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Premises

o “Off the shelf” language models are suitable for code
tasks

o Programming languages and code are influenced by
social, cultural, historical, and other factors that also
influence natural languages

o Code has all the properties used to analyse natural
languages, e.g., form, meaning, context
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o Text is the simplest level of abstraction

Hello world in Malbolge programming language
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Large language models
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Find a numerical representation of text
(embedding)

Pretrain a large model on a surrogate task,
where labels can be generated automatically

(self supervised learning) 

Fine tune the pretrained model on a (downstream) 
task, for which a labeled dataset exists

(supervised learning)
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Text as numbers (some examples)
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One hot encodingo Both approaches omit context

o Encode each word with a unique number – the
integers assigned to words are arbitrarily

o One hot embedding – inefficient because the vectors
are sparsec

o Learn a representation based on context (embedding)

Learned embedding
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Text as numbers (Embeddings)
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Continuous bag of wordsSkip gram Character based embedding
(WordPiece)

- predicts words within a certain range 
before and after the word to be 
represented- powerful for context representation

- sensibility to rare words 

- predicts a middle word from context
- powerful for context representation
- sensibility to rare words

- iteratively add word units that increase the 
likelihood  of the trained data

- powerful for rare words
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Pretrain a large language model (surrogate tasks)
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Next sentence predictionMasked language modeling Next word prediction
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Pretrain a large language model (building blocks)
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Long Short Term Memory (LSTM) Multihead Attention

- processes the input word by word
- hard to parallelise

- processes all input words at once
- easy to parallelise
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Pretrain a large language model (architectures)
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Bidirectional LSTM (ELMO) TransformersEncoder-Decoder (sequence to sequence) 
LSTM
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Fine tuning on a downstream task 
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o Fine tuning requires less data that training on a
surrogate task. However, the data quality is more
important (e.g., in terms of labels)

o Fine tuning requires less resources than training on a
surrogate task

o After pretraining on a surrogate tasks, language
models can be tuned on any NLP task

o In some cases (GPT), models are evaluated on
downstream tasks in a zero-shot manner

Fine tuning BERT on different tasks
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Downstream tasks in software engineering
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o Using the WordPiece embeddings makes “off the
shelf” language models compatible with SE tasks

o The tasks are very distinct in nature, e.g., clone
detection, defect detection, code search, code
translation, etc.

o Downstream tasks in software engineering are both
unimodal (Code-Code, Text-Text) and bimodal (Text-
Code, Code-Text)

o Efforts to create benchmarks similar to NLP are carried
out by Microsoft, CodeXGLUE

Examples of downstream task from CodeXGLUE
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Training language models for software engineering
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o In practice, the masked language model, the replaced
toked detection and next token prediction are used

o The same methods to define surrogate tasks can be
used

o In order to better represent both modalities (text and
code), we can train language models for SE tasks

o Efforts to create pretrained language models are
carried out by Microsoft, resulting in two models:
CodedBert and CodeGPT

An example of natural language – programming 
language task
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Results of finetuned pretrained code models
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Adding more abstractions
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o Data flow tasks such as edge prediction or node
alignment are used in pretraining

o Training is done on pairs of source code, comments
and data flow

o Data flow can be added in training

o The improvements are significant, but marginal

Images from GraphCodeBert: Pretraining code representations with 
data flow
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Resources 
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o The inference times are reasonable

o However, the fine tuning times are in the order of
hours, not days (or weeks) given appropriate
hardware

o Language models consist of over 100 million
parameters
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Data from CodeXGLUE: A Machine Learning Benchmark 
Dataset for Code Understanding and Generation



Reducing the resource footprint
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o Early results show more that 50% of the parameters
are redundant

o One way to remove this redundancy is to iteratively
prune small parameters

o Because language models consist of a large number of
parameters, they have inherent redundancy
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o Language models show promising results on software engineering tasks, in 
particular to unimodal tasks

o Language models trained on code tasks preserve properties of text based 
language models (e.g., redundancy)

o Adding more abstractions to these models is a promising research avenue

o I think it is interesting to see how these models perform on less curated data
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Conclusions
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