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ABSTRACT
We examine approaches used for block-based inverted index com-
pression, such as the OptPFOR mechanism, in which fixed-length
blocks of postings data are compressed independently of each other.
Building on previous work in which asymmetric numeral systems
(ANS) entropy coding is used to represent each block, we explore a
number of enhancements: (i) the use of two-dimensional condition-
ing contexts, with two aggregate parameters used in each block
to categorize the distribution of symbol values that underlies the
ANS approach, rather than just one; (ii) the use of a byte-friendly
strategic mapping from symbols to ANS codeword buckets; and (iii)
the use of a context merging process to combine similar probabil-
ity distributions. Collectively, these improvements yield superior
compression for index data, outperforming the reference point set
by the Interp mechanism, and hence representing a significant step
forward. We describe experiments using the 426 GiB gov2 collec-
tion and a new large collection of publicly-available news articles to
demonstrate that claim, and provide query evaluation throughput
rates compared to other block-based mechanisms.
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1 INTRODUCTION
The inverted index remains the primary structure used to provide
fast querying to large text collections. An inverted index consists of
a set of postings lists, each describing the locations and occurrences
in the collection of a single term. Proposals for compactly storing
postings lists include byte-aligned codes [22, 25]; word-aligned
codes [2, 3, 23, 28]; and binary-packed approaches [12, 30].

The use of entropy-based approaches such as Huffman codes for
index compression have also been considered in the past [6, 11, 17,
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26], but have had little attention since. However the last eight years
have seen reawakened interest in entropy coding as a result of the
asymmetric numeral systems (ANS) mechanism developed by Jarek
Duda [8–10], and in recent work we combined whole-of-index two-
pass ANS coding with the VByte, Simple, and Packed approaches,
obtaining improved compression effectiveness in each case [14].

Here we continue that investigation, focusing on packed arrange-
ments in which fixed-length blocks of symbols are coded relative
to a probability distribution identified by a selector . In particular,
in the Packed+ANS approach we described [14], the selector was
taken to be the binary magnitude of the largest value in the block.
But – as was also observed in connection with the packed frame
of reference (PFOR) mechanism [30] – using other selector values,
and being willing to handle some sequence values as exceptions,
has benefits. The flexibility provided by entropy-coding (rather
than binary coding) then creates scope for improved compression,
with symbol probabilities (and hence codeword lengths) fitted more
closely to the underlying distribution. Entropy coding also allows
further refinements, and one that we explore in detail in this work is
the use of two-dimensional selectors, with two parameters (rather
than one) used to summarize each block’s distribution of values.
We also introduce a revised mapping from symbol identifiers to
ANS values that requires less memory, and provides byte-friendly
output for exception values. The third area we investigate is that
of context merging, with the goal of reducing the memory space
required during decoding operations.

Experiments with two large document collections demonstrate
the substantial compression effectiveness gains that can be achieved
– consistently beating the Interp mechanism, the best-performing
approach for nearly twenty years now – and as well show that
query throughput speeds are relatively unaffected.

In the interests of reproducibility, all of our code is publicly
available.

2 BACKGROUND
2.1 Index Compression
Inverted Indexing. A postings list is a sorted sequence of doc-
ument identifiers (“docids”) and corresponding within-document
term frequency counts. The postings list for a term t of document
frequency ft consists of two disjoint sequences: a list ⟨dt,i | 1 ≤
i ≤ ft ⟩ in which dt,i is the ordinal document number containing
the i th occurrence of t ; and a corresponding list ⟨ft,i | 1 ≤ i ≤ ft ⟩
in which ft,i is the number of times t appears in document dt,i . It
is usual to take gaps within the sequence of docids, with dt,1 stored
unchanged, and then dt,i+1 − dt,i stored thereafter. This yields a
distribution in which small values are common and large values are
rare. The set of ft,i values already has the same property, without
any further transformation being required.
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Compression Approaches. Stored as 32-bit integers, each post-
ing requires 64 bits. But the strong bias in favor of small values
means that much more compact arrangements are possible. Tradi-
tional techniques such as Golomb, Rice, and Elias codes (see Witten
et al. [26] for details) operate on a bit-by-bit basis, and are relatively
slow during the decoding process. Compromises that allow faster
decoding, but with reduced compression effectiveness, include the
byte-based VByte mechanism [22, 25] and variants thereof [4, 5, 7];
and the word-based Simple approaches [2, 3, 23, 28]. At the other
end of the scale, the Interp mechanism of Moffat and Stuiver [15]
provides very good compression effectiveness, but with even slower
decoding than the bit-based Golomb and Elias codes. Standard byte-
oriented compression libraries can also be employed, with improved
effectiveness achieved if VByte is used as a preprocessing step [20].

Packed Codes. The use of packed codes over fixed-length postings
blocks has been a relatively recent development, with the key idea
being to exploit any localized consistencies that exist. A fixed-
length block of (typically) B = 128 consecutive values is processed
as a unit, and represented as B same-width binary values, with the
width indicated by a selector stored in the block header. In most
arrangements a set of possible bit lengths is provided in advance
via a set of options S . For example, the 16-element selector vector

S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16, 19, 22, 25} , (1)

allows values up to 225 to be represented, with (since |S | = 16)
selectors represented in 4-bits. Each selector value 0 ≤ ℓ < |S |
allows values in the range 1 . . . 2S[ℓ] to be represented in the cor-
responding payload; overall, a block of B posting values coded via
the selector ℓ requires 4 + S[ℓ] · B bits. Lemire and Boytsov [12]
explore packed codes in detail and discuss implementation options.
Trotman’s [23] QMX approach combines the Simple and Packed
approaches, using output blocks of either 128 bits or 256 bits.

Patched Frame of Reference. Zukowski et al. [30] noted that
occasional larger-than-expected values are expensive with plain
packed arrangements, and introduced the notion of exceptions –
numbers bigger than 2S[ℓ] handled via a secondary mechanism.
Their patched frame of reference (PFOR) approach chooses a bit-
width S[ℓ] that covers most, but not all, of the B values in the block.
The minority of values needing more than S[ℓ] bits are represented
via a secondary mechanism, and “patched” into place once the
rest of the block has been regenerated using the S[ℓ]-bit codes.
To determine each block’s ℓ, in the Opt-PFOR variant an encode-
time search is performed over likely values for ℓ, to determine the
selector that yields the most compact overall package [12, 27].

Variable-Length Blocks. Ottaviano et al. [18, 19] describe tech-
niques for partitioning the input into blocks of variable length,
seeking to amortize the selector storage cost over larger input units
when homogeneous data appears, and to allow smaller blocks to be
constructed when the data values are more locally volatile. They
employ and extend Elias-Fano codes, a mechanism with a range of
properties, including the ability to provide support for fast inter-
section of postings lists, to carry out conjunctive “and” operations,
see also Anh and Moffat [1]. Ottaviano and Venturini make their
experimental code available, and we have employed their platform
in some of the experimentation described in Section 4.

Other Approaches. Zhang et al. [29] and Pibiri and Venturini
[21] have also recently considered two-pass index compression
techniques. Our work here is complementary to those proposals.

2.2 Asymmetric Numeral Systems
The “asymmetric numeral systems” (ANS) entropy coding tech-
nique developed by Jarek Duda [8–10] is a new way of performing
entropy coding. It fulfills the same role as the previous Huffman and
arithmetic methods, see Moffat and Turpin [16] for descriptions, in
that it assigns low bit-costs to high-probability symbols, assigns
high bit-costs to low-probability symbols, and transitions between
the two extremes in accordance with the information content of
the symbol in question. With all of Huffman, arithmetic, and ANS
coding, a symbol s with occurrence probability Pr (s ) should be
assigned a codeword of length as close as is possible to − log2 Pr (s ).

Example of ANS Coding. Our initial exploration of ANS coding
for index compression [14] provides a detailed example of ANS
coding, pseudo-code descriptions, and an explanation that shows
why ANS is an effective entropy coder. Duda provides extensive
technical information about the processes he invented [8–10].

As an example, consider a three-element coding situation over
an alphabet in which symbols P, Q, and R have (respectively) proba-
bilities 1/2, 1/3, and 1/6. In a Huffman code, P gets a 1-bit codeword,
and Q and R get 2-bit codewords. In an ANS-based coder for this
arrangement, a frame ofM elements is constructed in which 1/2 of
the entries are labeled P; 1/3 are labeled Q; and 1/6 are labeled R.
A sequence of symbols over that alphabet is represented as a state
value relative to the corresponding frame. One frame that captures
the probabilities is [P][P][P][Q][Q][R], with n(P) = 3, n(Q) = 2,
n(R) = 1, andM = 6. Other frames might also be constructed, using
other permutations of the symbols, and/or larger values ofM .

Once the frame has been determined, it defines an encoding
transition function T (·, ·), as shown in Table 1. The consecutive
integer targets of T are assigned in cycles defined by the frame,
with 1/2 of them in row P; 1/3 of them in row Q; and 1/6 of them
in row R. The columns of T are indexed by a state variable, which
takes on an initial value of 0. To encode one symbol s ∈ {P,Q, R}, the
assignment state′ ← T (s, state) is applied; and to encode a whole
sequence each symbol in turn is encoded, with state becoming larger
at each step. For example, given PPQP, state takes on the values
0→ 1→ 2→ 10→ 20. The final value of state completely encodes
the whole input string, and all that is necessary is to represent it

Current state
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 · · ·

P 1/2 1 2 3 7 8 9 13 14 15 19 20 21 25 26 27 · · ·
Q 1/3 4 5 10 11 16 17 22 23 28 29 34 35 40 41 46 · · ·
R 1/6 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 · · ·
Table 1: ANS encoding function T (·, ·) for alphabet {P,Q, R}, and
probabilities 1/2, 1/3, and 1/6; and frame [P][P][P][Q][Q][R] of size
M = 6. One cycle of the frame has been highlighted to show the
regular structure within the table, covering next states 7 to 12.
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as a binary number. In this case, five bits are sufficient. A Huffman
code for the same input also happens to require five bits.

To decode, the inverse functionT−1 (·) is used, with iterations of
(s, state′) ← T−1 (state) applied. For example, suppose the code 41
is received via a 6-bit binary value. It can only have arisen if the final
encoding step was state′ ← T (Q, 13), and hence the last symbol in
the original sequencemust have beenQ. That previous state value of
13must similarly have resulted from state′ ← T (P, 6), meaning that
a P must have preceded that final Q; by the same logic, an R must
have come before the P. By stopping when a state of zero is reached,
the initial sequence can always be uniquely recovered, in reverse
order; in this case, it was RPQ. Note how a larger value for state
might in fact correspond to a shorter input sequence; that difference
is a direct consequence of the products of the probabilities of the
symbols contained in the two sequences. In the case of PPQP, it has
(among all four-symbol sequences) a probability of 1/(2×2×3×2) ≈
0.0416; whereas RPQ gives 1/(6 × 2 × 3) ≈ 0.0277.

As a more compelling example, the sequence QQQQQQQQQQ
(ten Q’s) gives rise to a state of 118,096, which requires 17 bits as
a binary number; compared with a Huffman code of 20 bits. On
the other hand, the sequence RRRRRRRRRR (ten R’s) gives a state
of 72,559,410, and needs 27 bits, ten bits more. This probability-
based differential is why, over non-trivial sequences, or even short
sequences in which the probabilities are highly skewed, ANS out-
performs Huffman coding.

ANS Compared. Relative to Huffman and arithmetic coding, ANS
offers compromises in a several dimensions, making it attractive for
index compression. First, it shares with arithmetic coding the ability
to closely match the ideal codeword lengths, and when amortized
over a sequence of symbols, generates codes in which less than one
output bit occurs for very high-probability symbols. In contrast,
Huffman coding always requires at least one bit per symbol.

Second, ANS implementations are faster than arithmetic cod-
ing, and can approach the throughput rates attained by highly-
engineered Huffman implementations. In each ANS decoding cycle,
the integer state variable is modified by performing one shift, one
bitwise AND, one integer multiplication and one table lookup in a
relatively compact decoding table.

As a third area of compromise, ANS coding is a static mechanism,
and requires a dedicated output stream for each context, where a
context is one instance of a set of probabilities used to predict the
symbol frequency distribution. This contrasts with adaptive arith-
metic coding, which operates at throughput rates broadly compa-
rable to static (with fixed probabilities) arithmetic coding, allowing
(for example) a “q” to be transmitted using one inferred set of proba-
bilities, and then the next symbol after it (in written English, usually
a “u”) to be transmitted in a fraction of a bit via a different context
employing different inferred probabilities. That flexibility is not
possible with ANS codes. Indeed, the ANS decoder generates output
symbols in reverse order to that in which they were considered by
the encoder, meaning that the symbols in each ANS message block
must be regarded as being independently drawn from one context.

Fortunately, the ANS inability to be adaptive and to dynamically
switch between contexts does not affect index compression.

ANS in Practice. Table 1 suggests that the mapping T (·, ·) is infi-
nite, but that was simply to allow the general idea to be conveyed.

The assignment of values based on a repeating M-element frame,
means thatT (·, ·) andT−1 (·) can be computed via integer arithmetic
and table lookups against fixed-length arrays. In particular, fast
and practical ANS encoding and decoding of sequences of symbols
relative to an alphabet ofm symbols and using a frame size of M
requires two integer arrays of sizem, and one of sizeM , whereM is
typically 8m or more (that is, using three or more bits of precision
for each of the symbol probability estimates making up the frame),
and is also usually chosen to be a power of two.

2.3 ANS for Index Compression
In our previous investigation [14] we coupled ANS with three dif-
ferent index compression approaches. In particular, we paired ANS
entropy coding with the VByte approach to compressing postings
lists; with the Simple family of codes; and with the Packed family
of index representations. We showed that in each case substantially
more compact storage could be attained, with only moderate de-
creases in decoding throughput. In each scenario, two passes over
the entire index are made during encoding: one to collect symbol
occurrence counts so that ANS frames can be constructed, and then
a second pass to generate output relative to those frames.

Our work here extends and improves on that first description
of the “Packed+ANS” mechanism. In particular, we develop the
notion of “two parameter” contexts; we describe a more compact
implementation that requires substantially less memory; and we
add a “context merging” process. To demonstrate the utility of
these techniques, we also provide detailed experimental results for
compression effectiveness and query throughput using two large
text collections.

3 IMPROVED PACKED INDEX COMPRESSION
3.1 Packed+ANS
In standard Packed arrangements a context identifier, or selector, is
used to condition the coding arrangement for each block. When the
coding step makes use of binary codes, the selector is determined
by finding the maximum value in the block, determining its binary
magnitudem, and then searching a vector like the one shown in
Equation 1 to find the first value ℓ such that m ≤ S[l]. The ℓ th
context is then used, which in traditional Packed arrangements
gives rise to a payload containing S[l]-bit values.

In the Packed+ANS mechanism [14] these various elements are
less tightly connected. The selector is again determined based on the
maximum value in the block; but now identifies one of a pool of |S |
ANS frames. Each frame contains a different set of symbol probabili-
ties, constructed during a first pass that processes the set of postings
lists to accumulate statistics and collate the |S | probability distri-
butions. Symbol frequencies are accumulated in binary-magnitude
buckets, and all symbols in each such bucket – for example, 5 . . . 8,
9 . . . 16, and 257 . . . 512 – are assumed to be equi-probable. That
is, if sk is the k th symbol in the sequence σ being coded as a set
of blocks, and ℓk is the selector value computed from the largest
binary magnitude across the symbols in the same block as sk , then

L[ℓ,b] = |{sk ∈ σ | ℓk = ℓ and ⌈log2 sk ⌉ = b}|

is a matrix of symbol magnitude counts within contexts. The prob-
abilities used in the set of ANS frames – one for each context – are
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then computed from these occurrence counts. Working with equi-
probable buckets avoids the need for the ANS frames to contain
(potentially)m ≈ 30,000,000 elements each.

Given this starting point, we now introduce a sequence of re-
finements that lead to improved compression and reduced space
requirements, without compromising decoding speed.

3.2 Two-Dimensional Contexts
The first enhancement is to add further contexts. Doing so increases
the cost of storing the selector, but allows more precisely-targeted
probability distributions to be used. One way of adding contexts
would be to employ a more fine-grained selector vector S , for ex-
ample by using every power of two rather than a selected subset of
them. Another option would be to alter the base of the logarithms,
so that the buckets are smaller. But both of these options would con-
tinue to provide “one dimensional” conditional probabilities, in that
the selector would still be completely determined by the maximum
value in the block. A key benefit of using entropy coding rather
than binary coding is that other options can also be considered.

In particular, we propose that “two dimensional” selectors be
used, allowing two distinct observations about each block to in-
fluence the probability distribution used to code that block. The
same mapping vector S (perhaps the one described by Equation 1)
is used for both observations, to form a compound context iden-
tifier. For example, suppose that the first dimension is the block
maximum and the second the block minimum. Then a context
“max:min” implies that all of the values in the block lie in the range
⌊2S[min−1]⌋ +1 · · · 2S[max]. Trimming probability assignment to zero
for smaller values is straightforward with an entropy coder such
as ANS. Zukowski et al. [30] also describe the possibility of as-
signing a “lower” value to each block, and then exception-coding
any values smaller than that value, in the same way that values
larger than the upper value of the block are handled as exceptions.
None of the current PFOR implementations actually employ this
flexibility, primarily because the use of binary codes makes such
range-adjustment relatively ineffective unless max = min.

Other features might also be used as the second selector compo-
nent, including the block median (denoted “med”). In Section 4.2 we
describe experiments using both max:min and max:med selectors,
and also selectors derived from the 90th percentile value in the
block, taking inspiration from the PFOR mechanism [30]. With
ANS-based coding, any value z can be coded relative to any selector
ℓ provided z has been assigned a non-zero count nℓ (z) > 0 in the
ℓ th ANS frame, and all that is being adjusted with these alternative
approaches is the size of the set of possible contexts, and the blocks
that get assigned to them for processing. That is, the fact that a first
pass counts frequencies and constructs the matrix L[·, ·]means that
there is no need for exceptions and patching in the sense in which
they are used in the PFOR and OptPFOR approaches.

Table 2 illustrates the possibilities opened up by the switch from
one-dimensional contexts to two-dimensional contexts, taking as
test data the term frequencies associated with the postings lists
of the gov2 collection (see Section 4.1). The distribution of block
counts across the “Totals” row reflects the arrangement that would
have arisen via a one-dimensional categorization in which a single-
component selector was derived from the maximum value in each

selector(med) selector(max)
0 1 2 3 4 5 6 7

0 100 32 50 62 66 57 42 30
1 68 9 9 17 27 33 33
2 42 4 5 8 14 20
3 25 3 3 6 9
4 10 1 2 4
5 4 1 2
6 2 1
7 2

Totals (’000) 8697 3219 3319 4933 6011 5721 4336 2680
Table 2: Two dimensional contexts: percentage of blocks matching
a selector for the maximum value in the block (columns), broken
down by the selector for the block median (rows), for the filtered
gov2.frqs file (see Section 4.1), with a blocksize of B = 128. Selectors
are relative to the vector S shown in Equation 1; the last row gives
block counts in thousands for each column. Only the first eight
columns and rows are shown.

block. The percentage breakdown above each of those totals then
shows how those blocks are further sub-categorized by the addition
of a secondary selector based on the median value in the block. For
example, 57% of the 5,720,796 blocks for which the maximum value
lies between 17 and 32 (column 5) also have a median of 1 (row 0),
and should thus correspond to coding distributions in which the
probability of “1” is at least 0.5. Of the same set of blocks only 8%
have medians of 3 or 4 (row 2). Across the full set of 16 columns
and 16 rows, 94 of the available |S |( |S | + 1)/2 = 136 contexts occur,
and a 7-bit selector is required. In total there are 41,157,912 blocks
in this data file, of which 8,697,157 contain all “1”s, and are handled
in the context “0:0”.

3.3 Reducing The Frame Size
One of the implementation drawbacks of the Packed+ANS arrange-
ment described in Section 3.1 is the cost of maintaining the frames
in the three-table form employed for ANS decoding (see Section 2.2).
Withm as large as 225 in some frames, withM ≈ 8m, and with the
two-dimensional approach meaning that the number of contexts
might be close to |S |( |S | + 1)/2, execution-time memory space is a
key factor that cannot be ignored. Caching effects mean that mem-
ory space also affects decoding speed. To reduce the space required,
Moffat and Petri [14] describe an additional mechanism that uses
condensed tables of size log2m elements, but additional computa-
tion is required during the indirection. A more subtle disadvantage
of the Packed+ANS arrangement arises when two-dimensional con-
texts are introduced: it is no longer possible to always normalize
the frame counts so thatMℓ is a power of two.

One way of addressing these issues is to use ANS for the binary
magnitudes of the symbols (and not their full numeric values), in the
range (say) 0 . . . 25, and to associate a binary offset with each coded
magnitude, stored in an auxiliary bit-stream. The decoder would
process the ANS stream and the auxiliary bit-stream in parallel,
decoding a magnitude from the first and then fetching the indicated
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1: function decode_packedANS_block(bytes[],B, ℓ):
2: state ← final encoding state for this block
3: b ← 0 ▷ offset within bytes
4: for j ← 0 to B − 1 do
5: syms[j]← decode_ANS(bytes,b,ANSframe[ℓ], state)
6: for j ← 0 to B − 1 do
7: if syms[j] ≤ 28 then
8: continue ▷ syms[j] is now final
9: syms[j]← ((syms[j] − 28) << 8) + bytes[b++]
10: if syms[j] ≤ 216 then
11: continue ▷ syms[j] is now final
12: syms[j]← ((syms[j] − 216) << 8) + bytes[b++]
13: if syms[j] ≤ 224 then
14: continue ▷ syms[j] is now final
15: syms[j]← ((syms[j] − 224) << 8) + bytes[b++]
16: return syms[0 . . . B − 1]

Figure 1: Decoding a block bytes[] of compressed data, relative
to a selector ℓ, to reconstruct a block of B original values syms[],
assuming that the encoder has processed the input block in reverse
order. The function decode_ANS(·, ·, ·, ·) increments b as the array
bytes is consumed, returning decoded ANS values one by one, and
altering the value of state. The completion bytes associated with
values greater than 256 are then used to adjust the decoded values,
inverting the mapping shown in Equation 2.

number of bits from the second, thereby reconstructing each value.
This combination is somewhat reminiscent of the Elias γ code, but
with the unary “magnitude” part represented instead via an ANS
code based on observed probabilities [11]. However, the auxiliary
bit-stream introduces additional alignment overheads; and the bit-
by-bit processing it implies is also costly.

A better arrangement is to employ an auxiliary stream that
consists of whole bytes. To achieve that goal, we adapt the idea of
exceptions, used in the PFOR andOptPFORmechanisms, and define
the following mapping between symbol values and ANS targets:

ANSmsb(s ) =




s if s ≤ 28
⌊s/28 ⌋ + 256 if 28 < s ≤ 216
⌊s/216⌋ + 512 if 216 < s ≤ 224
⌊s/224⌋ + 768 if 224 < s ≤ 232

(2)

Further stages are readily added if s can be larger than 232.
The key idea is to isolate the most significant byte of s , and

map it to a unique number that captures both its value and also
its position within the original word. A total ofm = 1024 different
options can be generated in this way from a 32-bit word. That is,
ANS frames of at most 1024 different values are required (rather
than 30,000,000), with all remaining bits provided via an auxiliary
byte-stream that contains the zero, one, two, or three low-order
bytes of each original value. Figure 1 describes the corresponding
decoding and inverse mapping process.

Compared to the binary-magnitude ANS arrangement the space
required is many orders of magnitude smaller; as well, more precise
probability distributions are used across the entire range of values,
potentially boosting compression effectiveness. For example, under
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Figure 2: Probability distributions generated by ANSmsb(·) for the
two sets of symbols s making up the 5,268,212,736 postings in the
filtered gov2 inverted index (see Section 4.1). For the purposes of
this example, a single zero-dimensional context is assumed to be
used to generate each of the two symbol sequences.

the binary magnitude arrangement described in Section 3.1, sym-
bols 17 to 32 are assigned the same estimated probability. But with
the mapping shown in Equation 2, they are treated as independent
symbols and receive separate probability estimates during the first
pass. Small ANS frames also lead to faster execution because of
caching effects.

To illustrate the usefulness of the proposed mapping, Figure 2
plots the mapped distributions for the docid gaps and frequencies
associated with the gov2 text collection (see Section 4.1), assuming
that a zero-dimensional context is used, that is, one ANS frame
for the docid gaps and another for the frequencies. The saw-tooth
pattern is a direct consequence of the definition of ANSmsb(·), with
mapped value 257 representing all symbols between 257 and 512
inclusive, and accounting for more than 150 times the probability
mass of symbol 256 in the docid gaps file, and 90 times in the fre-
quencies file. Results for measured compression effectiveness when
contexts constructed using the ANSmsb(·) approach are applied in
two-dimensions are given in Sections 4.2 and 4.3.

3.4 Context Merging
One risk associated with adding further contexts is that the selector
requires additional bits. That is, having too many contexts might be
as inefficient as not having enough. Given that the context selector
is being coded into a binary value as part of the metadata associated
with each block, it also makes sense to ensure that the number of
contexts employed is a power of two such as 32 or 64.

These targets can be achieved by pairwise merging of selected
contexts, replacing them by a single one. Suppose that symbol s
occurs na (s ) times in context a which has a total occurrence count
of Na =

∑m
s=1 na (s ) across them different symbols being coded,

and assume that a perfect entropy coder is available. Then the total
cost of that context is

Ha =

m∑
s=1

(
na (s ) log2

Na
na (s )

)
, (3)

with 0 · log(Na/0) taken to be zero. The net cost of fusing contexts
a and b and replacing them by a context v constructed via nv (s ) =
na (s ) + nb (s ), for 1 ≤ s ≤ m, is then given by Hv − Ha − Hb . This
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quantity can be computed for all possible pairs of a and b, and the
least-cost pairing chosen, reducing the number of contexts by one.
The compute-select-fuse sequence can then be repeated in a greedy
manner (including, perhaps, further mergings on contexts formed
by previous fusings) until the desired number of contexts is reached.
A small mapping table from previous selector value to new fused
selector value must also be constructed.

4 EXPERIMENTS
4.1 Experimental Context
Datasets. Table 3 lists the four test files used in our experiments,
derived from two large test collections. The first test pair, gov2.gaps
and gov2.frqs, represent a document-level inverted index for the
426 GiB gov2 collection1, with documents in URL-sorted order. A
standard processing pipeline including Apache Tika and Apache
Lucene is used to build the index, covering in excess of five billion
postings. The second pair of test files are derived from publicly
available web-sourced news articles2, taking English language news
sources (as identified by Apache Tika) from 01/09/2016 up until
and including 28/02/2017, that is, a six month crawl period that
contains 7,508,082 documents. Document identifiers were again
assigned in URL-sorted order. We use this second file (rather than,
for example, ClueWeb data) because of its unrestricted availability,
allowing other researchers to readily reproduce our experiments.

The arithmetic mean of the symbols s in each of the four files
is shown in Table 3, as well as the geometric mean. The ratio be-
tween these two values (broadly) indicates the degree to which
each distribution of symbols is biased in favor of small values.

Hardware and Software. All methods are implemented using
c++11 and compiled with gcc 6.3.0 (using all optimizations) on a
Linux server equippedwith 148 GiB RAM and an Intel E5640 proces-
sor. In the interests of reproducibility, the experimental framework
and all implementation details are available at http://github.com/
mpetri/partitioned_ef_ans, including scripts for downloading and
constructing the news collection; and we note with gratitude the
previous software provided by Ottaviano and Venturini [18], which
provides a foundation for our own experimental evaluation.

In terms of baselines, we have three: the OptPFOR mechanism
from the FastPFor library [12]; the EF-opt approach of Ottaviano
and Venturini [18]; and Interp. Zhang et al. [29] andWang et al. [24]
do not provide public implementations of their work; and while
the QMX approach of Trotman [23] provides good compression
effectiveness and very fast decoding, the quad-word alignment
expectation of the version that we had available to us at the time we
carried out our experiments was not well-suited to short sequences
such as the blocks of B = 128 symbols considered here.

Measurement and Methodology. We measure compression ef-
fectiveness in three different ways. First, to obtain preliminary
estimates of relative performance we employ Equation 3, summing
over all contexts, and adding the cost of the necessary selectors.
Section 4.2 gives computed effectiveness results based on this frame-
work. Those results do not include any other block- or list-related

1http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm.
2http://commoncrawl.org/2016/10/news-dataset-available/
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Figure 3: Probability distributions arising with the ANSmsb when
two dimensional selectors are used on the filtered news.gaps. In
each of the four plotted contexts the upper selector is 10; the lower
selector is computed from the block median value. Blocks with
different medians have different probability distributions.

overheads such as alignment costs, pointers, block maximum val-
ues, ANS frame storage costs, and coding inefficiency relative to
entropy; that is, they are nothing more than estimates of costs
relative to a set of probability distributions, and should only be
compared against each other.

Having used estimation to explore the spectrum of improve-
ments, in Section 4.3 we give confirmed compression results devel-
oped by full implementations of two Packed+ANSmethods and two
baseline mechanisms, all measured using the framework developed
by Ottaviano and Venturini [18]. That is, in Section 4.3 the results
are all-inclusive and reflect the complete cost of placing the com-
pressed postings lists on permanent storage using demonstrably
reversible compression software, including the ANS frames.

Finally, in Section 4.4, we measure the execution-time memory
footprint required during querying, including all required auxiliary
and metadata, term vocabulary search structures, pointers to post-
ings lists, plus memory-mapped storage of the compressed postings
lists themselves. (The measured costs do not include the block-max
scores that support WAND pruning; these account for 0.19 GiB for
gov2, and 0.13 GiB for news.)

Section 4.4 also reports query execution times. For these we
employ the TREC 2005 Terabyte Track efficiency queries filtered
such that all query terms occur in both test collections. In total,
44,368 queries (out of 50,000) were retained. Each of those queries
was then executed using the BM25-based Ranked-AND and WAND
top-k retrieval methods to identify k = 10 top-scoring documents,
as described by Ottaviano and Venturini [18].

4.2 Estimated Improvement
Figure 3 plots the probability distributions associated with four of
the 122 contexts generated by the max:med selectors for the file
news.gaps. All contexts have 10 as the max selector, that is, blocks
in which the maximum is between 1025 and 4096, as described by
Equation 1, with corresponding ANSmsb(·) values as large as 272.
The four different medians that are plotted give rise to four different
probability distributions, and illustrate the usefulness of allowing
the dispersion of the block values, represented by the block median,
to influence the choice of ANS frame.
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File Unfiltered Index Filtered Index
Lists Postings Arith. Geom. Lists Postings Arith. Geom.

gov2.gaps 25,283,415 5,415,967,741 64,760.28 3.53 665,987 5,268,212,736 1452.78 2.90
gov2.frqs 25,283,415 5,415,967,741 4.23 1.85 665,987 5,268,212,736 4.31 1.87
news.gaps 26,240,031 4,457,492,131 24,678.69 3.14 273,978 4,375,559,040 356.50 2.74
news.frqs 26,240,031 4,457,492,131 2.17 1.48 273,978 4,375,559,040 2.19 1.49

Table 3: Test files used: number of postings lists, total number of postings n, and the arithmetic (∑i si )/n and geometric 2(
∑
i log2 si )/n means

of the symbols stored in each file; for complete and filtered indexes. In the filtered indexes, postings blocks of fewer than B = 128 values are
excluded. The filtered gov2 indexes contain 97.27% of the unfiltered postings; the filtered news indexes contain 98.16%.

gov2.gaps gov2.frqs news.gaps news.frqs

Packed+ANS 3.016 2.134 2.788 1.629
2d, max:min 3.013 1.848 2.811 1.345
2d, 90%:med 2.914 1.769 2.692 1.235
2d, max:med 2.927 1.771 2.695 1.252
ANSmsb 2.909 1.727 2.680 1.224
contexts ≤ 64 2.903 1.719 2.673 1.216
|S | = 24 2.902 1.719 2.673 1.216

Table 4: Estimated compression effectiveness derived from symbol
frequency distributions (Equation 3), in bits per symbol, for four fil-
tered test files, and (all but last row) starting with a selection vector
S of length 16. In each of the final three rows the modifications of
previous rows are also included, adding to the “2d, max:med” row.
A blocksize of B = 128 is used throughout. Except for the selector,
no per-block overheads are included in these estimates.

Table 4 shows the evolution of computed entropies achieved for
the four data sequences associated with the two filtered indexes.
All values are expressed as entropy-based (Equation 3) bits per
symbol estimates, and include the cost of the binary selector re-
quired in each block. The first row reflects (in estimated terms) the
Packed+ANS mechanism (Section 3.1); each row thereafter adds
another of the enhancements.

The use of two-dimensional max:min contexts brings a clear
improvement in compression for the two frequencies files, and also
brings modest gains in the two docid gaps files. Shifting to the
90%:med contexts yields further small gains in compression for
all four files; and use of the max:med selector combination also
improves on the max:min ones. The max:med selectors are a better
operational choice than the 90%:med ones, and are used as the ba-
sis for the remainder of Table 4. Shifting from binary-magnitude
ANS coding to the ANSmsb approach provides small gains in effec-
tiveness (the fifth row) as well as the space savings that were the
primary motivation; and then trimming the number of contexts
to 64 (the sixth row) also brings small net gains in compression
effectiveness. Finally, in the seventh row, the number of selectors
is increased from 16 (shown in Equation 1) to 24, prior again to
the greedy reduction to 64 contexts; the absence of consistent gain
demonstrates that the vector in Equation 1 is a good initial choice.

Table 4 suggests that in combination the improvements de-
scribed in Section 3 give rise to effectiveness gains of around 5%
in the docids, and a remarkable 25% for the frequencies. The next
section gives measured compression effectiveness results for the
“packed, ANS, 2d, max:med, ANSmsb, merged contexts” method of
the sixth row, and compares that preferred combination – denoted
Packed+ANS2 – with baseline methods to validate the gains.

4.3 Measured Improvement
We now describe and measure a full implementation (including
reversible decompression), using the same filtered postings files.

The ANS coder implemented as part of this work uses a 63-
bit internal state value, and emits 32-bit binary words when state
reaches overflow point; the encoder also reverses the ordering of
the input block, so that decoded symbols are generated in left-to-
right order, as is supposed by Figure 1. Hence, the ANS data stream
consists of a sequence of 32-bit words, and a final state of between
1 and 8 bytes. To accommodate this, each block of compressed data
Packed+ANS2 has the following structure:
• a 16-bit word that contains packed binary values for:

– the selector to be used for this block (6 bits);
– the number of bytes in the final value of state (3 bits);
– the number of 32-bit words in the ANS component of the
output block (7 bits);

• between 1 and 8 bytes recording the decoder’s initial state;
• a sequence of 32-bit ANS words, stored in order of decoder
consumption (by function decode_ANS(·, ·, ·, ·) in Figure 1);
• a sequence of completion bytes in regard to the ANSmsb process,
stored in the order required by the decoder (Figure 1).

The 10 additional bits of control data (the 6 selector bits are al-
ready accounted for in the previous subsection) represent a non-
trivial overhead. The rounding of each block’s final ANS state to a
byte boundary also introduces some penalty. As well, slight non-
perfectness in the entropy coder adds to the measured bit cost.

Table 5 shows measured compression effectiveness on the four
test files using two Packed and two reference approaches, and
shows the strong gains in compression effectiveness that have
been achieved. As expected, the Packed+ANS and Packed+ANS2
compression rates are around 0.1 bits per symbol higher than the
computed entropy values in Table 4. But even so, the sequence
of improvements made to Packed+ANS result in Packed+ANS2
having compression consistently better than that of Interp, a notable
achievement.
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gov2.gaps gov2.frqs news.gaps news.frqs

VByte 8.519 8.021 8.455 8.002
OptPFOR 3.621 2.391 3.292 1.757
Packed+ANS 3.131 2.248 2.867 1.717
Interp 3.047 2.245 2.918 1.684
Packed+ANS2 2.979 1.830 2.734 1.323

Table 5:Measured compression effectiveness for four filtered test
files, using blocks of B = 128 symbols. All compression rates are for
reversible full-index coding, including per-block metadata and byte
alignment overheads, and (for the two new methods) the cost of
storing the ANS frame descriptions. The Packed+ANS2 mechanism
employs 2d max:med contexts (Section 3.2), the ANSmsb approach
(Section 3.3), and merging to 64 contexts (Section 3.4).

gov2 news

GiB msec/q msec/q GiB msec/q msec/q
VByte 11.053 5.9 11.4 9.050 4.4 8.4
OptPFOR 4.591 6.2 12.0 3.235 4.1 8.0
Packed+ANS 4.134 17.2 29.7 2.976 9.5 16.3
EF-opt 4.114 7.7 13.2 2.761 5.1 8.6
Interp 4.000 28.4 41.7 2.793 20.7 33.8
Packed+ANS2 3.678 17.1 29.4 2.596 8.8 15.1
Table 6: Execution-time memory required and measured query
throughput, using the unfiltered (all postings, see Table 3) version
of each index. The first column in each group shows the total space
required during querying operations, including all index data and
storage overheads; the middle column shows the measured query
rate for top-10 conjunctive ranked queries; and the third column in
each group shows the measured query rate for disjunctive WAND
queries, again identifying ten documents.

4.4 Retrieval Throughput
Table 6 shows retrieval throughput (average milliseconds per query)
and the complete query-time in-memory index size (in GiB, unfil-
tered postings lists, excluding WAND data), as measured by the
framework of Ottaviano and Venturini [18], for the test queries
described earlier. The relativities for existing methods reflect those
reported by Ottaviano and Venturini, and we can confirm that
EF-opt has slightly larger space requirements than Interp, while
providing much faster retrieval performance. The OptPFOR ap-
proach slightly outperforms EF-opt in terms of query throughput,
but at the cost of more space, again matching the results reported
by Ottaviano and Venturini. The well-known VByte mechanism
[25] is fast, but not competitive in terms of memory space.

The initial Packed+ANS mechanism is better than other fixed-
block approaches, but is outperformed by the variable-block EF-opt
approach. The improved Packed+ANS2 reverses that situation in
terms of memory space required, but not for query throughput. It
does, however, outperform Interp in both dimensions. For example,
in the case of gov2, the index is 8% smaller than Interp, and query
performance is up to 40% faster.

The news collection behaves somewhat differently. Of the ap-
proaches tested, Packed+ANS2 again has the smallest memory
footprint, with query performance closer to that of EF-opt and
OptPFOR, caused by differences in compressibility between the
two collections. For gov2, 13%/3.8% of all gaps/frequencies pro-
cessed at query time are in uniform blocks that get decoded without
ANS steps being required. For news, it is 33%/3.5% respectively. Of
the remaining postings, 31%/28% are decoded using small models
(M ≤ 256) for gov2, against 28%/70.5% for news, meaning that a
greater fraction of the ANS frames being used are retained in L1/L2
cache. At 2.94 MiB, the cumulative size of the decoding models for
each of the collections is non-trivial, but individual ANS frames are
very small if they only encode a few unique symbols.

Finally in this section, note that ANS encoding is fast: on our
test hardware constructing the EF-opt index for gov2 requires 765
seconds using 16 threads, and OptPFOR requires 566 seconds using
a single thread; while the two passes of Packed+ANS2 take 350
seconds using a single thread.

5 CONCLUSIONS AND FUTUREWORK
Starting with the Packed+ANS mechanism, we have improved it
in three quite different ways: two-dimensional contexts, the most-
significant byte mapping, and context merging. In doing so, we
have shown that the two-decade-old benchmark set by Interp can
be consistently beaten, a milestone outcome for index compression.

At present the Packed+ANS2 implementation is slower than
OptPFOR and EF-opt in terms of query processing speed. However,
there is considerable scope to improve the decoding throughput of
the ANS-based approaches. We have already observed that most
postings are encoded with compact models which span only a small
number of unique symbols. For these, tailored ANS coders that
employ expanded decoding tables and SIMD mechanisms to decode
multiple states in parallel might increase decoding speed by a factor
of four or more. Open-source entropy coders employing SIMD have
already been shown to attain improvements of this magnitude3.

We also observe that use of variable-length blocks formed via a
strategy similar to that employed by EF-opt [18] and in other recent
work [13] might lead to further compression gains when coupled
with the new Packed+ANS2 mechanism.

As a third area for future work, we note the potential for dif-
ferent compression mechanisms to be used for different postings
lists depending on querying statistics [19], and the possibility of
relatively small compression losses to be exchanged for substantial
query throughput gains.

Postscript. After submitting this work for review, and with the
assistance of Giulio Pibiri and Rossano Venturini, we were able to
also measure the performance of their recent clustered partitioned
Elias-Fano approach [21] using our test files. In particular, we built
a clustered partitioned Elias-Fano index for the gov2 collection
using the standard parameters ⟨24707817, 15540, 3, 5, 5, 8, 10⟩ and
a reference list size of 800,000, and generated an index of 2.82 GiB
after 5449 seconds of computation. This index is 23% smaller than
the Packed+ANS2 result shown in Table 6, somewhat muting our
pleasure at having beaten the benchmark established by Interp.

3https://github.com/jkbonfield/rans_static
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However, Pibiri and Venturini [21] show that compressing the same
clustered postings list using Interp results in an index that is at
most 5.6% larger than their method. Based on this result, we expect
our ANS-based methods to be highly competitive when combined
with the clustering approach, and we plan to examine that option
next. Additionally, the complexity of the clustering process meant
that construction time for the gov2 index was some 15 times greater
than the Packed+ANS2 index, even though the former made use of
16 threads (rather than one in the case of Packed+ANS2).

We did not measure query performance for the clustered par-
titioned Elias-Fano index, but note that Pibiri and Venturini [21]
report a 30–50% query performance penalty between the previous
EF-opt mechanism and their clustered variant.

Software. The code related to the experiments described in this
work is available at https://github.com/mpetri/partitioned_ef_ans
and https://github.com/mpetri/TikaLuceneWarc. The software in-
cludes scripts to generate the news collection in ds2i format (see
https://github.com/ot/ds2i). In the interests of reproducability we
encourage other authors to similarly publish all of their experimen-
tal software.
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