Deductive Program Verification:
Mature Enough to be Taught to Software Engineers?

Marc Schoolderman, Sjaak Smetsers, Marko van Eekelen
18 November 2019

Institute for Computing
and Information Sciences

Radboud University

A short exercise in epistemology

What is the correct answer?

14627333968688430831 x 18369543843582177293
= 268697452652541021050625400954609320483 ?
= 268697426686324666285319976061674831483 ?

Institute for Computing
and Information Sciences

Radboud University

Computers do make mistakes

1994: Intel Pentium: FDIV instruction infamously “flawed”

4195835
3145727

=1333820449136241002 ... or 1333739068902037589 ?

1995: AMD KS5: FD1V instruction verified using formal methods

* Division microcode complies with IEEE-754 standard
~ Proof by:] Strother Moore, T. Lynch, M. Kaufmann

* ACL2 interactive theorem prover
— Developed by:] Strother Moore, M. Kaufmann

Institute for Computing
and Information Sciences

Radboud University

Does this compute X, xY,,?

2015: High-performance multiplication for AVR microcontrollers (M. Hutter, P. Schwabe,2015)
2017: Verified using Why3 proof framework (M. Schoolderman,2017)

clr r20 mul r4, r9 adc rl1, r21 eor ré6, ri mul ri19, r23 adc r29, r1 mul r3, r7 adc r2, r27 eor r23, r27
clr r21 add ri14, r19 add ri5, rO eor r7, ri add ri16, rO0 adc ri18, r26 add r22, rO0 mul r5, r7 eor r24, r27
movw ri16, r20adc ri5, rO0 adc ri6, rl1 eor r8, ri adc ri17, r1 mul r21, r23 adc r23, rl add r24, rO0 eor r25, r27
1d r2, X+ adc ri16, r1 adc ri17, r21 eor r9, ri adc r28, r26 add r28, ro0 r24, r26 adc r25, r1 eor r2 , r27
1d r3, X+ mul r4, rS8 1dd r22 Y+4 sub r2, roO mul r20, r22 adc r29, r r4, r6 adc r2, r27 eor r3 , r27
1d r4, X+ movw ri18, r0 1ldd r23 Y+5 sbc r3, r0 add ri16, rO0O adc ris8, r22, rO0 mul r4, r9 adc ri10, r20
1d r5, X+ mul r4, ré6 1dd r24 Y+6 sbc r4, ro0 adc ri7, r1 mul r20 r23, r1 add r25, rO0 adc rii, r21
1ldd ré6 Y+0 add r12, rO0 1dd r25 Y+7 sbc r5, r0 adc r28, r26 add r24, r26 adc r2, ri adc ri12, r22
1dd r7 Y+1 adc r13, r1l movw r28, r20sub ré6, ri clr r29 adc r2, r9 adc r3, r27 adc ri13, r23
1dd r8 Y+2 adc ri4, ri8 1ld ri18, X+ sbc mul ri8, r25 add r23, rO mul r5, r8 adc ri4, r24
1dd r9 Y+3 adc r19, r21 14 r19, X+ sbc add ri17, roO adc r24, r1 add r25, rO adc rib5, r25
mul r2, r8 mul r3, r8 1d r20, X+ sbc adc r28, r 0 adc r25, r26 adc r2, ri adc ri16, r2
movw ri12, rO0 add ri13, rO0 1d r21, X+ eor rl mul r3, r8 adc r3, r27 adc ri7, r3
mul r2, r6 adc ri14, r1 movw r26, r28bst r26 add r23, rO mul r5, r9 adc r28, r26
movw r10, rO adc r19, r21 std Z+0, ri0 r21, r25 adc r24, rl add r2, ro0 adc r29, roO
mul r2, r7 mul r5, r9 std Z+1, rii ri8, rO0 adc r25, r26 adc r3, ri adc ri8, ro0
add ri11, rO add ri5, ri19 std Z+2, ri2 ri9, r1 mul r4, r7 add r10, r14 adc r19, ro0
adc ri12, r1 adc ri16, r0O std Z+3, ri3 r2, r6 add r23, rO adc ril, ri5 std Z+4, ri0
adc r13, r21 adc ri17, rl1 sub r2, ri8 movw r20, rO adc r24, rl adc ri12, ri16 std Z+b, ril
mul r3, r9 mul r5, r7 sbc r3, r19 mul movw r22, r26adc r25, r26 adc ri3, ri7 std Z+6, ri2
movw ri14, rO movw ri8, r0O sbc r4, r20 add r26 mul r2, r7 mul r5, r6 adc ri14, r28 std Z+7, ri3
mul r2, r9 mul r4, r7 sbc r5, r21 adc r22 add r21, rO0 add r23, rO0O adc ri15, r29 std Z+8, ri4

]
21,

movw ri18, rO add r13, rO sbc r0, ro adc ri7, r0O adc r22, r1 adc r24, rl1 adc rié, ri8 std Z+9, rib
mul r3, ré adc r18, r1 sub r6, r22 mul ri9, r28, rl mul r3, ré adc r25, r26 adc ri17, ri19 std Z+10, risé
add ri11, rO0O adc ri19, r21 sbc r7, r23 add rib, r0 adc r29, r26 add r21, rO0 mul r3, r9 bld r27, O std Z+11, ri7
adc ri12, r1 mul r5, ré6 sbc r8, r24 adc r16, r1 mul ri19, r25 adc r22, rl1 movw r2, r26 dec 27 std Z+12, r28

adc r13, r18 add ri13, r0 sbc r9, r25 adc ri17, r29 movw ri18, r26adc r23, r26 add r24, rO0 adc r26, r27 std Z+13, r29
adc r19, r21 adc r18, r1 sbc ri1, ri adc r28, r26 add r28, rO0 movw r24, r26adc r25, rl mov rO, r26 std Z+14, ri8
mul r3, r7 adc r19, r21 eor r2, ro0 mul ri8, r24 adc r29, r1 mul r2, r8 adc r2, r27 asr r0 std Z+15, ri19
add ri12, rO mul r5, r8 eor r3, r0 add ri16, rO0 adc ri18, r26 add r22, rO0 mul r4, rS8 eor r20, r27
adc r13, r1l add ri14, ri8 eor r4, ro0 adc r17, r1 mul r20, r24 adc r23, r1 add r24, rO0 eor r21, r27
adc r19, r21 adc r0, r19 =eor r5, ro0 adc r28, r26 add r28, r0O adc r24, r26 adc r25, rl eor r22, r27

Institute for Computing
and Information Sciences

Radboud University

How difficult is program verification, really?

Experiences from (trying to) do research in cooperation with industry:

* Gap between industry and academia

* Tools used by academics (or are perceived to be) too esoteric:

- "Show me something an educated software engineer could use.”

For wider adaption, this gap needs to be bridged.

Institute for Computing
and Information Sciences

Radboud University

Overview of the Why3 Verification Platform
(.C. Filliatre, F. Bobot, C. Marche, G. Melquiond, A. Paskevich)

r 4

: infmmnﬂ'n,mmhpmﬂlu

-r —- — —

' CVC4 |

machine intelligence interactive provers

—_— o = e = o

Institute for Computing
and Information Sciences

Radboud University

Overview of the Why3 Verification Platform
(.C. Filliatre, F. Bobot, C. Marche, G. Melquiond, A. Paskevich)

File Tools View Help |

Status |ThenriEJGnaIs ‘I Task *.ftwmlw
- = pPYWwWZ_1 719 JU | B
® »pow2 184 571let right shiftl6e (x: int64): 1int64
- B 58 ensures {result = div x (pow2 16) }
o ripowz_ 192 59= x / 65536
® »Lpow2 200 60
® »Llpow2 208 6llet left shiftlé (x: int64): int64
® »Lpow2 216 62 requires { in_bounds (x * 65536) }
| - - 63 ensures { result = x * (pow2 16) }
© 0 2 224
c o powe 64= X * 65536
© »Lpow2 232 65
© r»ipow2_240 . 66constant| upperbound: int64 N
© »Lpow2 248 | 67= 65536
® . pow2 255 gg
9 rove right_sift16 [VCforrig | 7gpredicate mod compare (o a b: array int64)
* - ®BVC left_shiftle [VC for left 71= let ¢ = ((pow2 255) - 19) in
@ - & split_vc /2 mod (arr_to_int a + arr_to_int b) ¢ = mod (arr_to_int o) c
&/ 70 [integer overflow] o '..,,,,, o
@ 211 [postcondition]
® »VC add [VC for add] | e al et o e it
[| 2

Institute for Computing
and Information Sciences

Radboud University

Participants in the course “Software Analysis”

22 actively participating students

* Possess a Bachelor degree: university/vocational university (HBO)
— Similar to many junior software engineers?
* Expected: little/no experience in formal verification
— Students from Radboud have seen some model checking,
and pen-and-paper Hoare logic

— JML used for 1 short exercise in parallel course

* Goal: evaluate Why3

— Learning by doing, teamwork, open problems.

Institute for Computing
and Information Sciences

Radboud University

Course structure

* Lectures (6 hours)
1) Motivation for verification, introduction of Why3
2) Why3 data type system
3) Techniques to work around “stuck” proof efforts

4) WhyML as a modelling language

* Small exercises (20 hours)

— Supporting the lectures, formative feedback

* Verification task (24-36 hours)
— Report + evaluation of Why3

Institute for Computing
and Information Sciences

Radboud University

Case study 1: safe string concatenation (taken from CloudLibc)

size t strlcat(char *restrict sl, const char *restrict s2, size_ t n) ({

size t skipped = 0;
while (n > 0 && *sl1l != '"\0"'") {
++s1;
—-n;
++skipped;
}
const char *begin = s2;
while (n > 1) {
*sl = *s2;
if (*s2 == "\0")

return s2 - begin + skipped;

++s1;
++s2;
—-n;
}
if (n > 0)
*sl = "\0"';
while (*s2 != '\0")
++s2;
return sZ2 - begin + skipped;

Challenges:
* Arguments must not alias

* “Safety valve’ prevents out-of-
bounds access, but breaks the
naive contract.

* Null-terminated strings

Institute for Computing
and Information Sciences

Radboud University

Case study 2: a routine inspired by “TweetNaCl”

void add(int64_t o[lo], int64_t allo], int64_t b[lo6])
{
// add limbs
for (int 1=0; i<lo; 1++) {
o[i] = al[i] + b[i];

} Challenges:

// carry propagation * Weird representation of integers

for (int i=0; i<15; i++) {

* Unspecified what this is

int64 t ¢ = o[i] >> 16;
0[i+1] = o[i+l] + c; supposed to do
o[1] = o[1] - (c << 106);
} e The third comment lies

// reduce mod 27255 - 19
int64 t c = o[15] >> 16;

int64 t t = 38*c;
o[0] = o[0] + t;
o[1l5] = o[l5] - (c<k1lo);

Institute for Computing
and Information Sciences

Radboud University

Case study 1 results:

e 7 teams were successful

- Formal specification of strlcat, verified.

* 2 teams ran into difficulties

— Likely cause: poor initial modelling choices

Case study 2 results:

* 1team: verified mathematical correctness of add

* 1team: proved that the final loop is seldom necessary

— both teams quickly proved absence of signed integer overflow,
and discovered known flaws in this code

Institute for Computing
and Information Sciences

Radboud University

Subjective observations

* Most effort required: modelling C code in WhyML

— Also due to unfamiliarity with C...

* Students can deal with concepts unique to Why3

- E.g. "proof context size’, “ghost code’; “logic functions”

* Student remarks in reports (paraphrased):
- Positive: "Why3 is intuitive and gives strong guarantees.”’

- Negative: "This was very time-consuming.’

— Verdict: “Useful for safety-critical software, overkill elsewhere.”

Institute for Computing
and Information Sciences

Radboud University

Evaluation of Why3 by students

Common theme: more attention to user-friendliness!

— Error messages should be more helpful

— Better counterexample generation

- Automatic warnings about logical inconsistencies

- Single-step integrated debugger

- “Trivial” loop invariants should be generated automatically
— Online support community (e.g. StackExchange)

— Usable on Windows instead of only Linux and MacOS

Institute for Computing
and Information Sciences

Radboud University

Research questions:

* Are these students really representative for software engineers?
* How much time did the students need, quantitatively?

* Do the reports contain honest evaluations?

Institute for Computing
and Information Sciences

Radboud University

Anonymous research survey

15 respondents out of 22 active students: 68% response ratio

Limitations:
— No open questions

- Not enough to do statistics on

Primary goal:
- Test assumptions about student population

- Validate the evaluation in the report

Institute for Computing
and Information Sciences

Radboud University

Anonymous research survey:

Student background

- Consider themselves
fairly skilled programmers

— Clearly not “pure logicians”

— Only two students report
taking more than 30EC of
math/logic courses

results

How skilled would you say you are in programming?

15 responses

8
G
4

2

0 (0%) 0 (0%) 0 (0%) 0 (0%)

0

How skilled would you say you are in mathematics?

15 responses

8
6

4

0 (0%)

Institute for Computing
and Information Sciences

Radboud University

Anonymous research survey: results

60% of students did not know what ‘Hoare logic’ meant!

Were you familiar with Hoare logic before taking this course?

15 responses

® Yes, and this was important while
learning Why3.

@ Yes, but it made only a little difference.
O No.

@ Mo, and | still am not familiar.

Institute for Computing
and Information Sciences

Radboud University

Anonymous research survey: results

Time spent on project:

How much time (in hours) did you spend on the Why3 project
assignment?

15 responses

3

Worst case scenario:
— Assume; all 6 students that were not successful are in this dataset

— Then: successful teams needed on average <26 hours

Institute for Computing
and Information Sciences

Radboud University

Anonymous research survey:

What was it like for students?

- “Somewhat harder” and
more mathematical than
ordinary programming

Hardest activities:
1) Finding loop invariants
2) Modelling a C program

3) Writing a formal specification

results

Did verification with Why3 feel more like a programming activity, or like a
mathematical activity?

15 responses
-
3
2
1

0 (0%) 0{0%)
0

How would you compare learning Why3 with learning a new
programming language?

15 responses

8
6

-

0 (0%) 0 (0%) 0 (0%) 0 (0%)

Institute for Computing
and Information Sciences

Radboud University

Anonymous research survey: results

What do students think about applying formal methods?

Formal methods are appropriate for:

Small security-critical libraries, programming language design

No clear consensus:

Self-driving cars, compilers, operating systems

Formal methods are not appropriate for:

Smartphone apps

= Consistent with the non-anonymous reports

Institute for Computing
and Information Sciences

Radboud University

Conclusion

Novices can apply Why3 usefully in a short amount of time

- Verifying small but real program code

— Four weeks of training, ~26 hours of work

- Background: comparable to junior software engineers

Formal tools can benefit from a fresh perspective

— Problem may be usability instead of inherent difficulty

Thank you for your attention!

Institute for Computing
and Information Sciences

Radboud University

