Program verification with Why3, 1|

Marc Schoolderman
February 14, 2019

Assessment

m Marks for exercise are purely subjective

> excellent, good, average, fair, poor
» Don't count towards final grade

m Grading for first part: small (but real) case study

> Verification products: models, proofs
» Short report on your formalization
» Evaluation of Why3

No written exam.

For both: working in pairs allowed.

Last week:

m Intro Why3

m WhyML consists of two layers:
Logical formulas + Program code

m Function contracts

m while loops: invariants and variants

Finding good invariants

A loop invariant must hold:

@ Before the loop even starts
@ During the loop
© After the loop ends

It's okay to guess invariants, but make educated guesses.

Why3 news

Why3 1.2.0 is out since 11 february...

@ Syntactic sugar for references
@ GTK3 support
© 73 4.8.x support

No tutorial hour on wednesday!

Deadline for exercise 3: 19 february, 18:00

Composite data in Why3

WhyML is not limited to just ref and int:

use int.Int;

use array.Array;

let main ()

= let a: array int = Array.make 3 0 in
al1] <- 1;
al2] <- 1;
let x = a[0] + a[1] + a[2] in

assert { x = 2 }

Shorthand:

use int.Int;

use array.Array;

let main ()
= let a = make 3 0 in
al1] <- 1;
al2] <- 1;
let x = al0] + a[1] + a[2]
assert { x = 2 }

in

Reasoning about arrays

We can talk about the sum of an array:

use int.Int
use array.Array

use array.ArraySum

let main ()
= let a = make 3 0 in
al1] <- 1;
al2] <- 1;
(¥ sum a 1 h: the sum of all a[i], where 1 <= i < h *)

assert { suma 0 3 =2 }

More reasoning about arrays

... or count elements:

use int.Int
use array.Array
use array.ArraySwap

use array.NumOf

let main ()
= let a = make 3 0 in
al1] <- 1;
al2] <- 1;
swap a 0 1;
assert { numof (fun i x > x >0) a 03 =2}

Note: limited support for higher order functions.

Basic operations on arrays: array.Array

alil, ali]l <- x elements access, update
length a get array size

make n init creation

append a b appending

sub a i len slicing

copy 4 cloning

£ill a i len writing

blit ay i1 ap ip len copying elements
self blit a iy ip len copying elements

More array functions: see stdlib/array.mlw.

Equality on arrays

This will not verify:

use int.Int

use array.Array

let main ()

= let a = make 3 0 in
all1] <- 1;
al2] <- 1;
let b = copy a in

assert { a =Db }

Any idea why not?

Equality on arrays

Instead:

use int.Int

use array.Array

let main ()
= let a = make 3 0 in
al1] <- 1;
al2] <- 1;
let b = copy a in
assert { forall i. 0 <= i < length b -> a[i] = b[i] }

Equality on arrays

There is a predicate for this:

use int.Int
use array.Array

use array.ArrayEq

let main ()

= let a = make 3 0 in
al1] <- 1;
al2] <- 1;
let b = copy a in

assert { array_eq a b }

Demo: Kadane’s algorithm

The maximum subarray problem

What is the largest contiguous sum in an array?

The maximum subarray problem

What is the largest contiguous sum in an array?

let maxSum (a: array int): int
= let max_so_far = ref 0 in
let max_ending_here = ref 0 in

for cur = 0 to length a - 1 do

max_ending_here := !max_ending_here + alcur];

if 'max_ending_here < O then max_ending_here := 0;

if !'max_ending_here > !max_so_far then max_so_far := !max_ending_here;
done;

return !max_so_far

Side effects in function contracts

Reasoning about program state

You now know two types that are mutable:
m ref ’a array ’a

Consider this function:

‘ let increment (x: ref int)

‘ =x :=Ix+1

Reasoning about program state

You now know two types that are mutable:
m ref ’a array ’a

Consider this function:

‘ let increment (x: ref int)

‘ =x :=Ix+1

How to write a contract for increment?

Reasoning about program state

This doesn't work:

‘ let increment (x: ref int)
‘ ensures { !x = !x + 1 }

‘ =x :=Ix+1

17

Reasoning about program state

This doesn't work:

let increment (x: ref int)
ensures { !'x = 'x + 1 }

=x :=Ix+1

Everything in the postcondition always refers to final state

17

The 01d pseudo-function

But we can do this:

let increment (x: ref int)

writes { x }

|
|
‘ ensures { !x = o0old 'x + 1 }
‘ =x:=Ix+1

18

The 01d pseudo-function

But we can do this:

‘ let increment (x: ref int)
‘ writes { x }
‘ ensures { !x = o0old 'x + 1 }

=x :=Ix+1

writes: This function can modify x

old !x: “!xin theinitial state”

18

The 01d pseudo-function

But we can do this:

‘ let increment (x: ref int)
‘ writes { x }
‘ ensures { !x = o0old 'x + 1 }

=x :=Ix+1

writes: This function can modify x

old !x: “!xin theinitial state”

Note: Why3 can deduce writes here by itself.

18

label and at

Another example:

use array.Array

use array.ArraySwap

let sort3 (a: ref int)
requires { length a = 3 }
ensures { a[0] <= a[1] <= a[2] }
= if a[0] > a[l] then swap a 0 1;
if af1] >
>

if a[0]

a[2] then swap a 1 2;

a[1] then swap a 0 1;

label and at

We can also refer to intermediate states:

use array.Array

use array.ArraySwap

let sort3 (a: ref int)
requires { length a = 3 }
ensures { a[0] <= a[1] <= a[2] }
= if a[0] > a[1l] then swap a 0 1;
label Swap in
if a[1] > a[2] then swap a 1 2;
if a[0] > a[1] then swap a 0 1;
assert { al0] <= a[0] at Swap <= old al[0] }

20

Partially defined functions

Out-of-bounds array access

What should happen now?

use int.Int

use array.Array

let main ()

= let a = make 3 0 in
al1] <- 1;
al2] <- 1;
let x = a[42] in
assert { x = al42] }

21

Safety conditions

Certain WhyML operations generate safety conditions:

m Simply part of the contract: requires

let ([1) (a: array ’t) (i: int)
requires { 0 <= i < length a }
ensures { result = ali] }

= (x ... %)

let div (x y: int): int
requires { y <> 0 }
ensures { result = div x y }

S (& ooo &0

(Distinguish logical div from program div!)

22

What is the difference between this:

let div (x y: int): int
requires { y <> 0 }

5 (& coo)

|
|
‘ ensures { result = div x y }
|

and this:

‘ let myDiv (x y: int): int
‘ ensures { y <> 0 -> result = div x y }
IR

23

Results of program execution

When running a program, one of these can happen:

@ Normal termination: postcondition holds
@ It doesn't terminate: prevented by variant

© Undefined behaviour: prevented by checking preconditions

24

Results of program execution

When running a program, one of these can happen:

@ Normal termination: postcondition holds
@ It doesn't terminate: prevented by variant
© Undefined behaviour: prevented by checking preconditions

O Exceptional termination: an exception is raised

24

Exceptions in Why3

All exceptions are checked: specify the exceptional postcondition.

exception OutOfBounds

let safe_get (a: array ’t) (i: int)

ensures { result = a[i] }

ensures { 0 <= i < length a }

raises { OutOfBounds -> i < 0 \/ i >= length a 7}
=if i < 0 || 1 >= length a then raise OutOfBounds

else return ali]

25

Handling an exception

To catch exceptions, use try ... with:

let firstElement (a: array int)

= try

with
Out0fBounds -> O

|

|

‘ safe_get a 0
|

|

‘ end

26

Partial functions in logic

WhyML logical layer has no contracts or exceptions!

function div (x y: int): int

S (& coo &

let div (x y: int): int
requires { y <> 0 }
ensures { result = div x y }

= (x ... %)

27

Partial functions in logic

WhyML logical layer has no contracts or exceptions!

function div (x y: int): int

S (& coo &

let div (x y: int): int
requires { y <> 0 }
ensures { result = div x y }

= (x ... %)

Whatis div x 0 in the purely logical layer?

27

Undefinedness

‘ function div (x y: int): int
All functions in the logical layer must be pure and total

Pure No side-effects

Total Always produce a result for every input

28

Undefinedness

‘ function div (x y: int): int
All functions in the logical layer must be pure and total

Pure No side-effects

Total Always produce a result for every input

Partial functions are “made total” by assuming an unknown output

‘lemma div_1: exists x: int. div 42 0 = x (¥ provable *)
‘lemma div_2: div 42 0 * 0 = 0 (* provable *)

‘lemma div_3: div 42 0 = 5 (* not provable, not disprovable *)

28

Abstract definitions

Why3 allows declaring functions without a definition

29

Abstract definitions

Why3 allows declaring functions without a definition:

Logic: Program:

function next_prime(n: int): int val next_prime (n:int): int

29

Abstract definitions

Why3 allows declaring functions without a definition:

Logic: Program:

function next_prime(n: int): int val next_prime (n:int): int
ensures { result > n }
axiom next_prime_def1: ensures { prime n }

forall n. next_prime n > n

axiom next_prime_def2:

forall n. prime (next_prime n)

30

Ex falso sequitur quodlibet!

How to shoot yourself in the foot:

constant max_int: int

‘ axiom max_int_def:
‘ forall n. n <= max_int

lemma woops: 1 = 2

31

Ex falso sequitur quodlibet!

How to shoot yourself in the foot:

constant max_int: int

axiom max_int_def:

forall n. n <= max_int

lemma woops: 1 = 2

31

Functional data types

Constructed & polymorphic types

Sum types: algebraic types

‘ type list ’a = Nil | Cons ’a (list ’a)

Product types: tuples and records

‘ type numbered_pair ’a = (int, ’a)

‘ type vector = { x: real; y: real }

32

Working with composite types

Creating, accessing, updating:

‘ function up (len: real): vector = { x=0.0; y=len }
‘ function size (v: vector): real = sqrt (V.x*v.Xx + V.y*v.y)

‘ function flatten (v: vector): vector = { v with y = 0.0 }

Pattern matching:

function append (xs ys: list ’a): int =
match xs with
| Cons x xs’ -> Cons x (append xs’ ys)
| Nil -> ys
end

function sum (pair: (int,int)): int

= let (a,b) = pair in at+b

38

Recursion in Why3

For recursive types, we also want recursive functions.

How to prevent an infinite recursion?

34

Recursion in Why3

For recursive types, we also want recursive functions.

How to prevent an infinite recursion? Variants!

y .

‘ let rec append (xs ys: list ’a): int - ! “ ‘
‘ variant { length xs } - Tm]'"'ﬁ”‘“ In||||u|‘|';'“| !
_ h th <o,\ S
‘ match xs wi . thmc
‘ | Cons x xs’ -> Cons x (append xs’ ys) \m (o]

1T
| Nil -> ys ’»

nuluu il uulu‘
end

-)

(Similar to a “measure” in PVS, Coq)

34

Structural recursion in Why3

Algebraic types support structural recursion:

let rec append (xs ys: list ’a): int
variant { xs }

| Cons x xs’ -> Cons x (append xs’ ys)

|

|

‘ = match xs with
|

‘ | Nil -> ys
|

end

35

Recursion in logic vs programs

Pure logic:

m Whys3 tries to “guess”

function length (xs: list ’t): int
= match xs with
| Nil -> 0
| Cons _ xs -> 1+length xs

end

function fac (n: int): int
= if n <= 0 then 1 else n*fac (n-1)

(* why3 cannot prove termination! *)

Program code:

m explicit variant

let rec length (xs: list ’t): int
variant { xs }

= match xs with
| Ni1l -> 0

| Cons _ xs -> 1+length xs

end
let rec fac (n: int): int

variant { n }

= if n <= 0 then 1 else nxfac (n-1)

36

Recursion in logic vs programs

Often we can avoid repeating ourselves:

Both logic and program code:

let rec function length (xs: list ’t): int
variant { xs }
= match xs with
| Nil -> 0
| Cons _ xs —-> 1+length xs
end

let rec function fac (n: int): int

variant { n }

= if n <= 0 then 1 else n*fac (n-1)

37

Lexigraphical variants

You can have more than one variant:
let rec function ackermann (m n: int): int
= if m <= 0 then n+1

else if n <= 0 then ackermann (m-1) 1

|

‘ variant { m, n }

|

|

‘ else ackermann (m-1) (ackermann m (n-1))

38

Common types in the Why3 standard library

The most common types are already implemented:

Maybe: option ’a
E option.Option
Linked lists: 1ist ’a
B list.ListRich
Binary trees: tree ’a
W bintree.Tree
Set theory: set ’a

B set.Set

39

Abstract types

Like functions and predicates, types can be abstract:

)

type set ’a

constant empty: set ’a

))

function add ’a (set ’a): set ’a

predicate mem ’a (set ’a)

axiom empty_def:
forall x. not mem X empty

axiom add_def:

)

forall x y: ’a, s: set ’a. mem x (add y s) <> x =y \/ mem x s

40

Abstract types

Like functions and predicates, types can be abstract:

)

type set ’a

constant empty: set ’a

))

function add ’a (set ’a): set ’a

predicate mem ’a (set ’a)

axiom empty_def:
forall x. not mem X empty

axiom add_def:

)

forall x y:

A

a, s: set ’a. mem x (add y s) <> x =y \/ mem x s

40

Equality of objects

@ In logic, we can test all objects for equality, as if:

‘ predicate (=) ’a ’a

And so, for example:

‘ lemma singleton_not_nil: Cons 5 Nil <> Nil

41

Equality of objects

@ In logic, we can test all objects for equality, as if:
‘ predicate (=) ’a ’a
And so, for example:

‘ lemma singleton_not_nil: Cons 5 Nil <> Nil

@ In programs, you only get this for int, in int.Int:

‘ val (=) (x y: int): bool
‘ ensures { result <-> x =y }

41

Equality of objects

@ In logic, we can test all objects for equality, as if:
‘ predicate (=) ’a ’a
And so, for example:

‘ lemma singleton_not_nil: Cons 5 Nil <> Nil

@ In programs, you only get this for int, in int.Int:

‘ val (=) (x y: int): bool
‘ ensures { result <-> x =y }

Annoying, but this is done for good reasons!

41

User-defined equality

Two solutions:

m Implement it!

let rec (==) (x y: list int)
ensures { result <-> x =y }
variant { x }
= match x, y with
| Nil, Nil -> true
| Cons x xs, Cons y ys > x =y && xs == ys
| _, _ -> false
end

)

User-defined equality

Two solutions:

m Implement it!

let rec (==) (x y: list int)
ensures { result <-> x =y }
variant { x }
= match x, y with
| Nil, Nil -> true
| Cons x xs, Cons y ys > x =y && xs == ys
| _, _ -> false
end

m Pretend to have implemented it!

val (==) (x y: list int)
ensures { result <-> x =y }

42

m WhyML data types (mutable, functional)
m Verification of array programs
m Subtleties of logical definitions

m Reasoning about state updates

43

	Composite data in Why3
	Demo: Kadane's algorithm
	Side effects in function contracts
	Partially defined functions
	Functional data types

