
Efficient Verification of
Optimized Code
Marc Schoolderman, Jonathan Moerman, Sjaak Smetsers, Marko van Eekelen

Cryptographic on Embedded Devices

Verification target
Public Key Crypto on microcontrollers
• AVR: limited to 8-bit operations
• X25519

– RFC 7748
– NIST SP 800-186 (draft)

• Verify the fastest AVR implementation!

(image credit: oomlout, CC BY-SA 2.0, via Wikimedia Commons)

Challenges

• Can we work with this type of code?
• How to express its full specification?

Cryptographic on Embedded Devices

Verification target
Public Key Crypto on microcontrollers
• AVR: limited to 8-bit operations
• X25519

– RFC 7748
– NIST SP 800-186 (draft)

• Verify the fastest AVR implementation!

(image credit: oomlout, CC BY-SA 2.0, via Wikimedia Commons)

Challenges

• Can we work with this type of code?
• How to express its full specification?

Elliptic Curve Cryptography

Public Key Crypto
Alice and Bob want to create a shared secret.

Alice Bob
x =⇒ x · P
y · P ⇐= y
xy · P = xy · P

X25519
Do this on the elliptic curve Curve25519!
• Multiplication by repeated addition
• x, y ∈ Fp2 with p = 2255 − 19

• Compute only x-coordinates

(illustration: Jean Brette,CC BY 3.0, via Wikimedia Commons)

Elliptic Curve Cryptography

Public Key Crypto
Alice and Bob want to create a shared secret.

Alice Bob
x =⇒ x · P

y · P ⇐= y
xy · P = xy · P

X25519
Do this on the elliptic curve Curve25519!
• Multiplication by repeated addition
• x, y ∈ Fp2 with p = 2255 − 19

• Compute only x-coordinates

(illustration: Jean Brette,CC BY 3.0, via Wikimedia Commons)

Elliptic Curve Cryptography

Public Key Crypto
Alice and Bob want to create a shared secret.

Alice Bob
x =⇒ x · P
y · P ⇐= y

xy · P = xy · P

X25519
Do this on the elliptic curve Curve25519!
• Multiplication by repeated addition
• x, y ∈ Fp2 with p = 2255 − 19

• Compute only x-coordinates

(illustration: Jean Brette,CC BY 3.0, via Wikimedia Commons)

Elliptic Curve Cryptography

Public Key Crypto
Alice and Bob want to create a shared secret.

Alice Bob
x =⇒ x · P
y · P ⇐= y
xy · P = xy · P

X25519
Do this on the elliptic curve Curve25519!
• Multiplication by repeated addition
• x, y ∈ Fp2 with p = 2255 − 19

• Compute only x-coordinates

(illustration: Jean Brette,CC BY 3.0, via Wikimedia Commons)

Elliptic Curve Cryptography

Public Key Crypto
Alice and Bob want to create a shared secret.

For secrecy: x · P, y · P must not reveal xy · P

Alice Bob
x =⇒ x · P
y · P ⇐= y
xy · P = xy · P

X25519
Do this on the elliptic curve Curve25519!
• Multiplication by repeated addition
• x, y ∈ Fp2 with p = 2255 − 19

• Compute only x-coordinates

(illustration: Jean Brette,CC BY 3.0, via Wikimedia Commons)

Elliptic Curve Cryptography

Public Key Crypto
Alice and Bob want to create a shared secret.

For secrecy: x · P, y · P must not reveal xy · P

Alice Bob
x =⇒ x · P
y · P ⇐= y
xy · P = xy · P

X25519
Do this on the elliptic curve Curve25519!
• Multiplication by repeated addition
• x, y ∈ Fp2 with p = 2255 − 19

• Compute only x-coordinates

(illustration: Jean Brette,CC BY 3.0, via Wikimedia Commons)

Conventions of Cryptographic Code

Calculation must be efficient
XHand-written machine code

Calculation must not reveal secrets

• Countermeasure: “constant time”
• Countermeasure: “predictable memory access”

XStatic analysis

Code must be utterly correct
Bugs with low probability will be exploited
• Countermeasure: “no bugs” ?

Conventions of Cryptographic Code

Calculation must be efficient
XHand-written machine code

Calculation must not reveal secrets

• Countermeasure: “constant time”
• Countermeasure: “predictable memory access”

XStatic analysis

Code must be utterly correct
Bugs with low probability will be exploited
• Countermeasure: “no bugs” ?

Conventions of Cryptographic Code

Calculation must be efficient
XHand-written machine code

Calculation must not reveal secrets

• Countermeasure: “constant time”
• Countermeasure: “predictable memory access”

XStatic analysis

Code must be utterly correct
Bugs with low probability will be exploited
• Countermeasure: “no bugs” ?

X25519 on AVR

crypto_scalar_mult

Montgomery ladder

mulFP

invertFP

sqrFP

mul256 sqr256

mul128 sqr128

sub256
P mod512

P addFP subFP mulFP
121666

C code (∼300 lines)

Assembly routines (∼3500 lines)

Bottom-up Approach

The whole is mostly the sum of its parts!

Assembly code

• Model AVR instruction set
• Translate assembly code to this model

Simple specifications, complex code

C code

• Model C code in a compatible way
• Add specifications for assembly subroutines

Simple code, complex specifications

Why3: platform for program verification

General-purpose tool, used without modifications

WhyML programs

Why logic

CVC3 CVC4 E Z3

Annotations Transformations

fully automated provers

Abstraction, bit-vector theories, type invariants, ghost code . . .

Dissecting Assembly Code

mul256

mul128

Dissecting Assembly Code

mul256

mul128

mul64 mul64 diff64 mul64 neg128 add192

Dissecting Assembly Code

mul256

mul128

mul64 mul64 diff64 mul64

mul32 diff32 mul32 mul32 add64 neg32 add96

neg128 add192

Many similar proofs!

Dissecting Assembly Code

mul256

mul128

mul64 mul64 diff64 mul64

mul32 diff32 mul32 mul32 add64 neg32 add96

neg128 add192

Many similar proofs!

Dissecting Assembly Code

mul256

mul128

mul64 mul64 diff64 mul64

mul32 diff32 mul32 mul32 add64 neg32 add96

neg128 add192

Many similar proofs!

Divide and Conquer

clr r20
clr r21
movw r16, r20
ld r2, X+
ld r3, X+
ld r4, X+
ld r5, X+
ldd r6 Y+0
ldd r7 Y+1
ldd r8 Y+2
ldd r9 Y+3
mul r2, r8
movw r12, r0
mul r2, r6
movw r10, r0
mul r2, r7
add r11, r0
adc r12, r1
adc r13, r21
mul r3, r9
movw r14, r0
mul r2, r9
movw r18, r0
mul r3, r6
add r11, r0
adc r12, r1
adc r13, r18
adc r19, r21
mul r3, r7
add r12, r0
adc r13, r1
adc r19, r21

mul r4, r9
add r14, r19
adc r15, r0
adc r16, r1
mul r4, r8
movw r18, r0
mul r4, r6
add r12, r0
adc r13, r1
adc r14, r18
adc r19, r21
mul r3, r8
add r13, r0
adc r14, r1
adc r19, r21
mul r5, r9
add r15, r19
adc r16, r0
adc r17, r1
mul r5, r7
movw r18, r0
mul r4, r7
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r6
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r8
add r14, r18
adc r0, r19

adc r1, r21
add r15, r0
adc r16, r1
adc r17, r21
ldd r22 Y+4
ldd r23 Y+5
ldd r24 Y+6
ldd r25 Y+7
movw r28, r20
ld r18, X+
ld r19, X+
ld r20, X+
ld r21, X+
movw r26, r28
std Z+0, r10
std Z+1, r11
std Z+2, r12
std Z+3, r13
sub r2, r18
sbc r3, r19
sbc r4, r20
sbc r5, r21
sbc r0, r0
sub r6, r22
sbc r7, r23
sbc r8, r24
sbc r9, r25
sbc r1, r1
eor r2, r0
eor r3, r0
eor r4, r0
eor r5, r0

eor r6, r1
eor r7, r1
eor r8, r1
eor r9, r1
sub r2, r0
sbc r3, r0
sbc r4, r0
sbc r5, r0
sub r6, r1
sbc r7, r1
sbc r8, r1
sbc r9, r1
eor r0, r1
bst r0, 0
mul r18, r22
add r14, r0
adc r15, r1
adc r16, r26
adc r29, r26
mul r18, r23
add r15, r0
adc r16, r1
adc r29, r26
mul r19, r22
add r15, r0
adc r16, r1
adc r17, r29
adc r28, r26
mul r18, r24
add r16, r0
adc r17, r1
adc r28, r26

mul r19, r23
add r16, r0
adc r17, r1
adc r28, r26
mul r20, r22
add r16, r0
adc r17, r1
adc r28, r26
clr r29
mul r18, r25
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r24
add r17, r0
adc r28, r1
adc r29, r26
mul r20, r23
add r17, r0
adc r28, r1
adc r29, r26
mul r21, r22
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r25
movw r18, r26
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r24
add r28, r0

adc r29, r1
adc r18, r26
mul r21, r23
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r25
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r24
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r25
add r18, r0
adc r19, r1
mul r2, r6
movw r20, r0
movw r22, r26
mul r2, r7
add r21, r0
adc r22, r1
mul r3, r6
add r21, r0
adc r22, r1
adc r23, r26
movw r24, r26
mul r2, r8
add r22, r0
adc r23, r1
adc r24, r26

mul r3, r7
add r22, r0
adc r23, r1
adc r24, r26
mul r4, r6
add r22, r0
adc r23, r1
adc r24, r26
mul r2, r9
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r8
add r23, r0
adc r24, r1
adc r25, r26
mul r4, r7
add r23, r0
adc r24, r1
adc r25, r26
mul r5, r6
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r9
movw r2, r26
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r8
add r24, r0
adc r25, r1

adc r2, r27
mul r5, r7
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r9
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r8
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r9
add r2, r0
adc r3, r1
add r10, r14
adc r11, r15
adc r12, r16
adc r13, r17
adc r14, r28
adc r15, r29
adc r16, r18
adc r17, r19
bld r27, 0
dec 27
adc r26, r27
mov r0, r26
asr r0
eor r20, r27
eor r21, r27
eor r22, r27

eor r23, r27
eor r24, r27
eor r25, r27
eor r2 , r27
eor r3 , r27
adc r10, r20
adc r11, r21
adc r12, r22
adc r13, r23
adc r14, r24
adc r15, r25
adc r16, r2
adc r17, r3
adc r28, r26
adc r29, r0
adc r18, r0
adc r19, r0
std Z+4, r10
std Z+5, r11
std Z+6, r12
std Z+7, r13
std Z+8, r14
std Z+9, r15
std Z+10, r16
std Z+11, r17
std Z+12, r28
std Z+13, r29
std Z+14, r18
std Z+15, r19

Divide and Conquer

“Compute L = Al · Bl”

clr r20
clr r21
movw r16, r20
ld r2, X+
ld r3, X+
ld r4, X+
ld r5, X+
ldd r6 Y+0
ldd r7 Y+1
ldd r8 Y+2
ldd r9 Y+3
mul r2, r8
movw r12, r0
mul r2, r6
movw r10, r0
mul r2, r7
add r11, r0
adc r12, r1
adc r13, r21
mul r3, r9
movw r14, r0
mul r2, r9
movw r18, r0
mul r3, r6
add r11, r0
adc r12, r1
adc r13, r18
adc r19, r21
mul r3, r7
add r12, r0
adc r13, r1
adc r19, r21

mul r4, r9
add r14, r19
adc r15, r0
adc r16, r1
mul r4, r8
movw r18, r0
mul r4, r6
add r12, r0
adc r13, r1
adc r14, r18
adc r19, r21
mul r3, r8
add r13, r0
adc r14, r1
adc r19, r21
mul r5, r9
add r15, r19
adc r16, r0
adc r17, r1
mul r5, r7
movw r18, r0
mul r4, r7
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r6
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r8
add r14, r18
adc r0, r19

adc r1, r21
add r15, r0
adc r16, r1
adc r17, r21
ldd r22 Y+4
ldd r23 Y+5
ldd r24 Y+6
ldd r25 Y+7
movw r28, r20
ld r18, X+
ld r19, X+
ld r20, X+
ld r21, X+
movw r26, r28
std Z+0, r10
std Z+1, r11
std Z+2, r12
std Z+3, r13
sub r2, r18
sbc r3, r19
sbc r4, r20
sbc r5, r21
sbc r0, r0
sub r6, r22
sbc r7, r23
sbc r8, r24
sbc r9, r25
sbc r1, r1
eor r2, r0
eor r3, r0
eor r4, r0
eor r5, r0

eor r6, r1
eor r7, r1
eor r8, r1
eor r9, r1
sub r2, r0
sbc r3, r0
sbc r4, r0
sbc r5, r0
sub r6, r1
sbc r7, r1
sbc r8, r1
sbc r9, r1
eor r0, r1
bst r0, 0
mul r18, r22
add r14, r0
adc r15, r1
adc r16, r26
adc r29, r26
mul r18, r23
add r15, r0
adc r16, r1
adc r29, r26
mul r19, r22
add r15, r0
adc r16, r1
adc r17, r29
adc r28, r26
mul r18, r24
add r16, r0
adc r17, r1
adc r28, r26

mul r19, r23
add r16, r0
adc r17, r1
adc r28, r26
mul r20, r22
add r16, r0
adc r17, r1
adc r28, r26
clr r29
mul r18, r25
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r24
add r17, r0
adc r28, r1
adc r29, r26
mul r20, r23
add r17, r0
adc r28, r1
adc r29, r26
mul r21, r22
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r25
movw r18, r26
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r24
add r28, r0

adc r29, r1
adc r18, r26
mul r21, r23
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r25
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r24
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r25
add r18, r0
adc r19, r1
mul r2, r6
movw r20, r0
movw r22, r26
mul r2, r7
add r21, r0
adc r22, r1
mul r3, r6
add r21, r0
adc r22, r1
adc r23, r26
movw r24, r26
mul r2, r8
add r22, r0
adc r23, r1
adc r24, r26

mul r3, r7
add r22, r0
adc r23, r1
adc r24, r26
mul r4, r6
add r22, r0
adc r23, r1
adc r24, r26
mul r2, r9
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r8
add r23, r0
adc r24, r1
adc r25, r26
mul r4, r7
add r23, r0
adc r24, r1
adc r25, r26
mul r5, r6
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r9
movw r2, r26
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r8
add r24, r0
adc r25, r1

adc r2, r27
mul r5, r7
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r9
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r8
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r9
add r2, r0
adc r3, r1
add r10, r14
adc r11, r15
adc r12, r16
adc r13, r17
adc r14, r28
adc r15, r29
adc r16, r18
adc r17, r19
bld r27, 0
dec 27
adc r26, r27
mov r0, r26
asr r0
eor r20, r27
eor r21, r27
eor r22, r27

eor r23, r27
eor r24, r27
eor r25, r27
eor r2 , r27
eor r3 , r27
adc r10, r20
adc r11, r21
adc r12, r22
adc r13, r23
adc r14, r24
adc r15, r25
adc r16, r2
adc r17, r3
adc r28, r26
adc r29, r0
adc r18, r0
adc r19, r0
std Z+4, r10
std Z+5, r11
std Z+6, r12
std Z+7, r13
std Z+8, r14
std Z+9, r15
std Z+10, r16
std Z+11, r17
std Z+12, r28
std Z+13, r29
std Z+14, r18
std Z+15, r19

Divide and Conquer

“Compute |Al − Ah| and |Bl − Bh|”

clr r20
clr r21
movw r16, r20
ld r2, X+
ld r3, X+
ld r4, X+
ld r5, X+
ldd r6 Y+0
ldd r7 Y+1
ldd r8 Y+2
ldd r9 Y+3
mul r2, r8
movw r12, r0
mul r2, r6
movw r10, r0
mul r2, r7
add r11, r0
adc r12, r1
adc r13, r21
mul r3, r9
movw r14, r0
mul r2, r9
movw r18, r0
mul r3, r6
add r11, r0
adc r12, r1
adc r13, r18
adc r19, r21
mul r3, r7
add r12, r0
adc r13, r1
adc r19, r21

mul r4, r9
add r14, r19
adc r15, r0
adc r16, r1
mul r4, r8
movw r18, r0
mul r4, r6
add r12, r0
adc r13, r1
adc r14, r18
adc r19, r21
mul r3, r8
add r13, r0
adc r14, r1
adc r19, r21
mul r5, r9
add r15, r19
adc r16, r0
adc r17, r1
mul r5, r7
movw r18, r0
mul r4, r7
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r6
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r8
add r14, r18
adc r0, r19

adc r1, r21
add r15, r0
adc r16, r1
adc r17, r21
ldd r22 Y+4
ldd r23 Y+5
ldd r24 Y+6
ldd r25 Y+7
movw r28, r20
ld r18, X+
ld r19, X+
ld r20, X+
ld r21, X+
movw r26, r28
std Z+0, r10
std Z+1, r11
std Z+2, r12
std Z+3, r13
sub r2, r18
sbc r3, r19
sbc r4, r20
sbc r5, r21
sbc r0, r0
sub r6, r22
sbc r7, r23
sbc r8, r24
sbc r9, r25
sbc r1, r1
eor r2, r0
eor r3, r0
eor r4, r0
eor r5, r0

eor r6, r1
eor r7, r1
eor r8, r1
eor r9, r1
sub r2, r0
sbc r3, r0
sbc r4, r0
sbc r5, r0
sub r6, r1
sbc r7, r1
sbc r8, r1
sbc r9, r1
eor r0, r1
bst r0, 0
mul r18, r22
add r14, r0
adc r15, r1
adc r16, r26
adc r29, r26
mul r18, r23
add r15, r0
adc r16, r1
adc r29, r26
mul r19, r22
add r15, r0
adc r16, r1
adc r17, r29
adc r28, r26
mul r18, r24
add r16, r0
adc r17, r1
adc r28, r26

mul r19, r23
add r16, r0
adc r17, r1
adc r28, r26
mul r20, r22
add r16, r0
adc r17, r1
adc r28, r26
clr r29
mul r18, r25
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r24
add r17, r0
adc r28, r1
adc r29, r26
mul r20, r23
add r17, r0
adc r28, r1
adc r29, r26
mul r21, r22
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r25
movw r18, r26
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r24
add r28, r0

adc r29, r1
adc r18, r26
mul r21, r23
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r25
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r24
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r25
add r18, r0
adc r19, r1
mul r2, r6
movw r20, r0
movw r22, r26
mul r2, r7
add r21, r0
adc r22, r1
mul r3, r6
add r21, r0
adc r22, r1
adc r23, r26
movw r24, r26
mul r2, r8
add r22, r0
adc r23, r1
adc r24, r26

mul r3, r7
add r22, r0
adc r23, r1
adc r24, r26
mul r4, r6
add r22, r0
adc r23, r1
adc r24, r26
mul r2, r9
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r8
add r23, r0
adc r24, r1
adc r25, r26
mul r4, r7
add r23, r0
adc r24, r1
adc r25, r26
mul r5, r6
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r9
movw r2, r26
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r8
add r24, r0
adc r25, r1

adc r2, r27
mul r5, r7
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r9
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r8
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r9
add r2, r0
adc r3, r1
add r10, r14
adc r11, r15
adc r12, r16
adc r13, r17
adc r14, r28
adc r15, r29
adc r16, r18
adc r17, r19
bld r27, 0
dec 27
adc r26, r27
mov r0, r26
asr r0
eor r20, r27
eor r21, r27
eor r22, r27

eor r23, r27
eor r24, r27
eor r25, r27
eor r2 , r27
eor r3 , r27
adc r10, r20
adc r11, r21
adc r12, r22
adc r13, r23
adc r14, r24
adc r15, r25
adc r16, r2
adc r17, r3
adc r28, r26
adc r29, r0
adc r18, r0
adc r19, r0
std Z+4, r10
std Z+5, r11
std Z+6, r12
std Z+7, r13
std Z+8, r14
std Z+9, r15
std Z+10, r16
std Z+11, r17
std Z+12, r28
std Z+13, r29
std Z+14, r18
std Z+15, r19

Divide and Conquer

“Compute H = Ah · Bh and L + 2n · H”

clr r20
clr r21
movw r16, r20
ld r2, X+
ld r3, X+
ld r4, X+
ld r5, X+
ldd r6 Y+0
ldd r7 Y+1
ldd r8 Y+2
ldd r9 Y+3
mul r2, r8
movw r12, r0
mul r2, r6
movw r10, r0
mul r2, r7
add r11, r0
adc r12, r1
adc r13, r21
mul r3, r9
movw r14, r0
mul r2, r9
movw r18, r0
mul r3, r6
add r11, r0
adc r12, r1
adc r13, r18
adc r19, r21
mul r3, r7
add r12, r0
adc r13, r1
adc r19, r21

mul r4, r9
add r14, r19
adc r15, r0
adc r16, r1
mul r4, r8
movw r18, r0
mul r4, r6
add r12, r0
adc r13, r1
adc r14, r18
adc r19, r21
mul r3, r8
add r13, r0
adc r14, r1
adc r19, r21
mul r5, r9
add r15, r19
adc r16, r0
adc r17, r1
mul r5, r7
movw r18, r0
mul r4, r7
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r6
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r8
add r14, r18
adc r0, r19

adc r1, r21
add r15, r0
adc r16, r1
adc r17, r21
ldd r22 Y+4
ldd r23 Y+5
ldd r24 Y+6
ldd r25 Y+7
movw r28, r20
ld r18, X+
ld r19, X+
ld r20, X+
ld r21, X+
movw r26, r28
std Z+0, r10
std Z+1, r11
std Z+2, r12
std Z+3, r13
sub r2, r18
sbc r3, r19
sbc r4, r20
sbc r5, r21
sbc r0, r0
sub r6, r22
sbc r7, r23
sbc r8, r24
sbc r9, r25
sbc r1, r1
eor r2, r0
eor r3, r0
eor r4, r0
eor r5, r0

eor r6, r1
eor r7, r1
eor r8, r1
eor r9, r1
sub r2, r0
sbc r3, r0
sbc r4, r0
sbc r5, r0
sub r6, r1
sbc r7, r1
sbc r8, r1
sbc r9, r1
eor r0, r1
bst r0, 0
mul r18, r22
add r14, r0
adc r15, r1
adc r16, r26
adc r29, r26
mul r18, r23
add r15, r0
adc r16, r1
adc r29, r26
mul r19, r22
add r15, r0
adc r16, r1
adc r17, r29
adc r28, r26
mul r18, r24
add r16, r0
adc r17, r1
adc r28, r26

mul r19, r23
add r16, r0
adc r17, r1
adc r28, r26
mul r20, r22
add r16, r0
adc r17, r1
adc r28, r26
clr r29
mul r18, r25
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r24
add r17, r0
adc r28, r1
adc r29, r26
mul r20, r23
add r17, r0
adc r28, r1
adc r29, r26
mul r21, r22
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r25
movw r18, r26
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r24
add r28, r0

adc r29, r1
adc r18, r26
mul r21, r23
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r25
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r24
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r25
add r18, r0
adc r19, r1
mul r2, r6
movw r20, r0
movw r22, r26
mul r2, r7
add r21, r0
adc r22, r1
mul r3, r6
add r21, r0
adc r22, r1
adc r23, r26
movw r24, r26
mul r2, r8
add r22, r0
adc r23, r1
adc r24, r26

mul r3, r7
add r22, r0
adc r23, r1
adc r24, r26
mul r4, r6
add r22, r0
adc r23, r1
adc r24, r26
mul r2, r9
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r8
add r23, r0
adc r24, r1
adc r25, r26
mul r4, r7
add r23, r0
adc r24, r1
adc r25, r26
mul r5, r6
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r9
movw r2, r26
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r8
add r24, r0
adc r25, r1

adc r2, r27
mul r5, r7
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r9
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r8
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r9
add r2, r0
adc r3, r1
add r10, r14
adc r11, r15
adc r12, r16
adc r13, r17
adc r14, r28
adc r15, r29
adc r16, r18
adc r17, r19
bld r27, 0
dec 27
adc r26, r27
mov r0, r26
asr r0
eor r20, r27
eor r21, r27
eor r22, r27

eor r23, r27
eor r24, r27
eor r25, r27
eor r2 , r27
eor r3 , r27
adc r10, r20
adc r11, r21
adc r12, r22
adc r13, r23
adc r14, r24
adc r15, r25
adc r16, r2
adc r17, r3
adc r28, r26
adc r29, r0
adc r18, r0
adc r19, r0
std Z+4, r10
std Z+5, r11
std Z+6, r12
std Z+7, r13
std Z+8, r14
std Z+9, r15
std Z+10, r16
std Z+11, r17
std Z+12, r28
std Z+13, r29
std Z+14, r18
std Z+15, r19

Divide and Conquer

“Compute M = |Al − Ah| · |Bl − Bh|”

clr r20
clr r21
movw r16, r20
ld r2, X+
ld r3, X+
ld r4, X+
ld r5, X+
ldd r6 Y+0
ldd r7 Y+1
ldd r8 Y+2
ldd r9 Y+3
mul r2, r8
movw r12, r0
mul r2, r6
movw r10, r0
mul r2, r7
add r11, r0
adc r12, r1
adc r13, r21
mul r3, r9
movw r14, r0
mul r2, r9
movw r18, r0
mul r3, r6
add r11, r0
adc r12, r1
adc r13, r18
adc r19, r21
mul r3, r7
add r12, r0
adc r13, r1
adc r19, r21

mul r4, r9
add r14, r19
adc r15, r0
adc r16, r1
mul r4, r8
movw r18, r0
mul r4, r6
add r12, r0
adc r13, r1
adc r14, r18
adc r19, r21
mul r3, r8
add r13, r0
adc r14, r1
adc r19, r21
mul r5, r9
add r15, r19
adc r16, r0
adc r17, r1
mul r5, r7
movw r18, r0
mul r4, r7
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r6
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r8
add r14, r18
adc r0, r19

adc r1, r21
add r15, r0
adc r16, r1
adc r17, r21
ldd r22 Y+4
ldd r23 Y+5
ldd r24 Y+6
ldd r25 Y+7
movw r28, r20
ld r18, X+
ld r19, X+
ld r20, X+
ld r21, X+
movw r26, r28
std Z+0, r10
std Z+1, r11
std Z+2, r12
std Z+3, r13
sub r2, r18
sbc r3, r19
sbc r4, r20
sbc r5, r21
sbc r0, r0
sub r6, r22
sbc r7, r23
sbc r8, r24
sbc r9, r25
sbc r1, r1
eor r2, r0
eor r3, r0
eor r4, r0
eor r5, r0

eor r6, r1
eor r7, r1
eor r8, r1
eor r9, r1
sub r2, r0
sbc r3, r0
sbc r4, r0
sbc r5, r0
sub r6, r1
sbc r7, r1
sbc r8, r1
sbc r9, r1
eor r0, r1
bst r0, 0
mul r18, r22
add r14, r0
adc r15, r1
adc r16, r26
adc r29, r26
mul r18, r23
add r15, r0
adc r16, r1
adc r29, r26
mul r19, r22
add r15, r0
adc r16, r1
adc r17, r29
adc r28, r26
mul r18, r24
add r16, r0
adc r17, r1
adc r28, r26

mul r19, r23
add r16, r0
adc r17, r1
adc r28, r26
mul r20, r22
add r16, r0
adc r17, r1
adc r28, r26
clr r29
mul r18, r25
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r24
add r17, r0
adc r28, r1
adc r29, r26
mul r20, r23
add r17, r0
adc r28, r1
adc r29, r26
mul r21, r22
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r25
movw r18, r26
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r24
add r28, r0

adc r29, r1
adc r18, r26
mul r21, r23
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r25
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r24
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r25
add r18, r0
adc r19, r1
mul r2, r6
movw r20, r0
movw r22, r26
mul r2, r7
add r21, r0
adc r22, r1
mul r3, r6
add r21, r0
adc r22, r1
adc r23, r26
movw r24, r26
mul r2, r8
add r22, r0
adc r23, r1
adc r24, r26

mul r3, r7
add r22, r0
adc r23, r1
adc r24, r26
mul r4, r6
add r22, r0
adc r23, r1
adc r24, r26
mul r2, r9
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r8
add r23, r0
adc r24, r1
adc r25, r26
mul r4, r7
add r23, r0
adc r24, r1
adc r25, r26
mul r5, r6
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r9
movw r2, r26
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r8
add r24, r0
adc r25, r1

adc r2, r27
mul r5, r7
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r9
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r8
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r9
add r2, r0
adc r3, r1
add r10, r14
adc r11, r15
adc r12, r16
adc r13, r17
adc r14, r28
adc r15, r29
adc r16, r18
adc r17, r19
bld r27, 0
dec 27
adc r26, r27
mov r0, r26
asr r0
eor r20, r27
eor r21, r27
eor r22, r27

eor r23, r27
eor r24, r27
eor r25, r27
eor r2 , r27
eor r3 , r27
adc r10, r20
adc r11, r21
adc r12, r22
adc r13, r23
adc r14, r24
adc r15, r25
adc r16, r2
adc r17, r3
adc r28, r26
adc r29, r0
adc r18, r0
adc r19, r0
std Z+4, r10
std Z+5, r11
std Z+6, r12
std Z+7, r13
std Z+8, r14
std Z+9, r15
std Z+10, r16
std Z+11, r17
std Z+12, r28
std Z+13, r29
std Z+14, r18
std Z+15, r19

Divide and Conquer

“Compute (1 + 2n)(L + 2n H)”

clr r20
clr r21
movw r16, r20
ld r2, X+
ld r3, X+
ld r4, X+
ld r5, X+
ldd r6 Y+0
ldd r7 Y+1
ldd r8 Y+2
ldd r9 Y+3
mul r2, r8
movw r12, r0
mul r2, r6
movw r10, r0
mul r2, r7
add r11, r0
adc r12, r1
adc r13, r21
mul r3, r9
movw r14, r0
mul r2, r9
movw r18, r0
mul r3, r6
add r11, r0
adc r12, r1
adc r13, r18
adc r19, r21
mul r3, r7
add r12, r0
adc r13, r1
adc r19, r21

mul r4, r9
add r14, r19
adc r15, r0
adc r16, r1
mul r4, r8
movw r18, r0
mul r4, r6
add r12, r0
adc r13, r1
adc r14, r18
adc r19, r21
mul r3, r8
add r13, r0
adc r14, r1
adc r19, r21
mul r5, r9
add r15, r19
adc r16, r0
adc r17, r1
mul r5, r7
movw r18, r0
mul r4, r7
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r6
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r8
add r14, r18
adc r0, r19

adc r1, r21
add r15, r0
adc r16, r1
adc r17, r21
ldd r22 Y+4
ldd r23 Y+5
ldd r24 Y+6
ldd r25 Y+7
movw r28, r20
ld r18, X+
ld r19, X+
ld r20, X+
ld r21, X+
movw r26, r28
std Z+0, r10
std Z+1, r11
std Z+2, r12
std Z+3, r13
sub r2, r18
sbc r3, r19
sbc r4, r20
sbc r5, r21
sbc r0, r0
sub r6, r22
sbc r7, r23
sbc r8, r24
sbc r9, r25
sbc r1, r1
eor r2, r0
eor r3, r0
eor r4, r0
eor r5, r0

eor r6, r1
eor r7, r1
eor r8, r1
eor r9, r1
sub r2, r0
sbc r3, r0
sbc r4, r0
sbc r5, r0
sub r6, r1
sbc r7, r1
sbc r8, r1
sbc r9, r1
eor r0, r1
bst r0, 0
mul r18, r22
add r14, r0
adc r15, r1
adc r16, r26
adc r29, r26
mul r18, r23
add r15, r0
adc r16, r1
adc r29, r26
mul r19, r22
add r15, r0
adc r16, r1
adc r17, r29
adc r28, r26
mul r18, r24
add r16, r0
adc r17, r1
adc r28, r26

mul r19, r23
add r16, r0
adc r17, r1
adc r28, r26
mul r20, r22
add r16, r0
adc r17, r1
adc r28, r26
clr r29
mul r18, r25
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r24
add r17, r0
adc r28, r1
adc r29, r26
mul r20, r23
add r17, r0
adc r28, r1
adc r29, r26
mul r21, r22
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r25
movw r18, r26
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r24
add r28, r0

adc r29, r1
adc r18, r26
mul r21, r23
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r25
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r24
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r25
add r18, r0
adc r19, r1
mul r2, r6
movw r20, r0
movw r22, r26
mul r2, r7
add r21, r0
adc r22, r1
mul r3, r6
add r21, r0
adc r22, r1
adc r23, r26
movw r24, r26
mul r2, r8
add r22, r0
adc r23, r1
adc r24, r26

mul r3, r7
add r22, r0
adc r23, r1
adc r24, r26
mul r4, r6
add r22, r0
adc r23, r1
adc r24, r26
mul r2, r9
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r8
add r23, r0
adc r24, r1
adc r25, r26
mul r4, r7
add r23, r0
adc r24, r1
adc r25, r26
mul r5, r6
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r9
movw r2, r26
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r8
add r24, r0
adc r25, r1

adc r2, r27
mul r5, r7
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r9
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r8
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r9
add r2, r0
adc r3, r1
add r10, r14
adc r11, r15
adc r12, r16
adc r13, r17
adc r14, r28
adc r15, r29
adc r16, r18
adc r17, r19
bld r27, 0
dec 27
adc r26, r27
mov r0, r26
asr r0
eor r20, r27
eor r21, r27
eor r22, r27

eor r23, r27
eor r24, r27
eor r25, r27
eor r2 , r27
eor r3 , r27
adc r10, r20
adc r11, r21
adc r12, r22
adc r13, r23
adc r14, r24
adc r15, r25
adc r16, r2
adc r17, r3
adc r28, r26
adc r29, r0
adc r18, r0
adc r19, r0
std Z+4, r10
std Z+5, r11
std Z+6, r12
std Z+7, r13
std Z+8, r14
std Z+9, r15
std Z+10, r16
std Z+11, r17
std Z+12, r28
std Z+13, r29
std Z+14, r18
std Z+15, r19

Divide and Conquer

“Correct the± sign of 2n M”

clr r20
clr r21
movw r16, r20
ld r2, X+
ld r3, X+
ld r4, X+
ld r5, X+
ldd r6 Y+0
ldd r7 Y+1
ldd r8 Y+2
ldd r9 Y+3
mul r2, r8
movw r12, r0
mul r2, r6
movw r10, r0
mul r2, r7
add r11, r0
adc r12, r1
adc r13, r21
mul r3, r9
movw r14, r0
mul r2, r9
movw r18, r0
mul r3, r6
add r11, r0
adc r12, r1
adc r13, r18
adc r19, r21
mul r3, r7
add r12, r0
adc r13, r1
adc r19, r21

mul r4, r9
add r14, r19
adc r15, r0
adc r16, r1
mul r4, r8
movw r18, r0
mul r4, r6
add r12, r0
adc r13, r1
adc r14, r18
adc r19, r21
mul r3, r8
add r13, r0
adc r14, r1
adc r19, r21
mul r5, r9
add r15, r19
adc r16, r0
adc r17, r1
mul r5, r7
movw r18, r0
mul r4, r7
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r6
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r8
add r14, r18
adc r0, r19

adc r1, r21
add r15, r0
adc r16, r1
adc r17, r21
ldd r22 Y+4
ldd r23 Y+5
ldd r24 Y+6
ldd r25 Y+7
movw r28, r20
ld r18, X+
ld r19, X+
ld r20, X+
ld r21, X+
movw r26, r28
std Z+0, r10
std Z+1, r11
std Z+2, r12
std Z+3, r13
sub r2, r18
sbc r3, r19
sbc r4, r20
sbc r5, r21
sbc r0, r0
sub r6, r22
sbc r7, r23
sbc r8, r24
sbc r9, r25
sbc r1, r1
eor r2, r0
eor r3, r0
eor r4, r0
eor r5, r0

eor r6, r1
eor r7, r1
eor r8, r1
eor r9, r1
sub r2, r0
sbc r3, r0
sbc r4, r0
sbc r5, r0
sub r6, r1
sbc r7, r1
sbc r8, r1
sbc r9, r1
eor r0, r1
bst r0, 0
mul r18, r22
add r14, r0
adc r15, r1
adc r16, r26
adc r29, r26
mul r18, r23
add r15, r0
adc r16, r1
adc r29, r26
mul r19, r22
add r15, r0
adc r16, r1
adc r17, r29
adc r28, r26
mul r18, r24
add r16, r0
adc r17, r1
adc r28, r26

mul r19, r23
add r16, r0
adc r17, r1
adc r28, r26
mul r20, r22
add r16, r0
adc r17, r1
adc r28, r26
clr r29
mul r18, r25
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r24
add r17, r0
adc r28, r1
adc r29, r26
mul r20, r23
add r17, r0
adc r28, r1
adc r29, r26
mul r21, r22
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r25
movw r18, r26
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r24
add r28, r0

adc r29, r1
adc r18, r26
mul r21, r23
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r25
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r24
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r25
add r18, r0
adc r19, r1
mul r2, r6
movw r20, r0
movw r22, r26
mul r2, r7
add r21, r0
adc r22, r1
mul r3, r6
add r21, r0
adc r22, r1
adc r23, r26
movw r24, r26
mul r2, r8
add r22, r0
adc r23, r1
adc r24, r26

mul r3, r7
add r22, r0
adc r23, r1
adc r24, r26
mul r4, r6
add r22, r0
adc r23, r1
adc r24, r26
mul r2, r9
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r8
add r23, r0
adc r24, r1
adc r25, r26
mul r4, r7
add r23, r0
adc r24, r1
adc r25, r26
mul r5, r6
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r9
movw r2, r26
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r8
add r24, r0
adc r25, r1

adc r2, r27
mul r5, r7
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r9
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r8
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r9
add r2, r0
adc r3, r1
add r10, r14
adc r11, r15
adc r12, r16
adc r13, r17
adc r14, r28
adc r15, r29
adc r16, r18
adc r17, r19
bld r27, 0
dec 27
adc r26, r27
mov r0, r26
asr r0
eor r20, r27
eor r21, r27
eor r22, r27

eor r23, r27
eor r24, r27
eor r25, r27
eor r2 , r27
eor r3 , r27
adc r10, r20
adc r11, r21
adc r12, r22
adc r13, r23
adc r14, r24
adc r15, r25
adc r16, r2
adc r17, r3
adc r28, r26
adc r29, r0
adc r18, r0
adc r19, r0
std Z+4, r10
std Z+5, r11
std Z+6, r12
std Z+7, r13
std Z+8, r14
std Z+9, r15
std Z+10, r16
std Z+11, r17
std Z+12, r28
std Z+13, r29
std Z+14, r18
std Z+15, r19

Divide and Conquer

“Compute (1 + 2n)(L + 2n H) + 2n M”

clr r20
clr r21
movw r16, r20
ld r2, X+
ld r3, X+
ld r4, X+
ld r5, X+
ldd r6 Y+0
ldd r7 Y+1
ldd r8 Y+2
ldd r9 Y+3
mul r2, r8
movw r12, r0
mul r2, r6
movw r10, r0
mul r2, r7
add r11, r0
adc r12, r1
adc r13, r21
mul r3, r9
movw r14, r0
mul r2, r9
movw r18, r0
mul r3, r6
add r11, r0
adc r12, r1
adc r13, r18
adc r19, r21
mul r3, r7
add r12, r0
adc r13, r1
adc r19, r21

mul r4, r9
add r14, r19
adc r15, r0
adc r16, r1
mul r4, r8
movw r18, r0
mul r4, r6
add r12, r0
adc r13, r1
adc r14, r18
adc r19, r21
mul r3, r8
add r13, r0
adc r14, r1
adc r19, r21
mul r5, r9
add r15, r19
adc r16, r0
adc r17, r1
mul r5, r7
movw r18, r0
mul r4, r7
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r6
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r8
add r14, r18
adc r0, r19

adc r1, r21
add r15, r0
adc r16, r1
adc r17, r21
ldd r22 Y+4
ldd r23 Y+5
ldd r24 Y+6
ldd r25 Y+7
movw r28, r20
ld r18, X+
ld r19, X+
ld r20, X+
ld r21, X+
movw r26, r28
std Z+0, r10
std Z+1, r11
std Z+2, r12
std Z+3, r13
sub r2, r18
sbc r3, r19
sbc r4, r20
sbc r5, r21
sbc r0, r0
sub r6, r22
sbc r7, r23
sbc r8, r24
sbc r9, r25
sbc r1, r1
eor r2, r0
eor r3, r0
eor r4, r0
eor r5, r0

eor r6, r1
eor r7, r1
eor r8, r1
eor r9, r1
sub r2, r0
sbc r3, r0
sbc r4, r0
sbc r5, r0
sub r6, r1
sbc r7, r1
sbc r8, r1
sbc r9, r1
eor r0, r1
bst r0, 0
mul r18, r22
add r14, r0
adc r15, r1
adc r16, r26
adc r29, r26
mul r18, r23
add r15, r0
adc r16, r1
adc r29, r26
mul r19, r22
add r15, r0
adc r16, r1
adc r17, r29
adc r28, r26
mul r18, r24
add r16, r0
adc r17, r1
adc r28, r26

mul r19, r23
add r16, r0
adc r17, r1
adc r28, r26
mul r20, r22
add r16, r0
adc r17, r1
adc r28, r26
clr r29
mul r18, r25
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r24
add r17, r0
adc r28, r1
adc r29, r26
mul r20, r23
add r17, r0
adc r28, r1
adc r29, r26
mul r21, r22
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r25
movw r18, r26
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r24
add r28, r0

adc r29, r1
adc r18, r26
mul r21, r23
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r25
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r24
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r25
add r18, r0
adc r19, r1
mul r2, r6
movw r20, r0
movw r22, r26
mul r2, r7
add r21, r0
adc r22, r1
mul r3, r6
add r21, r0
adc r22, r1
adc r23, r26
movw r24, r26
mul r2, r8
add r22, r0
adc r23, r1
adc r24, r26

mul r3, r7
add r22, r0
adc r23, r1
adc r24, r26
mul r4, r6
add r22, r0
adc r23, r1
adc r24, r26
mul r2, r9
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r8
add r23, r0
adc r24, r1
adc r25, r26
mul r4, r7
add r23, r0
adc r24, r1
adc r25, r26
mul r5, r6
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r9
movw r2, r26
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r8
add r24, r0
adc r25, r1

adc r2, r27
mul r5, r7
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r9
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r8
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r9
add r2, r0
adc r3, r1
add r10, r14
adc r11, r15
adc r12, r16
adc r13, r17
adc r14, r28
adc r15, r29
adc r16, r18
adc r17, r19
bld r27, 0
dec 27
adc r26, r27
mov r0, r26
asr r0
eor r20, r27
eor r21, r27
eor r22, r27

eor r23, r27
eor r24, r27
eor r25, r27
eor r2 , r27
eor r3 , r27
adc r10, r20
adc r11, r21
adc r12, r22
adc r13, r23
adc r14, r24
adc r15, r25
adc r16, r2
adc r17, r3
adc r28, r26
adc r29, r0
adc r18, r0
adc r19, r0
std Z+4, r10
std Z+5, r11
std Z+6, r12
std Z+7, r13
std Z+8, r14
std Z+9, r15
std Z+10, r16
std Z+11, r17
std Z+12, r28
std Z+13, r29
std Z+14, r18
std Z+15, r19

Divide and Conquer

“Result is (2n Ah + Al)(2nBh + Bl)”

clr r20
clr r21
movw r16, r20
ld r2, X+
ld r3, X+
ld r4, X+
ld r5, X+
ldd r6 Y+0
ldd r7 Y+1
ldd r8 Y+2
ldd r9 Y+3
mul r2, r8
movw r12, r0
mul r2, r6
movw r10, r0
mul r2, r7
add r11, r0
adc r12, r1
adc r13, r21
mul r3, r9
movw r14, r0
mul r2, r9
movw r18, r0
mul r3, r6
add r11, r0
adc r12, r1
adc r13, r18
adc r19, r21
mul r3, r7
add r12, r0
adc r13, r1
adc r19, r21

mul r4, r9
add r14, r19
adc r15, r0
adc r16, r1
mul r4, r8
movw r18, r0
mul r4, r6
add r12, r0
adc r13, r1
adc r14, r18
adc r19, r21
mul r3, r8
add r13, r0
adc r14, r1
adc r19, r21
mul r5, r9
add r15, r19
adc r16, r0
adc r17, r1
mul r5, r7
movw r18, r0
mul r4, r7
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r6
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r8
add r14, r18
adc r0, r19

adc r1, r21
add r15, r0
adc r16, r1
adc r17, r21
ldd r22 Y+4
ldd r23 Y+5
ldd r24 Y+6
ldd r25 Y+7
movw r28, r20
ld r18, X+
ld r19, X+
ld r20, X+
ld r21, X+
movw r26, r28
std Z+0, r10
std Z+1, r11
std Z+2, r12
std Z+3, r13
sub r2, r18
sbc r3, r19
sbc r4, r20
sbc r5, r21
sbc r0, r0
sub r6, r22
sbc r7, r23
sbc r8, r24
sbc r9, r25
sbc r1, r1
eor r2, r0
eor r3, r0
eor r4, r0
eor r5, r0

eor r6, r1
eor r7, r1
eor r8, r1
eor r9, r1
sub r2, r0
sbc r3, r0
sbc r4, r0
sbc r5, r0
sub r6, r1
sbc r7, r1
sbc r8, r1
sbc r9, r1
eor r0, r1
bst r0, 0
mul r18, r22
add r14, r0
adc r15, r1
adc r16, r26
adc r29, r26
mul r18, r23
add r15, r0
adc r16, r1
adc r29, r26
mul r19, r22
add r15, r0
adc r16, r1
adc r17, r29
adc r28, r26
mul r18, r24
add r16, r0
adc r17, r1
adc r28, r26

mul r19, r23
add r16, r0
adc r17, r1
adc r28, r26
mul r20, r22
add r16, r0
adc r17, r1
adc r28, r26
clr r29
mul r18, r25
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r24
add r17, r0
adc r28, r1
adc r29, r26
mul r20, r23
add r17, r0
adc r28, r1
adc r29, r26
mul r21, r22
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r25
movw r18, r26
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r24
add r28, r0

adc r29, r1
adc r18, r26
mul r21, r23
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r25
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r24
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r25
add r18, r0
adc r19, r1
mul r2, r6
movw r20, r0
movw r22, r26
mul r2, r7
add r21, r0
adc r22, r1
mul r3, r6
add r21, r0
adc r22, r1
adc r23, r26
movw r24, r26
mul r2, r8
add r22, r0
adc r23, r1
adc r24, r26

mul r3, r7
add r22, r0
adc r23, r1
adc r24, r26
mul r4, r6
add r22, r0
adc r23, r1
adc r24, r26
mul r2, r9
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r8
add r23, r0
adc r24, r1
adc r25, r26
mul r4, r7
add r23, r0
adc r24, r1
adc r25, r26
mul r5, r6
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r9
movw r2, r26
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r8
add r24, r0
adc r25, r1

adc r2, r27
mul r5, r7
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r9
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r8
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r9
add r2, r0
adc r3, r1
add r10, r14
adc r11, r15
adc r12, r16
adc r13, r17
adc r14, r28
adc r15, r29
adc r16, r18
adc r17, r19
bld r27, 0
dec 27
adc r26, r27
mov r0, r26
asr r0
eor r20, r27
eor r21, r27
eor r22, r27

eor r23, r27
eor r24, r27
eor r25, r27
eor r2 , r27
eor r3 , r27
adc r10, r20
adc r11, r21
adc r12, r22
adc r13, r23
adc r14, r24
adc r15, r25
adc r16, r2
adc r17, r3
adc r28, r26
adc r29, r0
adc r18, r0
adc r19, r0
std Z+4, r10
std Z+5, r11
std Z+6, r12
std Z+7, r13
std Z+8, r14
std Z+9, r15
std Z+10, r16
std Z+11, r17
std Z+12, r28
std Z+13, r29
std Z+14, r18
std Z+15, r19

Modeling Assembly Code

mul32

MOV MUL ADD ADC Useful formalization

Modeling Assembly Code

mul32

MOV

MOV

MUL

MUL

ADD

ADD

ADC

ADC

Useful formalization

Validated formalization

AVR specification

Example: ADD instruction

AVR Specification: ADD RD, RR

RD← RD + RR (implied: 8-bit operation)

C f lag ← RD7 · RR7 + RR7 · R7 + R7 · RD7 (boolean operations)

let add (rd rr: register): unit
writes { cf, reg }
ensures { reg = old reg[rd <- mod (old (reg[rd] + reg[rr])) 256] }
ensures { ?cf = div (old (reg[rd] + reg[rr])) 256 }

= let rdv = read_byte reg rd in
let rrv = read_byte reg rr in
let res = clip (rdv + rrv) in
set_byte reg rd res;
cf.value <- (ar_nth rdv 7 && ar_nth rrv 7 ||

ar_nth rrv 7 && not ar_nth res 7 ||
not ar_nth res 7 && ar_nth rdv 7)

Example: ADD instruction

AVR Specification: ADD RD, RR

RD← RD + RR (implied: 8-bit operation)

C f lag ← RD7 · RR7 + RR7 · R7 + R7 · RD7 (boolean operations)

let add (rd rr: register): unit
writes { cf, reg }
ensures { reg = old reg[rd <- mod (old (reg[rd] + reg[rr])) 256] }
ensures { ?cf = div (old (reg[rd] + reg[rr])) 256 }

= let rdv = read_byte reg rd in
let rrv = read_byte reg rr in
let res = clip (rdv + rrv) in
set_byte reg rd res;
cf.value <- (ar_nth rdv 7 && ar_nth rrv 7 ||

ar_nth rrv 7 && not ar_nth res 7 ||
not ar_nth res 7 && ar_nth rdv 7)

Example: ADD instruction

AVR Specification: ADD RD, RR

RD← RD + RR (implied: 8-bit operation)

C f lag ← RD7 · RR7 + RR7 · R7 + R7 · RD7 (boolean operations)

let add (rd rr: register): unit
writes { cf, reg }
ensures { reg = old reg[rd <- mod (old (reg[rd] + reg[rr])) 256] }
ensures { ?cf = div (old (reg[rd] + reg[rr])) 256 }

= let rdv = read_byte reg rd in
let rrv = read_byte reg rr in
let res = clip (rdv + rrv) in
set_byte reg rd res;
cf.value <- (ar_nth rdv 7 && ar_nth rrv 7 ||

ar_nth rrv 7 && not ar_nth res 7 ||
not ar_nth res 7 && ar_nth rdv 7)

Example: ADD instruction

AVR Specification: ADD RD, RR

RD← RD + RR (implied: 8-bit operation)

C f lag ← RD7 · RR7 + RR7 · R7 + R7 · RD7 (boolean operations)

let add (rd rr: register): unit
writes { cf, reg }
ensures { reg = old reg[rd <- mod (old (reg[rd] + reg[rr])) 256] }
ensures { ?cf = div (old (reg[rd] + reg[rr])) 256 }

= let rdv = read_byte reg rd in
let rrv = read_byte reg rr in
let res = clip (rdv + rrv) in
set_byte reg rd res;
cf.value <- (ar_nth rdv 7 && ar_nth rrv 7 ||

ar_nth rrv 7 && not ar_nth res 7 ||
not ar_nth res 7 && ar_nth rdv 7)

A Specification of X25519

Total correctness

{P} crypto_scalar_mult {Q}

What is a satisfying Q?

• A result computed by a reference implementation?
• A complete mathematical description?
• Something that admits validation!

State result using recognized concepts

• Multiplication by doubling-and-adding [Montgomery, 1987]

• Formulas proven to work for Curve25519 [Bernstein, 2006]

A Specification of X25519

Total correctness

{P} crypto_scalar_mult {Q}

What is a satisfying Q?
• A result computed by a reference implementation?

• A complete mathematical description?
• Something that admits validation!

State result using recognized concepts

• Multiplication by doubling-and-adding [Montgomery, 1987]

• Formulas proven to work for Curve25519 [Bernstein, 2006]

A Specification of X25519

Total correctness

{P} crypto_scalar_mult {Q}

What is a satisfying Q?
• A result computed by a reference implementation?
• A complete mathematical description?

• Something that admits validation!

State result using recognized concepts

• Multiplication by doubling-and-adding [Montgomery, 1987]

• Formulas proven to work for Curve25519 [Bernstein, 2006]

A Specification of X25519

Total correctness

{P} crypto_scalar_mult {Q}

What is a satisfying Q?
• A result computed by a reference implementation?
• A complete mathematical description?
• Something that admits validation!

State result using recognized concepts

• Multiplication by doubling-and-adding [Montgomery, 1987]

• Formulas proven to work for Curve25519 [Bernstein, 2006]

A Specification of X25519

Total correctness

{P} crypto_scalar_mult {Q}

What is a satisfying Q?
• A result computed by a reference implementation?
• A complete mathematical description?
• Something that admits validation!

State result using recognized concepts

• Multiplication by doubling-and-adding [Montgomery, 1987]

• Formulas proven to work for Curve25519 [Bernstein, 2006]

The Montgomery ladder
Scalar multiplication in Curve25519

Formal specification

n · P def
= (LADDER n P)1

O P

P 2P

2P 3P

4P 5P

9P

Where:
LADDER 0 P def

= (O, P)
LADDER (2n) P def

= (2Rn, Rn + R?
n)

LADDER (2n + 1) P def
= (Rn + R?

n, 2R?
n)

with (Rn, R?
n) = LADDER n P

(image idea: Bernstein, Lange [2017])

2R and R + R? computed using Montgomery’s formulas

QED

What was proven?
crypto_scalar_mult computes X(n · P) from n and X(P)
Fine print
If n ∈ {2254 + 8k : 0 ≤ k < 2251} and X(P) < 2255 per RFC7748.
Otherwise the implementation will adjust n, X(P) accordingly.
Furthermore by convention X(O) = 0.
The primality of 2255 − 19 is assumed.

After we fixed two assembly routines.

QED

What was proven?
crypto_scalar_mult computes X(n · P) from n and X(P)
Fine print
If n ∈ {2254 + 8k : 0 ≤ k < 2251} and X(P) < 2255 per RFC7748.
Otherwise the implementation will adjust n, X(P) accordingly.
Furthermore by convention X(O) = 0.
The primality of 2255 − 19 is assumed.

After we fixed two assembly routines.

Surprise!

crypto_scalar_mult was well-tested...
. . .but not with interrupts enabled.

c8a71edd37b496ed9f1c763b86f1614b24215280e6d4c48b6cdf477f9f92af6c
ERROR: crypto_scalarmult does not handle p overlap
c8a71edd37b496ed9f1c763b86f1614b24215280e6d4c48b6cdf477f9f92af6c
c8a71edd37b496ed9f1c763b86f1614b24215280e6d4c48b6cdf477f9f92af6c
ERROR: crypto_scalarmult does not handle n overlap
c8a71edd37b496ed9f1c763b86f1614b24215280e6d4c48b6cdf477f9f92af6c
ERROR: crypto_scalarmult does not handle n overlap
ERROR: crypto_scalarmult not associative
ERROR: crypto_scalarmult not associative

Cause: unsafe manual allocation of temporaries in mul256 & sqr256

Discovered by the restrictions imposed by our model.

Surprise!

crypto_scalar_mult was well-tested...
. . .but not with interrupts enabled.

c8a71edd37b496ed9f1c763b86f1614b24215280e6d4c48b6cdf477f9f92af6c
ERROR: crypto_scalarmult does not handle p overlap
c8a71edd37b496ed9f1c763b86f1614b24215280e6d4c48b6cdf477f9f92af6c
c8a71edd37b496ed9f1c763b86f1614b24215280e6d4c48b6cdf477f9f92af6c
ERROR: crypto_scalarmult does not handle n overlap
c8a71edd37b496ed9f1c763b86f1614b24215280e6d4c48b6cdf477f9f92af6c
ERROR: crypto_scalarmult does not handle n overlap
ERROR: crypto_scalarmult not associative
ERROR: crypto_scalarmult not associative

Cause: unsafe manual allocation of temporaries in mul256 & sqr256

Discovered by the restrictions imposed by our model.

Surprise!

crypto_scalar_mult was well-tested...
. . .but not with interrupts enabled.

c8a71edd37b496ed9f1c763b86f1614b24215280e6d4c48b6cdf477f9f92af6c
ERROR: crypto_scalarmult does not handle p overlap
c8a71edd37b496ed9f1c763b86f1614b24215280e6d4c48b6cdf477f9f92af6c
c8a71edd37b496ed9f1c763b86f1614b24215280e6d4c48b6cdf477f9f92af6c
ERROR: crypto_scalarmult does not handle n overlap
c8a71edd37b496ed9f1c763b86f1614b24215280e6d4c48b6cdf477f9f92af6c
ERROR: crypto_scalarmult does not handle n overlap
ERROR: crypto_scalarmult not associative
ERROR: crypto_scalarmult not associative

Cause: unsafe manual allocation of temporaries in mul256 & sqr256

Discovered by the restrictions imposed by our model.

Conclusion

Effort

• Unreliable estimate: ∼10 weeks of work
• Probably not bad compared to implementation effort!

Good practices

• Reason compositionally
• Only specify what you need
• Build consistent models out of consistent models

Future work

• C→assembly: Verified code from untrusted compiler and models!
• Assembly verification plugin for Why3
• Other architectures than AVR

https://github.com/squell/verified-x25519-for-avr

https://github.com/squell/verified-x25519-for-avr

Conclusion

Effort

• Unreliable estimate: ∼10 weeks of work
• Probably not bad compared to implementation effort!

Good practices

• Reason compositionally
• Only specify what you need
• Build consistent models out of consistent models

Future work

• C→assembly: Verified code from untrusted compiler and models!
• Assembly verification plugin for Why3
• Other architectures than AVR

https://github.com/squell/verified-x25519-for-avr

https://github.com/squell/verified-x25519-for-avr

Conclusion

Effort

• Unreliable estimate: ∼10 weeks of work
• Probably not bad compared to implementation effort!

Good practices

• Reason compositionally
• Only specify what you need
• Build consistent models out of consistent models

Future work

• C→assembly: Verified code from untrusted compiler and models!
• Assembly verification plugin for Why3
• Other architectures than AVR

https://github.com/squell/verified-x25519-for-avr

https://github.com/squell/verified-x25519-for-avr

Conclusion

Effort

• Unreliable estimate: ∼10 weeks of work
• Probably not bad compared to implementation effort!

Good practices

• Reason compositionally
• Only specify what you need
• Build consistent models out of consistent models

Future work

• C→assembly: Verified code from untrusted compiler and models!
• Assembly verification plugin for Why3
• Other architectures than AVR

https://github.com/squell/verified-x25519-for-avr

https://github.com/squell/verified-x25519-for-avr

Intentionally blank

Modeling the AVR architecture

Underspecification of instructions

• 32 registers, data segment & stack
• Carry flag and Transfer flag
• Memory size depends on application.

Model consistency

• Invariant: all memory cells hold 8-bit values
• Constructed in WhyML: no axiomatic definitions

Assembly verification, quantified

function instructions user annotations generated goals CPU time
bigint_mul256:mul128 1078 122 300 1504.6s
bigint_mul256 693 85 506 2000.1s
bigint_square256:sqr128 672 26 135 363.8s
bigint_square256 493 38 359 1796.6s
bigint_subp 103 12 84 184.0s
fe25519_red 305 41 182 155.3s
fe25519_add 242 52 209 156.4s
fe25519_sub 242 53 212 119.6s
fe25519_mul121666 138 56 149 393.0s

C verification, quantified

function lines user annotations generated goals CPU time
fe25519_setzero 3 2 7 0.4s
fe25519_setone 4 2 7 0.4s
fe25519_neg 3 0 3 0.2s
fe25519_cmov 5 3 10 36.5s
fe25519_freeze 4 2 9 4.7s
fe25519_unpack 4 8 30 41.0s
fe25519_pack 5 2 11 1.6s
fe25519_mul 3 0 1 0.2s
fe25519_square 3 0 1 0.1s
fe25519_invert 51 49 306 557.3s
work_cswap 8 0 13 3.8s
ladderstep 26 22 80 202.8s
mladder 26 22 140 345.1s
crypto_scalar_mult_curve25519 13 27 57 74.2s

Montgomery ladder

(X1 : Z1)← (1 :0); (X2 : Z2)← (xP : 1); prev← 0; j← 6
for i← 31 downto 0 do

while j ≥ 0 do
bit← bit 8i + j of N
swap← bit⊕ prev; prev← bit
if swap then (X1 : Z1, X2 : Z2)← (X2 : Z2, X1 : Z1) . by conditional moves
LADDERSTEP(xP , X1 : Z1, X2 : Z2)
j← j− 1

end while
j← 7

end for
return (X1 : Z1)

procedure LADDERSTEP
T1 ← X2 + Z2
X2 ← X2 − Z2
Z2 ← X1 + Z1
X1 ← X1 − Z1
T1 ← T1 · X1
X2 ← X2 · Z2
Z2 ← (Z2)2

X1 ← (X1)2

T2 ← Z2 − X1

Z1 ← T2 · 121666
Z1 ← Z1 + X1
Z1 ← T2 · Z1
X1 ← Z2 · X1
Z2 ← T1 − X2
Z2 ← (Z2)2

Z2 ← Z2 · xP
X2 ← T1 + X2
X2 ← (X2)2

end procedure

abstract
ensures { synchronized shadow reg }
ensures { uint 4 reg 2 = old (abs (uint 4 reg 2 - uint 4 reg 18)) }
ensures { uint 4 reg 6 = old (abs (uint 4 reg 6 - uint 4 reg 22)) }
ensures { ?tf = 0 <-> old ((uint 4 reg 2 < uint 4 reg 18) <-> (uint 4 reg 6 < uint 4 reg 22)) }

sub r2 r18;
sbc r3 r19;
sbc r4 r20;
sbc r5 r21;
sbc r0 r0;
sub r6 r22;
sbc r7 r23;
sbc r8 r24;
sbc r9 r25;
sbc r1 r1;
eor r2 r0;
eor r3 r0;
eor r4 r0;
eor r5 r0;
eor r6 r1;
eor r7 r1;
eor r8 r1;
eor r9 r1;
sub r2 r0;
sbc r3 r0;
sbc r4 r0;
sbc r5 r0;
sub r6 r1;
sbc r7 r1;
sbc r8 r1;
sbc r9 r1;
eor r0 r1;
bst r0 0;

modify_r0(); modify_r1(); modify_r2(); modify_r3(); modify_r4();
modify_r5(); modify_r6(); modify_r7(); modify_r8(); modify_r9();
end;

type ratio = { x: int; z: int }
constant infty: ratio = {x=1;z=0}

constant p25519: int = pow2 255 - 19
predicate (===) (x y: int) = mod x p25519 = mod y p25519
predicate (~) (p q: ratio) = x p*z q === x q*z p
predicate (==~) (x:int) (xz: ratio) = xz ~ {x=x; z=1}

function add (m n mn: ratio): ratio
= { x = 4*z mn*sqr(x m*x n - z m*z n);

z = 4*x mn*sqr(x m*z n - z m*x n) }
function double (n: ratio): ratio

= { x = sqr(sqr(x n) - sqr(z n));
z = 4*x n*z n * (sqr(x n) + 486662*x n*z n + sqr(z n)) }

function ladder (n: int) (p: ratio): (ratio, ratio)
axiom ladder_0: (*these axiomatic definitions are proven consistent*)

forall p.ladder 0 p = ({x=1; z=0}, p)
axiom ladder_even:

forall p, n. n > 0 -> let (r0,r1) = ladder n p in
ladder (2*n) p = (double r0, add r1 r0 p)

axiom ladder_odd:
forall p, n. n >= 0 -> let (r0,r1) = ladder n p in

ladder (2*n+1) p = (add r1 r0 p, double r1)

function scale (n: int) (m: int): ratio
= let (r,_) = ladder n {x=m; z=1} in r

function clamp (x: int): int
= mod x (pow2 254) + pow2 254 - mod x 8

val crypto_scalarmult_curve25519 (r s p: address_space)
ensures { uint 32 r = mod (uint 32 r) p25519 }
ensures { let xp = mod (uint 32 p) (pow2 255) in

let mult = scale (clamp (uint 32 s)) xp in
if mult ~ infty then uint 32 r === 0

else uint 32 r ==~ mult }

