Efficient Verification of
Optimized Code

Marc Schoolderman, Jonathan Moerman, Sjaak Smetsers, Marko van Eekelen

D) Applied and

N WO . ) . iCIS | Digital Security =N
Engineering Sciences Radboud University 4



Cryptographic on Embedded Devices

Verification target
Public Key Crypto on microcontrollers

+  AVR:limited to 8-bit operations
X25519
- RFC7748
- NIST SP 800-186 (draft)
Verify the fastest AVR implementation!

(image credit: oomlout, CC BY-SA 2.0, via Wikimedia Commons)
iCIS | Digital Security
Radboud University




Cryptographic on Embedded Devices

Verification target
Public Key Crypto on microcontrollers

+  AVR:limited to 8-bit operations
X25519

- RFC7748
- NISTSP 800-186 (draft)

Verify the fastest AVR implementation!

Challenges

Can we work with this type of code?
How to express its full specification?

(image credit: oomlout, CC BY-SA 2.0, via Wikimedia Commons)
iCIS | Digital Security
Radboud University




Elliptic Curve Cryptography

Public Key Crypto
Alice and Bob want to create a shared secret.

iCIS | Digital Security
Radboud University




Elliptic Curve Cryptography

Public Key Crypto Alice Bob

Alice and Bob want to create a shared secret. X — x-P

iCIS | Digital Security
Radboud University




Elliptic Curve Cryptography

Public Key Crypto Alice Bob
Alice and Bob want to create a shared secret. X — x.D
y-Po= y

iCIS | Digital Security
Radboud University




Elliptic Curve Cryptography

Public Key Crypto Alice Bob
Alice and Bob want to create a shared secret. X — x-P
y-P <~ Y
xy-P = xy-P

iCIS | Digital Security
Radboud University




Elliptic Curve Cryptography

Public Key Crypto Alice Bob
Alice and Bob want to create a shared secret. X — x-P

y-P < y
For secrecy: x - P, y - P must not reveal xy - P xy-P = xy-P

iCIS | Digital Security
Radboud University




Elliptic Curve Cryptography

Public Key Crypto Alice Bob
Alice and Bob want to create a shared secret. X — x-P

yP = y
For secrecy: x - P, y - P must not reveal xy - P xy-P = xy-P

X25519
Do this on the elliptic curve Curve25519!

+  Multiplication by repeated addition
+ xy € Fpwithp =2%°-19

«  Compute only x-coordinates

(illustration: Jean Brette,CC BY 3.0, via Wikimedia Commons) iCIS | Digital Security
Radboud University




Conventions of Cryptographic Code

Calculation must be efficient
v'Hand-written machine code

iCIS | Digital Security
Radboud University




Conventions of Cryptographic Code

Calculation must be efficient
v'Hand-written machine code
Calculation must not reveal secrets

+  Countermeasure: ‘constant time”
«  Countermeasure: ‘predictable memory access”

v/ Static analysis

iCIS | Digital Security
Radboud University




Conventions of Cryptographic Code

Calculation must be efficient
v'Hand-written machine code

Calculation must not reveal secrets

- Countermeasure: ‘constant time”

«  Countermeasure: ‘predictable memory access”
v/ Static analysis

Code must be utterly correct

Bugs with low probability will be exploited

+  Countermeasure: ‘no bugs”?

iCIS | Digital Security
Radboud University




X25519 on AVR

crypto_scalar_mult‘ C code (~300 lines)

’invertFP‘ ’Montgomery ladder

o eas®] o] il

o128 [sqri?® Assembly routines (~3500 lines)

iCIS | Digital Security
Radboud University




Bottom-up Approach
The whole is mostly the sum of its parts!

Assembly code

Model AVR instruction set
Translate assembly code to this model

Simple specifications, complex code

C code

+  Model C code in a compatible way
Add specifications for assembly subroutines

Simple code, complex specifications

iCIS | Digital Security
Radboud University




Whya3: platform for program verification

General-purpose tool, used without modifications

| WhyML programs i &ZW
! |

3 Annotations J Transformations |

‘ ~ « l

l Why logic !
AN

(CVC3; CVG4  E] 123

fully automated provers

Abstraction, bit-vector theories, type invariants, ghost code ...

iCIS | Digital Security
Radboud University




Dissecting Assembly Code

iCIS | Digital Security
Radboud University




Dissecting Assembly Code

mu1256

-———— -——=

I - - 1 -
mul®% mul® dif£%%) mulS% neg™®®l  add'®?

iCIS | Digital Security
Radboud University




Dissecting Assembly Code

mu1256

-———— -——=

I - - 1 -
mul®% mul® dif£%%) mulS%  neg™®®l add'®?

1 —1 1
diff®?)  mul®? 1% add®* neg

RS L— - - =

iCIS | Digital Security
Radboud University




Dissecting Assembly Code

mu1256

Many similar proofs!

mul® mul®t diffS

fffff AN

-~ 1 1 - T T - T
diff®  mul®? mul® add®  neg

=1 [

iCIS | Digital Security
Radboud University




Dissecting Assembly Code

mu1256

Many similar proofs!

mil®) ml® diee)

- T = 1 — 1 - T T 71 = T T
Qe g ga® jaaa neg

=1 [

iCIS | Digital Security
Radboud University




Divide and Conquer

clr r20 mul r4, r9 adc rl, r21 eor r6, ri mul ri9, r23 adc r29, r1 mul r3, r7 adc r2, r27 eor r23, r27
clr r21 add r14, r19 add r15, r0 eor r7, rl add r16, r0 adc ri8, r26 add r22, r0 mul r5, r7 eor r24, r27
movw r16, r20adc ri5, r0 adc r16, rl eor r8, rl  adc ri17, rl mul r21, r23 adc r23, rl add r24, r0 eor r25, r27
1d r2, X+ adc r16, r1 adc ri7, r21 eor r9, rl  adc r28, r26 add r28, r0 adc r24, r26 adc r25, rl eor r2 , r27

1d r3, X+ mul r4, r8 1dd r22 Y+4 sub r2, r0 mul r20, r22 adc r29, r1 mul r4, r6 adc r2, r27 eor r3 , r27
1d r4, X+ movw r18, r0 ldd r23 Y+5 sbc r3, r0 add ri6, r0 adc ri8, r26 add r22, r0 mul r4, r9 adc rl0, r20
1d r5, X+ mul r4d, r6  1ldd r24 Y+6 sbc r4, rO adc rl7, rl mul r20, r25 adc r23, rl add r25, r0 adc ril, r2i1
1dd r6 Y+0 add r12, r0 1dd r25 Y+7 sbc r5, r0 adc r28, r26 add r29, r0 adc r24, r26 adc r2, rl  adc ri2, r22
ldd r7 Y+1  adc r13, rl movw r28, r20sub ré, ri  clr r29 adc r18, r1 mul r2, r9 adc r3, r27 adc ri3, r23
1dd r8 Y+2  adc ri4, ri8 1d ri8, X+ sbc r7, ri mul r18, r25 adc r19, r26 add r23, r0 mul r5, r8 adc ri4, r24
1ldd r9 Y+3 adc r19, r21 1d r19, X+ sbc r8, rl add r17, r0 mul r21, r24 adc r24, rl add r25, r0 adc ri5, r25
mul r2, r8 mul r3, r8 1d r20, X+ sbc r9, ri1 adc r28, rl add r29, r0 adc r25, r26 adc r2, ri adc ri6, r2
movw r12, r0 add r13, r0 1d r21, X+ eor r0, rl adc r29, r26 adc ri8, ri mul r3, r8 adc r3, r27 adc ri7, r3
mul r2, r6 adc r14, rl movw r26, r28bst r0, 0 mul r19, r24 adc r19, r26 add r23, r0 mul r5, r9 adc r28, r26
movw r10, r0 adc r19, r21 std Z+0, r10 mul r18, r22 add r17, r0 mul r21, r25 adc r24, rl add r2, r0 adc r29, r0
mul r2, r7 mul r5, r9 std Z+1, ri1 add r14, r0 adc r28, ri add r18, r0 adc r25, r26 adc r3, ri adc ri8, r0
add r1l, r0 add ri5, r19 std Z+2, ri2 adc ri5, rl1 adc r29, r26 adc r19, r1 mul r4, r7 add r10, ri4 adc rl9, r0
adc r12, r1 adc r16, r0 std Z+3, ri3 adc r16, r26 mul r20, r23 mul r2, r6 add r23, r0 adc rii, ri5 std Z+4, rl0
adc r13, r21 adc r17, rl sub r2, r18 adc r29, r26 add r17, rO0 movw r20, r0 adc r24, rl adc r12, ri6 std Z+5, ril
mul r3, r9 mul r5, r7 sbc r3, r19 mul r18, r23 adc r28, rl movw r22, r26adc r25, r26 adc ri3, ril7 std Z+6, ri2
movw ri4, rO movw ri8, r0 sbc r4, r20 add r15, r0 adc r29, r26 mul r2, r7 mul r5, r6 adc rid, r28 std Z+7, ri3
mul r2, r9 mul r4, r7 sbc r5, r21 adc r16, rl mul r21, r22 add r2l, r0 add r23, r0 adc ri5, r29 std Z+8, rid
movw ri18, r0 add r13, r0 sbc r0, r0 adc r29, r26 add r17, r0 adc r22, rl adc r24, rl adc ri6, ri8 std Z+9, rib
mul r3, ré adc r18, rl sub r6, r22 mul ri9, r22 adc r28, ri mul r3, ré adc r25, r26 adc ri7, r19 std Z+10, rié
add r11, r0 adc r19, r21 sbc r7, r23 add ri5, r0 adc r29, r26 add r21, r0 mul r3, r9 bld r27, 0 std Z+11, ri7
adc r12, r1 mul r5, r6 sbc r8, r24 adc r16, rl mul r19, r25 adc r22, rl movw r2, r26 dec 27 std Z+12, r28
adc r13, ri18 add ri13, r0 sbc r9, r25 adc ri17, r29 movw ri8, r26adc r23, r26 add r24, r0 adc r26, r27 std Z+13, r29
adc r19, r21 adc ri18, r1 sbc ri, ri adc r28, r26 add r28, r0 movw r24, r26adc r25, rl mov r0, r26 std Z+14, ri8
mul r3, r7 adc r19, r2l eor r2, r0 mul r18, r24 adc r29, rl mul r2, r8 adc r2, r27 asr r0 std Z+#15, r19
add r12, r0 mul r5, r8 eor r3, r0 add r16, r0 adc ri8, r26 add r22, r0 mul r4, r8 eor r20, r27

adc r13, r1 add ri4, ri8 eor r4, r0 adc r17, rl mul r20, r24 adc r23, r1 add r24, r0 eor r2i, r27

adc r19, r21 adc r0, r19 eor r5, rO adc r28, r26 add r28, r0 adc r24, r26 adc r25, rl eor r22, r27

iCIS | Digital Security
Radboud University




Divide and Conquer

“Compute L = A; - B)”

clr r20 mul 4, ¥9 adc rl, r21 eor r6, ri mul ri9, r23 adc r29, r1 mul r3, r7 adc r2, r27 eor r23, r27
clr r21 add r14, r19 add ri5, r0 eor r7, rl add r16, r0 adc ri8, r26 add r22, r0 mul r5, r7 eor r24, r27
movw ri6, r20adc ri5, r0 adc r16, r1 eor r8, ri adc r17, rl mul r21, r23 adc r23, rl add r24, rO eor r25, r27
1d r2, X+ adc r16, rl adc ri7, r2l eor r9, rl  adc r28, r26 add r28, r0 adc r24, r26 adc r25, rl eor r2 , r27
1d r3, X+ mul r4, r8 1dd r22 Y+4 sub r2, r0 mul r20, r22 adc r29, r1 mul r4, r6 adc r2, r27 eor r3 , r27
1d r4, X+ movw r18, r0 ldd r23 Y+5 sbc r3, r0 add ri6, r0 adc ri8, r26 add r22, r0 mul r4, r9 adc ri0, r20
1d r5, X+ mul r4, r6 1dd r24 Y+6 sbc r4, r0 adc r17, rl mul r20, r25 adc r23, rl add r25, r0 adc ril, r21
1dd r6 Y+0 add ri12, r0 1dd r25 Y+7 sbc r5, r0 adc r28, r26 add r29, r0 adc r24, r26 adc r2, ri adc ri2, r22
ldd r7 Y+1  adc r13, r1 movw r28, r20sub r6, ri  clr r29 adc r18, r1 mul r2, r9 adc r3, r27 adc ri3, r23
ldd r8 Y+2  adc ri4, ri8 1d ri8, X+ sbc r7, ri mul r18, r25 adc r19, r26 add r23, r0 mul r5, r8 adc ri4, r24
1ldd r9 Y+3 adc r19, r21 1d ri9, X+ sbc r8, rl add r17, r0 mul r21, r24 adc r24, rl add r25, r0 adc ri5, r25
mul r2, ¥8 mul r3, r8 1d r20, X+ sbc r9, r1  adc r28, r1 add r29, r0 adc r25, r26 adc r2, ri adc ri6, r2
movw r12, r0 add r13, r0 1d r21, X+ eor r0, rl adc r29, r26 adc ri8, ri mul r3, r8 adc r3, r27 adc ri7, r3
mul r2, r6 adc r14, rl movw r26, r28bst r0, 0 mul r19, r24 adc r19, r26 add r23, r0 mul r5, r9 adc r28, r26
movw ri0, r0 adc r19, r21 std Z+0, r10 mul ri8, r22 add r17, r0 mul r21, r25 adc r24, r1 add r2, r0 adc r29, r0
mul r2, r7 mul r5, r9 std Z+1, ril add ri4, r0 adc r28, r1 add ri8, r0 adc r25, r26 adc r3, ri adc ri8, r0
add ril, r0 add r15, r19 std Z+2, r12 adc ri5, rl adc r29, r26 adc ri9, r1 mul r4, r7 add ri0, ri4 adc ri9, r0
adc r12, r1 adc ri6, r0 std Z+3, ri3 adc r16, r26 mul r20, r23 mul r2, r6 add r23, r0 adc rii, ri5 std Z+4, rl0
adc r13, r21 adc ri7, rl sub r2, ri8 adc r29, r26 add ri7, r0 movw r20, r0 adc r24, rl adc r12, r16 std Z+5, rit
mul r3, r9 mul r5, r7 sbc r3, r19 mul r18, r23 adc r28, rl movw r22, r26adc r25, r26 adc ri3, ril7 std Z+6, ri2
movw ri4, r0 movw ri8, rO sbc r4, r20 add ri5, r0 adc r29, r26 mul r2, r7 mul r5, r6 adc ri4d, r28 std Z+7, ri3
mul r2, r9 mul r4, r7 sbc r5, r21 adc r16, rl mul r21, r22 add r2l, r0 add r23, r0 adc ri5, r29 std Z+8, rid
movw ri18, r0 add r13, rO0 sbc r0, r0 adc r29, r26 add r17, r0 adc r22, rl1 adc r24, rl1 adc ri6, ri18 std Z+9, rib5
mul r3, r6 adc ri8, rl sub r6, r22 mul ri19, r22 adc r28, r1 mul r3, r6 adc r25, r26 adc ri7, ri19 std Z+10, ri6é
add ril, r0 adc r19, r21 sbc r7, r23 add ri5, r0 adc r29, r26 add r21, r0 mul r3, r9 bld r27, 0 std Z+11, ri7
adc r12, r1 mul r5, r6 sbc r8, r24 adc r16, r1 mul r19, r25 adc r22, rl movw r2, r26 dec 27 std Z+12, r28
adc r13, ri18 add ri13, r0 sbc r9, r25 adc ri17, r29 movw ri8, r26adc r23, r26 add r24, r0 adc r26, r27 std Z+13, r29
adc r19, r21 adc r18, r1 sbc ri, ril adc r28, r26 add r28, r0 movw r24, r26adc r25, rl mov r0, r26 std Z+14, ri8
mul r3, r7 adc ri19, r21 eor r2, r0 mul ri8, r24 adc r29, r1 mul r2, r8 adc r2, r27 asr r0 std Z+#15, r19
add r12, r0 mul r5, r8 eor r3, r0 add r16, r0 adc ri8, r26 add r22, r0 mul r4, r8 eor r20, r27

adc r13, rl add ri4, ri8 eor r4, r0 adc r17, rl mul r20, r24 adc r23, r1 add r24, r0 eor r2i, r27

adc r19, r21 adc r0, rl9 eor r5, rO adc r28, r26 add r28, r0 adc r24, r26 adc r25, rl eor r22, r27

Radboud University



Divide and Conquer

”

“Compute |A; — Ay|and |B; — By,

clr r20 mul r4, r9 adc ri, r2i
clr r21 add r14, ri19 add ri5, r0
movw ri6, r20adc ri5, r0 adc ri6, ri
1d r2, X+ adc r16, rl adc rl7, r21
1d r3, X+ mul r4, r8 1dd r22 Y+4
1d r4, X+ movw r18, r0 ldd r23 Y+5
1d r5, X+ mul r4, r6 1ldd r24 Y+6
1dd r6 Y+0 add r12, r0 1dd r25 Y+7
1ldd r7 Y+1 adc ri13, rl movw r28, r20
1ldd r8 Y+2 adc ri4, ri18 1d ri8, X+
1dd r9 Y+3  adc r19, r21 1d ri9, X+
mul r2, ¥8 mul r3, r8 1d r20, X+
movw ri2, r0 add ri13, r0 1d r21, X+

r19, r23 adc r29, r1 mul r3, r7 adc r2, r27 eor r23, r27
r16, r0 adc r18, r26 add r22, r0 mul r5, r7 eor r24, r27
r17, ri mul r21, r23 adc r23, rl add r24, r0 eor r25, r27
r28, r26 add r28, r0 adc r24, r26 adc r25, r1 eor r2 , r27
r20, r22 adc r29, r1 mul r4, r6 adc r2, r27 eor r3 , r27
r16, r0 adc r18, r26 add r22, r0 mul r4, r9 adc ri0, r20

r18, r25 adc ri9, r26 add r23, r0 mul r5, r8 adc rid, r24

r29, r26 adc r18, ri mul r3, r8 adc r3, r27 adc ri7, r3
mul r2, r6 adc ri4, rl movw r26, r28 r19, r24 adc r19, r26 add r23, rO mul r5, r9 adc r28, r26
movw rl0, r0 adc ri19, r21 std Z+0, r10 r17, r0 mul r21, r25 adc r24, r1 add r2, r0 adc r29, r0
mul r2, r7 mul r5, r9 std Z+1, ril adc r28, rl add r18, r0 adc r25, r26 adc r3, rl1 adc ri8, r0
add ril, r0 add r15, ri9 std Z+2, ri2 adc r29, r26 adc r19, r1 mul r4, r7 add r10, ri4 adc r19, r0
adc r12, r1 adc ri6, r0 std Z+3, ri3 mul r20, r23 mul r2, r6 add r23, r0 adc ril, ri5 std Z+4, ri0
adc r13, r21 adc ri7, ri add r17, r0 movw r20, rO adc r24, rl adc r12, ri6 std Z+5, ril
mul r3, r9 mul r5, r7 adc r28, rl movw r22, r26adc r25, r26 adc ri3, ri7 std Z+6, ri2
movw ri4, r0 movw ri8, r0 adc r29, r26 mul r2, r7 mul r5, r6 adc ri4, r28 std Z+7, ri3
mul r2, r9 mul r4, r7 mul r21, r22 add r21, r0 add r23, r0 adc ri5, r29 std Z+8, ri4
movw ri8, r0 add ri3, r0 add r17, r0 adc r22, r1 adc r24, rl1 adc ri6, ri18 std Z+9, rib
mul r3, ré adc ri18, ri adc r28, r1 mul r3, ré adc r25, r26 adc ri17, ri9 std Z+10, ri6
add ril1, r0 adc r19, r2i adc r29, r26 add r2i, r0 mul r3, r9 bld r27, 0 std Z+i1, ri7
adc r12, r1 mul r5, r6 mul r19, r25 adc r22, rl movw r2, r26 dec 27 std Z+12, r28
adc r13, r18 add ri3, r0 movw r18, r26adc r23, r26 add r24, r0 adc r26, r27 std Z+13, r29
adc r19, r21 adc ri8, ri add r28, r0 movw r24, r26adc r25, rl mov r0, r26 std Z+14, ri8
mul r3, r7 adc ri19, r21 adc r29, rl mul r2, r8 adc r2, r27 asr r0 std Z+15, r19
add r12, r0 mul r5, r8 adc r18, r26 add r22, r0 mul r4, r8 eor r20, r27

adc r13, rl1 add ri4, ri8 mul r20, r24 adc r23, rl add r24, r0 eor r21, r27

adc r19, r21 adc r0, ri9 add r28, r0 adc r24, r26 adc r25, r1 eor r22, r27

Radboud University



Divide and Conquer

“Compute H = A, - B,and L +2" - H”

clr r20 mul r4, r9 adc ri, r2i
clr r21 add r14, ri19 add ri5, r0
movw ri6, r20adc ri5, r0 adc ri6, ri
1d r2, X+ adc r16, rl adc rl7, r21
1d r3, X+ mul r4, r8 1dd r22 Y+4
1d r4, X+ movw r18, r0 ldd r23 Y+5
1d r5, X+ mul r4, r6 1ldd r24 Y+6
1dd r6 Y+0 add r12, r0 1dd r25 Y+7
1ldd r7 Y+1 adc ri13, rl movw r28, r20
1ldd r8 Y+2 adc ri4, ri18 1d ri8, X+
1dd r9 Y+3  adc r19, r21 1d ri9, X+
mul r2, ¥8 mul r3, r8 1d r20, X+
movw r12, r0 add ri3, r0 1d r21, X+

¥19, ¥23 adc r29, ¥l 'mul r3, r7 adc r2, r27 eor r23, r27
r16, r0 adc r18, r26 add r22, r0 mul r5, r7 eor r24, r27
ri7, rl1 mul r21, r23 adc r23, r1 add r24, rO eor r25, r27
r28, r26 add r28, r0 adc r24, r26 adc r25, r1 eor r2 , r27
r20, r22 adc r29, ri mul r4, r6 adc r2, r27 eor r3 , r27
r16, r0 adc ri8, r26 add r22, r0 mul r4, r9 adc ri0, r20
ri7, rl1 mul r20, r25 adc r23, r1 add r25, r0 adc ril, r21
r28, r26 add r29, r0 adc r24, r26 adc r2, rl  adc ri2, r22
r29 adc r18, r1 mul r2, r9 adc r3, r27 adc ri3, r23
r18, r25 adc r19, r26 add r23, r0 mul r5, r8 adc ri4, r24
ri7, r0 mul r21, r24 adc r24, r1 add r25, rO adc ri5, r25
r28, rl add r29, r0 adc r25, r26 adc r2, rl  adc ri6, r2
r29, r26 adc r18, ri mul r3, r8 adc r3, r27 adc ri7, r3
mul r2, r6 adc ri4, rl movw r26, r28 r19, r24 adc r19, r26 add r23, rO mul r5, r9 adc r28, r26
movw rl0, r0 adc ri19, r21 std Z+0, r10 ri17, r0 mul r21, r25 adc r24, r1 add r2, r0 adc r29, r0
mul r2, r7 mul r5, r9 std Z+1, ril r28, rl add ri18, r0 adc r25, r26 adc r3, ri adc ri18, r0
add ril, r0 add r15, ri9 std Z+2, ri2 r29, r26 adc r19, ri mul r4, r7 add ri0, ri4 adc r19, r0
adc r12, r1 adc ri6, r0 std Z+3, ri3 r20, r23 mul r2, r6 add r23, r0 adc ril, ri5 std Z+4, ri0
adc r13, r21 adc ri7, ri rl7, rO movw r20, r0 adc r24, ri1 adc ri12, r16 std Z+5, ril
mul r3, r9 mul r5, r7 r28, rl movw r22, r26adc r25, r26 adc ri3, ri7 std Z+6, ri2
movw ri4, r0 movw ri8, r0 r29, r26 mul r2, r7 mul r5, r6 adc ri4, r28 std Z+7, ri3
mul r2, r9 mul r4, r7

movw ri8, r0 add ri3, r0
mul r3, ré adc ri18, ri
add ri1, r0 adc ri19, r21
adc r12, r1 mul r5, r6

adc r13, ri18 add ri3, r0
adc r19, r21 adc ri8, ri
mul r3, r7 adc r19, r21
add r12, r0 mul r5, r8

adc r13, rl1 add ri4, ri8
adc r19, r21 adc r0, ri9

r28, rl mul r3, r6 adc r25, r26 adc ri7, r19 std Z+10, rié
r29, r26 add r2i, r0 mul r3, r9 bld r27, 0 std Z+11, ri7
r19, r25 adc r22, rl movw r2, r26 dec 27 std Z+12, r28
movw ri8, r26adc r23, r26 add r24, r0 adc r26, r27 std Z+13, r29
add r28, r0 movw r24, r26adc r25, r1 mov r0, r26 std Z+14, ri8
adc r29, r1 mul r2, r8 adc r2, r27 asr r0 std Z+15, r19
adc r18, r26 add r22, r0 mul r4, r8 eor r20, r27
mul r20, r24 adc r23, rl add r24, r0 eor r21, r27
add r28, r0 adc r24, r26 adc r25, r1 eor r22, r27

Radboud University



Divide and Conquer

“Compute M = |A; — Ay| - |B; — By|”

clr r20 mul r4, r9 adc ri, r2i r19, r27
clr r21 add r14, r19 add ri5, r0 ri6, r27
movw ri6, r20adc ri5, r0 adc ri6, ri ri7, r27

1d r2, X+ adc r16, rl adc rl7, r21
1d r3, X+ mul r4, r8 ldd r22 Y+4
1d r4, X+ movw r18, r0 ldd r23 Y+5
1d r5, X+ mul r4, r6 1dd r24 Y+6
1ldd r6 Y+0  add r12, r0 1dd r25 Y+7
1dd r7 Y+1  adc r13, rl movw r28, r20
1ldd r8 Y+2 adc ri4, ri8 1ld ri8, X+
1dd r9 Y+3  adc r19, r21 1d ri9, X+
mul r2, r8 mul r3, r8 1d r20, X+
movw ri12, r0 add r13, r0 1d r21, X+
mul r2, ré adc r14, rl movw r26, r28

128,
120,
ri6,
ri7,
128,
29

ris8,
ri7,
r28,
r29,
rl9,

movw rl0, r0 adc ri19, r21 std Z+0, r10 ri7, r0
mul r2, r7 mul r5, r9 std Z+1, ril r28, r0
add r1l, r0 add ri15, ri19 std Z+2, ri2 r29, r0
adc r12, r1 adc r16, r0 std Z+3, ri3 r20, ri0
adc r13, r21 adc ri7, ri ri7, ril
mul r3, r9 mul r5, r7 r28, ri2
movw ri4, r0 movw ri8, r0 r29, ri3

mul r2, r9 mul r4, r7 ra21, ri4
movw ri8, r0 add ri3, r0 ri7, ri5
mul r3, ré adc ri18, ri r28, ri6
add r11, r0 adc r19, r21 r29, ri7
adc r12, r1 mul r5, r6 r19, r28
adc r13, ri18 add ri3, r0 movw ri8, r29
adc r19, r21 adc ri8, ri r28, ri8
mul r3, r7 adc r19, r21 29, ri9
add ri12, r0 mul r5, r8 ri8,

adc r13, rl1 add ri4, ri8

adc r19, r21 adc r0, ri9 r28, r22, r27

iCIS | Digital Security
Radboud University




Divide and Conquer

“Compute (1+2")(L+2"H)"

clr r20 mul r4, r9 adc ri, r2i r19, r23, r27
clr r21 add r14, r19 add ri5, r0 ri6, 24, r27
movw ri6, r20adc ri5, r0 adc ri6, ri ri7, r25, r27
1d r2, X+ adc r16, rl adc ri7, r21 28, r2 , r27
1d r3, X+ mul r4, r8 ldd r22 Y+4 r20, 3, r27
1d r4, X+ movw r18, r0 ldd r23 Y+5 r16, r10, 20
1d r5, X+ mul r4, r6 1dd r24 Y+6 r17, ri1, r2i
1dd r6 Y+0  add r12, r0 1dd r25 Y+7 28, rl2, r22
1ldd r7 Y+1 adc r13, rl movw r28, r20 29 ri3, r23
ldd r8 Y+2  adc ri4, ri8 1d ris, X+ r18, ri4, r24
1dd r9 Y+3  adc r19, r21 1d ri9, X+ ri7, r15, r25
mul r2, r8 mul r3, r8 1d r20, X+ r28, ri6, r2

movw ri12, r0 add r13, r0 1d r21, X+ r29, rl7, r3

mul r2, ré adc r14, rl movw r26, r28 rl9, r28, r26
movw rl0, r0 adc ri19, r21 std Z+0, r10 ri7, r29, r0

mul r2, r7 mul r5, r9 std Z+1, ril r28, ri8, r0

add r1l, r0 add ri15, ri19 std Z+2, ri2 r29, r19, r0

adc r12, r1 adc r16, r0 std Z+3, ri3 r20, Z+4, r10
adc r13, r21 adc ri7, ri ri7, Z+5, ril
mul r3, r9 mul r5, r7 r28, Z+6, r12
movw ri4, r0 movw ri8, r0 r29, Z+7, r13
mul r2, r9 mul r4, r7 r21, Z+8, rl4
movw ri8, r0 add ri3, r0 ri7, Z+9, ri15
mul r3, ré adc ri18, ri r28, std Z+10, ri6
add r11, r0 adc r19, r21 r29, r27, 0 Z+11, r17
adc ri12, r1 mul r5, 6 r19, 27 7+12, r28

adc r13, ri18 add ri3, r0 movw ri8, r26, r27

adc r19, r21 adc ri8, ri r28, r0, r26 std Z+14, ri8
mul r3, r7 adc r19, r21 29, r0 std Z+15, r19
add ri12, r0 mul r5, r8 ri8, r20, r27
adc r13, rl1 add ri4, ri8 r20, r21, r27
adc r19, r21 adc r0, ri9 r28, r22, r27

iCIS | Digital Security
Radboud University




Divide and Conquer

“Correct the = sign of 2" M”

clr r20 mul r4, r9

clr r21 add ri4, r19
movw ri6, r20adc ri5, r0
1d r2, X+ adc r16, r1
1d r3, X+ mul r4, r8

1d r4, X+ movw ri8, r0
1d r5, X+ mul r4, r6é

1dd r6 Y+0  add ri2, r0
1ldd r7 Y+1 adc ri13, ri
1ldd r8 Y+2 adc ri4, ri8
1dd r9 Y+3 adc r19, r21
mul r2, r8 mul r3, r8

movw ri12, r0 add ri3, r0
mul r2, ré adc r14, ri
movw r10, r0 adc ri19, r21
mul r2, r7 mul r5, r9

add r11, r0 add ri5, ri9
adc r12, r1 adc r16, r0
adc r13, r21 adc ri7, ri
mul r3, r9 mul r5, r7

movw ri4, r0 movw ri8, r0
mul r2, r mul r4, r

movw ri8, r0 add ri3, r0
mul r3, ré adc ri18, ri
add r11, r0 adc r19, r21
adc r12, r1 mul r5, ré

adc r13, ri18 add ri3, r0
adc r19, r21 adc ri8, ri
mul r3, r7 adc r19, r21
add ri12, r0 mul r5, r8

adc r13, rl1 add ri4, ri8
adc r19, r21 adc r0, ri9

adc ri, r21
add r15, r0
adc r16, ril
adc r17, r21
1dd r22 Y+4
1dd r23 Y+5
1ldd r24 Y+6
1dd r25 Y+7
movw r28, r20
1d r18, X+
1d r19, X+
1d r20, X+
1d r21, X+
movw r26, r28
std Z+0, r10
std Z+1, ri1
std Z+2, r12
std Z+3, ri3

ri9

iCIS | Digital Security
Radboud University




Divide and Conquer

“Compute (1+2")(L+2"H) +2"M"

clr r20 mul r4, r9

clr r21 add ri4, r19
movw ri6, r20adc ri5, r0
1d r2, X+ adc r16, r1
1d r3, X+ mul r4, r8

1d r4, X+ movw ri8, r0
1d r5, X+ mul r4, r6é

1dd r6 Y+0  add ri2, r0
1ldd r7 Y+1 adc ri13, ri
1ldd r8 Y+2 adc ri4, ri8
1dd r9 Y+3 adc r19, r21
mul r2, r8 mul r3, r8

movw ri12, r0 add ri3, r0
mul r2, ré adc r14, ri
movw r10, r0 adc ri19, r21
mul r2, r7 mul r5, r9

add r11, r0 add ri5, ri9
adc r12, r1 adc r16, r0
adc r13, r21 adc ri7, ri
mul r3, r9 mul r5, r7

movw ri4, r0 movw ri8, r0
mul r2, r mul r4, r

movw ri8, r0 add ri3, r0
mul r3, ré adc ri18, ri
add r11, r0 adc r19, r21
adc r12, r1 mul r5, ré

adc r13, ri18 add ri3, r0
adc r19, r21 adc ri8, ri
mul r3, r7 adc r19, r21
add ri12, r0 mul r5, r8

adc r13, rl1 add ri4, ri8
adc r19, r21 adc r0, ri9

adc ri, r2i r19,
add r15, r0 ri6,
adc r16, ril ri7,
adc ri7, r21 128,
1dd r22 Y+4 20,
1dd r23 Y+5 rl6,
1dd r24 Y+6 ri7,
1dd r25 Y+7 28,
movw 28, r20 r29
1d r18, X+ ri8,
1d r19, X+ ri7,
1d r20, X+ 28,
1d r21, X+ r29,

movw 126, r28

std Z+0,
std Z+1,
std Z+2,
std 7+3,

rio
ri1 r28,
ri2 r29,
r13 120,

ri6
ri7
r28
r29
ri8
ri9

iCIS | Digital Security
Radboud University




Divide and Conquer

“Resultis (2" A, + A;)(2"By, + B))”

iCIS | Digital Security
Radboud University




Modeling Assembly Code

-— -1

:mu132\

@ Useful formalization

iCIS | Digital Security
Radboud University




Modeling Assembly Code

Useful formalization

Q
TN TN
1MUL) 1ADD) Validated formalization

-

AVR specification

iCIS | Digital Security
Radboud University




Example: ADD instruction

AVR Specification: ADD RD, RR

RD <~ RD+RR (implied: 8-bit operation)
Cflag < RD7-RR7 +RR7 - R7 4+ R7 - RD7 (boolean operations)

let add (rd rr: register): unit
writes { cf, reg }
ensures { reg = old reglrd <- mod (old (reglrd] + reglrr])) 256] }
ensures { 7cf = div (old (reglrd] + reglrr]l)) 256 }
= let rdv = read_byte reg rd in
let rrv = read_byte reg rr in
let res = clip (rdv + rrv) in
set_byte reg rd res;
cf.value <- (ar_nth rdv 7 && ar_nth rrv 7 ||
ar_nth rrv 7 && not ar_nth res 7 ||
not ar_nth res 7 && ar_nth rdv 7)

iCIS | Digital Security
Radboud University




Example: ADD instruction

AVR Specification: ADD RD, RR
RD + RD +RR (implied: 8-bit operation)
Cflag < RD7 - RR7 +RR7 - Ry + Ry - RDy (boolean operations)

let add (rd rr: register): unit
writes { cf, reg }
ensures { reg = old reglrd <- mod (old (reglrd] + reglrr])) 256] }
ensures { 7cf = div (old (reglrd] + reglrr]l)) 256 }
= let rdv = read_byte reg rd in
let rrv = read_byte reg rr in
let res = clip (rdv + rrv) in
set_byte reg rd res;
cf.value <- (ar_nth rdv 7 && ar_nth rrv 7 ||
ar_nth rrv 7 && not ar_nth res 7 ||
not ar_nth res 7 && ar_nth rdv 7)

iCIS | Digital Security
Radboud University




Example: ADD instruction

AVR Specification: ADD RD, RR

RD <~ RD+RR (implied: 8-bit operation)
Cfiag < RD7 - RR7 +RR7 - Ry +R7 - RD7 (boolean operations)

let add (rd rr: register): unit
writes { cf, reg }
ensures { reg = old reglrd <- mod (old (reglrd] + reglrr])) 256] }
ensures { 7cf = div (old (reglrd] + reglrr]l)) 256 }
= let rdv = read_byte reg rd in
let rrv = read_byte reg rr in
let res = clip (rdv + rrv) in
set_byte reg rd res;
cf.value <- (ar_nth rdv 7 && ar_nth rrv 7 ||
ar_nth rrv 7 && not ar_nth res 7 ||
not ar_nth res 7 && ar_nth rdv 7)

iCIS | Digital Security
Radboud University




Example: ADD instruction

AVR Specification: ADD RD, RR

RD + RD +RR (implied: 8-bit operation)
Cfiag < RD7 - RR7 +RR7 - Ry +R7 - RD7 (boolean operations)

let add (rd rr: register): unit
writes { cf, reg }

= let rdv = read_byte reg rd in
let rrv = read_byte reg rr in
let res = clip (rdv + rrv) in

set_byte reg rd res;

cf.value <- (ar_nth rdv 7 && ar_nth rrv 7 ||
ar_nth rrv 7 && not ar_nth res 7 ||
not ar_nth res 7 && ar_nth rdv 7)

iCIS | Digital Security
Radboud University




A Specification of X25519
Total correctness

{P} crypto_scalar_mult {Q}

What is a satisfying Q?

iCIS | Digital Security
Radboud University




A Specification of X25519
Total correctness

{P} crypto_scalar_mult {Q}

What is a satisfying Q?
«  Avresult computed by a reference implementation?

iCIS | Digital Security
Radboud University




A Specification of X25519
Total correctness

{P} crypto_scalar_mult {Q}

What is a satisfying Q?
«  Avresult computed by a reference implementation?
A complete mathematical description?

iCIS | Digital Security
Radboud University




A Specification of X25519
Total correctness

{P} crypto_scalar_mult {Q}

What is a satisfying Q?

«  Avresult computed by a reference implementation?
A complete mathematical description?
Something that admits validation!

iCIS | Digital Security
Radboud University




A Specification of X25519
Total correctness

{P} crypto_scalar_mult {Q}

What is a satisfying Q?

«  Avresult computed by a reference implementation?
« A complete mathematical description?

«  Something that admits validation!

State result using recognized concepts

+  Multiplication by doubling-and-adding (Montgomery, 19871
«  Formulas proven to work for Curve25519 [Bernstein, 2006]

iCIS | Digital Security
Radboud University




The Montgomery ladder

Scalar multiplication in Curve25519

Formal specification

n-P = (LADDER 11 P);

Where:
LAggER 0P (O, P) l /i
LADDER (21) P (2Ry, Ry +Rj)
(Rnn+ R%, 2R%) i%\ l

LADDER (2n 4+ 1) P
N1
4P

with (R, R}) = LADDER 1 P
2R and R + R* computed using Montgomery’ formulas l /

a
o,

Q
o,

[1& 1l

iCIS | Digital Security

i idea: B tein, L 2017
(image idea: Bernstein, Lange [ ) Radboud University




QED

What was proven?
crypto_scalar_mult computes X(# - P) from n and X(P)

Fine print

Ifn e {2254 4 8k : 0 < k < 2251} and X(P) < 2255 per RFC7748.
Otherwise the implementation will adjust 1, X (P) accordingly.
Furthermore by convention X(0) = 0.

The primality of 2255 _ 19 is assumed.

iCIS | Digital Security
Radboud University




QED

What was proven?
crypto_scalar_mult computes X(# - P) from n and X(P)

Fine print

Ifn e {2254 4 8k : 0 < k < 2251} and X(P) < 2255 per RFC7748.
Otherwise the implementation will adjust 11, X (P) accordingly.
Furthermore by convention X(0) = 0.

The primality of 2255 _ 19 is assumed.

After we fixed two assembly routines.

iCIS | Digital Security
Radboud University




Surprise!

crypto_scalar_mult was well-tested...
...but not with interrupts enabled.

iCIS | Digital Security
Radboud University




Surprise!

crypto_scalar_mult was well-tested...
...but not with interrupts enabled.

c8a71edd37b496ed9f1c763b86f1614b24215280e6d4c48b6cdf477£9f92af6c
ERROR: crypto_scalarmult does not handle p overlap
c8a71edd37b496ed9f1c763b86f1614b24215280e6d4c48b6cdf477f9f92af6c
c8a71edd37b496ed9f1c763b86£1614b24215280e6d4c48b6cdf477£9f92af6c
ERROR: crypto_scalarmult does not handle n overlap
c8a71edd37b496ed9f1c763b86f1614b24215280e6d4c48b6cdf477f9f92af6c
ERROR: crypto_scalarmult does not handle n overlap

ERROR: crypto_scalarmult not associative

ERROR: crypto_scalarmult not associative

Cause: unsafe manual allocation of temporaries in mu12%6 & sqr2°¢

iCIS | Digital Security
Radboud University




Surprise!

crypto_scalar_mult was well-tested...
...but not with interrupts enabled.

c8a71edd37b496ed9f1c763b86f1614b24215280e6d4c48b6cdf477£9f92af6c
ERROR: crypto_scalarmult does not handle p overlap
c8a71edd37b496ed9f1c763b86f1614b24215280e6d4c48b6cdf477f9f92af6c
c8a71edd37b496ed9f1c763b86£1614b24215280e6d4c48b6cdf477£9f92af6c
ERROR: crypto_scalarmult does not handle n overlap
c8a71edd37b496ed9f1c763b86f1614b24215280e6d4c48b6cdf477f9f92af6c
ERROR: crypto_scalarmult does not handle n overlap

ERROR: crypto_scalarmult not associative

ERROR: crypto_scalarmult not associative

Cause: unsafe manual allocation of temporaries in mu12%6 & sqr2°¢

Discovered by the restrictions imposed by our model.

iCIS | Digital Security
Radboud University




Conclusion

Effort

«  Unreliable estimate: ~10 weeks of work
«  Probably not bad compared to implementation effort!

iCIS | Digital Security
Radboud University



https://github.com/squell/verified-x25519-for-avr

Conclusion

Effort

Unreliable estimate: ~10 weeks of work
«  Probably not bad compared to implementation effort!
Good practices

Reason compositionally

Only specify what you need
Build consistent models out of consistent models

iCIS | Digital Security
Radboud University



https://github.com/squell/verified-x25519-for-avr

Conclusion

Effort

Unreliable estimate: ~10 weeks of work
. Probably not bad compared to implementation effort!
Good practices

Reason compositionally
Only specify what you need
Build consistent models out of consistent models

Future work

C—assembly: Verified code from untrusted compiler and models!
Assembly verification plugin for Why3
+  Other architectures than AVR

iCIS | Digital Security
Radboud University



https://github.com/squell/verified-x25519-for-avr

Conclusion

Effort

Unreliable estimate: ~10 weeks of work
. Probably not bad compared to implementation effort!
Good practices

Reason compositionally

Only specify what you need

Build consistent models out of consistent models
Future work

C—assembly: Verified code from untrusted compiler and models!
Assembly verification plugin for Why3
+  Other architectures than AVR

https://github.com/squell/verified-x25519-for-avr

iCIS | Digital Security
Radboud University



https://github.com/squell/verified-x25519-for-avr

Intentionally blank

iCIS | Digital Security
Radboud University




Modeling the AVR architecture

Underspecification of instructions

32 registers, data segment & stack
Carry flag and Transfer flag
+  Memory size depends on application.

Model consistency

Invariant: all memory cells hold 8-bit values
Constructed in WhyML: no axiomatic definitions

iCIS | Digital Security
Radboud University




Assembly verification, quantified

function instructions | user annotations | generated goals | CPU time
bigint_mul256:mull28 1078 122 300 1504.6s
bigint_mul256 693 85 506 | 2000.1s
bigint_square256:sqri28 672 26 135 363.8s
bigint_square256 493 38 359 1796.6s
bigint_subp 103 12 84 184.0s
fe25519_red 305 41 182 155.3s
fe25519_add 242 52 209 156.4s
fe25519_sub 242 53 212 119.6s
fe25519_mull121666 138 56 149 393.0s

iCIS | Digital Security
Radboud University




C verification, quantified

function lines | user annotations | generated goals | CPU time
fe25519_setzero 3 2 7 0.4s
fe25519_setone 4 2 7 0.4s
fe25519_neg 3 (0] 3 0.2s
fe25519_cmov 5 3 10 36.5s
fe25519_freeze 4 2 9 47s
fe25519_unpack 4 8 30 41.0s
fe25519_pack 5 2 1 1.6s
fe25519_mul 3 (0] 1 0.2s
fe25519_square 3 0] 1 O.1s
fe25519_invert 51 49 306 557.3s
work_cswap 8 (0] 13 3.8s
ladderstep 26 22 80 202.8s
mladder 26 22 140 3451s
crypto_scalar_mult_curve25519 13 27 57 74.2s

iCIS | Digital Security
Radboud University




Montgomery ladder

(X1:Z1) = (1:0): (X2:Z) < (xp:1); prev <= 0;j < 6
fori + 31 downto 0 do
while j > 0do
bit < bit8i+ jof N
swap < bit © prev; prev < bit
if swap then (Xl :Z1,Xp: Zz) — (Xz 72, X1 ZZl)
LADDERSTEP(xp, X1 : Z1, X2:Z3)
jej-1
end while
j<7
end for
return (X;:7Z7)

procedure LADDERSTEP

> by conditional moves

71 « T - 121666

T Xo+2 L= i+ X
Xo—Xo—2Z Z1 T -Z1
Zy +— X1+ 74 X1+ 2,-X1
X X1 -7y Zo+— T — Xo
T« T1-Xa Zy (Zz)z
Xo — Xp-Zs Zy < Zy - xp
Zy (Zz)z Xy T1 + Xo
X; + (X1) Xy  (X2)2
Th+—2Z,— X end procedure

iCIS | Digital Security
Radboud University




abstract
ensures { synchronized shadow reg }
ensures { uint 4 reg 2 = old (abs (uint 4 reg 2 - uint 4 reg 18)) }
ensures { uint 4 reg 6 = old (abs (uint 4 reg 6 - uint 4 reg 22)) }
ensures { ?tf = 0 <-> old ((uint 4 reg 2 < uint 4 reg 18) <-> (uint 4 reg 6 < uint 4 reg 22)) }
sub r2 ris;
sbc r3
sbc r4d r20;
sbc r5 r21;
sbc 10 r0;
sub r6é r22;
sbc r7 r23;
sbc r8 r24;
sbc r9 r25;
sbc rl rl;
eor r2 r0;
eor r3 r0;
eor r4 r0;
eor 15 r0;
eor 6 ril;
eor r7 ril;
eor r8 ri;
eor r9 ri;
sub r2 r0;
sbc r3 r0;
sbc rd ro0;
sbc r5 r0;
sub 6 ri;
sbc r7 ri;
sbc r8 ri;
sbc 19 ri;
eor 10 ril;
bst r0 0;
modify_r0(); modify_r1(); modify_r2(); modify_r3(); modify_r4();
modify_r5(); modify_r6(); modify_r7(); modify_r8(); modify_r9();
end;




type ratio = { x: int; z: int }
constant infty: ratio = {x=1;z=0}

constant p25519: int = pow2 255 - 19

predicate (===) (x y: int) = mod x p25519 = mod y p25519
predicate (~) (p q: ratio) = x p*z q X q*z p
predicate (==-) (x:int) (xz: ratio) = xz ~ {x=x; z=1}

function add (m n mn: ratio): ratio
= { x = 4%z mn*sqr(x m*x n - z m*z n);
z = 4*x mn*sqr(x m*z n - z m*x n) }
function double (n: ratio): ratio
= { x = sqr(sqr(x n) - sqr(z n));
z = 4%x n*z n * (sqr(x n) + 486662*x n*z n + sqr(z n)) }

function ladder (n: int) (p: ratio): (ratio, ratio)
axiom ladder_0: (*these aziomatic definitions are proven consistentx)
forall p.ladder 0 p = ({x=1; z=0}, p)
axiom ladder_even:
forall p, n. n > 0 -> let (r0,r1) = ladder n p in
ladder (2*n) p = (double r0, add rl r0 p)
axiom ladder_odd:
forall p, n. n >= 0 -> let (x0,r1) = ladder n p in
ladder (2*n+1) p = (add r1 r0 p, double ril)

function scale (n: int) (m: int): ratio
= let (r, ) = ladder n {x=m; z=1} in r
function clamp (x: int): int
= mod x (pow2 254) + pow2 254 - mod X 8

val crypto_scalarmult_curve25519 (r s p: address_space)
ensures { uint 32 r = mod (uint 32 r) p25519 }
ensures { let xp = mod (uint 32 p) (pow2 255) in
let mult = scale (clamp (uint 32 s)) xp in
if mult ~ infty then uint 32 r ===
else uint 32 r =

ital Security
Radboud University

&

e




