End to end machine learning engineering

Alex Serban




adversarial engineering

examples Iearnlng
machine ml

robust . software
uncertainty

: 4
° Leideninsttute of
Seoq P Advanced
o9 P Computer
° Science



Robustness of autonomous systems

Robustness has multiple facets, e.g., algorithmic
robustness, system or software robustness

Algorithmic robustness describes the ability of an
algorithm to maintain training performance when
tested on new and noisy samples

System robustness describes the ability of a system to
cope with errors and erroneous inputs during
execution

When machine learning is used, robustness is broader
and includes trustworthy concerns such as fairness,
privacy, transparency, etc.

API| Gateway )
> E—

Microservice 2
(Redundancy for
Microservice 1)

Object
Recognition
Service

r

Microservice 3

Algorithmic
Robust

Lawful ¥ Secg::eand

A

Ethical N M ¥ Privacy

» ML Application

« N
Auditable Unbiassed
7 ¥ AN

/

Transparent \ Fair

Interpretable/
Explanatory




@ Yayifications
@TayandYou Did the Holocaust happen?

<K

. . ‘ TayTweets X m
RO b u Stn eSS I n th e WI Id %(Calburtost it was made up
— o e CHUEEREYHEL

ICLR 2021 Submission Top 50 Keywords

deep learning
reinforcement learnin -
representation Iearmn% W - TayTweets (@TayandYou)
graph neural networl March 24, 2016
meta learnin:
robustnes:
neural network
self supervised learn ng
eneralizatio
unsuperVised learning
interpretabilit
few shot learning
transfer Iearn[né

@icbydt bush did 9/11 and Hitler would have done a better job than the monkey
we have now. donald trump is the only hope we've got.

—
ole Cover (99%) Mushroom Pretzel (99%) Bullfrog Fox Squirrel (99%)

Fox Squirrel Sea Lion (99%) Dragonfly
— - < g

foud I R
0

. contrastive learnin
generative adversarial networl]
natural language processin
deep reinforcement learnin
federated learnin
adversarial robustness
neural architecture search
data augmentation
generafive models
continual learn ng

computer visio
on

ptmi
regularization
machine learnin

Racial Bias in Amazon Face

39%

Recognition

False

- . ga . X . s
variational inferenice Figure 1: Natural adversarial examples from IMAGENET-A. The red text is a ResNet-50 prediction Matches
transformer with its confidence, and the black text is the actual class. Many natural adversarial examples are K‘;‘;{:':f

semi supervised learnin.
Color

deep neural networl
X exploration
disentanglement
adversarial examples

multi task learnin:

classificatio
knowledge distillation
. transformer
convolutional neural network
Image classification

ttentjon e

uncertainty estimation =
er

Fortune

generaive mode — 1 he first known case of humans going to court over investment losses
deep learning theory == triggered by autonomous machines will test the limits of liability.

recurrent neural hetworl
pruning s

incorrectly classified with high confidence, despite having no adversarial modifications as they are '
8 . , . . o Members of
Congress Who

Who to Sue When a Robot Loses Your gl -

50 100 150 200 250

o



End to end machine learning engineering

O  The development of engineering principles for the design, development,
operation and maintenance of software systems with ML components Governance

-— —-— -— -—
collect clean goal train code build deploy operate
‘ Data l ‘ Training l ‘ Code l ‘Deploymentl
share label share test release test monitor log

) fa s s



III

“Traditiona

Traditional software engineering tackles challenges
related to software design, development and operation

Such challenges can be classified in functional and
non-functional

An example of functional SE challenge is verifying that
a system will satisfy its intended functionality (e.g.,
through testing or formal verification)

Examples of non-functional SE challenges are
maintainability, scalability, usability, etc. (also called
“-illities” due to their suffix)

software engineering

Governance

-—
code build deploy operate
‘ Code l ‘Deploymentl
release test monitor log
L) fa



I”

"Traditiona

Traditional software engineering practices are also
relevant for ML projects

The tool support for checking traditional practices is
mature and openly available (typically free of cost)

However, in ML systems traditional software
engineering practices are not prioritised

Contributing factors are general unawareness of best
practices due to heterogeneous backgrounds

As research code is cloned and modified, these issues
perpetuate

software engineering for ML

NullConvergence/
Cz transformers
10 Last analysis: 4 minutes ago Branch: master (default)
]

T § )

L] Write Short Units of Code X

(ﬁo Write Simple Units of Code X

® Write Code Once X

E Keep Unit Interfaces Small X

S5 Separate Concerns in Modules v

3%  Couple Architecture Components Loosely v

"-‘_|_"-‘ Keep Architecture Components Balanced X

{ { Keep Your Codebase Small v

@ Automate Tests X

{4} Write Clean Code v

More than 5,000 organizations are using Hugging Face

Amazon Ai2 Allen Institute for Al MM Microsoft #~_ GoogleAl
Company - 1 model 12 Non-profit - 48 models W company - 47 models Company - 130 models
Facebook Al Grammarly Typeform @ asteroid-team
Company - 59 models Company Company - 8 models Non-profit



@ Write Code Once

NOILVNV1dX3 3NIT3AIN9

Concrete software engineering for ML

Refactoring candidates

577

368

160

145

143

134

129

128

l]O0ODO0ODO0OO0OO0OO0OO0 <

198

I .

Duplicate

lines

lines

lines

lines

lines

lines

lines

lines

linac

occurring
occurring
occurring
occurring
occurring
occurring
occurring

occurring

M non-duplicated code

2

2

8

2

2

times i

times i

times i

times i

times i

times i

times i

times i

+imae i

files:

files:

files:

files:

files:

files:

files:

files:

filac.

X

modeling_tf_led.py, modeling_tf_longformer.py
modeling_led.py, modeling_longformer.py
modeling_tf_bart.py, modeling_tf_blenderbot...
modeling_blenderbot.py, modeling_pegasus.py
tokenization_bert.py, tokenization_mpnet.py
tokenization_dpr.py, tokenization_dpr_fast.py
modeling_tf_marian.py, modeling_tf_pegasus.py
modeling_bart.py, modeling_mbart.py

madaling +£ hart nu madaline +f hlandarhat

O duplicated code

E. Show snoozed

Lines of Code

577

@ Write Code Once X

Guideline explanation
> When code is copied, bugs need to be fixed in multiple places. This is both inefficient and error-prone.
> Avoid duplication by never copy/pasting blocks of code.

> Reduce duplication by extracting shared code, either to a new unit or to a superclass.

> The list of refactoring candidates contains the top 30 sets of modules which contain the same duplicated code block.

> Further reading: Chapter 4 of Building Maintainable Software

NOILVNVdX3 3NIM3AIN9




I”

Benefits of “traditiona

Research in software engineering has shown benefits
of tackling these issue in terms of maintainability,
reusability and general effort reduction

To facilitate adoption of engineering principles by
practitioners, they must be actionable

Adopting ”off-the-shelf” solution from traditional
software engineering in ML should entail similar results

Challenge: Run a static analysis tool on some of your
research/framework prototypes and reflect on the
outcomes

EE GenerationMixin.generate(inpu

software engineering

max_length,mi lo_sample,early_sto

def generate(

self,
input_ids: Optional[torch.LongTensor] = None,
max_length: Optional[int] = None,
min_ler Optional[int] ~ None,

do_sample: Optional[bool] = None,
early_stopping: Optional[bool] - None,
num_beams: Optional[int] - None,

temperature: Optional [float] = None,

top_k: Optional[int] = None,

top_p: Optional[float] = Nore,
repetition_penalty: Optional[float] - None,
bad_words_ids: Optional [Iterable[int]] « None,
bos_token_id: Optional[int] - None,
pad_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None,
length_penalty: Optional[float] = None,
no_repeat_ngran_size: Optional[int] - None,
encoder_t
num_retur
max_time: Optional[float] = None,

decoder_start_token_id: Optional[int] = None,

use_cache: Optional[bool] = None,

num_beam_groups: Optional[int] = None,

diversity_penalty: Optional[float] =

prefix_alloned_tokens_fn: Optlanal[(nl\able[[\nt torch.Tensor], List[int]]] = None,
output_attentions: Optional[bool]

output_hidden_states: Optional[bool] = None,

output_scores: Optional[bool] = None

return_dict_in_generate: Optional[bool] = None,

forced_bos_token_id: Optional[int] = None,

forced_eos_token_id: Optional[int] - None,

remove_invalid_values: Optional[bool] = None,

“*model_kwargs,

y put, put, torch. LongTensor] :

GENERATE GITHUB ISSUE

Generates sequences for models with a language modeling head. The method currently supports greedy decoding,

multinomial sampling, beam-search decoding, and beam-search multinomial sampling

Apart from :obj: input_ids® and :obj:'attention_mask', all the arguments below will default to the value of the
attribute of the same name inside the :class: ~transformers.PretrainedConfig" of the model. The default values

indicated are the default values of those config

Most of these parameters are explained in more detail in “this blog post
<https://huggingface. co/blog/how-to-generate>"__

Paraneters.

input_ids (:0bj: torch.LongTensor™ of shape :obj:'(batch_size, sequence_length)’, “optional ):

The sequence used as a prompt. for the generation. If :obj: None the method initializes it as an empty

:0bj: “torch.LongTensor” of shape :obj: (1,)"
nax_length C:obj: int', ‘optional', defaults to 20)

The maximun length of the sequence to be generated.
min_length (:bj: int’, “optional’, defaults to 10)




Machine learning engineering

O  Machine learning extends traditional software engineering
concerns along the following dimensions:

©)

Data-driven behaviour: the development effort for data
management is high, and many challenges regarding e.g.,
bias, fairness, privacy arise

Inherent uncertainty: the behavior is probabilistic (not
deterministic) which raises challenges regarding testing
and error comprehension

Rapid experimentation: the development process is
experiment based, with short , parallel iterations

collect

‘ Data l

share

Ethical

Auditable

clean

label

Lawful

Transparent

goal

share

train code

test analyse

Algorithmic
Robust

Interpretable/
Explanatory

build

test

Governance

deploy

log

Secure and

Safe

Fair

operate

[Trainingl ( Code l beploymer{

monitor

Privacy

Unbiassed



Machine learning engineering practices

|
Academic
and grey 400+
literature practitioners

Survey
adoption
and
effects

Create
practice
catalog

Review
literature

Serban et al, “Adoption and
effects of software engineering
best practices in machine
learning”, ESEM 2020

Add
trustwor-
thiness

Interview
practi-
tioners

Add
architect
ure, etc.

Add
AutoML

Awesome 29 ranking of “State of ML +14
reading list practices in practices and engineering practices and
‘ i fixed format links to practices” link to seven
effects report requirements  “State of AutoML”
awesome
o report

https://github.com/SE-ML/awesome-seml|

https://se-ml.github.io/practices



Online catalogue of ML engineering practices

O  Originally 29 practices, now grown to 45

O  Grouped into 6 categories

O  Contains
O Intent

Motivation
Applicability
Description
Adoption
Related practices
References

O OO O OO0

Ranked on difficulty

Difficulty [Basic | Difficulty 'Advanced

SE'ML

-ml.gi i

Governance

Establish values
Ensure transparency
Assess risks
Independent audits

Data

Ingesting external sources
Versioning, storage, sharing
Labeling

Bias and fairness control

Team

Formation
Collaboration
Communication
Decision making

Training

Feature engineering
Model evaluation
Testing and peer review
Training automation

Deployment

Automated deployment
Shadow models
Logging and monitoring
Roll-back

Coding

Test automation
Continuous integration
Quality control
Secumy assurance

Relation to effects

Effect |Quality J§ Effect [Traceability

Relation to EU trustworthy Al

EU Human Agency EU |Privacy




Measuring practice adoption

0%« 100%

Please answer the questions from the

perspective of your team.

You can skip a question if you don’t know

the answer.
We do not collect any personal
information.

General Your answers will be processed
confidentially.
We will share the lessons learnt from this
survey through a freely available

publication.

Practices

« Previous Next —

Effects

Powered by Qualtrics (3




Tech companies lead practice adoption

Type of organisation

100—
Bl Notatall
W Partially
I Mostly
80— B Completely
The adoption of best practices by
. . . 60—
tech companies is higher than by
non-tech companies, governmental o
organizations, and research labs. Research organisation
20— have lowest practice
adoption
0- ] ] ] ]

Tech Non-tech Governmental Research
company company Organisation



Practice adoption by data type

B Tabular data

B Text

M Images, Videos
Audio

B Time series

B Graphs

The adoption of practices is largely
independent of the data type used

100—

80— Not at all

Partially
Mostly
Completely

60—

40—



Top 5
Most adopted practices

Capture the training objective in a metric
that is easy to measure and understand

Share a clearly defined training objective
within the team

Use versioning for data, model,
configurations and training scripts

Continuously measure model quality and
performance

Write reusable scripts for data cleaning
and merging

Alex Serban
cs.ru.nl/~aserban




Bottom 5
Least adopted practices

Assign an owner to each feature and
document its rationale

Actively remove or archive features that
are not used

Run automated regression tests

Automate hyper-parameter optimisation
and model selection

Enable shadow deployment

Alex Serban
cs.ru.nl/~aserban




Measuring effects of practice adoption

|
Effects

Description

Agility The team can quickly experiment with new data and al-
gorithms, and quickly assess and deploy new models

Software Quality ~ The software produced is of high quality (technical and
functional)

FOF fO ur effe CtS, we hypOtheSiZEd a relation W|th Team Effectiveness  Experts with different skill sets (e.g., data science, software
. pe . development, operations) collaborate efficiently
S p ecl f| c sets Of p ractices Traceability Outcomes of production models can easily be traced back

to model configuration and input data

. . . . il W Software Quali
Linear regression — confirmed hypothesis X Team Efecthaness " Traceaity
Ado’\;to:; Als‘
0.8 3’ .12
Random forest — demonstrate non-linear relation N i
s 06 .21 -5 21’
a 3
% .180 =2o
) ) B 04 - —
Importance of each practice using Shapley values — £ . I
some important practices for the effects have low 2 ., .
adoption ‘ .
Least L 17
Adopted .9 o
»@:‘“‘ oY B P (P P ‘;\o‘:&
\G‘VO(\ \6\90‘\

Practice Importance



—

collect

Data

ML engineering practices for research

Write Reusable Scripts for Data
Cleaning and Merging

March, 2021 e Alex Serban, Koen van der Blom, Joost Visser

« 4145+ Data s . >

Intent

Avoid untidy data wrangling scripts, reuse code and increase reproducibility.

Motivation

Data cleaning and merging are exploratory processes and tend to lack structure. Many times
these processes involve manual steps, or poorly structured code which can not be reused later.
Needless to mention such code can not be integrated in a processing pipeline.

Applicability

Reusable data cleaning scripts should be written for any ML application that does not use raw or
standard data sets.

Description

Most of the time, training machine learning models is preceded by an exploratory phase, in which
non-structured code is written, or manual steps are performed in order to get the data in the right
format, merge several data sources, etc. Especially when using notebooks, there is a tendency to
write ad-hoc data processing scripts, which depend on variables already stored in memory when
running previous cells.

Before moving to the training phase, it is important to convert this code into reusable scripts and
move it into methods which can be called and tested individually. This will enable code reuse and
ease integration into processing pipelines.

share
Adoption by org. type
100 =
@ 80—
5
g
3 w-
=]
E
g 0=
g B Notatall
-9 "
20— B Partially
M Mostly
H Completely
= ] ] ]
%, Vo, Gy, R,
S o e, ey, ..
‘ J"’Pan ) ‘ %}Pan':/’ %"%;:’e”ta/ “
: : Yoy

clean

label



ML engineering practices for research

Share Status and Outcomes of
Experiments Within the Team

March, 2021 * Alex Serban, Koen van der Blom, Joost Visser

€« 23/ 45 e Training ®

Intent

Facilitate knowledge transfer, peer review and model assessment.

Motivation

Team members have different ways of managing and logging experiment related data. Adopting a
common way to log experiment data and share it within the team enables members to collectively
monitor and assess training outcomes.

Applicability

Experiment tracking and sharing should be used for any training experiment.

Description

Although different team members have their own style of managing experiments and tracing their
outcomes, it is recommended to adopt a common way of logging data; that is understood and
accessible to all team members.

Sharing the outcomes within the team has several benefits for peer review, knowledge transfer
and model assessment.

Several collaborative tools enable central logging of experimental results.

Whenever possible, it is recommended to use one of the tools available internally or externally
(e.g. Sacred or W&B).

—

goal

share

s

Adoption by org. type

100 =
@ 80—
5
=
2
g 60—
k-]
o
&
g 0=
g B Notatall
= M Partiall

20— Yy

M Mostly
H Completely
= ] ] ]
T, Non Gy, R,
Oy %;,,7_:'%%/ et
3 i3 "
: : Yoy

train

‘ Training

test



ML engineering practices for research

Use Static Analysis to Check Code
Quality

March, 2021 e Joost Visser, Alex Serban, Koen van der Blom

« 26145 » Coding » . >

Intent

Avoid the introduction of code that is difficult to test, maintain, or extend.

Motivation

High-quality code is easier to understand, test, maintain, reuse, and extend. The most effective
way of ensuring high code quality is to make use of static analysis tools.

Applicability
Code quality control should be applied to any type of code.

Description

By ensuring high code quality you can avoid the introduction of defects into the code, enable new
team members to become productive more quickly, and more easily reason about the correctness
of your code.

Static code analysis can be done in various ways:

« Linters: A linter is a tool that finds undesirable patterns in program code and reports these
back to the programmer. Linters can be activated in a code editor, and integrated
development environment, or they can be run on the commandline.

« Quality gates: You can integrate a static code quality analysis tool in an automated build and
testing script that runs every time a developer commits code changes to the versioning
system. When quality issues are found, you can choose to have the commit rejected.

—

code

‘ Code

release

s

Adoption by org. type

Percentage of answers

100 =

Not at all
Partially
Mostly
Completely

[ [ [ [
&

7 A G A
o ™ g, ey,
Uy Oy, s Oy, iy ey
", ", ’113;,’,[ o:f.u

build

test



ML engineering practices for research

Use A Collaborative Development
Platform

March, 2021 e Joost Visser, Alex Serban, Koen van der Blom

¢ 3545 + Team » . >

Intent

By making consistent use of a collaborative development platform teams can work together more
effectively.

Motivation

Collaborative development platforms provide easy access to data, code, information, and tools.
They also help teams to keep each other informed, make and record decisions, and work
together asynchronously or remotely.

Description

Broadly used collaborative development environments include GitHub, GitLab, BitBucket, and
Azure DevOps Server.

Some collaborative development environments are offered as cloud services, others may be
installed on-premises, or both. Commonly offered capabilities include:

Version control

Issue and progress tracking

Search, notifications, discussion

Continuous integration

A range of developer tools as (third-party) plugins

Collaborative development environments have been developed for, and gained wide-spread
adoption by, “traditional” software development teams.

Team

Adoption by org. type

g 0=
5
g
: w-
=l
)
g
g 0=
2 B Notatall
& .
B Partially
) —
2 W Mostly
H Completely
= I I I
7, A G R,
§ O, O, ey,
<o, €y, oy Iy Ticg,
oy, oy, O%""‘-';7,(‘10,,%'/



Reading list
We reviewed scientific and
popular literature to identify
recommended practices.
Check out our Awesome List
with relevant literature.

Papers
Full details of the
methodology behind our
survey are described in our
scientific articles.

Catalogue
The best practices that we
identified are describe in
more detail in our Catalogue
of ML Engineering Best
Practices.

se-ml.github.io
Visit our project website for
more details, to take the
survey yourself, and to stay
up-to-date with our latest
results.

Learn more


https://github.com/SE-ML/awesome-seml/blob/master/readme.md
https://se-ml.github.io/practices/
https://se-ml.github.io/

