
Verifying Branch-Free
Assembly Code in Why3
Marc Schoolderman



Challenges of cryptographic engineering

Implementations must not leak information

• Side-channel attacks
– Avoid timing attacks due to branching on input data

• Bug attacks
– A bug with low probability can be deliberately triggered

Low-power devices

• Restricted execution environments
• Code must be small yet efficient due to limited memory

– AVR: 8-bit RISC, typically 16Mhz and≤ 32kb program size



Case study

Multi-precision multiplication

• Hutter and Schwabe [2014]: Hand-optimized routines for 8-bit AVR
• Building block for high-speed Curve25519 implementations

operand sizes method
16-bit, 24-bit, 32-bit, 48-bit ‘schoolbook’ multiplication
48-bit, 64-bit, 80-bit, 96-bit Karatsuba
128-bit, 160-bit, 192-bit, 256-bit recursive Karatsuba



Case study

Multi-precision multiplication

• Hutter and Schwabe [2014]: Hand-optimized routines for 8-bit AVR
• Building block for high-speed Curve25519 implementations

operand sizes method
16-bit, 24-bit, 32-bit, 48-bit ‘schoolbook’ multiplication
48-bit, 64-bit, 80-bit, 96-bit Karatsuba
128-bit, 160-bit, 192-bit, 256-bit recursive Karatsuba



Subtractive Karatsuba multiplication

To multiply two n-bit integers A and B,
• Split A = 2n/2Ah + Al, and B = 2n/2Bh + Bl

• Multiply both halves: L = Al · Bl and H = Ah · Bh

• Let M = (Al −Ah) · (Bl − Bh)

• Compute the result as

A · B = L + 2n/2(L + H−M) + 2nH



Subtractive Karatsuba multiplication

To multiply two n-bit integers A and B,
• Split A = 2n/2Ah + Al, and B = 2n/2Bh + Bl

• Multiply both halves: L = Al · Bl and H = Ah · Bh

• Let M = (Al −Ah) · (Bl − Bh)

• Compute the result as

A · B = L + 2n/2(L + H−M) + 2nH



Subtractive Karatsuba multiplication

To multiply two n-bit integers A and B,
• Split A = 2n/2Ah + Al, and B = 2n/2Bh + Bl

• Multiply both halves: L = Al · Bl and H = Ah · Bh

• Let M = (Al −Ah) · (Bl − Bh)

• Compute the result as

A · B = L + 2n/2(L + H−M) + 2nH



Subtractive Karatsuba multiplication

To multiply two n-bit integers A and B,
• Split A = 2n/2Ah + Al, and B = 2n/2Bh + Bl

• Multiply both halves: L = Al · Bl and H = Ah · Bh

• Let M = (Al −Ah) · (Bl − Bh)

• Compute the result as

A · B = L + 2n/2(L + H−M) + 2nH



Subtractive Karatsuba multiplication

To multiply two n-bit integers A and B,
• Split A = 2n/2Ah + Al, and B = 2n/2Bh + Bl

• Multiply both halves: L = Al · Bl and H = Ah · Bh

• Let M = (Al −Ah) · (Bl − Bh)

• Compute the result as

A · B = L + 2n/2(L + H−M) + 2nH

Actual code slightly more ingenuous than this!



The Why3 verification platform

WhyML programs

Why logic

Alt-Ergo CVC3 CVC4 E Z3 Coq PVS

automated provers interactive provers

Highly useful: abstract blocks, bit-vector theories, type invariants



Design goals

Principle of least astonishment

• Formalization must be easy to understand and trust
• Transforming assembly→Why3 must be as simple as possible
• Perform proofs using a high degree of automation

let karatsuba64(): unit

ensures { uint 16 mem result

= old (uint 8 mem arg1 * uint 8 mem arg2) }

= instruction;

instruction;

.

.

.



Overview of approach

Model the machine architecture

• Instructions represented by WhyML functions
• Use Why3’s type system to enforce internal consistency

Logical partitioning of code into abstract blocks

• Summarizes partial results leading to main correctness theorem
• Reduces proof context seen by automatic provers



Reasoning about machine memory

Machine integers
Use type invariants to enforce bytes are always true 8-bit values:

type address_space = { mutable data: map int int }

invariant { forall i. 0 <= self.data[i] < 256 }

Allows lemmas about address spaces, e.g. 0 ≤ m[i] ·m[j] ≤ 65025

Representation of multi-precision integers

uint n A b = ∑
0≤i<n

28i ·A[i + b]



Underspecification of AVR instruction set architecture

Features modelled

• 32 registers, (simplified) SRAM & stack
• Carry flag and Transfer flag

Instructions

Arithmetic ADC, ADD, SUB, SBC, SBIW, INC, DEC, MUL

Bit manipulation ASR, CLR, COM, EOR, BLD, BST

Data access MOV, MOVW, LD, LDD, STD, POP, PUSH

Control flow omitted



Example: ADD instruction

let add (dst src: register): unit

writes { reg, cf }

ensures { reg = old (reg[dst <- mod (reg[dst]+reg[src]) 256]) }

ensures { ?cf = old (div (reg[dst]+reg[src]) 256) }

=

let rd = BV8.of_int (Map.get reg.data dst) in

let rr = BV8.of_int (Map.get reg.data src) in

let rd' = BV8.add rd rr in

reg.data <- Map.set reg.data dst (BV8.to_uint rd');

cf.value <- (BV8.nth rd 7 && BV8.nth rr 7 ||

BV8.nth rd 7 && not BV8.nth rd' 7 ||

not BV8.nth rd' 7 && BV8.nth rr 7)



Divide and conquer

Verifying branch-free code = formula simplification

clr r20
clr r21
movw r16, r20
ld r2, X+
ld r3, X+
ld r4, X+
ld r5, X+
ldd r6 Y+0
ldd r7 Y+1
ldd r8 Y+2
ldd r9 Y+3
mul r2, r8
movw r12, r0
mul r2, r6
movw r10, r0
mul r2, r7
add r11, r0
adc r12, r1
adc r13, r21
mul r3, r9
movw r14, r0
mul r2, r9
movw r18, r0
mul r3, r6
add r11, r0
adc r12, r1
adc r13, r18
adc r19, r21
mul r3, r7
add r12, r0
adc r13, r1
adc r19, r21

mul r4, r9
add r14, r19
adc r15, r0
adc r16, r1
mul r4, r8
movw r18, r0
mul r4, r6
add r12, r0
adc r13, r1
adc r14, r18
adc r19, r21
mul r3, r8
add r13, r0
adc r14, r1
adc r19, r21
mul r5, r9
add r15, r19
adc r16, r0
adc r17, r1
mul r5, r7
movw r18, r0
mul r4, r7
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r6
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r8
add r14, r18
adc r0, r19

adc r1, r21
add r15, r0
adc r16, r1
adc r17, r21
ldd r22 Y+4
ldd r23 Y+5
ldd r24 Y+6
ldd r25 Y+7
movw r28, r20
ld r18, X+
ld r19, X+
ld r20, X+
ld r21, X+
movw r26, r28
std Z+0, r10
std Z+1, r11
std Z+2, r12
std Z+3, r13
sub r2, r18
sbc r3, r19
sbc r4, r20
sbc r5, r21
sbc r0, r0
sub r6, r22
sbc r7, r23
sbc r8, r24
sbc r9, r25
sbc r1, r1
eor r2, r0
eor r3, r0
eor r4, r0
eor r5, r0

eor r6, r1
eor r7, r1
eor r8, r1
eor r9, r1
sub r2, r0
sbc r3, r0
sbc r4, r0
sbc r5, r0
sub r6, r1
sbc r7, r1
sbc r8, r1
sbc r9, r1
eor r0, r1
bst r0, 0
mul r18, r22
add r14, r0
adc r15, r1
adc r16, r26
adc r29, r26
mul r18, r23
add r15, r0
adc r16, r1
adc r29, r26
mul r19, r22
add r15, r0
adc r16, r1
adc r17, r29
adc r28, r26
mul r18, r24
add r16, r0
adc r17, r1
adc r28, r26

mul r19, r23
add r16, r0
adc r17, r1
adc r28, r26
mul r20, r22
add r16, r0
adc r17, r1
adc r28, r26
clr r29
mul r18, r25
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r24
add r17, r0
adc r28, r1
adc r29, r26
mul r20, r23
add r17, r0
adc r28, r1
adc r29, r26
mul r21, r22
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r25
movw r18, r26
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r24
add r28, r0

adc r29, r1
adc r18, r26
mul r21, r23
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r25
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r24
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r25
add r18, r0
adc r19, r1
mul r2, r6
movw r20, r0
movw r22, r26
mul r2, r7
add r21, r0
adc r22, r1
mul r3, r6
add r21, r0
adc r22, r1
adc r23, r26
movw r24, r26
mul r2, r8
add r22, r0
adc r23, r1
adc r24, r26

mul r3, r7
add r22, r0
adc r23, r1
adc r24, r26
mul r4, r6
add r22, r0
adc r23, r1
adc r24, r26
mul r2, r9
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r8
add r23, r0
adc r24, r1
adc r25, r26
mul r4, r7
add r23, r0
adc r24, r1
adc r25, r26
mul r5, r6
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r9
movw r2, r26
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r8
add r24, r0
adc r25, r1

adc r2, r27
mul r5, r7
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r9
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r8
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r9
add r2, r0
adc r3, r1
add r10, r14
adc r11, r15
adc r12, r16
adc r13, r17
adc r14, r28
adc r15, r29
adc r16, r18
adc r17, r19
bld r27, 0
dec 27
adc r26, r27
mov r0, r26
asr r0
eor r20, r27
eor r21, r27
eor r22, r27

eor r23, r27
eor r24, r27
eor r25, r27
eor r2 , r27
eor r3 , r27
adc r10, r20
adc r11, r21
adc r12, r22
adc r13, r23
adc r14, r24
adc r15, r25
adc r16, r2
adc r17, r3
adc r28, r26
adc r29, r0
adc r18, r0
adc r19, r0
std Z+4, r10
std Z+5, r11
std Z+6, r12
std Z+7, r13
std Z+8, r14
std Z+9, r15
std Z+10, r16
std Z+11, r17
std Z+12, r28
std Z+13, r29
std Z+14, r18
std Z+15, r19



Divide and conquer

Verifying branch-free code = formula simplification

clr r20
clr r21
movw r16, r20
ld r2, X+
ld r3, X+
ld r4, X+
ld r5, X+
ldd r6 Y+0
ldd r7 Y+1
ldd r8 Y+2
ldd r9 Y+3
mul r2, r8
movw r12, r0
mul r2, r6
movw r10, r0
mul r2, r7
add r11, r0
adc r12, r1
adc r13, r21
mul r3, r9
movw r14, r0
mul r2, r9
movw r18, r0
mul r3, r6
add r11, r0
adc r12, r1
adc r13, r18
adc r19, r21
mul r3, r7
add r12, r0
adc r13, r1
adc r19, r21

mul r4, r9
add r14, r19
adc r15, r0
adc r16, r1
mul r4, r8
movw r18, r0
mul r4, r6
add r12, r0
adc r13, r1
adc r14, r18
adc r19, r21
mul r3, r8
add r13, r0
adc r14, r1
adc r19, r21
mul r5, r9
add r15, r19
adc r16, r0
adc r17, r1
mul r5, r7
movw r18, r0
mul r4, r7
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r6
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r8
add r14, r18
adc r0, r19

adc r1, r21
add r15, r0
adc r16, r1
adc r17, r21
ldd r22 Y+4
ldd r23 Y+5
ldd r24 Y+6
ldd r25 Y+7
movw r28, r20
ld r18, X+
ld r19, X+
ld r20, X+
ld r21, X+
movw r26, r28
std Z+0, r10
std Z+1, r11
std Z+2, r12
std Z+3, r13
sub r2, r18
sbc r3, r19
sbc r4, r20
sbc r5, r21
sbc r0, r0
sub r6, r22
sbc r7, r23
sbc r8, r24
sbc r9, r25
sbc r1, r1
eor r2, r0
eor r3, r0
eor r4, r0
eor r5, r0

eor r6, r1
eor r7, r1
eor r8, r1
eor r9, r1
sub r2, r0
sbc r3, r0
sbc r4, r0
sbc r5, r0
sub r6, r1
sbc r7, r1
sbc r8, r1
sbc r9, r1
eor r0, r1
bst r0, 0
mul r18, r22
add r14, r0
adc r15, r1
adc r16, r26
adc r29, r26
mul r18, r23
add r15, r0
adc r16, r1
adc r29, r26
mul r19, r22
add r15, r0
adc r16, r1
adc r17, r29
adc r28, r26
mul r18, r24
add r16, r0
adc r17, r1
adc r28, r26

mul r19, r23
add r16, r0
adc r17, r1
adc r28, r26
mul r20, r22
add r16, r0
adc r17, r1
adc r28, r26
clr r29
mul r18, r25
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r24
add r17, r0
adc r28, r1
adc r29, r26
mul r20, r23
add r17, r0
adc r28, r1
adc r29, r26
mul r21, r22
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r25
movw r18, r26
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r24
add r28, r0

adc r29, r1
adc r18, r26
mul r21, r23
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r25
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r24
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r25
add r18, r0
adc r19, r1
mul r2, r6
movw r20, r0
movw r22, r26
mul r2, r7
add r21, r0
adc r22, r1
mul r3, r6
add r21, r0
adc r22, r1
adc r23, r26
movw r24, r26
mul r2, r8
add r22, r0
adc r23, r1
adc r24, r26

mul r3, r7
add r22, r0
adc r23, r1
adc r24, r26
mul r4, r6
add r22, r0
adc r23, r1
adc r24, r26
mul r2, r9
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r8
add r23, r0
adc r24, r1
adc r25, r26
mul r4, r7
add r23, r0
adc r24, r1
adc r25, r26
mul r5, r6
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r9
movw r2, r26
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r8
add r24, r0
adc r25, r1

adc r2, r27
mul r5, r7
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r9
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r8
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r9
add r2, r0
adc r3, r1
add r10, r14
adc r11, r15
adc r12, r16
adc r13, r17
adc r14, r28
adc r15, r29
adc r16, r18
adc r17, r19
bld r27, 0
dec 27
adc r26, r27
mov r0, r26
asr r0
eor r20, r27
eor r21, r27
eor r22, r27

eor r23, r27
eor r24, r27
eor r25, r27
eor r2 , r27
eor r3 , r27
adc r10, r20
adc r11, r21
adc r12, r22
adc r13, r23
adc r14, r24
adc r15, r25
adc r16, r2
adc r17, r3
adc r28, r26
adc r29, r0
adc r18, r0
adc r19, r0
std Z+4, r10
std Z+5, r11
std Z+6, r12
std Z+7, r13
std Z+8, r14
std Z+9, r15
std Z+10, r16
std Z+11, r17
std Z+12, r28
std Z+13, r29
std Z+14, r18
std Z+15, r19



Divide and conquer

Verifying branch-free code = formula simplification

clr r20
clr r21
movw r16, r20
ld r2, X+
ld r3, X+
ld r4, X+
ld r5, X+
ldd r6 Y+0
ldd r7 Y+1
ldd r8 Y+2
ldd r9 Y+3
mul r2, r8
movw r12, r0
mul r2, r6
movw r10, r0
mul r2, r7
add r11, r0
adc r12, r1
adc r13, r21
mul r3, r9
movw r14, r0
mul r2, r9
movw r18, r0
mul r3, r6
add r11, r0
adc r12, r1
adc r13, r18
adc r19, r21
mul r3, r7
add r12, r0
adc r13, r1
adc r19, r21

mul r4, r9
add r14, r19
adc r15, r0
adc r16, r1
mul r4, r8
movw r18, r0
mul r4, r6
add r12, r0
adc r13, r1
adc r14, r18
adc r19, r21
mul r3, r8
add r13, r0
adc r14, r1
adc r19, r21
mul r5, r9
add r15, r19
adc r16, r0
adc r17, r1
mul r5, r7
movw r18, r0
mul r4, r7
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r6
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r8
add r14, r18
adc r0, r19

adc r1, r21
add r15, r0
adc r16, r1
adc r17, r21
ldd r22 Y+4
ldd r23 Y+5
ldd r24 Y+6
ldd r25 Y+7
movw r28, r20
ld r18, X+
ld r19, X+
ld r20, X+
ld r21, X+
movw r26, r28
std Z+0, r10
std Z+1, r11
std Z+2, r12
std Z+3, r13
sub r2, r18
sbc r3, r19
sbc r4, r20
sbc r5, r21
sbc r0, r0
sub r6, r22
sbc r7, r23
sbc r8, r24
sbc r9, r25
sbc r1, r1
eor r2, r0
eor r3, r0
eor r4, r0
eor r5, r0

eor r6, r1
eor r7, r1
eor r8, r1
eor r9, r1
sub r2, r0
sbc r3, r0
sbc r4, r0
sbc r5, r0
sub r6, r1
sbc r7, r1
sbc r8, r1
sbc r9, r1
eor r0, r1
bst r0, 0
mul r18, r22
add r14, r0
adc r15, r1
adc r16, r26
adc r29, r26
mul r18, r23
add r15, r0
adc r16, r1
adc r29, r26
mul r19, r22
add r15, r0
adc r16, r1
adc r17, r29
adc r28, r26
mul r18, r24
add r16, r0
adc r17, r1
adc r28, r26

mul r19, r23
add r16, r0
adc r17, r1
adc r28, r26
mul r20, r22
add r16, r0
adc r17, r1
adc r28, r26
clr r29
mul r18, r25
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r24
add r17, r0
adc r28, r1
adc r29, r26
mul r20, r23
add r17, r0
adc r28, r1
adc r29, r26
mul r21, r22
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r25
movw r18, r26
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r24
add r28, r0

adc r29, r1
adc r18, r26
mul r21, r23
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r25
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r24
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r25
add r18, r0
adc r19, r1
mul r2, r6
movw r20, r0
movw r22, r26
mul r2, r7
add r21, r0
adc r22, r1
mul r3, r6
add r21, r0
adc r22, r1
adc r23, r26
movw r24, r26
mul r2, r8
add r22, r0
adc r23, r1
adc r24, r26

mul r3, r7
add r22, r0
adc r23, r1
adc r24, r26
mul r4, r6
add r22, r0
adc r23, r1
adc r24, r26
mul r2, r9
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r8
add r23, r0
adc r24, r1
adc r25, r26
mul r4, r7
add r23, r0
adc r24, r1
adc r25, r26
mul r5, r6
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r9
movw r2, r26
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r8
add r24, r0
adc r25, r1

adc r2, r27
mul r5, r7
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r9
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r8
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r9
add r2, r0
adc r3, r1
add r10, r14
adc r11, r15
adc r12, r16
adc r13, r17
adc r14, r28
adc r15, r29
adc r16, r18
adc r17, r19
bld r27, 0
dec 27
adc r26, r27
mov r0, r26
asr r0
eor r20, r27
eor r21, r27
eor r22, r27

eor r23, r27
eor r24, r27
eor r25, r27
eor r2 , r27
eor r3 , r27
adc r10, r20
adc r11, r21
adc r12, r22
adc r13, r23
adc r14, r24
adc r15, r25
adc r16, r2
adc r17, r3
adc r28, r26
adc r29, r0
adc r18, r0
adc r19, r0
std Z+4, r10
std Z+5, r11
std Z+6, r12
std Z+7, r13
std Z+8, r14
std Z+9, r15
std Z+10, r16
std Z+11, r17
std Z+12, r28
std Z+13, r29
std Z+14, r18
std Z+15, r19



Divide and conquer

Verifying branch-free code = formula simplification

clr r20
clr r21
movw r16, r20
ld r2, X+
ld r3, X+
ld r4, X+
ld r5, X+
ldd r6 Y+0
ldd r7 Y+1
ldd r8 Y+2
ldd r9 Y+3
mul r2, r8
movw r12, r0
mul r2, r6
movw r10, r0
mul r2, r7
add r11, r0
adc r12, r1
adc r13, r21
mul r3, r9
movw r14, r0
mul r2, r9
movw r18, r0
mul r3, r6
add r11, r0
adc r12, r1
adc r13, r18
adc r19, r21
mul r3, r7
add r12, r0
adc r13, r1
adc r19, r21

mul r4, r9
add r14, r19
adc r15, r0
adc r16, r1
mul r4, r8
movw r18, r0
mul r4, r6
add r12, r0
adc r13, r1
adc r14, r18
adc r19, r21
mul r3, r8
add r13, r0
adc r14, r1
adc r19, r21
mul r5, r9
add r15, r19
adc r16, r0
adc r17, r1
mul r5, r7
movw r18, r0
mul r4, r7
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r6
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r8
add r14, r18
adc r0, r19

adc r1, r21
add r15, r0
adc r16, r1
adc r17, r21
ldd r22 Y+4
ldd r23 Y+5
ldd r24 Y+6
ldd r25 Y+7
movw r28, r20
ld r18, X+
ld r19, X+
ld r20, X+
ld r21, X+
movw r26, r28
std Z+0, r10
std Z+1, r11
std Z+2, r12
std Z+3, r13
sub r2, r18
sbc r3, r19
sbc r4, r20
sbc r5, r21
sbc r0, r0
sub r6, r22
sbc r7, r23
sbc r8, r24
sbc r9, r25
sbc r1, r1
eor r2, r0
eor r3, r0
eor r4, r0
eor r5, r0

eor r6, r1
eor r7, r1
eor r8, r1
eor r9, r1
sub r2, r0
sbc r3, r0
sbc r4, r0
sbc r5, r0
sub r6, r1
sbc r7, r1
sbc r8, r1
sbc r9, r1
eor r0, r1
bst r0, 0
mul r18, r22
add r14, r0
adc r15, r1
adc r16, r26
adc r29, r26
mul r18, r23
add r15, r0
adc r16, r1
adc r29, r26
mul r19, r22
add r15, r0
adc r16, r1
adc r17, r29
adc r28, r26
mul r18, r24
add r16, r0
adc r17, r1
adc r28, r26

mul r19, r23
add r16, r0
adc r17, r1
adc r28, r26
mul r20, r22
add r16, r0
adc r17, r1
adc r28, r26
clr r29
mul r18, r25
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r24
add r17, r0
adc r28, r1
adc r29, r26
mul r20, r23
add r17, r0
adc r28, r1
adc r29, r26
mul r21, r22
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r25
movw r18, r26
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r24
add r28, r0

adc r29, r1
adc r18, r26
mul r21, r23
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r25
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r24
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r25
add r18, r0
adc r19, r1
mul r2, r6
movw r20, r0
movw r22, r26
mul r2, r7
add r21, r0
adc r22, r1
mul r3, r6
add r21, r0
adc r22, r1
adc r23, r26
movw r24, r26
mul r2, r8
add r22, r0
adc r23, r1
adc r24, r26

mul r3, r7
add r22, r0
adc r23, r1
adc r24, r26
mul r4, r6
add r22, r0
adc r23, r1
adc r24, r26
mul r2, r9
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r8
add r23, r0
adc r24, r1
adc r25, r26
mul r4, r7
add r23, r0
adc r24, r1
adc r25, r26
mul r5, r6
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r9
movw r2, r26
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r8
add r24, r0
adc r25, r1

adc r2, r27
mul r5, r7
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r9
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r8
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r9
add r2, r0
adc r3, r1
add r10, r14
adc r11, r15
adc r12, r16
adc r13, r17
adc r14, r28
adc r15, r29
adc r16, r18
adc r17, r19
bld r27, 0
dec 27
adc r26, r27
mov r0, r26
asr r0
eor r20, r27
eor r21, r27
eor r22, r27

eor r23, r27
eor r24, r27
eor r25, r27
eor r2 , r27
eor r3 , r27
adc r10, r20
adc r11, r21
adc r12, r22
adc r13, r23
adc r14, r24
adc r15, r25
adc r16, r2
adc r17, r3
adc r28, r26
adc r29, r0
adc r18, r0
adc r19, r0
std Z+4, r10
std Z+5, r11
std Z+6, r12
std Z+7, r13
std Z+8, r14
std Z+9, r15
std Z+10, r16
std Z+11, r17
std Z+12, r28
std Z+13, r29
std Z+14, r18
std Z+15, r19



Divide and conquer

Verifying branch-free code = formula simplification

clr r20
clr r21
movw r16, r20
ld r2, X+
ld r3, X+
ld r4, X+
ld r5, X+
ldd r6 Y+0
ldd r7 Y+1
ldd r8 Y+2
ldd r9 Y+3
mul r2, r8
movw r12, r0
mul r2, r6
movw r10, r0
mul r2, r7
add r11, r0
adc r12, r1
adc r13, r21
mul r3, r9
movw r14, r0
mul r2, r9
movw r18, r0
mul r3, r6
add r11, r0
adc r12, r1
adc r13, r18
adc r19, r21
mul r3, r7
add r12, r0
adc r13, r1
adc r19, r21

mul r4, r9
add r14, r19
adc r15, r0
adc r16, r1
mul r4, r8
movw r18, r0
mul r4, r6
add r12, r0
adc r13, r1
adc r14, r18
adc r19, r21
mul r3, r8
add r13, r0
adc r14, r1
adc r19, r21
mul r5, r9
add r15, r19
adc r16, r0
adc r17, r1
mul r5, r7
movw r18, r0
mul r4, r7
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r6
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r8
add r14, r18
adc r0, r19

adc r1, r21
add r15, r0
adc r16, r1
adc r17, r21
ldd r22 Y+4
ldd r23 Y+5
ldd r24 Y+6
ldd r25 Y+7
movw r28, r20
ld r18, X+
ld r19, X+
ld r20, X+
ld r21, X+
movw r26, r28
std Z+0, r10
std Z+1, r11
std Z+2, r12
std Z+3, r13
sub r2, r18
sbc r3, r19
sbc r4, r20
sbc r5, r21
sbc r0, r0
sub r6, r22
sbc r7, r23
sbc r8, r24
sbc r9, r25
sbc r1, r1
eor r2, r0
eor r3, r0
eor r4, r0
eor r5, r0

eor r6, r1
eor r7, r1
eor r8, r1
eor r9, r1
sub r2, r0
sbc r3, r0
sbc r4, r0
sbc r5, r0
sub r6, r1
sbc r7, r1
sbc r8, r1
sbc r9, r1
eor r0, r1
bst r0, 0
mul r18, r22
add r14, r0
adc r15, r1
adc r16, r26
adc r29, r26
mul r18, r23
add r15, r0
adc r16, r1
adc r29, r26
mul r19, r22
add r15, r0
adc r16, r1
adc r17, r29
adc r28, r26
mul r18, r24
add r16, r0
adc r17, r1
adc r28, r26

mul r19, r23
add r16, r0
adc r17, r1
adc r28, r26
mul r20, r22
add r16, r0
adc r17, r1
adc r28, r26
clr r29
mul r18, r25
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r24
add r17, r0
adc r28, r1
adc r29, r26
mul r20, r23
add r17, r0
adc r28, r1
adc r29, r26
mul r21, r22
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r25
movw r18, r26
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r24
add r28, r0

adc r29, r1
adc r18, r26
mul r21, r23
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r25
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r24
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r25
add r18, r0
adc r19, r1
mul r2, r6
movw r20, r0
movw r22, r26
mul r2, r7
add r21, r0
adc r22, r1
mul r3, r6
add r21, r0
adc r22, r1
adc r23, r26
movw r24, r26
mul r2, r8
add r22, r0
adc r23, r1
adc r24, r26

mul r3, r7
add r22, r0
adc r23, r1
adc r24, r26
mul r4, r6
add r22, r0
adc r23, r1
adc r24, r26
mul r2, r9
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r8
add r23, r0
adc r24, r1
adc r25, r26
mul r4, r7
add r23, r0
adc r24, r1
adc r25, r26
mul r5, r6
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r9
movw r2, r26
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r8
add r24, r0
adc r25, r1

adc r2, r27
mul r5, r7
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r9
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r8
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r9
add r2, r0
adc r3, r1
add r10, r14
adc r11, r15
adc r12, r16
adc r13, r17
adc r14, r28
adc r15, r29
adc r16, r18
adc r17, r19
bld r27, 0
dec 27
adc r26, r27
mov r0, r26
asr r0
eor r20, r27
eor r21, r27
eor r22, r27

eor r23, r27
eor r24, r27
eor r25, r27
eor r2 , r27
eor r3 , r27
adc r10, r20
adc r11, r21
adc r12, r22
adc r13, r23
adc r14, r24
adc r15, r25
adc r16, r2
adc r17, r3
adc r28, r26
adc r29, r0
adc r18, r0
adc r19, r0
std Z+4, r10
std Z+5, r11
std Z+6, r12
std Z+7, r13
std Z+8, r14
std Z+9, r15
std Z+10, r16
std Z+11, r17
std Z+12, r28
std Z+13, r29
std Z+14, r18
std Z+15, r19



Divide and conquer

Verifying branch-free code = formula simplification

clr r20
clr r21
movw r16, r20
ld r2, X+
ld r3, X+
ld r4, X+
ld r5, X+
ldd r6 Y+0
ldd r7 Y+1
ldd r8 Y+2
ldd r9 Y+3
mul r2, r8
movw r12, r0
mul r2, r6
movw r10, r0
mul r2, r7
add r11, r0
adc r12, r1
adc r13, r21
mul r3, r9
movw r14, r0
mul r2, r9
movw r18, r0
mul r3, r6
add r11, r0
adc r12, r1
adc r13, r18
adc r19, r21
mul r3, r7
add r12, r0
adc r13, r1
adc r19, r21

mul r4, r9
add r14, r19
adc r15, r0
adc r16, r1
mul r4, r8
movw r18, r0
mul r4, r6
add r12, r0
adc r13, r1
adc r14, r18
adc r19, r21
mul r3, r8
add r13, r0
adc r14, r1
adc r19, r21
mul r5, r9
add r15, r19
adc r16, r0
adc r17, r1
mul r5, r7
movw r18, r0
mul r4, r7
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r6
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r8
add r14, r18
adc r0, r19

adc r1, r21
add r15, r0
adc r16, r1
adc r17, r21
ldd r22 Y+4
ldd r23 Y+5
ldd r24 Y+6
ldd r25 Y+7
movw r28, r20
ld r18, X+
ld r19, X+
ld r20, X+
ld r21, X+
movw r26, r28
std Z+0, r10
std Z+1, r11
std Z+2, r12
std Z+3, r13
sub r2, r18
sbc r3, r19
sbc r4, r20
sbc r5, r21
sbc r0, r0
sub r6, r22
sbc r7, r23
sbc r8, r24
sbc r9, r25
sbc r1, r1
eor r2, r0
eor r3, r0
eor r4, r0
eor r5, r0

eor r6, r1
eor r7, r1
eor r8, r1
eor r9, r1
sub r2, r0
sbc r3, r0
sbc r4, r0
sbc r5, r0
sub r6, r1
sbc r7, r1
sbc r8, r1
sbc r9, r1
eor r0, r1
bst r0, 0
mul r18, r22
add r14, r0
adc r15, r1
adc r16, r26
adc r29, r26
mul r18, r23
add r15, r0
adc r16, r1
adc r29, r26
mul r19, r22
add r15, r0
adc r16, r1
adc r17, r29
adc r28, r26
mul r18, r24
add r16, r0
adc r17, r1
adc r28, r26

mul r19, r23
add r16, r0
adc r17, r1
adc r28, r26
mul r20, r22
add r16, r0
adc r17, r1
adc r28, r26
clr r29
mul r18, r25
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r24
add r17, r0
adc r28, r1
adc r29, r26
mul r20, r23
add r17, r0
adc r28, r1
adc r29, r26
mul r21, r22
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r25
movw r18, r26
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r24
add r28, r0

adc r29, r1
adc r18, r26
mul r21, r23
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r25
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r24
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r25
add r18, r0
adc r19, r1
mul r2, r6
movw r20, r0
movw r22, r26
mul r2, r7
add r21, r0
adc r22, r1
mul r3, r6
add r21, r0
adc r22, r1
adc r23, r26
movw r24, r26
mul r2, r8
add r22, r0
adc r23, r1
adc r24, r26

mul r3, r7
add r22, r0
adc r23, r1
adc r24, r26
mul r4, r6
add r22, r0
adc r23, r1
adc r24, r26
mul r2, r9
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r8
add r23, r0
adc r24, r1
adc r25, r26
mul r4, r7
add r23, r0
adc r24, r1
adc r25, r26
mul r5, r6
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r9
movw r2, r26
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r8
add r24, r0
adc r25, r1

adc r2, r27
mul r5, r7
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r9
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r8
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r9
add r2, r0
adc r3, r1
add r10, r14
adc r11, r15
adc r12, r16
adc r13, r17
adc r14, r28
adc r15, r29
adc r16, r18
adc r17, r19
bld r27, 0
dec 27
adc r26, r27
mov r0, r26
asr r0
eor r20, r27
eor r21, r27
eor r22, r27

eor r23, r27
eor r24, r27
eor r25, r27
eor r2 , r27
eor r3 , r27
adc r10, r20
adc r11, r21
adc r12, r22
adc r13, r23
adc r14, r24
adc r15, r25
adc r16, r2
adc r17, r3
adc r28, r26
adc r29, r0
adc r18, r0
adc r19, r0
std Z+4, r10
std Z+5, r11
std Z+6, r12
std Z+7, r13
std Z+8, r14
std Z+9, r15
std Z+10, r16
std Z+11, r17
std Z+12, r28
std Z+13, r29
std Z+14, r18
std Z+15, r19



Divide and conquer

Verifying branch-free code = formula simplification

clr r20
clr r21
movw r16, r20
ld r2, X+
ld r3, X+
ld r4, X+
ld r5, X+
ldd r6 Y+0
ldd r7 Y+1
ldd r8 Y+2
ldd r9 Y+3
mul r2, r8
movw r12, r0
mul r2, r6
movw r10, r0
mul r2, r7
add r11, r0
adc r12, r1
adc r13, r21
mul r3, r9
movw r14, r0
mul r2, r9
movw r18, r0
mul r3, r6
add r11, r0
adc r12, r1
adc r13, r18
adc r19, r21
mul r3, r7
add r12, r0
adc r13, r1
adc r19, r21

mul r4, r9
add r14, r19
adc r15, r0
adc r16, r1
mul r4, r8
movw r18, r0
mul r4, r6
add r12, r0
adc r13, r1
adc r14, r18
adc r19, r21
mul r3, r8
add r13, r0
adc r14, r1
adc r19, r21
mul r5, r9
add r15, r19
adc r16, r0
adc r17, r1
mul r5, r7
movw r18, r0
mul r4, r7
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r6
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r8
add r14, r18
adc r0, r19

adc r1, r21
add r15, r0
adc r16, r1
adc r17, r21
ldd r22 Y+4
ldd r23 Y+5
ldd r24 Y+6
ldd r25 Y+7
movw r28, r20
ld r18, X+
ld r19, X+
ld r20, X+
ld r21, X+
movw r26, r28
std Z+0, r10
std Z+1, r11
std Z+2, r12
std Z+3, r13
sub r2, r18
sbc r3, r19
sbc r4, r20
sbc r5, r21
sbc r0, r0
sub r6, r22
sbc r7, r23
sbc r8, r24
sbc r9, r25
sbc r1, r1
eor r2, r0
eor r3, r0
eor r4, r0
eor r5, r0

eor r6, r1
eor r7, r1
eor r8, r1
eor r9, r1
sub r2, r0
sbc r3, r0
sbc r4, r0
sbc r5, r0
sub r6, r1
sbc r7, r1
sbc r8, r1
sbc r9, r1
eor r0, r1
bst r0, 0
mul r18, r22
add r14, r0
adc r15, r1
adc r16, r26
adc r29, r26
mul r18, r23
add r15, r0
adc r16, r1
adc r29, r26
mul r19, r22
add r15, r0
adc r16, r1
adc r17, r29
adc r28, r26
mul r18, r24
add r16, r0
adc r17, r1
adc r28, r26

mul r19, r23
add r16, r0
adc r17, r1
adc r28, r26
mul r20, r22
add r16, r0
adc r17, r1
adc r28, r26
clr r29
mul r18, r25
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r24
add r17, r0
adc r28, r1
adc r29, r26
mul r20, r23
add r17, r0
adc r28, r1
adc r29, r26
mul r21, r22
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r25
movw r18, r26
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r24
add r28, r0

adc r29, r1
adc r18, r26
mul r21, r23
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r25
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r24
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r25
add r18, r0
adc r19, r1
mul r2, r6
movw r20, r0
movw r22, r26
mul r2, r7
add r21, r0
adc r22, r1
mul r3, r6
add r21, r0
adc r22, r1
adc r23, r26
movw r24, r26
mul r2, r8
add r22, r0
adc r23, r1
adc r24, r26

mul r3, r7
add r22, r0
adc r23, r1
adc r24, r26
mul r4, r6
add r22, r0
adc r23, r1
adc r24, r26
mul r2, r9
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r8
add r23, r0
adc r24, r1
adc r25, r26
mul r4, r7
add r23, r0
adc r24, r1
adc r25, r26
mul r5, r6
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r9
movw r2, r26
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r8
add r24, r0
adc r25, r1

adc r2, r27
mul r5, r7
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r9
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r8
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r9
add r2, r0
adc r3, r1
add r10, r14
adc r11, r15
adc r12, r16
adc r13, r17
adc r14, r28
adc r15, r29
adc r16, r18
adc r17, r19
bld r27, 0
dec 27
adc r26, r27
mov r0, r26
asr r0
eor r20, r27
eor r21, r27
eor r22, r27

eor r23, r27
eor r24, r27
eor r25, r27
eor r2 , r27
eor r3 , r27
adc r10, r20
adc r11, r21
adc r12, r22
adc r13, r23
adc r14, r24
adc r15, r25
adc r16, r2
adc r17, r3
adc r28, r26
adc r29, r0
adc r18, r0
adc r19, r0
std Z+4, r10
std Z+5, r11
std Z+6, r12
std Z+7, r13
std Z+8, r14
std Z+9, r15
std Z+10, r16
std Z+11, r17
std Z+12, r28
std Z+13, r29
std Z+14, r18
std Z+15, r19



Divide and conquer

Verifying branch-free code = formula simplification

clr r20
clr r21
movw r16, r20
ld r2, X+
ld r3, X+
ld r4, X+
ld r5, X+
ldd r6 Y+0
ldd r7 Y+1
ldd r8 Y+2
ldd r9 Y+3
mul r2, r8
movw r12, r0
mul r2, r6
movw r10, r0
mul r2, r7
add r11, r0
adc r12, r1
adc r13, r21
mul r3, r9
movw r14, r0
mul r2, r9
movw r18, r0
mul r3, r6
add r11, r0
adc r12, r1
adc r13, r18
adc r19, r21
mul r3, r7
add r12, r0
adc r13, r1
adc r19, r21

mul r4, r9
add r14, r19
adc r15, r0
adc r16, r1
mul r4, r8
movw r18, r0
mul r4, r6
add r12, r0
adc r13, r1
adc r14, r18
adc r19, r21
mul r3, r8
add r13, r0
adc r14, r1
adc r19, r21
mul r5, r9
add r15, r19
adc r16, r0
adc r17, r1
mul r5, r7
movw r18, r0
mul r4, r7
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r6
add r13, r0
adc r18, r1
adc r19, r21
mul r5, r8
add r14, r18
adc r0, r19

adc r1, r21
add r15, r0
adc r16, r1
adc r17, r21
ldd r22 Y+4
ldd r23 Y+5
ldd r24 Y+6
ldd r25 Y+7
movw r28, r20
ld r18, X+
ld r19, X+
ld r20, X+
ld r21, X+
movw r26, r28
std Z+0, r10
std Z+1, r11
std Z+2, r12
std Z+3, r13
sub r2, r18
sbc r3, r19
sbc r4, r20
sbc r5, r21
sbc r0, r0
sub r6, r22
sbc r7, r23
sbc r8, r24
sbc r9, r25
sbc r1, r1
eor r2, r0
eor r3, r0
eor r4, r0
eor r5, r0

eor r6, r1
eor r7, r1
eor r8, r1
eor r9, r1
sub r2, r0
sbc r3, r0
sbc r4, r0
sbc r5, r0
sub r6, r1
sbc r7, r1
sbc r8, r1
sbc r9, r1
eor r0, r1
bst r0, 0
mul r18, r22
add r14, r0
adc r15, r1
adc r16, r26
adc r29, r26
mul r18, r23
add r15, r0
adc r16, r1
adc r29, r26
mul r19, r22
add r15, r0
adc r16, r1
adc r17, r29
adc r28, r26
mul r18, r24
add r16, r0
adc r17, r1
adc r28, r26

mul r19, r23
add r16, r0
adc r17, r1
adc r28, r26
mul r20, r22
add r16, r0
adc r17, r1
adc r28, r26
clr r29
mul r18, r25
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r24
add r17, r0
adc r28, r1
adc r29, r26
mul r20, r23
add r17, r0
adc r28, r1
adc r29, r26
mul r21, r22
add r17, r0
adc r28, r1
adc r29, r26
mul r19, r25
movw r18, r26
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r24
add r28, r0

adc r29, r1
adc r18, r26
mul r21, r23
add r28, r0
adc r29, r1
adc r18, r26
mul r20, r25
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r24
add r29, r0
adc r18, r1
adc r19, r26
mul r21, r25
add r18, r0
adc r19, r1
mul r2, r6
movw r20, r0
movw r22, r26
mul r2, r7
add r21, r0
adc r22, r1
mul r3, r6
add r21, r0
adc r22, r1
adc r23, r26
movw r24, r26
mul r2, r8
add r22, r0
adc r23, r1
adc r24, r26

mul r3, r7
add r22, r0
adc r23, r1
adc r24, r26
mul r4, r6
add r22, r0
adc r23, r1
adc r24, r26
mul r2, r9
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r8
add r23, r0
adc r24, r1
adc r25, r26
mul r4, r7
add r23, r0
adc r24, r1
adc r25, r26
mul r5, r6
add r23, r0
adc r24, r1
adc r25, r26
mul r3, r9
movw r2, r26
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r8
add r24, r0
adc r25, r1

adc r2, r27
mul r5, r7
add r24, r0
adc r25, r1
adc r2, r27
mul r4, r9
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r8
add r25, r0
adc r2, r1
adc r3, r27
mul r5, r9
add r2, r0
adc r3, r1
add r10, r14
adc r11, r15
adc r12, r16
adc r13, r17
adc r14, r28
adc r15, r29
adc r16, r18
adc r17, r19
bld r27, 0
dec 27
adc r26, r27
mov r0, r26
asr r0
eor r20, r27
eor r21, r27
eor r22, r27

eor r23, r27
eor r24, r27
eor r25, r27
eor r2 , r27
eor r3 , r27
adc r10, r20
adc r11, r21
adc r12, r22
adc r13, r23
adc r14, r24
adc r15, r25
adc r16, r2
adc r17, r3
adc r28, r26
adc r29, r0
adc r18, r0
adc r19, r0
std Z+4, r10
std Z+5, r11
std Z+6, r12
std Z+7, r13
std Z+8, r14
std Z+9, r15
std Z+10, r16
std Z+11, r17
std Z+12, r28
std Z+13, r29
std Z+14, r18
std Z+15, r19



Abstract blocks in Karatsuba

Even branch-free assembly code has some discernible structure:
1. Compute L = Al · Bl

2. Compute |Al −Ah| and |Bl − Bh|
3. Compute H = Ah · Bh and L + 2n/2 ·H
4. Compute M = |Al −Ah| · |Bl − Bh|
5. Compute L + 2n/2(L + H) + 2nH.
6. Conditionally negate 2n/2M
7. Add the results of step 5 and 6



Design trade-off

Register file modelled as a single mutable array
• ‘Nicer’: data in registers and SRAM treated uniformly
• Abstract blocks obscure which registers are preserved
Alternative: model registers as individual variables?
• Runs into Why3 type system restrictions on mutable data

Answer: do both!
Maintain a ghost copy of the register file
• Reduces annotations needed and verification time



Design trade-off

Register file modelled as a single mutable array
• ‘Nicer’: data in registers and SRAM treated uniformly
• Abstract blocks obscure which registers are preserved
Alternative: model registers as individual variables?
• Runs into Why3 type system restrictions on mutable data

Answer: do both!
Maintain a ghost copy of the register file
• Reduces annotations needed and verification time



Verification efficiency

program size annotations cpu time provers
schoolbook
16× 16 13 lines 1 0s CVC4
24× 24 33 lines 1 1s CVC4
32× 32 59 lines 1 4s CVC4
40× 40 93 lines 1 10s CVC4
48× 48 136 lines 1 33s CVC4
Karatsuba
48× 48 169 lines 23 52s CVC4, CVC3, E
64× 64 286 lines 21 96s CVC4, CVC3, E
80× 80 411 lines 31 215s CVC4, CVC3, E
96× 96 611 lines 39 906s CVC4, CVC3, E



Discovered assumptions for correctness

Argument aliasing
Karatsuba implementations are correct provided that inputs and output
do not use the same locations in memory

• Easy to ‘fix’ this restriction in 48-bit and 64-bit version
• Unlikely to be a problem in 80-bit version

– X← X · Y still correct
• More restrictive precondition in 96-bit Karatsuba

– X← X · Y not correct

Potentially a problem for the user



Conclusion

Features of this approach

• Make verification seem obvious
• Choose models that facilitate automatic proofs

– OK as long as models are consistent?
• Identifying and specifying abstract blocks still labour-intensive

Suggestions for future work

• Multiple-level Karatsuba, 128-bit just needs more time
• External validation of machine model, however...

– Formalization is not executable with current Why3
– Requires a formal semantics (or testing on hardware)

• More control over proof context would be helpful!



This frame intentionally left blank



Subtractive Karatsuba multiplication

To multiply two n-bit integers A and B,
• Split A = 2n/2Ah + Al, and B = 2n/2Bh + Bl

• Multiply both halves: L = Al · Bl and H = Ah · Bh

• Let M = (Al −Ah) · (Bl − Bh)

• Compute the result as

A · B = L + 2n/2(L + H−M) + 2nH



Subtractive Karatsuba multiplication

To multiply two n-bit integers A and B,
• Split A = 2n/2Ah + Al, and B = 2n/2Bh + Bl

• Multiply both halves: L = Al · Bl and H = Ah · Bh

• Let M = |Al −Ah| · |Bl − Bh|
• If Al ≥ Ah ⇐⇒ Bl ≥ Bh, obtain the result as

A · B = L + 2n/2(L + H−M) + 2nH

• Otherwise, obtain the result as

A · B = L + 2n/2(L + H + M) + 2nH



Subtractive Karatsuba multiplication

To multiply two n-bit integers A and B,
• Split A = 2n/2Ah + Al, and B = 2n/2Bh + Bl

• Multiply both halves: L = Al · Bl and H = Ah · Bh

• Let M = |Al −Ah| · |Bl − Bh|
• If Al ≥ Ah ⇐⇒ Bl ≥ Bh, obtain the result as

A · B = L + 2n/2(L + H−M) + 2nH

• Otherwise, obtain the result as

A · B = L + 2n/2(L + H + M) + 2nH



Subtractive Karatsuba multiplication

To multiply two n-bit integers A and B,
• Split A = 2n/2Ah + Al, and B = 2n/2Bh + Bl

• Multiply both halves: L = Al · Bl and H = Ah · Bh

• Let M = |Al −Ah| · |Bl − Bh|
• If Al ≥ Ah ⇐⇒ Bl ≥ Bh, obtain the result as

A · B = L + 2n/2(L + H−M) + 2nH

• Otherwise, obtain the result as

A · B = L + 2n/2(L + H + M) + 2nH

Problem: conditional negations!



Typical assembly tricks

• Al −Ah sets the carry flag if (and only if) Al < Ah

• Subtract with carry can give us 0x00 or 0xFF in constant time
• Note that in two’s complement,

−x = (NOT x) + 1
= (x⊕ 0xFF)− 0xFF

Solution
{R1 = x, R2 = y}
SUB R1, R2

{R1 = x− y (mod 256)}
SBC R16, R16

EOR R1, R16

SUB R1, R16

{R1 = |x− y|}



Typical assembly tricks

• Al −Ah sets the carry flag if (and only if) Al < Ah

• Subtract with carry can give us 0x00 or 0xFF in constant time
• Note that in two’s complement,

−x = (NOT x) + 1
= (x⊕ 0xFF)− 0xFF

Solution
{R1 = x, R2 = y}
SUB R1, R2

{R1 = x− y (mod 256)}
SBC R16, R16

EOR R1, R16

SUB R1, R16

{R1 = |x− y|}



abstract

ensures { synchronized shadow reg }

ensures { uint 4 reg 2 = old (abs (uint 4 reg 2 - uint 4 reg 18)) }

ensures { uint 4 reg 6 = old (abs (uint 4 reg 6 - uint 4 reg 22)) }

ensures { ?tf = 0 <-> old ((uint 4 reg 2 < uint 4 reg 18) <-> (uint 4 reg 6 < uint 4 reg 22)) }

sub r2 r18;

sbc r3 r19;

sbc r4 r20;

sbc r5 r21;

sbc r0 r0;

sub r6 r22;

sbc r7 r23;

sbc r8 r24;

sbc r9 r25;

sbc r1 r1;

eor r2 r0;

eor r3 r0;

eor r4 r0;

eor r5 r0;

eor r6 r1;

eor r7 r1;

eor r8 r1;

eor r9 r1;

sub r2 r0;

sbc r3 r0;

sbc r4 r0;

sbc r5 r0;

sub r6 r1;

sbc r7 r1;

sbc r8 r1;

sbc r9 r1;

eor r0 r1;

bst r0 0;

modify_r0(); modify_r1(); modify_r2(); modify_r3(); modify_r4();

modify_r5(); modify_r6(); modify_r7(); modify_r8(); modify_r9();

end;


	Background: secure Karatsuba multiplication
	Verification approach
	Results and discussion

