
Complexity exercise set #2

for the tutorial on
April 21, 2022

Exercises may be handed in for grading and can earn you a small bonus1 on
the exam, provided you submit your solutions via Brightspace in PDF before
15:15 on Monday April 25.

Exercise 1 (20 points) Let x ∈ R and n ∈ N\{0} be given. Prove in detail that

dx/ne = ddxe /ne . (1)

You may use the fact that dye ≤ m ⇐⇒ y ≤ m for all y ∈ R and m ∈ Z.

Hint: first prove that dx/ne ≤ m ⇐⇒ ddxe /ne ≤ m for all m ∈ Z.

Does equation (1) also hold for all n ∈ (0,∞) and x ∈ R? If so, provide a proof;
if not, give a counterexample, and indicate which step of your proof for the
case n ∈ N\{0} breaks down when n ∈ (0,∞).

Solution. Let x ∈ R and n ∈ {1, 2, . . . } be given. Following the hint, we have,
for any m ∈ Z,

ddxe /ne ≤ m

⇐⇒ dxe /n ≤ m by the given property of d−e
⇐⇒ dxe ≤ mn because y 7→ yn : R→ R is monotone
⇐⇒ x ≤ mn because mn is whole
⇐⇒ x/n ≤ m because n 6= 0, and y 7→ y/n : R→ R is monotone
⇐⇒ dx/ne ≤ m by the given property of d−e.

Taking m = ddxe /ne, we ddxe /ne ≤ m, and so dx/ne ≤ m = ddxe /ne. Simi-
larly, taking m = dx/ne, we have dx/ne ≤ m, and so ddxe /ne ≤ m = dx/ne.
Hence ddxe /ne = dx/ne.

Any x ∈ R and n ∈ (0,∞) with x < n < dxe (such as x = 1
2 and n = 2

3 ) will
furnish a counterexample (but there might be more.) To see why equation (1)
fails for such n and x, note that x < n < dxe implies that x/n < 1 < dxe /n ≤
ddxe /ne, and so dx/ne ≤ 1 < ddxe /ne.

The proof given above for when n ∈ N\{0} breaks down at the step “dxe ≤
mn ⇐⇒ x ≤ mn, because mn is whole,” because mn need not be whole. �

1For more details, see https://cs.ru.nl/˜awesterb/teaching/2022/complexity.
html.
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Grading. 10 points for a correct and detailed proof; 5 points for any correct
counterexample; 5 points for pointing out at least one step that breaks down
in their proof when n ∈ (0,∞).

Exercise 2 (20 points) Let a ∈ (0,∞) and b ∈ (1,∞) be given.
Let us call a function f : N → [0,∞) regular, when there are c ∈ [0, 1)

and N ∈ N with, for all n ≥ N ,

af(dn/be) ≤ cf(n).

Recall that this condition appears in the third case of the Master theorem. In
this exercise you’ll learn how regularity can be relatively easily establised for
common functions using calculus.

Note that if f(n) 6= 0 for all n > N , and if the limit limn→∞ f(dn/be)/f(n)
exists, then f is regular iff

lim
n→∞

f(dn/be)
f(n)

<
1

a
.

1. Use this to prove that f(n) = n is regular iff a < b iff logb(a) < 1.

(Hint: n/b ≤ dn/be ≤ n/b+ 1.)

2. Show that f(n) = nd, where d ∈ (0,∞), is regular iff logb(a) < d.

3. Show that f(n) = qn, where q ∈ (1,∞), is regular for all a and b.

4. Show that f(n) = log(n) is regular iff a < 1.

5. Show that f(n) = n log(n) is regular iff a < b.

Solution. 1. Since n/b ≤ dn/be ≤ n/b+ 1, we have, for all n ∈ {1, 2, . . . },

1/b ≤ dn/be /n ≤ 1/b+ 1/n.

Since both 1/b and 1/b+1/n converge to 1/b as n→∞, and these expres-
sions sandwich dn/be /n, we see that limn→∞ dn/be /n exists, and equals
1/b. Whence f is regular iff 1/b < 1/a, iff a < b, iff logb(a) < 1.

2. Since f(dn/be)/f(n) = (dn/be /n)d, and we already know from the previ-
ous point that dn/be /n → 1/b as n → ∞, and x 7→ xd is continuous, we
see that limn→∞ f(dn/be)/f(n) = 1/bd, and so f is regular iff 1/bd < 1/a
iff a ≤ bd iff logb(a) < 1.

3. Since f(dn/be)/f(n) = q−(n−dn/be) and n − dn/be → ∞ as n → ∞, we
have limn→∞ f(dn/be)/f(n) = 0. Thus f is regular iff 0 < 1/a, that is,
always.

4. Since for n > bwe have 1+log(b)/ log(n) = log(n/b)/ log(n) ≤ f(dn/be)/f(n) ≤
log(2n/b)/ log(n) = 1 + log(2b)/ log(n), and the outer expressions both
converge to 1 as n→∞, we see that limn→∞ f(dn/be)/f(n) = 1, and so f
is regular iff 1 < 1/a iff a < 1.
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5. Since we have already computed the limits limn→∞ dn/be /n = 1/b and
limn→∞ log(dn/be)/ log(n) = 1, we may take their product, yielding

lim
n→∞

dn/be log(dn/be)
n log(n)

= 1/b · 1 = 1/b.

Whence f is regular iff 1/b < 1/a iff a < b.
�

Grading. 4 points for each of the five tasks.
(Note the level of rigour in the solution: this exercise is about applying

calculus to a complexity problem, not about analysing calculus itself.)

Exercise 3 (50 points) Let numbers b ∈ {2, 3, . . . }, and a ∈ [1,∞), and func-
tions T, f : {1, b, b2, . . . } → [0,∞) with

T (n) = aT (n/b) + f(n) and f(n) = nlogb(a) log(n)

for all n ∈ {b, b2, b3, . . . } be given. Show that T (n) = Θ(nlogb(a) log(n)2).

Hint: follow these steps:

1. Draw a recursion tree to deduce (or by induction proof) that, for all k ∈ N,

T (bk) = ak T (1) +

k−1∑
i=0

aif(bk−i).

2. Show that, for all k ∈ N, the following two equalities hold.

k−1∑
i=0

aif(bk−i) = log(b) ak
k−1∑
i=0

(k − i) =
1

2
log(b) ak k(k + 1)

(You already know a formula for
∑k−1
i=0 (k − i).)

3. Show that ak = nlogb(a) for all k, where n := bk.

4. Show that, for all n ∈ {1, b, b2, . . . },

T (n) = nlogb(a)
(
T (1) +

1

2
log(b) logb(n) (logb(n) + 1)

)
.

Solution. Writing n := bk the recursion tree needed here is essentially the same
as the one drawn up in §4.6.1 of the book on page 99, but with ak instead of
nlogb(a) (see third hint), and T (1) instead of Θ(1). It will be an a-branching tree
of height logb(n) = k with labels f(a/bi) at depth i < k and labels T (1) at
depth k. Summing all labels yields that, for all k ∈ N,

T (bk) = akT (1) +

k−1∑
i=0

aif(bk−i). (2)
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Equation (2) can also be obtained by induction, as follows. For k = 0, (2) be-
comes T (1) = T (1) + 0, which is clearly true. Now suppose that (2) holds for
some k, then we have

T (bk+1) = aT (bk) + f(bk+1) by assumption

= ak+1T (1) +
(k−1∑
i=0

ai+1f(bk−i)
)

+ f(bk+1) by the induction hypothesis

= ak+1T (1) +
( k∑
j=1

ajf(bk+1−j)
)

+ f(bk+1) by setting j := i+ 1

= ak+1T (1) +

k∑
j=0

ajf(bk+1−j),

and so we see that (2) holds for k + 1 too. Conclusion: (2) holds for all k ∈ N.
We proceed by simplifying

∑k−1
i=0 a

if(bk−i), as follows. Given k ∈ N,

k−1∑
i=0

aif(bk−i) =

k−1∑
i=0

ai(bk−i)logb(a) log(bk−i) defn. of f

=

k−1∑
i=0

ai(blogb(a))k−i (k − i) log(b)

= log(b)

k−1∑
i=0

aiak−i(k − i)

= log(b) ak
k−1∑
i=0

(k − i)

= log(b) ak
k∑
j=0

j taking j := k − i

=
1

2
log(b) ak(k + 1)k.

(3)

Note that given k ∈ N, we have ak = blogb(a
k) = bk logb(a) = (bk)logb(a) = nlogb(a)

when n := bk, so, when n ∈ {1, b, b2, . . . } is given, we have

T (n) = T (bk)

= akT (1) +

k−1∑
i=0

aif(bk−i) by (2)

= akT (1) +
1

2
log(b) ak(k + 1)k by (3)

= nlogb(a)T (1) +
1

2
log(b)nlogb(a)(logb(n) + 1) logb(n)

= Θ(nlogb(a)) + Θ(nlog(a)) Θ(log(n)) Θ(log(n))

= Θ(nlogb(a)) + Θ(nlogb(a) log(n)2) = Θ(nlogb(a) log(n)2),

using here that nlogb(n) ∈ O(nlogb(a) log(n)2). �
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Grading. If the hints are followed, award 10 points for executing each of the
four hints successfully, and 10 points for the conclusion. If the hints are not
followed to the letter, use your best judgement to allot the 40 points.

Exercise 4 (10 points, extra difficult) Let b ∈ {2, 3, · · · }, a ∈ [1,∞), and func-
tions f, T : N→ [0,∞) with f(n) = O(nlogb(a) log(n)), and

T (n) ≤ aT (dn/be) + f(n)

for all n ∈ {2, 3, . . . } be given. Show that T (n) = O(nlogb(a) log(n)2).

Solution. By drawing a recursion tree we see that, for all n ∈ {1, 2, . . . },

T (n) ≤ T (1) · adlogb(n)e +

dlogb(n)e−1∑
k=0

akf(
⌈
n/bk

⌉
), (4)

but it’s also easy to proof using induction over dlogb(n)e using:

Claim 1. dlogb(dn/be)e = dlogb(n)e − 1 for all n ∈ {1, 2, . . . }.

Proof. Let m ∈ Z be given. We have dlogb(dn/be)e ≤ m iff logb(dn/be) ≤ m iff
dn/be ≤ bm iff n/b ≤ bm iff n ≤ bm+1 iff logb(n) ≤ m+ 1 iff dlogb(n)e ≤ m+ 1 iff
dlogb(n)e−1 ≤ m. Thus dlogb(dn/be)e and dlogb(n)e−1 being below themselves
must be below each other, making them equal. �

Back to proving inequality (4). For the base case, note that if dlogb(n)e = 0
for some n ∈ {1, 2, . . . }, we must have n = 1, and so (4) amounts to T (1) ≤
T (1) + 0, which is, of course, true.

Suppose now that ` ∈ {0, 1, 2, . . . } is such that (4) holds for all n ∈ {1, 2, . . . }
with dlogb(n)e = `; we’ll show that (4) holds for all n ∈ {1, 2, . . . }with dlogb(n)e =
`+1. So let nwith dlogb(n)e = `+1 be given. Then dlogb(n)e ≥ 1, so logb(n) > 0,
so n > 1, so T (n) ≤ aT (dn/be)+f(n). Moreover, dlogb(dn/be)e = dlogb(n)e−1 =
`, means that (4) can be applied to dn/be. This all leads to:

T (n) ≤ a T (dn/be) + f(n)

≤ T (1) · adlogb(dn/be)e+1 +

dlogb(dn/be)e−1∑
k=0

ak+1f(
⌈
dn/be /bk

⌉
) + f(n)

= T (1) · adlogb(n)e +

dlogb(n)e−2∑
k=0

ak+1f(
⌈
n/bk+1

⌉
) + f(n)

= T (1) · adlogb(n)e +

dlogb(n)e−1∑
k=1

akf(
⌈
n/bk

⌉
) + f(n)

= T (1) · adlogb(n)e +

dlogb(n)e−1∑
k=0

akf(
⌈
n/bk

⌉
).

Whence inequality (4) holds for all n ∈ {1, 2, . . . }.
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Since adlogb(n)e ≤ alogb(n)+1 = a · alogb(n) = a · nlogb(a) = O(nlogb(a) log(n)2),
we see from (4) that to show T (n) = O(nlogb(a) log(n)2) it suffices to prove that

dlogb(n)e−1∑
k=0

akf(
⌈
n/bk

⌉
) = O(nlogb(a) log(n)2). (5)

Since f(n) = O(nlogb(a) log(n)) there is D ∈ [0,∞) and N ∈ {1, 2, . . . } such
that f(n) ≤ Dnlogb(a) log(n) for all n ≥ N — which will in fact hold for
all n ∈ {2, 3, 4, . . . }, by choosing D larger than maxN−1n=1

f(n)

nlogb(a) log(n)
.

We’d like to apply this bound for f(n) to (5), but in order to do so, we must
first verify that

⌈
n/bk

⌉
≥ 2 for all k ≤ dlogb(n)e − 1. Since

⌈
n/bk

⌉
will be the

smallest for k = dlogb(n)e−1, it suffices to consider only this particular k. Note
that

⌈
n/bk

⌉
≥ 2 iff n/bk > 1 iff n > bk iff logb(n) > k iff logb(n) + 1 > k + 1 =

dlogb(n)e, which is indeed so (since dxe < x+ 1 for any x ∈ R.)
Since f(n) ≤ Dnlogb(a) log(n) for all n ≥ 2, we have, writing γ := logb(a),

dlogb(n)e−1∑
k=0

akf(
⌈
n/bk

⌉
)

≤ D

dlogb(n)e−1∑
k=0

ak
⌈
n/bk

⌉γ
log(

⌈
n/bk

⌉
)

Using that dxe ≤ 2x for all x ≥ 1
2 , we get:

≤ D2γ
dlogb(n)e−1∑

k=0

ak(n/bk)γ log(
⌈
n/bk

⌉
)

= D2γnγ
dlogb(n)e−1∑

k=0

log(
⌈
n/bk

⌉
) since bγ = a

Note that n ≤ bdlogb(n)e, so n/bk ≤ bdlogb(n)e−k, so log(
⌈
n/bk

⌉
) ≤ log(b) (dlogb(n)e−

k), giving:

≤ D2γ log(b)nγ
dlogb(n)e−1∑

k=0

dlogb(n)e − k

≤ D2γ log(b)nγ
dlogb(n)e∑
k′=0

k′ setting k′ := dlogb(n)e − 1− k

= O(nγ log(n)2 ),

by the well-known formula
∑m
i=0 i = 1

2m(m + 1). Hence we have estab-
lished (5), and thus T (n) = O(nlogb(a) log(n)2). �
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