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ABSTRACT

Software engineers working in industry seldom try to apply for-
mal methods to solve problems. There are various reasons for this.
Sometimes these reasons are understandable—the cost of using
formal methods does not make economic sense in many contexts.

However, formal methods are also often greeted with scepticism.
Formal methods are assumed to take too much time, require tools
that are too academic, or to be too mathematical to be understood
by practice-oriented software engineers.

We tested these assumptions by designing a small course around
a framework for program verification, aimed at regular computer
science students enrolled in a Master’s programme. After four lec-
tures and associated exercises, students were given a small verifica-
tion task where they had to model and verify a real, non-trivial, C
function in Why?3.

A significant majority of students managed to prove a non-trivial
functional specification of this C function in the time allotted, and
many also pointed out inherent flaws of this function discovered
during formalization. Participants reported no major difficulties or
mental hurdles in learning Why3, and considered its approach to
be appropriate for selected components of safety-critical software.

While formal verification tools such as Why3 still have lots
of room for improvement, this experience shows that in a short
amount of time, software engineers can be taught to use a program
verification tool, and obtain usable results without being fully profi-
cient in it. We further recommend that courses on formal methods
should also let students explore these as techniques to be applied,
instead of only focusing on the theory behind them, as we expect
this to gradually lower the barrier to wider acceptance.
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1 INTRODUCTION

Program verification is about as old as the field of computing science
itself [17], and the focus of much academic research. Yet, it is seldom
applied in industry. In the Sovereign project, we strive to find ways
to apply formal methods—and deductive program verification in
particular—to practical situations, in cooperation with partners
from industry. This has made us acutely aware of the divide between
industry on the hand, and academia on the other.

In our discussions, representatives of our industry partners ex-
pressed the sentiment that it was all well that academics understand
the academic tools and can use them for selected problems, but that
their company employs software engineers which, although aca-
demically trained, would not be able to learn and understand these
techniques in such a way that they can use the effectively—and that
formal verification can not hope to get a wider foothold in industry
unless this problem was addressed.

This sparked our interest. Clearly, there is no argument that
many programs are too large or too complex to be within reach
of formal verification with the current tools. However, if the tools
themselves are also perceived to be too complex or too theoretical
to be understood, that is another problem altogether.

Therefore we were interested in testing the assumption that
program verification, and associated computer-aided reasoning
tools, are intrinsically too much work to get accustomed with for a
practice-oriented software engineer.

One way to answer such a question is to design a crash course
that teaches a formal method to software engineers, and see how
they perform at a small verification task. However, since any aca-
demically trained software engineer would at some point have been
a student, we can instead test this assumption by doing the same
experiment with university students, which are readily available to
us.

Therefore, we selected to teach the Why3 framework for program
verification [11] in a short time span, as part of an existing course
at Radboud University, and assess the performance of students at a
small, but realistic verification task.
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In Section 2, we will briefly introduce the Why3 verification
framework. Section 3 provides an overview of the choices we made
in teaching it to students. Sections 4 and 5 will present and discuss
our evaluation of the course. Section 6 provides an overview of
related courses. Section 7 contains our conclusions.

2 OVERVIEW OF WHY3

Why3 [11] is a platform for deductive verification of programs.
It takes programs written in a dedicated programming language
(WhyML), which should be annotated with pre- and postconditions,
assertions and loop invariants, and uses a weakest precondition
calculus to generate verification conditions in a typed first order
logic. These are then subsequently translated to the input formats
of various automatic provers, in order to prove them, as visualized
in the following diagram:

In Why3, as in many such systems, there is a difference between
programming constructs and the logical constructs. A program is
written in WhyML, and annotations are written in a logical lan-
guage. There is a high degree of similarity between the two: they
both share the same expression syntax and allow for the definition
of functions. There are also subtle differences.

predicate divides (d n: int)
= exists k: int. n =k * d

predicate prime (p: int)
=2<=p /\ forall i. 1 < i < p -> not divides i p

lemma mod@_implies_divides:
forall nd. d <> @ ->mod nd =0 -> divides d n

let is_prime (n: int): bool
requires { n > 1 }
ensures { result <-> prime n }
=ifmdn2=0 || md n 3 =0 then
return n <= 3;
let i = ref 5 in
while sqr !i <= n do
invariant { 5 <= !i /\'mod !i 6 =5}
invariant { forall d. 1 <d < !i -> not divides dn }
if mod n !'i =0 || mod n (!i+2) = @ then
return false;
i:=11+6
done;
assert { forall d. !i <= d /\ divides d n ->
divides (div n d) n };

return true

Figure 1: Example of annotated WhyML code
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An example of an annotated WhyML program can be seen in
Figure 1. The predicate prime defines what a prime number is in
purely logical terms, whereas the program is_prime implements
an almost-correct primality test.! Since this primality test does not
work for n < 1, this has to be mentioned in its specification. Why3
can quickly prove that this program is correct with respect to this
specification by using a combination of Alt-Ergo, CVC4, Z3 and
E-Prover.

Furthermore, Why3 supports ghost code [10]. This is any code
or data that is not necessary to obtain the result of a program,
but can make its verification easier. The Why3 type system will
ensure that code marked as ghost can not affect the outcome of
a program, allowing the user to use purely logical constructs in
computations that only have (ghost) side-effects. Furthermore, a
user can ‘promote’ a programming construct to have an effect on
the logical level. A function at the programming level can be used
to either prove a logical lemma (a so-called lemma function or let
lemma), or provide an axiomatisation of a function in a safe manner
(Why3 calls this a let function). The similarities between the
various levels of Why3 make it fairly easy to get novices started
with Why?3, at the same time, the subtle differences can also catch
new users off-guard.

Most work in Why3 is done inside a graphical user interface
where users can transform verification conditions (e.g., splitting a
large conjunction into smaller ones), and send them to provers. Most
actions are performed with a single mouse click. The user interface
also uses colour highlighting to provide users with information
about which programming constructs are involved in the current
proof state.

3 APPROACH

Our treatment of Why3 was part of an existing course on ‘Software
Analysis’, which is an elective course offered as part of the MSc
programme in computing science at Radboud University. The scope
of this course was intentionally broad, to treat varying topics in
it relating to tools and techniques for analysing software. Formal
program verification using Why3 was planned to take up the first
half of this course, with the second half veering more towards static
analysis. The entry requirement for this course is that students
are in possession of a Bachelor’s degree in computing science (or
equivalent).

By using an existing course that was not advertised primarily as a
course on formal methods, theoretical computer science, or theorem
proving, we are confident that the students taking this course did
not self-select, and form a unbiased representative sample of the
computing science student population at Radboud University.

Secondly, to prevent students from deselecting after the start of
the course, the guiding principle during teaching was to approach
program verification using Why3 as a tool that might have a place
in a software engineers toolbox, instead of treating formal verifica-
tion as an intrinsically interesting theoretical topic, where Why3
is only used as a vehicle for demonstrating an application. So, for
instance, students were not taught any core principles on which
formal verification frameworks are based, such as Hoare logic or

!Based on https://en.wikipedia.org/wiki/Primality_test
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how to compute weakest precondition calculus.? Instead, this was
explained only in so far as was necessary to give students an intu-
ition into what Why?3 is doing. Also, exercises focused mostly on
familiarizing students with features of Why?3, similar to a course on
programming, and were chosen to enable quick positive feedback.

At the end of this part of the course, students had to write a short
report about their work, in which they were also required to include
a reflection on Why3. Furthermore, students were asked (but not
required) to complete an anonymous survey intended to verify that
they were indeed a representative sample of students enrolled in
a Master’s programme in computing science. In this survey, they
are also asked about the time they needed for the course work, and
their general disposition towards program verification after taking
the course.

3.1 Course structure in detail

Teaching Why3 was split in two parts: in-class teaching with weekly
lectures with associated homework exercises, and a small project
where students would, in groups of two, tackle a verification chal-
lenge in the style of the VerifyThis®> or SV-Comp* competitions.
5

3.1.1 Teaching Why3 in four weeks. In-class teaching consisted of
four weeks of lectures and exercises. The organization per week
was as follows:

(1) Outlining a historical background motivating why program
verification schemes should employ computer-aided reason-
ing in order to be feasible, and a first look at Why3 and
how to write basic WhyML programs; as well as how to use
the logical language of WhyML to write function contracts,
invariants, and prove termination.

(2) How the Why?3 type system works, and how to reason about
mutable data such as arrays. At this point, students were
subjected to an interactive demonstration where Kadane’s
algorithm [3] for finding the maximum subarray was verified,
with the intent to set an example to students of how to write
more complex logical specifications, discover invariants, and
how to interpret the responses of the Why3 IDE.

(3) Techniques in Why3 that can be used in more difficult sit-
uations where a proof is not solved automatically—such as
cases where a proof by induction is needed. In particular, in
this lecture the somewhat difficult concept of ghost code
and let lemma’s [10] was introduced.

(4) Modelling a program in a different, more realistic, program-
ming language in WhyML; for example, how to handle in-
teger overflow, or how to reason about a memory model
that supports pointers (adapted from the lectures notes by
Filliatre [12]).

Weekly exercises were designed to fit with the level students

were expected to have after each lecture. Students were required to
use a Why3 installation on their own system instead of using a web

2We do not mean to imply that taking that approach is not a valid didactic approach—
however, it would not have been relevant for our research question.
3https://www.pm.inf.ethz.ch/verifythis. html

“https://sv-comp.sosy-lab.org/

5 The course material, including exercises and project description is available online
at https://cs.ru.nl/~M.Schoolderman/swan2019/

CSERC ’19, November 18-20, 2019, Larnaca, Cyprus

interface for all of these, to have access to the full capabilities and
multiple back-end provers. The objective of these exercises were,
per week:

(1) Familiarizing with the WhyML syntax and Why?3 interface.
In particular, students had to finish a partial proof of a Rus-
sian peasant multiplication (adapted from an existing course
by Bobot [5]). Students were also challenged to rewrite this
verified program to perform exponentiation instead, with
some hints.

(2) Writing a WhyML program and specification from scratch.
Students had to pick a simple sorting algorithm and model
it in WhyML, and prove it correct.

(3) Using let lemma’s to write inductive proofs, and a slightly
harder partial proof (for the factorial function one taken
from [17]) that needed to be finished.

(4) Modifying a WhyML program so that it can be used to extract
C code.

We estimated that students would need not more than six hours
for each exercise. Students were given formative feedback (includ-
ing fixes to finish their proof efforts, whenever they were very close
to a solution).

3.1.2  Verification challenge. After four weeks of in-class teaching,
students got their project assignment. Students had to either choose
a C functions from a small list of system library routines contained
in the CloubLibc [25] library, or a test case that was designed to be
similar to a routine for modular addition of 256-bit integers used in
the cryptographic library TweetNaCL [4].

Given this C function, the assignment consisted of modelling it
reasonably accurately in WhyML, providing a formal specification,
and proving that the WhyML model adheres to this specification.

3.1.3  Self-evaluation. Students were given four weeks to complete
the verification challenge. Afterwards they had to write a report doc-
umenting their formalization, motivating their modelling choices
and formal specification; students also had to reflect on what they
considered to be the strengths and weaknesses of Why?3, and were
encouraged to do so from a software engineering viewpoint.

In order to learn more about the learning experience, we also
sent a survey asking students about how they self-assessed their
programming and mathematical maturity, how much time they
spent on the Why3 exercises and the verification challenge, and
what their disposition to formal verification was at the end of the
course, as an extra check of (our interpretation of) the information
contained in their reports.

4 RESULTS

In total 22 students participated seriously in the verification chal-
lenge, grouped into 11 teams. One other student made only a rudi-
mentary attempt and would eventually drop out of the course after
the part focusing on Why3 was finished.

Out of the 11 teams, nine chose to verify the strlcat routine
from the CloudLibc library, probably due to familiarity with the
operation of string concatenation. Two teams took on the modu-
lar addition routine inspired by TweetNaCL, as described in Sec-
tion 3.1.2.
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4.1 Verifying strlcat

Out of the nine teams that chose strlcat, seven teams produced a
WhyML model with a logical specification that was fully verified
in Why3. The remaining two teams delivered an incomplete proof.
In both cases this seems to be due to teams choosing to build an
axiomatisation of the C memory model instead of a simpler ap-
proach. We discouraged students from doing this, because it risks
introducing logical inconsistencies. In these two cases, however,
the axiomatisation was simply not powerful enough to support
drawing the necessary conclusions.

The C function strlcat is intended to be a safer version of
strcat, for concatenating null-terminated strings in a manner
which is much less likely to cause buffer overruns, but also guaran-
teeing that the result is a proper null-terminated C string.

There are three major difficulties where the verification effort of
this function is not straight-forward:

(1) strlcat is not required to (and in fact will not) perform its
expected operation in case the two pointers it is passed point
to overlapping regions of memory.

(2) In case strlcat is called with a size argument that is too
small, there is a subtle safety mechanism that prevents it
from accessing out-of-bounds memory addresses. However,
in this case strlcat will not concatenate any strings or
necessarily produce a result that is null-terminated.

(3) To reason about the length of strings at the specification
level, the notion of the “terminating null character” needs to
be expressed somehow.

All successful teams used the technique for modelling memory
outlined in [12], where memory is modelled as an array of bytes
and pointers are indices into this array. To tackle the first problem,
students either used different arrays to model separate memory
regions, or explicitly added a precondition that the two input strings
should not overlap. One team was so precise in this that they proved
the code works in some cases of overlap.

The second problem was handled by all teams either by adding
the explicit precondition that the size argument is proper, or spec-
ifying a separate postcondition for the cases where it is improper.
Some teams commented (rightly) that this made the formal speci-
fication of strlcat more intricate than would appear necessary,
showing that they were able to draw conclusions about the sub-
tleties of systems-level C code based on their formalization.

The third problem was one which was handled in different ways.
Several teams took a hint that existential quantification can often
be avoided by using ghost code [10], and simply added the location
of the null character terminating a string as a ghost argument to
strlcat. One team used direct existential quantification instead
to find the null character. This resulted in a much harder, yet still
successful proof effort. Several other teams added a logical con-
struct (using a let function) which explicitly finds the position
of the null character using a loop, but which can still be used in
specifications. This essentially involves also proving the correct-
ness of strlen, and is an interesting approach that these students
discovered themselves.
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4.2 Verifying modular addition

Only two teams attempted to verify the modular addition routine;
both teams completed verification, where one team performed a
thorough analysis, and the the other only proved a simple property.

Even though the modular addition code consisted of the least
lines of code of all the options available to students, it was probably
the most challenging to verify given that (unlike the CloudLibc
routines) it did not have a clear (informal) specification, and has
known problems that become apparent during verification.

During this challenge, both teams used Why3’s machine integers
to prove the absence of signed integer overflow under reasonable
input conditions. Both teams were instructed to identify some prop-
erty that the addition routine preserved. For example, whether if
both inputs are already reduced modulo 225> — 19, it holds that the
result will also be in a reduced form.® Both teams correctly con-
cluded that such an easy property did not exist. However, one team
already reached this conclusion before formalizing the routine. In
the end, one team proved that the modular reduction step in the
addition routine is never performed if the original inputs were in
reduced form. The other team simply proved a bound on the output.
Only one team tried to prove that the addition routine actually adds
numbers; this was achieved with some supervision.

4.3 Self-evaluation

Students were asked to provide an evaluation of Why3 and to assess
what role it could have in software engineering. The most often
mentioned benefit of Why3 was that it makes performing formal
proofs accessible and easier, and that proofs provide a higher degree
of confidence in software than simple testing. On the other hand,
students reported that the verification task involving only a small
piece of code took many hours to complete. Students concluded
that they considered Why?3 inappropriate for regular software engi-
neering due to this time investment, but well-suited for cases where
safety or security of software is more important than economic
arguments.

Other interesting general observations raised by students where
the following:

e Students were generally positive about the graphical user
interface of Why3, which can highlight assumptions and
goals in the source code.

e Students criticized the error messages provided in case of a
syntax or type error. This is an area where academic tools are
often lacking, and this clearly hinders the learning process.

e Multiple students complained about the lack of an online
community of Why3 users, on a platform such as StackEx-
change.

Many students also discussed how they experienced working
with Why3 in the process of finding a correct proof; key points
raised here were:

e Since Why?3 uses automatic provers, proofs can fail for rea-
sons that are not obvious to the users and hard to predict for
novices.

e Why3 provides a mechanism to generate counter-examples.
While students did report using this, the consensus seemed to

62255 — 19 is a prime number used in Curve25519 elliptic curve computation.
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be that they did not provide meaningful information except
in simple cases.

e Similarly, some students were dismayed that an inconsis-
tency in a lemma (or invariant) will allow any subsequent
statement to be proven vacuously—giving the user the mis-
taken impression that the they only have one unproven goal
remaining. On the other hand, other teams reported using
the smoke detector of Why3 to catch these cases with success.

e To explore some program state in depth, several students
reported missing the ability to have an interactive debugger
in the Why3 IDE.

e Finding loop invariants is clearly the hardest part. Several
students found it surprising that Why3 was unable to deduce
simple loop invariants, or that a loop invariant also needs to
be established if the associated loop is not executed.

Although students reported needing a lot of time to complete
the verification challenge, most did not report an obstacle inher-
ent to Why3 while working on the challenge. An obstacle that
was reported by several students was that to model a C program
in WhyML requires a deep understanding of C—a deeper under-
standing than these students professed to have. These students
also pointed out that this translation of C to WhyML should be
automated.

4.4 Survey

To learn more about the learning experience, a survey was sent
to the 22 students that participated seriously in the verification
challenge. One student was at this time no longer at Radboud Uni-
versity and could not be reached. Of the remaining students, 15
responded, for a response ratio of slightly above 70%, which we
consider to be acceptably high for a student evaluation.

In general, students reported a much higher confidence in their
programming ability than their mathematical ability. All partici-
pants reported that they felt at least somewhat skilled in program-
ming (rating themselves at least a 5 on a 7-point Likert scale),
whereas two thirds of the students reported their mathematical
skill level to be not that great (at most a 3 on a 7-point Likert scale).
Only one student reported a higher skill level in mathematics than
programming, but this student also reported having taken much
more ECTS credit in math and logic courses (120, instead of the
average 18).

When asked whether they had any experience in other formal
method tools, only a handful students reported having some expo-
sure to systems such as Coq or Uppaal (which are used to support
teaching in some bachelor courses at Radboud University). On the
other hand, many students reported having used ESC/Java2. This
tool is used only briefly at another Master’s level course at Radboud
University for a simple weekly exercise, and so we do not consider
this to have significantly impacted our teaching experiences or
jeopardize the representativeness of our student sample. When
asked in the survey how they compared learning Why3 to learning
a new programming language, 12 students answered that learning
Why3 was as hard or slightly harder, with only 3 indicating they
found it considerably harder.

The survey results also indicated that the amount of time spent
on the weekly exercises was within our estimate and fitting for
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the number of ECTS points that could be earned for the course.
More interestingly, the amount of hours students spent on the
verification challenge was reported to be slightly less than 20 hours
on average, with the median being 18 hours. In advance, we had
budgeted between 24 and 32 hours for the challenge. A histogram
of reported hours is shown in Figure 2.
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Figure 2: Hours spent on verification challenge by students

5 DISCUSSION

At the start of the verification challenge, we had expected about half
of the students to succeed, and another half to deliver only a partial
result which either proves only a single property, or where the
final result is incomplete due to unproven goals. We also expected
students to require around 24 to 32 hours of work. In total, 8 out of
the 11 teams managed to complete the challenge with a successful
verified result, which we found encouraging. If we assume that
the three less successful teams (comprising 6 students) all make up
the lower end of the graph of Figure 2, we can still conclude that
students completed the challenge in less time than we anticipated.

Students, however, did report needing a lot of time for the ver-
ification task. We would like to put this in perspective. The code
students were given was representative of systems-level code. De-
veloping such code, including writing a good test suite, takes more
time than students probably realize.” Compared to that, the amount
of time students actually reported is rather low, especially if we
take into account that they were all inexperienced users of Why3.
To see how much faster they would be if we gave them another
similar challenge would be interesting, but we could not justify this
being part of the ‘Software Analysis’ course.

Ultimately, we think that our students were up to the challenge
that we put to them, even though they had only received a crash
course of four weeks.

5.1 Comparing students to software engineers

Our survey results indicate that our student sample was a typical
set of students enrolled in the Master’s programme at Radboud
University, and did not have a significant prior bias or inclination
towards formal methods. For example, in the survey, 60% of the
students reported not being familiar with Hoare logic at the start
of the course. In the other 40%, only one student reported that he
or she used this familiarity while working with Why3. All were
familiar with the concept of pre- and postconditions, but had little
experience in reasoning about invariants.

7 In the case of strlcat, the function students ended up seeing is the end result of
years of intermittent updates and tweaks
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Most of these students will, after graduation, apply for software
engineering jobs, and so we believe our sample to be representative
of a highly educated software engineer. Our results, of course, do
not apply to all software engineers in possession of a Bachelor’s
degree in computing science, since our students did choose to enrol
in a Master’s programme at a university.

5.2 Modelling challenges

As mentioned in Section 4.3, some students reported finding it less
satisfying to make a model of C code in WhyML, due to the fact that
they felt less confident that they could model C concepts accurately.
At another stage in the ‘Software Analysis’ course, several students
also expressed discomfort in reasoning about C programs. This
was surprising to us. As one student team put it: “This decreases
our confidence that when a WhyML model is proven correct the
program in the target language will also be correct” In the anony-
mous survey, students would also indicate they found modelling the
second hardest part in using Why3, after finding loop invariants.

Students identified that a remedy would be to have a tool that
either directly verifies C code, or that automatically translates C
code into WhyML, but that such a step would inevitably also make
verification more difficult. In the survey, 80% of the students indi-
cated that the design of modern programming languages should
use formal verification to some degree, which we find consistent
with the students’ written remarks.

5.3 Using mature tools

In our course, we chose to not use the web interface of Why38,
but required students to install it on their own systems. The ad-
vantage of this was that students could tackle more complicated
proofs, since they had access to all the supported powerful auto-
matic provers, and could benefit from all of the features of Whys3,
such as counterexample generation and the smoke detector feature
of Why3. Even though there is much available to them in the full
Why3 interface which they will not understand (at least at first),
we do not find that this impedes the learning process.

The downside here was that installing Why?3 is a rather involved
process, due to the need to install it (and the specific versions of var-
ious automated provers that are supported by Why3) from source.
To save time, and to ensure most students were on the same plat-
form, we created a binary-only distribution of Why3 and a selection
of automated provers for Linux. This worked well, but was a step
in distributing Why3 to students that was cumbersome for us and
that should not have been necessary.

5.4 Recommendations

Complex programming languages such as C++ are used daily by
practitioners that will freely admit to not understanding all the
intricate details. The same is also true for formal verification tools.
However, in our experience, this is not how they are usually per-
ceived in industry. In order to change this, we believe two things
are necessary. First, verification tools should not forget to focus
on user friendliness; this will lower the barrier to acceptance by
engineers that are typically used to work with highly polished tools.

Shttp://why3.Iri.fr/try/
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Meaningful error messages will also ensure a positive feedback cy-
cle that benefits the learning curve. Second, a university curriculum
should not only present computer-aided reasoning tools as part
of an (elective) theoretical course on program logics, as this will
cement the notion that these tools are mostly an academic pursuit.
Students should also be encouraged to explore the application of
these tools to small but realistic problems.

6 RELATED WORK

Formal verification of software is a research area for which inter-
est is still growing. It is therefore not surprising that attention is
paid to it within higher education, also because of the great social
importance of secure software.

We note that both fully automated proof tools and semi auto-
mated proof assistants are used within education. In a number of
cases, this is done as support when teaching students about mathe-
matics topics that are often experienced as difficult. For example,
[13] presents the design of the web server Proof Web for Coq (de-
veloped to avoid installation difficulties with different versions of
Coq), which is used to teach logic to undergraduate students. An-
other project [6] uses the Coq proof assistant based on a two-step
approach. When teaching students, the authors strictly stick to
Coq in the first step. Thereafter, in the second step, they encourage
students to gradually convert less formal ordinary textbook proofs
into formal Coq proofs. The GeoGebra tool [15] is an automated
reasoning tool for discovering theorems on constructed geometric
figures, and proving these theorems automatically. The tool is in-
tended to serve as a guiding stick fostering student activities while
learning elementary geometry.

In the context of computer science teaching, formal verifica-
tion is generally introduced at a more advanced level. A theorem
prover is not a learning goal in itself but is rather considered as
a framework for teaching other subjects. The idea is that using a
formal language as a means for introducing new concepts helps
student to get a deeper understanding of these. For example, [22]
reports positive experiences in teaching students to reason about
the correctness of functional programs written in Scheme using
the DRACULA programming environment, that uses ACL2 to dis-
charge proof obligations, but where teaching ACL2 itself is not the
main objective. As another example, [20] is a textbook on semantics
entirely based on the proof assistant Isabelle?, and the NASA PVS
Library!® contains a full formalization of Nielson and Nielson’s text-
book [19] on formal semantics. The main advantage of using a proof
assistant in the teaching is that it allows students to experiment
with their specifications, and to make proofs that are guided by the
proof assistant which gives them immediate feedback. RISCAL [26]
is a language for modelling algorithms and their properties. This
language comes with a tool supporting model development and
automatic verification. The tool has been used in two courses at the
computer science department of the Johannes Kepler University
Linz: (1) The course ‘Formal Methods in Software Development’
for master students, and (2) the ‘Logic’ course for undergraduate
students. First experiences are promising: a small scale study in-
dicated students seem to perform better if they can use the tool

“https://isabelle.in.tum.de/
Ohttps://github.com/nasa/pvslib
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in its full potential. The PEST framework [7] is similar to RISCAL
in the sense that is provides both a specification language and a
tool (available as a plug-in for Eclipse) that facilitates automated
reasoning. Classroom experiences (the framework was used in two
undergraduate courses taught at the computer science department
of the University of Buenos Aires) confirm the preliminary results
of [26].

In [23] experiences are discussed with teaching formal program
specification and verification using the specification language JML
and the automated program verification tool ESC/Java2. The au-
thors state that current program verification technology is suffi-
ciently mature for students to use, even as part of courses which are
not specifically about formal methods, such as standard program-
ming or software engineering courses. However, the authors also
indicate that the use of these tools is better limited to controlled ex-
periments, where the students work with (relatively small) supplied
programs, rather than code they develop themselves.

Other experiences are based on the approach in which students
are supposed to develop loop invariants before actually writing
their code, which is also known as invariant based programming.
Invariant based programming was already introduced in the 1960s
([18],[14]), and developed further by e.g. [9]. In [1], the results
are discussed of using this approach in two different courses. In
both courses, the SOCOS [2] environment was used to develop
invariant diagrams. The environment computes the verification
conditions (VCs) automatically for all transitions in these diagrams,
and sends them to either an automatic prover (SIMPLIFY [8]) or
to an interactive prover (PVS [21]), similar to the technique that is
employed by Why3. One of the courses was an advanced course
for graduate students where they were asked to prove program
correctness of the generated VCs using PVS. The second course was
a beginners course, where the students could discharge the VCs
to the SIMPLIFY SMT solver to perform automatic proving, and to
PVS for those that could be automatically proved. In both cases,
the authors observed that a suitable error reporting mechanism is
clearly needed when using these tools in education. In particular,
they commented on the difficulties of students when dealing with
PVS. They also warn against the pitfall that the tools invite students
to use a try-and-debug strategy instead of thinking beforehand
about the constraints needed for the invariants.

Another project [24] presents a method to gain insight into
the difficulties that students face while developing suitable loop
invariants, and assist them in the process. The authors collected data
in the background as students attempted to produce verified code
with loop invariants. Analysis of this data indicated the kinds of
information that can expected, and what kinds of feedback might be
useful. In [16] the authors report on an experiment with invariant
based programming. They analysed a group of novice students
and found that the main difficulty seemed to be lack of skills in
formalizing expressions in general, rather than inventing specific
invariants. Hence, to successfully use invariant based programming,
appropriate training to develop these more general formalization
skills is essential.

CSERC ’19, November 18-20, 2019, Larnaca, Cyprus

7 CONCLUSION

As the literature shows, tools for computer-aided reasoning have
been used in the classroom successfully for many years, and we
encourage this. It is clear that a computer can give students more
instant feedback, and is less likely to make a mistake.!! Also, in
logic courses, it can alleviate tedium by offering automation.

The question that we sought to answer is whether computer-
aided reasoning tools are also getting mature enough they can not
only be used in the classroom for teaching, but that we can also
train software engineers in industry to apply them to solve real—
although perhaps small—problems in a short amount of time. Our
results support the conclusion that this is the case.

Our survey indicates that our student sample is fairly repre-
sentative for students who have completed a Masters degree in
computing science, many of whom will eventually pursue a career
as a software engineer. In fact all of our students, being in the pos-
session of a Bachelor’s degree, could just as well have been working
in this field already.

A purist approach would only allow students to use automation
offered by powerful tools only after the student demonstrates proper
understanding of the actions that are being automated. When deal-
ing with Why3, this is impossible—due to the fact that it relies on
state-of-the-art SMT solvers to prove goals—and, we believe, not
necessary. Students (and software engineers) with a sufficient level
of higher education will have developed intuitions about reasoning
about programs, and have had formal training in programming and
logic. They can draw upon these experiences when learning Why3
(or we expect, similar tools) in an applied setting.

As a side effect, we also predict that trying out formal verification
tools in a realistic setting on students will provide the developers
of these tools with invaluable feedback. Having physical access to
a novice user base trying to apply these tools will give insight into
what makes them difficult to learn, or where they need to be more
powerful. Ultimately, this will result in computer-aided reasoning
that will be more usable and powerful for everybody.
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