence constraint, 17

Occurrence frequency constraint, 40

parsing methods, 16
populatable, 49

population, 26

power type, 25, 28
Predicator Set Model, 17, 25
predicators, 25

relational database, 16
relational database level, 53

specialization, 26, 27
SQL, 20
Subset constraint, 17

top-down, 16
Total-role constraint, 17, 37
transformation, 53

Unigueness constraint, 17, 38
universe of discourse, 17
update, 19

update process, 22

71

