Complexity exercise set \#1

for the tutorial on
April 14, 2022

Exercises marked with an asterisk (*) may be handed in for grading and can earn you a small bonus ${ }^{1}$ on the exam, provided you submit your solutions via Brightspace in PDF before 15:15 on Monday April 18.

Exercise 1* (10 pts.) Choose an exercise class via Brightspace before April 15.

Exercise 2 Two algorithms, A and B, exist to perform a certain task on a large dataset. Based on the documented asymptotic running times, $T_{\text {A }}(n)=\mathcal{O}\left(n^{2}\right)$ and $T_{\mathrm{B}}(n)=\mathcal{O}\left(n^{2} \lg (n)\right)$, which one would you recommend?

Suppose that after implementation of the algorithms, measurements indicate that $T_{\mathrm{A}}(n) \approx 3 n^{2} \mathrm{~ms}$, and $T_{\mathrm{B}}(n) \approx 0.1 n^{2} \lg (n) \mathrm{ms}$.

Would you change your recommendation?
Solution. Since n^{2} grows much slower than $n^{2} \lg (n)$ - in fact, $n^{2} \in o\left(n^{2} \lg (n)\right)$ - we'd choose algorithm A over B based only on the asymptotic bounds.

Given the concrete values for T_{A} and T_{B} we see that $T_{\mathrm{B}}(n) \leq T_{\mathrm{A}}(n)$ for all $n \leq 2^{30}$. Whence we would recommend algorithm B , because in practise A never outperforms B, because on an input of size 2^{30}, running A takes

$$
T_{\mathrm{A}}\left(2^{30}\right)=3458764513820540928 \mathrm{~ms} \approx 109 \cdot 10^{6} \text { years! }
$$

Exercise 3 Give an algorithm to compute x^{n} using $\Theta(\lg (n))$ multiplications.
(Hint: $x^{m}=\left(x^{2}\right)^{\left\lfloor\frac{m}{2}\right\rfloor} x^{\sigma}$ where $\sigma=0$ if $2 \mid m$ and $\sigma=1$ otherwise.)

Solution. The idea of the algorithm, which is commonly known as "exponentiation by squaring", is that we split the work done in the multiplication by splitting the exponent into powers of 2 . Using the hint, we have that for n even

$$
x^{n}=\left(x^{2}\right)^{\frac{n}{2}}
$$

For n odd, we simply decrease the exponent by 1 and add an extra multiplication by x. We then apply this recursively, which can be expressed as:

$$
x^{n}= \begin{cases}1 & \text { if } n=0 \\ \left(x^{2}\right)^{\frac{n}{2}}, & \text { if } n>0 \text { and } n=2 k \\ x \cdot\left(x^{2}\right)^{\frac{n-1}{2}} & \text { if } n>0 \text { and } n=2 k+1\end{cases}
$$

[^0]Let $T(n)$ denote the number of multiplications used by the algorithm described by the equation above with n as input. Then T satisfies the recurrence relation

$$
T(n)=T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+f(n)
$$

where

$$
f(n)= \begin{cases}1 & \text { when } n \text { is even } \\ 2 & \text { when } n \text { is odd }\end{cases}
$$

and so $f \in \Theta(1)$.
Hence $T \in \Theta(\lg (n))=\Theta(\log (n))$ by case II of the Master theorem.

Exercise 4 Only one of the following statements is true. Which one is it?

1. $2^{\mathcal{O}(n)}=\mathcal{O}\left(2^{n}\right)$
2. $\sum_{n=1}^{N} \sum_{k=1}^{n} k=\frac{N(N+1)(N+2)}{6}$
3. $f(n)=\mathcal{O}\left(f(n)^{2}\right)$ for all f
4. If $f=o\left(n^{2}\right)$, then there is $\varepsilon>0$ with $f=\mathcal{O}\left(n^{2-\varepsilon}\right)$.
5. $(n+1)!=\mathcal{O}(n!)$
6. $\lceil a\rceil\lceil b\rceil=\lceil a b\rceil$ for all $a, b \in[0, \infty)$

Solution. Only statement number 2 is true; here's why:

1. Remember that, by definition, $\mathcal{O}(f)$ is the set of functions g such that there exists a positive constant c and a natural number n_{0} such that for all $n>n_{0}, g(n) \leq c \cdot f(n)$. Suppose the statement is true, that is, $2^{\mathcal{O}(n)}=$ $\mathcal{O}\left(2^{n}\right)$. Then, we must have that $2^{2 n} \in \mathcal{O}\left(2^{n}\right)$. Hence, we would have a $c>0$ and an $n_{0} \in \mathbb{N}$ such that for all $n>n_{0}$:

$$
2^{2 n} \leq c 2^{n} \Longrightarrow 2^{n} \cdot 2^{n} \leq c 2^{n} \Longrightarrow 2^{n} \leq c .
$$

But this is absurd, since $2^{n}>c$ for large enough n (namely $n>\lg (c)$.)
2. This statement is true. To prove this, we proceed in two main steps. First we prove, by induction on n, that $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$, then again by induction we prove that $\sum_{n=1}^{N} \sum_{k=1}^{n} k=\sum_{n=1}^{n} \frac{n(n+1)}{2}=\frac{N(N+1)(N+2)}{6}$, as required.
(a) To prove $\sum_{k=1}^{n} k=\frac{n(n+1)}{2}$ we proceed by induction. Base Case. Trivial, really it is trivial.
Induction Step. Suppose that the statement hold for an arbitrary $n>1$. We prove it for $n+1$, as follows:

$$
\begin{aligned}
1+\cdots+n+(n+1) & =\frac{n(n+1)}{2}+(n+1) \\
& =\frac{(n+2)(n+1)}{2}
\end{aligned}
$$

(b) Secondly, we proceed by induction on N as follows:

Base Case. You guessed it. It's trivial this time around too. Inductive Step.

$$
\begin{aligned}
1+3+\cdots+\frac{N(N+1)}{2}+\frac{(N+1)(N+2)}{2} & =\frac{N(N+1)(N+2)}{6} \\
& +\frac{(N+1)(N+2)}{2} \\
& =\frac{(N+1)(N+2)(N+3)}{6}
\end{aligned}
$$

3. For $f(n)=\frac{1}{n}$, we don't have $f(n)=\mathcal{O}\left(f(n)^{2}\right)$, because $\frac{1}{n^{2}}=o\left(\frac{1}{n}\right)$.
4. To prove such implication is false we need to find a function f such that the hypothesis hold, that is, $f \in o\left(n^{2}\right)$, and the conclusion fails, that is, there is no $\epsilon>0$ with $f \in \mathcal{O}\left(n^{2-\epsilon}\right)$.
Notice that the set $o(f)$ is the set of functions g such that $\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=0$. Take $f(n)=n^{2} / \log (n)$. Then, using this limit we show that $f \in o\left(n^{2}\right)$.

$$
\lim _{n \rightarrow \infty} \frac{n^{2} / \log n}{n^{2}}=\lim _{n \rightarrow \infty} \frac{1}{\log n}=0
$$

So, indeed, $f \in o\left(n^{2}\right)$.
Secondly, we show that for any $\epsilon>0, f \notin \mathcal{O}\left(n^{2-\epsilon}\right)$. Indeed, suppose towards a contradiction that $f \in \mathcal{O}\left(n^{2-\epsilon}\right)$ for some ϵ. Then there is $c>0$, such that for all sufficiently large n, we have

$$
\frac{n^{2}}{\log n} \leq c n^{2-\epsilon} \Longrightarrow n^{2} \leq c n^{2-\epsilon} \log n \Longrightarrow n^{\epsilon} \leq c \log (n)
$$

and thus $n^{\epsilon} \in \mathcal{O}(\log (n))$, which is well-known not to be the case.
5. Suppose that the statement is true. We would have that there exists a $c>0$ and n_{0}, such that for all $n>n_{0}$:

$$
(n+1)!\leq c n!\Longrightarrow(n+1) \cdot n!\leq c n!\Longrightarrow n+1 \leq c
$$

Absurd.
6. Notice that if $a=0.5$ and $b=2$, we have $\lceil 0.5\rceil\lceil 2\rceil=2$ and $\lceil 0.5 \cdot 2\rceil=\lceil 1\rceil$.

Exercise 5* (40 points) The following two claims are false. Find the error(s) in the supposed proofs, and offer a brief suggestion on how to avoid each error.

Claim 1. We have $1+\cdots+n=\frac{1}{2}\left(n^{2}+n+2\right)$ for all $n \in \mathbb{N}$.

Proof. We proceed by induction. Suppose that $1+\cdots+n=\frac{1}{2}\left(n^{2}+n+2\right)$ holds for some $n \in \mathbb{N}$; we'll show that then it holds for $n+1$ too. Indeed,

$$
\begin{aligned}
1+\cdots+n+(n+1) & =\frac{1}{2}\left(n^{2}+n+2\right)+(n+1) \\
& =\frac{1}{2}\left(n^{2}+3 n+4\right) \\
& =\frac{1}{2}\left((n+1)^{2}+(n+1)+2\right) .
\end{aligned}
$$

Whence $1+\cdots+n=\frac{1}{2}\left(n^{2}+n+2\right)$ for all $n \in \mathbb{N}$.

Solution. The first mistake can be found already in the basis of induction. Notice that when $n=1$ we would have that $1=2$. A good advice when proving things by induction: always check the induction base case before stating it is trivial.

Claim 2. If $T: \mathbb{N} \rightarrow[0, \infty)$ obeys the recurrence relation $T(n)=T(n-1)+n$, then $T(n)=\mathcal{O}(n)$.

Proof. By induction on n : (induction step) if $T(n)=\mathcal{O}(n)$ for some $n \in \mathbb{N}$, then $T(n+1)=T(n)+n+1=\mathcal{O}(n)+\mathcal{O}(n)=\mathcal{O}(n) ;$ (base case) we have $T(0)=$ $\Theta(1) \leq \mathcal{O}(n)$.

Solution. The mistake is in the inductive step as it doesn't make sense to say that $T(n)=\mathcal{O}(n)$ for some specific $n \in \mathbb{N}$; such a statement only makes sense for all n. (Remember, $T(n)=\mathcal{O}(n)$ means $T \in \mathcal{O}(n)$.) When using syntactic sugar like \mathcal{O}-notation, it's easy to make false or non-sensical steps that look plausible; always make sure you understand what the statement actually means.

Exercise 6* (50 points) For each of the following recurrence relations, determine if the Master theorem (see $\S 4.5$ of the book) can be applied, and if so, write down the asymptotic solution (e.g. $T(n)=\Theta(n \lg n)$) without further explanation. If the Master theorem cannot be applied, briefly indicate why.

1. $T(n)=9 T\left(\frac{n}{3}\right)+n^{2}$
2. $T(n)=143640 T\left(\frac{n}{70}\right)+n^{2}$
3. $T(n)=9 T\left(\frac{n}{3}\right)+n$
4. $T(n)=2^{n} T\left(\frac{n}{2}\right)+n^{2 n}$
5. $T(n)=9 T\left(\frac{n}{3}\right)+n^{3}$
6. $T(n)=9 T\left(\frac{n}{3}\right)+n^{2} \lg n$
7. $T(n)=41592 T\left(\frac{n}{31}\right)+n^{\pi}$
8. $T(n)=b^{y} T\left(\frac{n}{b}\right)+n^{y}$ for some $b \in(1, \infty)$ and $y \in[1, \infty)$
9. $T(n)=\sqrt{3} T\left(\frac{n}{3}\right)+\lg (\lg n)$
10. $T(n)=T\left(\frac{n}{2}\right)+3^{\left\lceil\log _{3}(n)\right\rceil}$

Solution. 1. $\Theta\left(n^{2} \log (n)\right)$
2. $\Theta\left(n^{2}\right)$
3. $\Theta\left(n^{3}\right)$
4. The Master theorem cannot be applied.

We obviously can't apply case 1.
Case 2 , would require that $n^{2} \log n=\Theta\left(n^{2}\right)$, which is not so.
Case 3, fails because $n^{2} \lg n \notin \Omega\left(n^{2+\varepsilon}\right)$ for all $\varepsilon>0$. (It also fails in the regularity condition: We need that

$$
\begin{array}{r}
9\left(\frac{n}{3}\right)^{2} \log (n / 3) \leq c n^{2} \log n \\
\log (n / 3) \leq c \log n \\
1-\frac{\log 3}{\log n} \leq c
\end{array}
$$

By taking $n \rightarrow \infty$, we see that we would need $1 \leq c$, which contradicts the requirement that $c<1$.)
5. $\Theta(\sqrt{n})$ (Note: $\log _{3}(\sqrt{3})=\frac{1}{2}$.)
6. $\Theta\left(n^{\log _{70}(143640)}\right)$
(Note: since $\log _{70}(143640) \approx 2.8>2$, we see that we're in case 1 , but $\Theta\left(n^{2.8}\right)$ is, of course, not the correct answer.)
7. The Master theorem does not apply, because a is not constant.
8. $\Theta\left(n^{\pi}\right)\left(\right.$ Note: $\log _{31}(41592) \approx 3.097<\pi$.)
9. $\Theta\left(n^{y} \log (n)\right)$
10. The Master theorem does not apply, because $\log _{2}(1)=0$ and $3^{\left\lceil\log _{3}(n)\right\rceil} \in$ $\Omega(n)$ put us in case 3, but the 'regularity condition' does not hold.
The regularity condition, in the form presented by the book, is that there should be be some $c>0$ and N such that for all $n \geq N$

$$
a f(n / b) \leq c f(n)
$$

So for the regularity condition to hold in our situation, there must be some $c<1$ and N such that for all $n \geq N$

$$
3^{\left\lceil\log _{3}(n)-\log _{3}(2)\right\rceil} \leq c 3^{\left\lceil\log _{3}(n)\right\rceil}
$$

But this is impossible, because $\left\lceil\log _{3}(n)\right\rceil=\left\lceil\log _{3}(n)-\log _{3}(2)\right\rceil$ for all n of the form $n=3^{k}$ (because $0<\log _{3}(2)<1$, and so $\left\lceil\log _{3}(n)-\log _{3}(2)\right\rceil=$ $\left\lceil k-\log _{3}(2)\right\rceil=\lceil k\rceil=\left\lceil\log _{3}(n)\right\rceil$.)

[^0]: ${ }^{1}$ For more details, see https://cs.ru.nl/~awesterb/teaching/2022/complexity. html

