
Complexity exercise set #3

for the tutorial on
April 28, 2022

Exercises marked with an asterisk (∗) may be handed in for grading and can
earn you a small bonus1 on the exam, provided you submit your solutions via
Brightspace in PDF before 15:15 on Monday May 9.

Exercise 1 Solve problem 3-2 from the book (on page 61 of the third edition.)

Exercise 2 (∗) (40 points) This exercise tests your mathematical exactness: be
precise and detailed.

1. Show that n ≤ 2n for all n ∈ {0, 1, 2, . . . } using induction. State the
induction hypothesis, and base case(s) explicitly.

Base Case: Clearly n ≤ 2n holds for n = 0, because 0 ≤ 20 = 1.

Inductive Step: Suppose that n ≤ 2n holds for some n ∈ {0, 1, . . . }— this
is the induction hypothesis (IH). We must show that n + 1 ≤ 2n+1. Indeed,

n + 1
IH
≤ 2n + 1 ≤ 2n + 2n = 2 · 2n = 2n+1

where we have used that 1 ≤ 2m for all m ∈ N. (If you like, this can be
proven with induction too: clearly 1 ≤ 20 ≡ 1, and given m ∈ N with
1 ≤ 2m, we have 1 ≤ 2m ≤ 2 · 2m = 2m+1 too.)

Conclusion: n ≤ 2n holds for all n ∈ N.

Grading. 5 points for at least one base case. (Treating both n = 0 and
n = 1 separately is fine, and has the added bonus of giving an argument
for 1 ≤ 2n, using the induction hypothesis, namely 1 ≤ n ≤ 2n.)

5 points for the inductive step. It’s important that they explicitly state the
induction hypothesis somehow (e.g. “assume n ≤ 2n for some n ∈ N”),
but they needn’t call it by its name, ‘induction hypothesis’.

2. What is meant by the statement “n = O(2n)”?
Give a formal definition, and a proof.

1For more details, see https://cs.ru.nl/˜awesterb/teaching/2022/complexity.
html.
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The notation “n = O (2n)” means that there is an N ∈ N and C > 0 such
that n ≤ C · 2n for all n ≥ N . Choosing N = 0 and C = 1, we get the
statement we just proved in point 1, so n = O (2n) holds.

More details: The notation n = O (2n) is an abbreviation for n ∈ O (2n),
which in turn is a shorthand for f ∈ O (g) where f, g : N → [0,∞) are
defined by f(n) = n and g(n) = 2n for all n ∈ N. The set O (g) consists of
all functions h : N→ [0,∞) that are asymptotically bounded by g, that is, for
which there are C ∈ (0,∞) and N ∈ N with h(n) ≤ Cg(n) for all n ∈ N
with n ≥ N . See Section 3.1 of the book.

Grading. 5 points for defining “n = O (2n)” correctly, where ‘correctly’
means that its obvious generalisation to f = O (g) is equivalent to the
definition given above. (For example, ∃C ≥ 0, N > 1∀n > N [n ≤ C2n] is
fine too, but ∀C ≥ 0∃N∀n > N [n ≤ C2n] is not.)

5 points for realising we just proved n = O (2n) in the previous exercise
(or for giving another proof.)

3. Induction may be formulated in terms of sets as follows.

∀A [ 0 ∈ A ∧ ∀n ∈ N [ n ∈ A =⇒ n + 1 ∈ A ] =⇒ N ⊆ A ]. (1)

(Here A ranges over all sets.)

Using (1), prove the following ‘strong induction principle’.

∀A[ ∀n ∈ N [ ∀m ∈ N [m < n =⇒ m ∈ A ] =⇒ n ∈ A ] =⇒ N ⊆ A ].

Hint: Apply (1) to A′ := { n ∈ N : ∀m ∈ N [ m < n =⇒ m ∈ A ] }.
Let a set A be given, and define

A′ := { n ∈ N : ∀m < n [ m ∈ A ] }.

So A′ consists of all natural numbers n such that all numbers m smaller
than n are in A. So if A = {0, 1, 2, 4}, then A′ = {0, 1, 2, 3}.
Now, assume that

∀n ∈ N [ ∀m ∈ N [ m < n =⇒ m ∈ A ] =⇒ n ∈ A ]. (2)

Our task is to show that N ⊆ A. Note that (2) means that to show that
a natural number n is in A, it suffices to show that all strictly smaller
numbers are in A. In terms of the A′ we just defined, (2) becomes

∀n ∈ N [ n ∈ A′ =⇒ n ∈ A ]. (3)

Instead of proving N ⊆ A directly, we are going to first show that N ⊆ A′,
using (1).

(a) 0 ∈ A′: this is indeed the case, because there is no m < 0, and
so ∀m < 0 [ m ∈ A ] holds ‘vacuously’.
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(b) ∀n ∈ N[ n ∈ A′ =⇒ n + 1 ∈ A′ ]: Indeed, let n ∈ N with n ∈ A′

be given; we must show that n + 1 ∈ A′. By (3), we have n ∈ A
(because n ∈ A′). But now we not just have that all m < n are in A
(which is what n ∈ A′ means) but also n ∈ A, so that all m < n + 1
are in A, which means n + 1 ∈ A′.

Hence (1) gives us that N ⊆ A′. From this it easily follows that N ⊆ A.
Indeed, let n ∈ N be given, then n + 1 ∈ N ⊆ A′, so ∀m < n + 1 [ m ∈ A ],
and so in particular (choosing m = n) we get n ∈ A. Whence N ⊆ A.

Grading. 5 points for being clear and 5 points for being correct. The proof
needn’t be as detailed as the one above, but for full points it must be
apparent that the student understands what they are doing.

4. Given a function T : N→ [0,∞) such that

T (n) ≤ 2T (bn/2c)

for all n ∈ {1, 2, . . . }, show that T (n) = O(n).

Hint: Apply the strong induction principle to

A := { n ∈ N : T (n + 1) ≤ T (1) · (n + 1) }.

Let A be defined as in the hint. To prove that T (n) = O (n), it suffices to
show that N ⊆ A, because then ∃N ∈ N, C > 0 ∀n ≥ N [ T (n) ≤ Cn ]
(taking N = 1, and C = T (1) + 1.)

We prove N ⊆ A by strong induction. Let n ∈ N with {0, · · · , n− 1} ⊆ A
be given; we must show that n ∈ A, that is, that T (n+ 1) ≤ T (1) · (n+ 1).

If n = 0, then this becomes T (1) ≤ T (1), which is quite true, so we may
assume that n > 0.

Obviously, we want to apply the induction hypothesis, to m :=
⌊
n+1
2

⌋
−1,

but before we can do this we must first check that 0 ≤ m < n. To begin,
since n > 0, we have n+1 ≥ 2, so n+1

2 ≥ 1, thus
⌊
n+1
2

⌋
≥ 1, and so m ≥ 0.

To see that m < n, note that
⌊
n+1
2

⌋
≤ n+1

2 ≤ n + 1.

Whence m ∈ {0, . . . , n − 1} ⊆ A, and thus T (
⌊
n+1
2

⌋
) = T (m + 1) ≤

T (1) · (m + 1) = T (1) ·
⌊
n+1
2

⌋
— ‘by the induction hypothesis’.

T (n + 1) ≤ 2T (b(n + 1)/2c)
≤ 2T (1) b(n + 1)/2c by the IH
≤ T (1) bn + 1c since 2 bxc ≤ b2xc
≤ T (1)(n + 1) since n + 1 is whole.

Hence n ∈ A. Thus N ⊆ A, by strong induction, and so we’re done.

Grading. 5 points for the essential steps, and 5 points for getting all the
details right.
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Exercise 3 (∗) (50 points) Let T : N→ [0,∞) be given.

1. Show that T (n) = Θ(n), when, for all n ∈ {37, 38, 39, . . . }

T (n) = 2T (bn/3c+ 3) + 2T (dn/6e+ 4) + 5.

Hint: make use of the substitution method from §4.3 of the book.

To show that T (n) = Θ(n), we must show that T (n) = O (n) and T (n) =
Ω(n).

We’ll start with T (n) = O (n). Let d, c ∈ R be arbitrary. We want to find
values for c and d such that T (n) ≤ cn + d for all n ≥ 37, (and if that’s
not possible, for all n > N for some N ≥ 37.) Let n ≥ 37 be given, and
suppose (the ‘induction hypothesis’) that T (m) ≤ cm + d for all m < n.
We want to see what’s needed to get T (n) ≤ cn + d. We have:

T (n) ≤ 2T (bn/3c+ 3) + 2T (dn/6e+ 4) + 5 since n ≥ 37

Note that bn/3c+3 and dn/6e+4 are both strictly smaller than n, because
n ≥ 37, so we can apply the induction hypothesis to get:

≤ 2c(bn/3c+ 3) + 2d + 2c(dn/6e+ 4) + 2d + 5

= 2c(bn/3c+ dn/6e+ 7) + 5 + 4d

Since bn/3c ≤ n/3 and dn/6e ≤ n/6 + 1, we get:

≤ 2c(n/3 + n/6 + 8) + 5 + 4d

= 2c(n/2 + 8) + 5 + 4d

= cn + 16c + 5 + 4d

so if 16c + 5 + 4d ≤ d, then we get:

≤ cn + d,

and we’re good, well, at least for the induction step.

Hence we define d := −(16c + 5)/3, so that we have 16c + 5 + 4d ≤ d.

There is, however, a catch: while we assumed that T (m) ≤ cm + d for
all m < n, this won’t be true for small m, because cm+d = c(m−16/3)−
5/3 < 0 for m < 16/3, irrespective of the value of c. One might worry that
this would prevent us from establishing a base case for our induction.

Upon closer inspection, however, the failure for small m does not matter.
Indeed, note that m − 16/3 ≥ 0 for all m ≥ 6. We can choose c so large
that T (m) ≤ c(m − 16/3) − 5/3 for all m ∈ {6, 7, . . . , 36} (by letting c be
the maximum of (3T (m) + 5)/(3m− 16) for m ∈ {6, 7, . . . , 36}.) We thus
have not one, but multiple base cases for our induction.

Now that everything is in place, let’s show that T (n) = O (n). We will
prove that

T (n) ≤ c(n− 16/3)− 5/3 (4)

for all n ≥ 6, using strong induction. So let n ≥ 6 be given such that (4)
holds for all m with 6 ≤ m < n; we must show that (4) holds for n
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as well. If n < 36, then we know that (4) holds by choice of c, and so
we’re done. So let’s assume that n ≥ 37. As we saw before, we get
T (n) ≤ cn + d ≡ c(n − 16/3) − 5/3 provided that T (m) ≤ cm + d holds
for m = bn/3c + 3 and m = dn/6e + 4. By the induction hypothesis, this
is indeed the case provided that m ≥ 6. This will indeed be the case, since

(a) bn/3c+3 < 6 implies bn/3c < 3 implies n/3 ≤ bn/3c+1 < 4 implies
n ≤ 12, while n ≥ 37, and

(b) dn/6e + 4 < 6 implies dn/6e < 2 implies n/6 ≤ 2 implies n ≤ 12,
while n ≥ 37.

Hence we get T (n) ≤ cn + d, for all n ≥ 6. Thus T (n) ∈ O (n).

It remains to be shown that T (n) = Ω(n). Again, let c, d ∈ R for now be
arbitrary, and let n ≥ 37 with T (m) ≥ cm + d for all m < n be given. We
want to see what’s needed to get T (n) ≥ cn + d. Note that

T (n) = 2T (bn/3c+ 3) + 2T (dn/6e+ 4) + 5

Using the induction hypothesis:

≥ 2c(bn/3c+ 3 + dn/6e+ 4) + 4d + 5

Using the fact that bn/3c ≥ n/3− 1 and dn/6e ≥ n/6:

≥ 2c(n/3 + 2 + n/6 + 4) + 4d + 5

≥ cn + 12c + 4d + 5

so defining d := −4c− 5/3, we get:

= cn + d.

This covers the n with n ≥ 37. For the induction to ‘get off the ground’ it
suffices to find c ∈ (0,∞) such that

T (n) ≥ cn− 4c− 5/3 for all n ∈ {0, . . . , 36},

for then the reasoning above gives us T (n) ≥ cn− 4c− 5/3 for all n ∈ N.
Define c := minn<37(T (n)+5/3)/(n+1). Then c > 0, and cn−4c−5/3 ≤
c(n + 1)− 5/3 ≤ T (n) + 5/3− 5/3 = T (n) for all n < 37.

Whence T (n) ≥ cn−4c−5/3 for all n ∈ N. In particular, T = Ω(cn−4c−
5/3) = Ω(n).

Grading. 15 points for T (n) = O(n) and 10 points for T (n) = Ω(n).
Deduct at most 5 points in total for not dealing with the base cases cor-
rectly.

2. Show that T (n) = O(log(log(n))) when, for all n ∈ {2, 3, . . . },

T (n) = T (
⌊√

n
⌋
) + 5.
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Note that log(log(n)) > 0 for all n ≥ 4, so we can find C > 5/ log(2) such
that T (n) ≤ C log(log(n)) for all n ∈ {4, 5, . . . , 15}. We’ll show by strong
induction that, for all n ≥ 4,

T (n) ≤ C log(log(n)). (5)

So let n ≥ 4 be given such that T (m) ≤ C log(log(m)) for all m ∈ N with
4 ≤ m < n. If n < 16, then we know that (5) holds, by choice of C, so
assume that n ≥ 16. Note that then b

√
nc ≥ 4, so:

T (n) = T (
⌊√

n
⌋
) + 5

≤ C log(log(
⌊√

n
⌋
)) + 5 by the IH

≤ C log(log(
√
n)) + 5 since

⌊√
n
⌋
≤
√
n

= C log(1/2 log(n)) + 5 since
√
n = n1/2

= C log(1/2) + C log(log(n)) + 5

= C log(log(n)) + (5− C log(2))

≤ C log(log(n)),

because 5 ≤ C log(2) since C ≥ 5/ log(2). Hence T (n) = O (log(log(n))).

Grading. 5 points for properly taking care of the base case(s) and 20 points
for the inductive step.

Exercise 4 (∗) (10 points, difficult) Match each recurrence relation to the cor-
rect asymptotic solution.

1. T (n) = 4T (dn/3e) + n lg(n)

2. T (n) = 3T (bn/3c) + n/ lg(n)

3. T (n) = 4T (dn/2e) + n2
√
n

4. T (n) = 3T (dn/3e − 2) + n/2

5. T (n) = 2T (dn/2e) + n/ lg(n)

6. T (n) = T (bn/2c) + T (bn/4c) +
T (bn/8c) + n

7. T (n) = T (n− 1) + 1/n

8. T (n) = T (n− 1) + lg(n)

9. T (n) = T (n− 2) + 1/ lg(n)

10. T (n) =
√
nT (b

√
nc) + n

i Θ(n log(log(n)))

ii Θ(n)

iii Θ(n log(n))

iv Θ(li(n))

v Θ(n log(log(n)))

vi Θ(nlog3(4))

vii Θ(log(n))

viii Θ(n2 1
2 )

ix Θ(n log(log(n)))

x Θ(n log(n))

The correct relation between recurrence and solution is as follows.
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1 vi
2, 5, 10 i, v, ix

3 viii
4, 8 iii, x

6 ii
7 vii
9 iv

1. T (n) = 4T (dn/3e) + n lg(n) has solution Θ(nlog3(4)), by the Master Theo-
rem, case I, since log3(4) > 1.

2. T (n) = 3T (bn/3c) + n/ lg(n) has solution Θ(n log(log(n))).

By exercise 4 of exercise set #2, we know that T (n) = O(n log(log(n))).
On the other hand, we have T (n) = Ω(n), because T will be bounded
below by some solution of T ′(n) = 3T (bn/3c) +

√
n/ lg(n) (which by the

Master Theorem is in Θ(n)) since
√
n/ lg(n) ≤ n/ lg(n).

This leaves only Θ(n log(log(n))) (i, v, ix), and Θ(n) (ii) as options, and
since we’ll see that ii is taken by 6, we conclude that the solution of the
present recurrence relation must be Θ(n log(log(n))).

3. T (n) = 4T (dn/2e) + n2
√
n has solution Θ(n2.5), by the Master Theorem,

case III, since log2(4) = 2 < 2.5.

4. T (n) = 3T (dn/3e − 2) + n/2 has solution Θ(n log(n)).

This can be seen by defining S(n) := T (n−3), which obeys the recurrence
S(n) = 3S(dn/3e) + (n − 3)/2, and thus has solution Θ(n), by case 2 of
the Master Theorem. Whence T (n) = S(n + 3) = Θ(n + 3) = Θ(n).

5. T (n) = 2T (dn/2e) + n/ lg(n) has solution Θ(n log(log(n)), by a reasoning
similar to the one used for recurrence number 2.

6. T (n) = T (bn/2c) + T (bn/4c) + T (bn/8c) + n has solution Θ(n).

Clearly, T (n) = Ω(n), because T (n) ≥ n. On the other hand, one can see
that T (n) = O(n), by proving T (n) ≤ Cn using strong induction using
the inequalities T (n) = T (bn/2c)+T (bn/4c)+T (bn/8c)+n ≤ C(bn/2c+
bn/4c) + bn/8c) +n ≤ C(n/2 +n/4 +n/8 +n/C) = nC(7/8 + 1/C) ≤ Cn
when C ≥ 8.

7. T (n) = T (n− 1) + 1/n has solution Θ(log(n)).

First note that T (n) will be equal (up to a constant) to
∑N

n=1 1/n, so our
task is to find the order of this sum.

In general, when f : R → R is a monotonic function (increasing or de-
creasing), the sum

∑N
n=M f(n) will lie between the integrals

∫
[M−1,N ]

f(x)dx

and
∫
[M,N+1]

f(x)dx. In particular, since
∫

1/xdx = log(n), we have

log(N)− log(1) ≤
∑N

n=2 1/n ≤ log(N +1)− log(2), and so the sum — and
thus T (N) too — is in Θ(log(N))

8. T (n) = T (n − 1) + lg(n) has solution Θ(n log(n)) by a reasoning similar
to the one for recurrence number 8, but now using that sum

∑N
n=1 lg(n)

is in Θ(n log(n)), because
∫

log(x)dx = x log(x)− x.
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9. T (n) = T (n−2) + 1/ lg(n) has solution Θ(li(n)), where li(x) =
∫ x

0
dt

log(t) is
the ‘logarithmic integral’, by the same reasoning as for recurrences num-
ber 8 and 9.

As formally li has not been defined, one can also keep this recurrence
until the end and conclude that its solution must be the only remaining
asymptotic solution, being Θ(li(n)).

10. T (n) =
√
nT (b

√
nc) + n has solution Θ(n log(log(n)).

Consider S(n) = T (n)/n. It obeys the recurrence S(n) ≤ S(b
√
nc)+1, and

so by the methods of part 2 of Exercise 3, we get S(n) = O(log(log(n))),
and thus T (n) = O(n log(log(n))). Since clearly, S(n) = Ω(1), we get
T (n) = Ω(n), and so the only options for Θ(T (n)) are Θ(n log(log(n))) (i,
v, ix) and Θ(n) (ii), but sice Θ(n) has already been taken, that leaves us
with Θ(n log(log(n))).
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