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Premises

Code has all the properties used to analyse natural
languages, e.g., form, meaning, context

Programming languages and code are influenced by
social, cultural, historical, and other factors that also
influence natural languages

“Off the shelf” language models are suitable for code
tasks

Text is the simplest level of abstraction
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Large language models
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Text as numbers (some examples)

One hot embedding — inefficient because the vectors
are sparsec
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Learn a representation based on context (embedding)
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Text as numbers (Embeddings)
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Pretrain a large language model (surrogate tasks)
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Pretrain a large language model (building blocks)
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Pretrain a large language model (architectures)
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Fine tuning on a downstream task

After pretraining on a surrogate tasks, language
models can be tuned on any NLP task

Fine tuning requires less resources than training on a
surrogate task

Fine tuning requires less data that training on a
surrogate task. However, the data quality is more
important (e.g., in terms of labels)

In some cases (GPT), models are evaluated on
downstream tasks in a zero-shot manner
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Downstream tasks in software engineering

Downstream tasks in software engineering are both
unimodal (Code-Code, Text-Text) and bimodal (Text-
Code, Code-Text)

The tasks are very distinct in nature, e.g., clone
detection, defect detection, code search, code
translation, etc.

Using the WordPiece embeddings makes “off the
shelf” language models compatible with SE tasks

Efforts to create benchmarks similar to NLP are carried
out by Microsoft, CodeXGLUE

Train/Dev/Test

Category Task Dataset Name Language Size Baselines Task definition
. BigCloneBench Java 900K/416K/416K Predict semantic equivalence for a pair of codes.
Clone Detection z = =
POJ-104 C/C++ 32K/8K/12K Retrieve semantically similar codes.
Defect Detection Devign e 21k/2.7k/2.7k Identify whether a function is vulnerable.
CodeBERT]
CT-all JPY““’W U el -/-/176k Tokens to be predicted come from the entire vocab.
lavaScript, Ruby, Go
Cloze Test Python, Java, PHP,
\Code-Codel CT-max/min JavaScript, Ruby, Go -/-/2.6k Tokens to be predicted come from {max, min}.
PY150 Python 100k/5k/50k
Code Completion | GitHub Java e 13k/7k/8k CodeGPT| Predict following tokens given contexts of codes.
Corpus
Code Repair Bugs2Fix Java 98K/12K/12K Encoder- Automatically refine codes by fixing bugs.
Code Translation |  CodeTrans Java-C# 10K/0.5K/1K | Decoder Tenek R i e iem e PISYEMMINY
language to another programming language.
CodeSearchNet, Python 251K/9.6K/19K Given a natural |§nguage query as input, find
AdvTest semantically similar codes.
NL Code Search odeBERT— = =

Text-Code CodeSearchNet, Byihon 251K/9.6K/1k Given a pair of natural language and code, predict

WebQueryTest : whether they are relevant or not.
Text-to-C_ode CONCODE Java 100K/2K/2K | CodeGPT Given a natu.ral language docstring/comment as
Generation input, generate a code.

Code-Text Cod_e . CodeSearchNet Pythoitl, Java, PHP, 908K/45K/53K Given a code, genferate its natural language
Summarization JavaScript, Ruby, Go Ericodai- docstring/comment.
Documentation English- S:;)de; Translate code documentation between human

Text-Text Microsoft Docs [Latvian/Danish/Nor 156K/4K/4K languages (e.g. En-Zh), intended to test low-

Translation

egian/Chinese

resource multi-lingual translation.




Training language models for software engineering

In order to better represent both modalities (text and
code), we can train language models for SE tasks

The same methods to define surrogate tasks can be
used

In practice, the masked language model, the replaced
toked detection and next token prediction are used

Efforts to create pretrained language models are

carried out by Microsoft, resulting in two models:
CodedBert and CodeGPT

def _parse_memory(s):

T

N
\

>>> _parse_memory("256m")

256
>>> _parse_memory("2g")
2048
e 2
units = {'g': 1024, 'm': 1, 't': 1 << 20, 'k': 1.0 / 1024}
if s[-1].lower() not in units:
raise ValueError("invalid format: " + s)

return int(float(s[:-1]) * units[s[-1].lower()])




Results of finetuned pretrained code models

Table 5: Results on the clone detection task.

BigCloneBench POJ-104

Table 8: Results on the code completion task.

Model F1 MAP  Overall
RtvNN 1.0 - -
Deckard 3.0 - N
CDLH 82.0 - -
ASTNN 93.0 - -
FA-AST-GMN 95.0 - -
TBCCD 95.0 - -
code2vec® - 1.98 -
NcC* - 54.19 -
Aroma* - 55.12 -
MISIM-GNN* - 82.45 -
RoBERTa 94.9 79.96 87.4
CodeBERT 96.5 84.29 90.4

Table 7: Results on the defect detection task.

Model Accuracy
BiLSTM 59.37
TextCNN 60.69

RoBERTa 61.05
CodeBERT 62.08

PY150 Github Java Corpus
Model token-level line-level token-level line-level Overall
Accuracy EM  EditSim  Accuracy EM  Edit Sim
LSTM 58.00 17.93 50.05 56.02 10.30 41.55 51.41
Transformer 73.26 36.65 67.51 64.16 15.33 50.39 63.83
GPT-2 74.22 38.55 68.94 74.89 24.30 60.70 69.69
CodeGPT 74.93 39.11 69.69 76.45 25.30 61.54 70.65
CodeGPT-adapted 75.11 39.65 69.84 77.13 26.43 63.03 71.28
Table 11: Results on the code repair task.
Method small medium Overall
BLEU Acc CodeBLEU BLEU Acc CodeBLEU
Naive 78.06  0.000 - 90.91  0.000 - 0.000
LSTM 76.76  0.100 - 72.08 0.025 - 0.063
Transformer 77.21  0.147 73.31 89.25  0.037 81.72 0.092
CodeBERT 77.42 0.164 75.58 91.07 0.052 87.52 0.108

Table 9: Results on the code search task.

AdvTest ~ WebQueryTest
Model MRR F1

RoBERTa 18.33 57.49 40.92 33.63
CodeBERT  27.19  58.95 47.80 40.28

Accuracy Overall

Table 10: Results on the text-to-code generation task.

Model EM  BLEU CodeBLEU

Seq2Seq 3.05 2131 17.61
Seq2Action+MAML 10.05  24.40 20.99
Iyer-Simp+200 idoms 1220  26.60 -

GPT-2 17.35  25.37 22.79
CodeGPT 18.25  28.69 25.69
CodeGPT-adapted 20.10 32.79 27.74




Adding more abstractions

|
Source code Parse into AST Identify variable Variable relation
sequence .
. .. def max(a, b): def max(a; b: A
Data flow can be added in training %=0 o oy
if b>a: ifb>a’ L
x=b ! x=b’ LKy
else: : else: | “.0/;' .
x=a x=a" i i
return x return X —
Value comes from
Training is done on pairs of source code, comments |
a n d d a ta fI OW [;é;ﬁn:pﬁ 7777777 E Identify variable ;equence in AST i i Extract variable relation from AST i
model Ruby  Javascript Go Python  Java Php  Overall
e NBow 0.162 0.157 0.330 0.161 0.171 0.152 0.189
Data flow tasks such as edge prediction or node ONN 0276 0224 0680 0292 0263 0280 0324
i i ini BiRNN 0.213 0.193 0.688 0.290 0.304 0.338 0.338
allgnment are USEd n pretralnlng selfAtt 0.275 0.287 0.723 0.398 0404 0.426 0.419
RoBERTa 0.587 0.517 0.850 0.587 0.599 0.560 0.617
RoBERTa (code)  0.628 0.562 0.859 0610 0.620 0.579 0.643
CodeBERT 0.679 0.620 0.882 0.672 0.676 0.628  0.693

GraphCodeBERT  0.703 0.644 0897 0.692 0.691 0.649 0.713

The improvements are significant, but marginal
Table 1: Results on code search. GraphCodeBERT outperforms other models significantly (p < 0.01).



Table 4: Parameters of CodeBERT and CodeGPT models.

CodeBERT CodeGPT

Number of layers 12 12
Max length of position 512 1,024
e S O u rc e S Embedding size 768 768
Attention heads 12 12
_ Attention head size 64 64
Vocabulary size 50,265 50,000
Total number of parameters 125M 124M
Language models consist of over 100 million
parameters
Task Dataset Name Language Training Cost Inference Cost
Clone Detection BigCloneBench Java 3 hours training on P100 x2 2 hours on p100 x2
POJ-104 C/C++ 2 hours training on P100 x2 10 minutes on p100 x2
i . . . Defect Detection Devign C 1 hour on P100 x2 2 minutes on p100 x2
However, the fine tuning times are in the order of Core Tout CT-all Python, Java, PHP, JavaScript, Ruby, Go N/A 30 minutes on P100-16G x2
) ) oze fes CT-max/min __|Python, Java, PHP, JavaScript, Ruby, Go N/A 1 minute on P100-16G x2
hours, not days (or weeks) given appropriate ) PY150 Python 25 hours on P100 x2 30 minutes on P100 x2
’ Code Completion " -
GitHub Java Corpus Java 2 hours on P100 x2 10 minutes on P100 x2
h d rd ware Code Repair Bugs2Fix Java 24 hours on P100 x2 20 minutes on P100 x2
Code Translation CodeTrans Java-C# 20 hours on P100 x2 5 minutes on P100 x2
Cod:gifla';csi:net, Python 5 hours on P100 x2 7 minutes on p100 x2
The inference times are reasonable NL Code Search I desearchNer, A
Python 5 hours on P100 x2 1 minute on P100 x2
WebQueryTest
Textto-Code CONCODE Java 30 hours on P100 x2 20 minutes on P100 x2
eneration
. . On average, 12 hours for |On average, 1 hour for each PL|
Code Summarization CodeSearchNet Python, Java, PHP, JavaScript, Ruby, Go| each PL on P100 x2 on p100 X2
Documentation . English- .
Translation Microsoft Docs Latvian/Danish/Norwegian/Chinese 30 hours on P100x2 55 minutes on P100x2

Figure 8: Training and inference time costs for each task, evaluated on two P100 GPUs.



Reducing the resource footprint

Because language models consist of a large number of
parameters, they have inherent redundancy

One way to remove this redundancy is to iteratively
prune small parameters

Early results show more that 50% of the parameters
are redundant

TABLE 1
CLONE DETECTION
BigCloneBench ~ POJ-104
Model Prune Rate F1 MAP Overall
CodeBert 0 96.50 84.29 90.39
CodeBert 90 96.72 83.92 90.32
TABLE II
CODE SEARCH
AdvTest  WebQueryTest
Model Prune Rate MRR F1 Accuracy
CodeBert 0 27.19 58.95 47.80
CodeBert 60 26.2 57.62 46.7




Conclusions
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Language models show promising results on software engineering tasks, in — —
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language models (e.g., redundancy) =N

Adding more abstractions to these models is a promising research avenue Figure 4: Learning curve of different pre-trained mod-
els in the fine-tuning step. We show results on Python
and Java.

| think it is interesting to see how these models perform on less curated data



