
Alex Serban

Using large language models in software
engineering

Radboud University, Software Improvement Group, Leiden University
The Netherlands

Alex Serban

Using large language models in software
engineering

Radboud University, Software Improvement Group, Leiden University
The Netherlands

Premises

o “Off the shelf” language models are suitable for code
tasks

o Programming languages and code are influenced by
social, cultural, historical, and other factors that also
influence natural languages

o Code has all the properties used to analyse natural
languages, e.g., form, meaning, context

Alex Serban
cs.ru.nl/~aserban

o Text is the simplest level of abstraction

Hello world in Malbolge programming language

2

Large language models

Alex Serban
cs.ru.nl/~aserban

Find a numerical representation of text
(embedding)

Pretrain a large model on a surrogate task,
where labels can be generated automatically

(self supervised learning)

Fine tune the pretrained model on a (downstream)
task, for which a labeled dataset exists

(supervised learning)

3

Text as numbers (some examples)

Alex Serban
cs.ru.nl/~aserban

One hot encodingo Both approaches omit context

o Encode each word with a unique number – the
integers assigned to words are arbitrarily

o One hot embedding – inefficient because the vectors
are sparsec

o Learn a representation based on context (embedding)

Learned embedding

4

Text as numbers (Embeddings)

Alex Serban
cs.ru.nl/~aserban

Continuous bag of wordsSkip gram Character based embedding
(WordPiece)

- predicts words within a certain range
before and after the word to be
represented- powerful for context representation

- sensibility to rare words

- predicts a middle word from context
- powerful for context representation
- sensibility to rare words

- iteratively add word units that increase the
likelihood of the trained data

- powerful for rare words

5

Pretrain a large language model (surrogate tasks)

Alex Serban
cs.ru.nl/~aserban

Next sentence predictionMasked language modeling Next word prediction

6

Pretrain a large language model (building blocks)

Alex Serban
cs.ru.nl/~aserban

Long Short Term Memory (LSTM) Multihead Attention

- processes the input word by word
- hard to parallelise

- processes all input words at once
- easy to parallelise

7

Pretrain a large language model (architectures)

Alex Serban
cs.ru.nl/~aserban

Bidirectional LSTM (ELMO) TransformersEncoder-Decoder (sequence to sequence)
LSTM

8

Fine tuning on a downstream task

Alex Serban
cs.ru.nl/~aserban

o Fine tuning requires less data that training on a
surrogate task. However, the data quality is more
important (e.g., in terms of labels)

o Fine tuning requires less resources than training on a
surrogate task

o After pretraining on a surrogate tasks, language
models can be tuned on any NLP task

o In some cases (GPT), models are evaluated on
downstream tasks in a zero-shot manner

Fine tuning BERT on different tasks

9

Downstream tasks in software engineering

Alex Serban
cs.ru.nl/~aserban

o Using the WordPiece embeddings makes “off the
shelf” language models compatible with SE tasks

o The tasks are very distinct in nature, e.g., clone
detection, defect detection, code search, code
translation, etc.

o Downstream tasks in software engineering are both
unimodal (Code-Code, Text-Text) and bimodal (Text-
Code, Code-Text)

o Efforts to create benchmarks similar to NLP are carried
out by Microsoft, CodeXGLUE

Examples of downstream task from CodeXGLUE

10

Training language models for software engineering

Alex Serban
cs.ru.nl/~aserban

o In practice, the masked language model, the replaced
toked detection and next token prediction are used

o The same methods to define surrogate tasks can be
used

o In order to better represent both modalities (text and
code), we can train language models for SE tasks

o Efforts to create pretrained language models are
carried out by Microsoft, resulting in two models:
CodedBert and CodeGPT

An example of natural language – programming
language task

11

Results of finetuned pretrained code models

Alex Serban
cs.ru.nl/~aserban12 Data from CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understanding and Generation

Adding more abstractions

Alex Serban
cs.ru.nl/~aserban

o Data flow tasks such as edge prediction or node
alignment are used in pretraining

o Training is done on pairs of source code, comments
and data flow

o Data flow can be added in training

o The improvements are significant, but marginal

Images from GraphCodeBert: Pretraining code representations with
data flow

13

Resources

Alex Serban
cs.ru.nl/~aserban

o The inference times are reasonable

o However, the fine tuning times are in the order of
hours, not days (or weeks) given appropriate
hardware

o Language models consist of over 100 million
parameters

14

Data from CodeXGLUE: A Machine Learning Benchmark
Dataset for Code Understanding and Generation

Reducing the resource footprint

Alex Serban
cs.ru.nl/~aserban

o Early results show more that 50% of the parameters
are redundant

o One way to remove this redundancy is to iteratively
prune small parameters

o Because language models consist of a large number of
parameters, they have inherent redundancy

15

o Language models show promising results on software engineering tasks, in
particular to unimodal tasks

o Language models trained on code tasks preserve properties of text based
language models (e.g., redundancy)

o Adding more abstractions to these models is a promising research avenue

o I think it is interesting to see how these models perform on less curated data

Alex Serban
cs.ru.nl/~aserban

Conclusions

16

