Verifying Branch-Free
Assembly Code in Why3

Marc Schoolderman

D) Applied and

N WO e . iCIS | Digital Security %
Engineering Sciences Radboud University [

Challenges of cryptographic engineering

Implementations must not leak information
Side-channel attacks
- Avoid timing attacks due to branching on input data

Bug attacks
- Abug with low probability can be deliberately triggered

Low-power devices

Restricted execution environments
Code must be small yet efficient due to limited memory
- AVR: 8-bit RISC, typically 16Mhz and < 32kb program size

iCIS | Digital Security
Radboud University

Case study

Multi-precision multiplication

Hutter and Schwabe [2014]: Hand-optimized routines for 8-bit AVR
Building block for high-speed Curve25519 implementations

operand sizes

method

16-bit, 24-bit, 32-bit, 48-bit
48-bit, 64-bit, 80-bit, 96-bit
128-bit, 160-bit, 192-bit, 256-bit

‘schoolbook’ multiplication
Karatsuba
recursive Karatsuba

iCIS | Digital Security
Radboud University

Case study

Multi-precision multiplication

Hutter and Schwabe [2014]: Hand-optimized routines for 8-bit AVR
Building block for high-speed Curve25519 implementations

operand sizes method
16-bit, 24-bit, 32-bit, 48-bit ‘schoolbook’ multiplication
48-bit, 64-bit, 80-bit, 96-bit Karatsuba

iCIS | Digital Security
Radboud University

Subtractive Karatsuba multiplication

To multiply two n-bit integers A and B,
- SplitA =2"2A, + A, and B = 2"/2B;, + B,

iCIS | Digital Security
Radboud University

Subtractive Karatsuba multiplication

To multiply two n-bit integers A and B,
Split A = 2"/2A, + A;, and B = 2"/2B, + B;
Multiply both halves: L = A; - Bjand H = A, - By,

iCIS | Digital Security
Radboud University

Subtractive Karatsuba multiplication

To multiply two n-bit integers A and B,
Split A = 2"/2A, + A;, and B = 2"/2B, + B;
Multiply both halves: L = A; - Bjand H = A, - By,
Let M = (A; — Ay) - (B; — By)

iCIS | Digital Security
Radboud University

Subtractive Karatsuba multiplication

To multiply two n-bit integers A and B,
Split A = 2"/2A, + A;, and B = 2"/2B, + B;
Multiply both halves: L = A; - Bjand H = A, - By,
Let M = (A; — Ay) - (B; — By)

+ Compute the result as

A-B=L+2Y*L+H-M)+2"H

iCIS | Digital Security
Radboud University

Subtractive Karatsuba multiplication

To multiply two n-bit integers A and B,
Split A = 2"/2A, + A;, and B = 2"/2B, + B;
Multiply both halves: L = A; - Bjand H = A, - By,
Let M = (A; — Ay) - (B; — By)

+ Compute the result as

A-B=L+2Y*L+H-M)+2"H

Actual code slightly more ingenuous than this!

iCIS | Digital Security
Radboud University

The Why3 verification platform

| WhyML programs i
]
| . |
///W? Y loi\
Al-Ergo) [CVC3 [CvCal [E] (73] (Coq IPVS
automated provers interactive provers

Highly useful: abstract blocks, bit-vector theories, type invariants

iCIS | Digital Security
Radboud University

Design goals

Principle of least astonishment

« Formalization must be easy to understand and trust
+ Transforming assembly — Why3 must be as simple as possible
+ Perform proofs using a high degree of automation

let karatsuba64(): unit
ensures { uint 16 mem result
= old (uint 8 mem arg! * uint 8 mem arg2) }
= 4nstruction;
instruction;

iCIS | Digital Security
Radboud University

Overview of approach

Model the machine architecture

+ Instructions represented by WhyML functions

. Use Why3's type system to enforce internal consistency
Logical partitioning of code into abstract blocks

« Summarizes partial results leading to main correctness theorem
+ Reduces proof context seen by automatic provers

iCIS | Digital Security
Radboud University

Reasoning about machine memory
Machine integers
Use type invariants to enforce bytes are always true 8-bit values:

type address_space = { mutable data: map int int }
invariant { forall i. O <= self.datal[i] < 256 }

Allows lemmas about address spaces, e.g. 0 < m([i] - m[j] < 65025

Representation of multi-precision integers

uintnAb= Y 2%.A[i+b]

0<i<n

iCIS | Digital Security
Radboud University

Underspecification of AVR instruction set architecture

Features modelled

. 32 registers, (simplified) SRAM & stack
« Carry flag and Transfer flag

Instructions

Arithmetic ADC, ADD, SUB, SBC, SBIW, INC, DEC, MUL
Bit manipulation ASR, CLR, COM, EOR, BLD, BST

Data access MOV, MOVW, LD, LDD, STD, POP, PUSH
Control flow omitted

iCIS | Digital Security
Radboud University

Example: ADD instruction

let add (dst src: register): unit
writes { reg, cf }
ensures { reg = old (regldst <- mod (regldst]+reglsrc]l) 256])
ensures { 7cf = old (div (regldst]l+reglsrc]l) 256) }

let rd = BV8.of_int (Map.get reg.data dst) in
let rr = BV8.of_int (Map.get reg.data src) in
let rd’ = BV8.add rd rr in

reg.data <- Map.set reg.data dst (BV8.to_uint rd’);

cf.value <- (BV8.nth rd 7 && BV8.nth rr 7 ||
BV8.nth rd 7 && not BV8.nth rd’ 7 ||
not BV8.nth rd’ 7 && BV8.nth rr 7)

iCIS | Digital Security
Radboud University

Divide and conquer

Verifying branch-free code = formula simplification

clr r20 mul r4, r9 adc ri, r21 eor r6, rl mul r19, r23 adc r29, ri mul r3, r7 adc r2, r27 eor r23, r27
clr r21 add r14, r19 add ri5, rO eor r7, ri add ri6, r0 adc ri8, r26 add r22, rO mul r5, r7 eor r24, r27
movw r16, r20adc ri5, r0 adc ri6, rl eor r8, r1 adc ri7, r1 mul r21, r23 adc r23, rl add r24, r0 eor r25, r27
1d r2, X+ adc r16, ri adc ri7, r2i eor r9, ri adc r28, r26 add r28, rO adc r24, r26 adc r25, ri eor r2 , r27

1d r3, X+ mul r4, r8 1ldd r22 Y+4 sub r2, r0 mul r20, r22 adc r29, r! mul r4, r6 adc r2, r27 eor r3 , r27
1d r4, X+ movw ri8, r0 ldd r23 Y+5 sbc r3, r0 add ri6, r0 adc ri8, r26 add r22, r0 mul r4, r9 adc ri0, r20
1d r5, X+ mul r4, r6 1dd r24 Y+6 sbc r4, r0 adc ri7, rl1 mul r20, r26 adc r23, r1 add r25, r0 adc ril, r21
1dd r6 Y+0 add r12, r0 1ldd r25 Y+7 sbc r5, r0 adc r28, r26 add r29, rO adc r24, r26 adc r2, ri adc ri2, r22
1dd r7 Y+1 adc r13, ri movw r28, r20sub r6, ri clr r29 adc r18, r1 mul r2, r9 adc r3, r27 adc ri3, r23
1dd r8 Y+2 adc r14, r18 1d ri8, X+ sbc r7, ri mul ri8, r25 adc ri9, r26 add r23, rO mul r5, r8 adc ri4, r24
1dd r9 Y+3 adc r19, r21 1d r19, X+ sbc r8, r1 add ri7, r0 mul r21, r24 adc r24, r1 add r25, r0 adc ri5, r25
mul r2, r8 mul r3, r8 1d r20, X+ sbc r9, r1 adc r28, ri add r29, r0 adc r25, r26 adc r2, ri adc ri6, r2
movw ri2, r0 add ri3, r0 1d r21, X+ eor r0, rl adc r29, r26 adc ri8, ri mul r3, r8 adc r3, r27 adc ri7, r3
mul r2, r6 adc ri4, ri movw r26, r28bst r0, 0 mul r19, r24 adc ri9, r26 add r23, r0 mul r5, r9 adc r28, r26
movw ri0, r0 adc ri9, r2i std Z+0, ri0 mul ri8, r22 add r17, r0 mul r21, r25 adc r24, ri add r2, r0 adc r29, r0
mul r2, r7 mul r5, r9 std Z+1, ril add r14, rO adc r28, ri add ri8, r0 adc r25, r26 adc r3, ri adc ri8, r0
add ri1, r0 add ri5, ri9 std Z+2, ri2 adc ri5, ri adc r29, r26 adc r19, r! mul r4, r7 add ri0, ri4 adc ri9, r0
adc r12, r1 adc r16, r0 std Z+3, ri3 adc ri6, r26 mul r20, r23 mul r2, r6 add r23, rO adc rii, ri5 std Z+4, ri0
adc r13, r21 adc r17, r1 sub r2, ri8 adc r29, r26 add ri7, r0 movw r20, r0 adc r24, rl1 adc ri2, ri6 std Z+5, ril
mul r3, r9 mul r5, r7 sbc r3, ri® mul ri8, r23 adc r28, ri movw r22, r26adc r25, r26 adc ri3, ri7 std Z+6, ri2
movw ri4, rO movw ri8, r0 sbc r4, r20 add ri5, rO adc r29, r26 mul r2, r7 mul r5, r6 adc ri4, r28 std Z+7, ri3
mul r2, r9 mul r4, r7 sbc r5, r21 adc ri6, ri mul r21, r22 add r2i, r0 add r23, r0 adc ri5, r29 std Z+8, ri4
movw ri8, r0 add ri3, r0 sbc r0, r0 adc r29, r26 add ri7, r0 adc r22, ri adc r24, ri adc ri6, ri8 std Z+9, ri5
mul r3, r6 adc ri8, ri sub r6, r22 mul ri9, r22 adc r28, ri mul r3, r6 adc r25, r26 adc ri7, ri9 std Z+10, ri6
add ri1, r0 adc r19, r2t sbc r7, r23 add ri5, r0 adc r29, r26 add r21, rO mul r3, r9 bld r27, 0 std Z+11, ri7
adc r12, r1 mul r5, r6 sbc r8, r24 adc ri6, ri mul r19, r25 adc r22, ri movw r2, r26 dec 27 std Z+12, r28
adc ri13, ri8 add r13, r0 sbc r9, r25 adc ri7, r29 movw ri8, r26adc r23, r26 add r24, r0 adc r26, r27 std Z+13, r29
adc r19, r21 adc ri8, ri sbc ri, ri adc r28, r26 add r28, r0 movw r24, r26adc r25, r1 mov r0, r26 std Z+14, rig
mul r3, r7 adc ri9, r2i eor r2, r0 mul ri8, r24 adc r29, ri mul r2, r8 adc r2, r27 asr r0 std Z+15, r19
add r12, rO mul r5, r8 eor r3, r0 add ri6, r0 adc ri8, r26 add r22, rO mul r4, r8 eor r20, r27

adc r13, r1 add r14, r18 eor r4, r0 adc ri7, ri mul r20, r24 adc r23, r1 add r24, r0 eor r2i, r27

adc r19, r21 adc r0, ri9 eor r5, r0 adc r28, r26 add r28, r0 adc r24, r26 adc r25, ri eor r22, r27

iCIS | Digital Security

Radboud University [

Divide and conquer

Verifying branch-free code = formula simplification

clr r20 mul ¥4, ¥9 adc rl, r21 ‘eor r6, r1 mul r19, r23 adc r29, rl mul r3, r7 adc r2, r27 eor r23, r27
clr r21 add r14, r19 add ri5, r0 eor r7, ri add ri6, r0 adc ri8, r26 add r22, rO mul r5, r7 eor r24, r27
movw r16, r20adc ri5, r0 adec ri6, rli eor r8, r1 adc ri7, r1 mul r21, r23 adc r23, rl add r24, r0 eor r25, r27
1d r2, X+ adc ri6, ri adc ri7, r2i eor r9, ri adc r28, r26 add r28, r0 adc r24, r26 adc r25, ri eor r2 , r27

1d r3, X+ mul r4, r8 ldd r22 Y+4 sub r2, r0 mul r20, r22 adc r29, r! mul r4, r6 adc r2, r27 eor r3 , r27
1d r4, X+ movw ri8, r0 ldd r23 Y+5 sbc r3, r0 add ri6, r0 adc ri8, r26 add r22, r0 mul r4, r9 adc ri0, r20
1d r5, X+ mul r4, r6 1dd r24 Y+6 sbc r4, r0 adc ri7, rl1 mul r20, r26 adc r23, r1 add r25, r0 adc ril, r21
1dd r6 Y+0 add ri2, r0 1ldd r25 Y+7 sbc r5, r0 adc r28, r26 add r29, rO adc r24, r26 adc r2, ri adc ri2, r22
1dd r7 Y+1 adc r13, ri movw r28, r20sub r6, ri clr r29 adc r18, r1 mul r2, r9 adc r3, r27 adc ri3, r23
1dd r8 Y+2 adc ri4, ri8 1d ri8, X+ sbc r7, ri mul ri8, r25 adc r19, r26 add r23, r0 mul r5, r8 adc ri4, r24
1dd r9 Y+3 adc r19, r21 1d r19, X+ sbc r8, r1 add ri7, r0 mul r21, r24 adc r24, r1 add r25, r0 adc ri5, r25
mul ¥2, ¥8 mul r3, r8 1d r20, X+ sbc r9, ri adc r28, ri add r29, r0 adc r25, r26 adc r2, ri adc ri6, r2
movw ri2, r0 add ri3, r0 1d r21, X+ eor r0, rl adc r29, r26 adc ri8, ri mul r3, r8 adc r3, r27 adc ri7, r3
mul r2, r6 adc ri4, ri movw r26, r28bst r0, 0 mul r19, r24 adc ri9, r26 add r23, r0 mul r5, r9 adc r28, r26
movw ri0, r0 adc ri9, r2i std z+0, ri0 mul ri8, r22 add r17, r0 mul r21, r25 adc r24, r1 add r2, r0 adc r29, r0
mul r2, r7 mul r5, r9 std Z+1, ril add r14, rO adc r28, ri add ri8, r0 adc r25, r26 adc r3, ri adc ri8, r0
add rii, r0 add ri5, ri9 std Z+2, ri2 adc ri5, ri adc r29, r26 adc r19, r1 mul r4, r7 add ri0, ri4 adc ri9, r0
adc r12, ri adc ri6, r0 std Z+3, ri3 adc ri6, r26 mul r20, r23 mul r2, r6 add r23, rO adc rii, ri5 std Z+4, ri0
adc r13, r21 adc ri7, ri sub r2, ri8 adc r29, r26 add ri7, r0 movw r20, r0 adc r24, r1 adc ri2, ri6 std Z+5, ril
mul r3, r9 mul r5, r7 sbc r3, ri9 mul ri8, r23 adc r28, ri movw r22, r26adc r25, r26 adc ri3, ri7 std Z+6, ri2
movw ri4, rO movw ri8, r0 sbc r4, r20 add ri5, rO adc r29, r26 mul r2, r7 mul r5, r6 adc ri4, r28 std Z+7, ri3
mul r2, r9 mul r4, r7 sbc r5, r21 adc ri6, ri mul r21, r22 add r2i, r0 add r23, r0 adc ri5, r29 std Z+8, ri4
movw ri8, r0 add ri3, r0 sbc r0, r0 adc r29, r26 add ri7, r0 adc r22, ri adc r24, ri adc ri6, ri8 std Z+9, ri5
mul r3, r6 adc ri8, ri sub r6, r22 mul ri9, r22 adc r28, ri mul r3, r6 adc r25, r26 adc ri7, ri9 std Z+10, ri6
add rii, r0 adc ri9, r2i sbc r7, r23 add ri5, r0 adc r29, r26 add r21, rO mul r3, r9 bld r27, 0 std Z+11, ri7
adc r12, ri mul r5, r6 sbc r8, r24 adc ri6, ri mul r19, r25 adc r22, ri movw r2, r26 dec 27 std Z+12, r28
adc ri13, ri8 add r13, r0 sbc r9, r26 adc ri7, r29 movw ri8, r26adc r23, r26 add r24, r0 adc r26, r27 std Z+13, r29
adc r19, r21 adc ri8, ri sbc ri, ri adc r28, r26 add r28, r0 movw r24, r26adc r25, r1 mov r0, r26 std Z+14, rig
mul r3, r7 adc ri9, r2i eor r2, r0 mul ri8, r24 adc r29, ri mul r2, r8 adc r2, r27 asr r0 std Z+15, r19
add r12, r0 mul r5, r8 eor r3, r0 add ri6, r0 adc ri8, r26 add r22, rO mul r4, r8 eor r20, r27

adc r13, rl1 add r14, ri8 eor r4, r0 adc ri7, ri mul r20, r24 adc r23, r1 add r24, r0 eor r2i, r27

adc r19, r21 adc r0, ri9 eor r5, r0O adc r28, r26 add r28, r0 adc r24, r26 adc r25, ri eor r22, r27

iCIS | Digital Security
Radboud University BEEES

Divide and conquer

Verifying branch-free code = formula simplification

clr r20 mul r4, r9
clr r21 add r14, r19
movw r16, r20adc rib, r0
1d r2, X+ adc ri6, ri
1d r3, X+ mul r4, r8

1d r4, X+ movw ri8, r0
1d r5, X+ mul r4, r6

1dd r6 Y+0 add ri2, r0
1dd r7 Y+1 adec r13, ri
1dd r8 Y+2 adc ri4, ri8
1dd r9 Y+3 adc ri9, r2i
mul r2, r8 mul r3, r8

movw ri2, r0 add ri3, r0
mul r2, r6 adc ri4, ri
movw ri0, r0 adc ri9, r2i
mul r2, r7 mul r5, r9

add ri1, r0 add ri5, ri9
adc r12, r1 adc ri6, r0
adc r13, r21 adc ri7, ri
mul r3, r9 mul r5, r7

movw ri4, r0 movw ri8, r0
mul r2, r9 mul r4, r

movw ri8, r0 add ri3, r0
mul r3, r6 adc ri8, ri
add ri1, r0 adc r19, r2i
adc r12, r1 mul r5, r6

adc ri3, ri8 add ri3, r0
adc r19, r21 adc ris, ri
mul r3, r7 adc ri9, r2i
add r12, r0 mul r5, r8

adc r13, r1 add ri4, ri8
adc r19, r2t adc ro0, ri9

ade r1, r21 mul ri9,
add ri5, r0 add r16,
adc ri6, ri adc ri7,
ade ri7, r21 adc r2s8,
ldd r22 Y+4 mul r20,
1dd r23 Y+5 add r16,
1dd r24 Y+6 adc r17,
1dd r25 Y+7 adc r2s8,
movw r28, r20 clr r29
1d ri8, X+ mul ris,
1d r19, X+ add r17,
1d r20, X+ adc r2s8,
1d r21, X+ adc r29,
movw r26, r28 mul ri9,
std Z+0, r10 mul ri8, r22 add ri7
std Z+1, ril add r14, rO adc r28,
std Z+2, ri2 adc r15, r1 adc r29,
std Z+3, ri3 adc r16, r26 mul r20
adc r29, r26 add ri7,
mul ri8, r23 ade r28,
add r15, r0 adc r29,
adc r16, r1 mul r2i,
adc r29, r26 add ri7,
mul r19, r22 ade r28,
add r15, r0 adc r29,
adc r16, r1 mul ri9,
adc r17, r29 movw ris,
adc r28, r26 add r2s,
mul ri8, r24 adc r29,
add r16, r0 adc ris,
adc r17, r1 mul r20,
adc r28, r26 add r2s,

r23 adc r29, r1 mul r3, r7
r0 adc ri8, r26 add r22, r0
r1 mul r21, r23 adc r23, ri
r26 add r28, r0 adc r24, r26
r22 adc r29, r1 mul r4, ré
r0 adc ri8, r26 add r22, ro
ri mul r20, r25 adc r23, ri
r26 add r29, r0 adc r24, r26
ade r18, r1 mul r2, r9
r25 adc r19, r26 add r23, ro
r0 mul r21, r24 adc r24, ri
ri add r29, r0 adc r25, r26
r26 adc r18, ri mul r3, r8
r24 adc ri9, r26 add r23, r0
r0 mul r21, r25 adc r24, ri
ri add ri8, r0 adc r25, r26
r26 adc r19, ri mul r4, r7
r23 mul r2, r6 add r23, r0
r0 movw r20, r0 adc r24, ri
ri movw r22, r26adc r25, r26
r26 mul r2, r7 mul r5, r6
r22 add r21, r0 add r23, r0
r0 adc r22, ri adc r24, ri
rt mul r3, r6 adc r25, r26
r26 add r21, r0 mul r3, r9
r25 adc r22, rl movw r2, r26
r26adc r23, r26 add r24, ro
r0 movw r24, r26adc r25, ri
rt mul r2, r8 adc r2, r27
r26 add r22, r0 mul r4, r8
r24 adc r23, ri add r24, ro
r0 adc r24, r26 adc r25, ri

adc
mul
add

r2, ra7

16,
r17,
r27, 0
27

r26, r27
r0, r26
ro

r20, r27
r21, r27
r22, r27

rié
ri7
r28
r29
rig
ri9

iCIS | Digital Security
Radboud University

Divide and conquer

Verifying branch-free code = formula simplification

clr r20 mul r4, r9
clr r21 add r14, r19
movw r16, r20adc rib, r0
1d r2, X+ adc ri6, ri
1d r3, X+ mul r4, r8

1d r4, X+ movw ri8, r0
1d r5, X+ mul r4, r6

1dd r6 Y+0 add ri2, r0
1dd r7 Y+1 adec r13, ri
1dd r8 Y+2 adc ri4, ri8
1dd r9 Y+3 adc ri9, r2i
mul r2, r8 mul r3, r8

movw ri2, r0 add ri3, r0
mul r2, r6 adc ri4, ri
movw ri0, r0 adc ri9, r2i
mul r2, r7 mul r5, r9

add ri1, r0 add ri5, ri9
adc r12, r1 adc ri6, r0
adc r13, r21 adc ri7, ri
mul r3, r9 mul r5, r7

movw ri4, r0 movw ri8, r0
mul r2, r9 mul r4, r

movw ri8, r0 add ri3, r0
mul r3, r6 adc ri8, ri
add ri1, r0 adc r19, r2i
adc r12, r1 mul r5, r6

adc ri3, ri8 add ri3, r0
adc r19, r21 adc ris, ri
mul r3, r7 adc ri9, r2i
add r12, r0 mul r5, r8

adc r13, r1 add ri4, ri8
adc r19, r2t adc ro0, ri9

ade r1, r21 mul ri9,
add ri5, r0 add ri16,
adc ri6, ri adc ri7,
ade ri7, r21 adc r28,
ldd r22 Y+4 mul r20,
1dd r23 Y+5 add ri16,
1dd r24 Y+6 adc ri7,
1dd r25 Y+7 adc r28,
movw r28, r20 clr r29
1d ri8, X+ mul ri8,
1d r19, X+ add r17,
1d r20, X+ adc r28,
1d r21, X+ adc r29,
movw r26, r28 mul ri9,
std Z+0, r10 mul ri8, r22 add ri7?
std Z+1, ril add r14, r0 adc r2s,
std z+2, ri2 adc ri5, rl1 adc r29,
std Z+3, ri3 adc r16, r26 mul r20
adc 29, r26 add ri7,
mul ri8, r23 adc r28,
add r15, r0 adc r29,
adc r16, r1 mul r21,
adc r29, r26 add ri7,
mul ri9, r22 ade r2s,
add ri5, r0 adc r29,
adc r16, r1 mul ri9,
adc r17, r29 movw ri8,
adc r28, r26 add r2s,
mul ri8, r24 adc r29,
add r16, r0 adc ri8,
adc r17, r1 mul r20,
adc r28, r26 add r2s,

123 lade r29, r1 ‘mul r3, r7
r0 adc ri8, r26 add r22, ro
ri mul r21, r23 adc r23, ri
r26 add r28, r0 adc r24, r26
r22 adc r29, r1 mul r4, ré
r0 adc ri8, r26 add r22, ro
ri mul r20, r26 adc r23, ri
r26 add r29, r0 adc r24, r26
ade r18, r1 mul r2, r9
r25 adc r19, r26 add r23, ro
r0 mul r21, r24 adc r24, ri
ri add r29, r0 adc r25, r26
r26 adc r18, ri mul r3, r8
r24 adc r19, r26 add r23, ro
r0 mul r21, r26 adc r24, ri
ri add ri8, r0 adc r25, r26
r26 adc r19, ri mul r4, r7
r23 mul r2, r6 add r23, r0
r0 movw r20, r0 adc r24, ri
ri movw r22, r26adc r25, r26
r26 mul r2, r7 mul r5, ré
r22 add r21, r0 add r23, r0
r0 adc r22, ri adc r24, ri
ri mul r3, r6 adc r25, r26
r26 add r21, r0 mul r3, r9
r25 adc r22, ri movw r2, r26
r26adc r23, r26 add r24, ro
r0 movw r24, r26adc r25, ri
ri mul r2, r8 adc r2, r27
r26 add r22, r0 mul r4, r8
r24 adc r23, r1 add r24, r0
r0 adc r24, r26 adc r25, ri

adc
mul
add

r2, ra7

16,
r17,
r27, 0
27

r26, r27
r0, r26
ro

r20, r27
r21, r27
r22, r27

rié
ri7
r28
r29
rig
ri9

iCIS | Digital Security
Radboud University

Divide and conquer

Verifying branch-free code = formula simplification

clr r20 mul r4, r9 adc ri, r21 r19, r23 r23, r27
clr r21 add r14, r19 add ri5, r0 r16, r0 r24, r27
movw r16, r20adc rib, r0 adc ri6, ri ri7, r1 125, r27
1d r2, X+ adc ri6, ri adc ri7, r2i r28, r26 r2 , r27
1d r3, X+ mul r4, r8 ldd r22 Y+4 r20, r22 r3 , r27
1d r4, X+ movw ri8, r0 ldd r23 Y+5 r16, r0 r10, r20
1d r5, X+ mul r4, r6 1dd r24 Y+6 ri7, r1 ri1, r21
1dd r6 Y+0 add ri2, r0 1ldd r25 Y+7 r28, r26 r12, r22
1dd r7 Y+1 adc r13, ri movw r28, r20 r29 r13, r23
1dd r8 Y+2 adc ri4, ri8 1d ri8, X+ r18, r25 r14, r24
1dd r9 Y+3 adc r19, r2i 1d ri9, X+ ri7, r0 r15, r25
mul 2, ¥8 mul r3, r8 1d r20, X+ r28, ri r16, r2
movw ri2, r0 add ri3, r0 1d r21, X+ r29, r26 r17, r3
mul r2, r6 adc ri4, ri movw r26, r28 r19, r24 128, r26
movw ri0, r0 adc ri9, r2i std Z+0, ri0 ri7, r0 129, r0
mul r2, r7 mul r5, r9 std Z+1, rit r28, ri r18, ro
add ril, r0 add ri5, ri9 std Z+2, ri2 r29, r26 r10, r19, ro
adc r12, r1 adc r16, rO std Z+3, ri3 adc ri6, r26 mul r20, r23 rit, 7+4, r10
adc r13, r21 adc ri7, ri adc 29, r26 add ri7, r0 r12, 7+5, ril
mul r3, r9 mul r5, r7 mul ri8, r23 adc r28, r13, r17 std Z+6, ri2
movw ri4, r0 movw ri8, r0 add r15, r0 adc r29, r14, r28 std Z+7, ri3
mul r2, r9 mul r4, r7 adc r16, r1 mul r21, ri5, r29 std Z+8, rid
movw ri8, r0 add ri3, r0 adc r29, r26 add ri7, r16, r18 std Z+9, ris
mul r3, r6 adc ri8, ri mul ri9, r22 ade r2s, r17, r19 std Z+10, ri6
add ri1, r0 adc r19, r2i add ri5, r0 adc r29, r27, 0 std z+i1, r17
adc r12, r1 mul r5, r6 adc r16, r1 mul ri9, 27 std Z+12, r28
adc ri3, ri8 add ri3, r0 adc r17, r29 movw ri8, r26, r27 std Z+13, r29
adc r19, r21 adc ris, ri adc r28, r26 add r2s, r0, r26 std Z+14, ri8
mul r3, r7 adc ri9, r2i mul ri8, r24 adc r29, ro std Z+15, r19
add r12, r0 mul r5, r8 add r16, r0 adc ri8, r20, r27

adc r13, r1 add ri4, ri8 adc r17, r1 mul r20, r21, r27

adc r19, r2t adc ro0, ri9 adc r28, r26 add r2s, r22, r27

iCIS | Digital Security
Radboud University

Divide and conquer

Verifying branch-free code = formula simplification

clr r20 mul r4, r9 adc ri, r21 r19, r23, r27
clr r21 add r14, r19 add ri5, r0 16, r24, r27
movw r16, r20adc rib, r0 adc ri6, ri 17, 125, r27
1d r2, X+ adc ri6, ri adc ri7, r2i r28, r2 , r27
1d r3, X+ mul r4, r8 ldd r22 Y+4 r20, r3 , r27
1d r4, X+ movw ri8, r0 ldd r23 Y+5 16, r10, r20
1d r5, X+ mul r4, r6 1dd r24 Y+6 17, ri1, r21
1dd r6 Y+0 add ri2, r0 1ldd r25 Y+7 r28, r12, r22
1dd r7 Y+1 adc r13, ri movw r28, r20 r29 r13, r23
1dd r8 Y+2 adc ri4, ri8 1d ri8, X+ 18, r14, r24
1dd r9 Y+3 adc r19, r2i 1d ri9, X+ 17, r15, r25
mul 2, ¥8 mul r3, r8 1d r20, X+ r28, r16, r2
movw ri2, r0 add ri3, r0 1d r21, X+ r29, r17, r3
mul r2, r6 adc ri4, ri movw r26, r28 r19, 128, r26
movw ri0, r0 adc ri9, r2i std Z+0, ri0 17, 129, r0
mul r2, r7 mul r5, r9 std Z+1, rit r28, r18, ro
add ril, r0 add ri5, ri9 std Z+2, ri2 r29, r19, ro
adc r12, r1 adc ri6, r0 std Z+3, ri3 adc ri6, r26 mul r20, 7+4, r10
adc r13, r21 adc ri7, ri adc 29, r26 add ri7, 7+5, ril
mul r3, r9 mul r5, r7 mul ri8, r23 adc r28, 7+6, r12
movw ri4, r0 movw ri8, r0 add r15, r0 adc r29, 7+7, r13
mul r2, r9 mul r4, r7 adc r16, r1 mul r21, 7+8, r14
movw ri8, r0 add ri3, r0 adc r29, r26 add ri7, 7+9, 15
mul r3, r6 adc ri8, ri mul ri9, r22 ade r2s, 7+10, r16
add ri1, r0 adc r19, r2i add ri5, r0 adc r29, r27, 0 Z+11, r17
adc r12, r1 mul r5, r6 adc r16, r1 mul ri9, 27 7+12, r28
adc ri3, ri8 add ri3, r0 adc r17, r29 movw ri8, r26, r27 7+13, r29
adc r19, r21 adc ris, ri adc r28, r26 add r2s, r0, r26 std z+14, ri18
mul r3, r7 adc ri9, r2i mul ri8, r24 adc r29, ro std Z+15, r19
add r12, r0 mul r5, r8 add r16, r0 adc ri8, r20, r27

adc r13, r1 add ri4, ri8 adc r17, r1 mul r20, r21, r27

adc r19, r2t adc ro0, ri9 adc r28, r26 add r2s, r22, r27

iCIS | Digital Security
Radboud University

Divide and conquer

Verifying branch-free code = formula simplification

clr r20 mul r4, r9 adc ri, r21 r19,
clr r21 add r14, r19 add ri5, r0 16,
movw r16, r20adc rib, r0 adc ri6, ri 17,
1d r2, X+ adc ri6, ri adc ri7, r2i r28,

1d r3, X+ mul r4, r8 ldd r22 Y+4
1d r4, X+ movw ri8, r0 ldd r23 Y+5
1d r5, X+ mul r4, r6 1dd r24 Y+6
1dd r6 Y+0 add ri2, r0 1ldd r25 Y+7
1dd r7 Y+1 adc r13, ri movw r28, r20
1dd r8 Y+2 adc ri4, ri8 1d ri8, X+
1dd r9 Y+3 adc r19, r2i 1d ri9, X+
mul 2, ¥8 mul r3, r8 1d r20, X+
movw ri2, r0 add ri3, r0 1d r21, X+
mul r2, r6 adc ri4, ri movw r26, r28
movw ri0, r0 adc ri9, r2i std Z+0, ri0
mul r2, r7 mul r5, r9 std Z+1, rit
add ril, r0 add ri5, ri9 std Z+2, ri2
adc r12, r1 adc r16, rO std Z+3, ri3 adc ri6, r26 mul r20

adc r13, r21 adc ri7, ri adc 29, r26 add ri7,
mul r3, r9 mul r5, r7 mul ri8, r23 adc r28,
movw ri4, r0 movw ri8, r0 add r15, r0 adc r29,
mul r2, r9 mul r4, r7 adc r16, r1 mul r21,
movw ri8, r0 add ri3, r0 adc r29, r26 add ri7,
mul r3, r6 adc ri8, ri mul ri9, r22 ade r2s,
add ri1, r0 adc r19, r2i add ri5, r0 adc r29,
adc r12, r1 mul r5, r6 adc r16, r1 mul ri9,
adc ri3, ri8 add ri3, r0 adc r17, r29 movw ri8,
adc r19, r21 adc ris, ri adc r28, r26 add r2s,
mul r3, r7 adc ri9, r2i mul ri8, r24 adc r29,
add r12, r0 mul r5, r8 add r16, r0 adc ri8,
adc r13, r1 add ri4, ri8 adc r17, r1 mul r20,
adc r19, r2t adc ro0, ri9 adc r28, r26 add r2s,

iCIS | Digital Security
Radboud University

Divide and conquer

Verifying branch-free code = formula simplification

clr r20 mul r4, r9 adc ri, r21 r19,
clr r21 add r14, r19 add ri5, r0 16,
movw r16, r20adc rib, r0 adc ri6, ri 17,
1d r2, X+ adc ri6, ri adc ri7, r2i r28,

1d r3, X+ mul r4, r8 ldd r22 Y+4
1d r4, X+ movw ri8, r0 ldd r23 Y+5
1d r5, X+ mul r4, r6 1dd r24 Y+6
1dd r6 Y+0 add ri2, r0 1ldd r25 Y+7
1dd r7 Y+1 adc r13, ri movw r28, r20
1dd r8 Y+2 adc ri4, ri8 1d ri8, X+
1dd r9 Y+3 adc r19, r2i 1d ri9, X+
mul 2, ¥8 mul r3, r8 1d r20, X+
movw ri2, r0 add ri3, r0 1d r21, X+
mul r2, r6 adc ri4, ri movw r26, r28
movw ri0, r0 adc ri9, r2i std Z+0, ri0
mul r2, r7 mul r5, r9 std Z+1, rit
add ril, r0 add ri5, ri9 std Z+2, ri2
adc r12, r1 adc r16, rO std Z+3, ri3 adc ri6, r26 mul r20

adc r13, r21 adc ri7, ri adc 29, r26 add ri7,
mul r3, r9 mul r5, r7 mul ri8, r23 adc r28,
movw ri4, r0 movw ri8, r0 add r15, r0 adc r29,
mul r2, r9 mul r4, r7 adc r16, r1 mul r21,
movw ri8, r0 add ri3, r0 adc r29, r26 add ri7,
mul r3, r6 adc ri8, ri mul ri9, r22 ade r2s,
add ri1, r0 adc r19, r2i add ri5, r0 adc r29,
adc r12, r1 mul r5, r6 adc r16, r1 mul ri9,
adc ri3, ri8 add ri3, r0 adc r17, r29 movw ri8,
adc r19, r21 adc ris, ri adc r28, r26 add r2s,
mul r3, r7 adc ri9, r2i mul ri8, r24 adc r29,
add r12, r0 mul r5, r8 add r16, r0 adc ri8,
adc r13, r1 add ri4, ri8 adc r17, r1 mul r20,
adc r19, r2t adc ro0, ri9 adc r28, r26 add r2s,

iCIS | Digital Security
Radboud University

Abstract blocks in Karatsuba

Even branch-free assembly code has some discernible structure:

1.

N o VAW

ComputeL = A; - B;

Compute |A; — Ay| and |B; — By
Compute H = Ay, - Byand L +2"/2. H
Compute M = |A; — Ay - |B; — By
Compute L +2"/2(L + H) + 2"H.
Conditionally negate 2"/2M

Add the results of step 5 and 6

iCIS | Digital Security
Radboud University

Design trade-off

Register file modelled as a single mutable array
‘Nicer data in registers and SRAM treated uniformly
Abstract blocks obscure which registers are preserved
Alternative: model registers as individual variables?
+ Runsinto Why3 type system restrictions on mutable data

iCIS | Digital Security
Radboud University

Design trade-off

Register file modelled as a single mutable array
‘Nicer data in registers and SRAM treated uniformly
Abstract blocks obscure which registers are preserved
Alternative: model registers as individual variables?
+ Runsinto Why3 type system restrictions on mutable data

Answer: do both!
Maintain a ghost copy of the register file

Reduces annotations needed and verification time

iCIS | Digital Security
Radboud University

Verification efficiency

program size | annotations | cpu time provers
schoolbook
16 x 16 13 lines 1 Os cvca
24 x 24 33 lines 1 1s cvc4
32 x 32 59 lines 1 4s cvca
40 x 40 93 lines 1 10s cvc4
48 x 48 136 lines 1 33s cvca
Karatsuba
48 x 48 169 lines 23 52s | cvc4,cvc3 E
64 x 64 286 lines 21 96s | cvc4, cvc3, E
80 x 80 411 lines 31 215s | cvc4, cve3 E
96 x 96 611 lines 39 906s | cvc4, cvc3, E

iCIS | Digital Security
Radboud University

Discovered assumptions for correctness

Argument aliasing
Karatsuba implementations are correct provided that inputs and output
do not use the same locations in memory

-« Easy to fix this restriction in 48-bit and 64-bit version
« Unlikely to be a problem in 80-bit version

- X ¢ X-Ystill correct
« More restrictive precondition in 96-bit Karatsuba

- X < X-Ynot correct

Potentially a problem for the user

iCIS | Digital Security
Radboud University

Conclusion

Features of this approach

Make verification seem obvious

Choose models that facilitate automatic proofs

- OKas long as models are consistent?

Identifying and specifying abstract blocks still labour-intensive

Suggestions for future work

Multiple-level Karatsuba, 128-bit just needs more time
« External validation of machine model, however...

- Formalization is not executable with current Why3
- Requires a formal semantics (or testing on hardware)

More control over proof context would be helpful!

iCIS | Digital Security
Radboud University

This frame intentionally left blank

iCIS | Digital Security
Radboud University

Subtractive Karatsuba multiplication

To multiply two n-bit integers A and B,
Split A = 2"/2A, + A;, and B = 2"/2B,, + B;
Multiply both halves: L = A; - Bjand H = A, - By,
Let M = (A; — Ay) - (B; — By

+ Compute the result as

A-B=L+2Y*L+H-M)+2"H

iCIS | Digital Security
Radboud University

Subtractive Karatsuba multiplication

To multiply two n-bit integers A and B,
Split A = 2"/2A, + A;, and B = 2"/2B,, + B;
Multiply both halves: L = A; - Bjand H = A, - By,
Let M = |A; — Ay - |B; — By|

- IfA; > A, <= B; > By, obtain the result as

A-B=L+2"*L+H-M)+2"H

iCIS | Digital Security
Radboud University

Subtractive Karatsuba multiplication

To multiply two n-bit integers A and B,
Split A = 2"/2A, + A;, and B = 2"/2B,, + B;
Multiply both halves: L = A; - Bjand H = A, - By,
LetM = |A; — Ayl - |B; — By
- IfA; > A, <= B; > By, obtain the result as
A-B=L+2"*L+H-M)+2"H

Otherwise, obtain the result as

A-B=L+2Y*L+H+M)+2"H

iCIS | Digital Security
Radboud University

Subtractive Karatsuba multiplication

To multiply two n-bit integers A and B,
Split A = 2"/2A, + A;, and B = 2"/2B,, + B;
Multiply both halves: L = A; - Bjand H = A, - By,
LetM = |A; — Ayl - |B; — By

- IfA; > A, <= B; > By, obtain the result as

A-B=L+2Y%L+H-M)+2"H
Otherwise, obtain the result as

A-B=L+2Y*L+H+M)+2"H

Problem: conditional negations!

iCIS | Digital Security
Radboud University

Typical assembly tricks

Aj — Ay, sets the carry flag if (and only if) A; < Ay,
+ Subtract with carry can give us 0x00 or 0xFF in constant time
Note that in twos complement,

—x = (NOTx) +1
= (x @ 0xFF) — OxFF

iCIS | Digital Security
Radboud University

Typical assembly tricks

« A;— Ay sets the carry flag if (and only if) A; < Ay,
+ Subtract with carry can give us 0x00 or 0xFF in constant time
+ Note that in twos complement,

—x = (NOTx) +1
= (x & 0xFF) — OxFF
Solution
{R1 =xR2=1y}
SUB R1, R2
{R1 =x—y (mod 256)}

SBC R16, R16
EOR R1, R16
SUB R1, R16

fR1 = lx—y]}

iCIS | Digital Security
Radboud University

abstract
ensures { synchronized shadow reg }
ensures { uint 4 reg 2 = old (abs (uint 4 reg 2 - uint 4 reg 18)) }
ensures { uint 4 reg 6 = old (abs (uint 4 reg 6 - uint 4 reg 22)) }
ensures { 7tf = 0 <-> old ((uint 4 reg 2 < uint 4 reg 18) <-> (uint 4 reg 6 < uint 4 reg 22)) }
sub r2 ris;
sbc r3 ri9;
sbc r4
sbc r5 r2i;
sbc 10 r0;
sub 16 r22;
sbe r7 r23;
sbc r8 r24;
sbc r9 r2s;
sbc ri ri;
eor r2 ro;
eor r3 r0;
eor r4 r0;
eor r5 r0;
eor ré ri;
eor r7 ri;
eor r8 rl;
eor r9 ri;
sub r2 ro;
sbc r3 ro;
sbc r4 ro;
sbc r5 r0;
sub r6 ri;
sbc r7 ri;
sbc 18 ri;
sbc 19 ri;
eor r0 ri;
bst r0 03
modify_r0(); modify_r1(); modify_r2(); modify_r3(); modify_ra();
modify_r5(); modify_r6(); modify_r7(); modify_r8(); modify_r9o();
end;

iCIS | Digital Security

Radboud University [

	Background: secure Karatsuba multiplication
	Verification approach
	Results and discussion

