Complexity exercise set #4

for the tutorial on
May 12, 2022

Exercises marked with an asterisk (*) may be handed in for grading and can
earn you a small bonusﬂ on the exam, provided you submit your solutions via
Brightspace in PDF before 15:15 on Monday May 16.

Exercise 1x (30 points) Prove the following
1. If Ae NP and B € NP, then AU B € NP
2. If Ae NP and B € NP, then AN B € NP
3. If A€ NP and B € NP, then A- B € NP

Solution. For each item, suppose we have A, B € NP, we also call the verifica-
tion algorithms A and B.

e We define a verifier for A U B as follows:
(AU B)(z,y) =
if A(z,y) = 1 then return 1;
else if B(z,y) = 1 then return 1;
else return 0;

If z € AU B then there is some y with |y| = O(|z|?) such that A(z,y) = 1
or B(z,y) = 1,if x ¢ AUB there can be no such certificate by definition of
the verifiers for A and B, so we indeed have a verifier with certificate size
polynomial in |z|. It is a polynomial-time verifier because we run two
polynomial-time algorithms consecutively followed by a constant time
operation i.e. O(|(x,v)|® + |(z,y)|* + 1) = O(|(x, y)| >ty

¢ We define a similar verifier for A N B:
(AN B)(z,y) =
if A(z,y.1) = 0 then return 0;
else if B(z,y.2) = 0 then return 0;
else return 1;

Where we interpret y as a pair (y.1,y.2).

For z € AN B, there are certificates y;,y2 such that A(z,y;) = 1 and
B(z,y2) = 1, so taking y to be an encoding (which we can decode in

1For more details, see https://cs.ru.nl/~awesterb/teaching/2022/complexity.
html,


https://cs.ru.nl/~awesterb/teaching/2022/complexity.html
https://cs.ru.nl/~awesterb/teaching/2022/complexity.html

polynomial time) of the pair (y1,y2), we have (AN B)(z,y) = 1. If z ¢
ANB,thenx € Aorx ¢ B, so there can be no certificates for both A and
B, so also no certificate for x. We therefore have a verifier with certificate
size polynomial in |z| for z € AN B. The verifier runs in polynomial time
by the same argument as above.

e For A - B, we take the verifier:

(A-B)(a.y) =
if x # y.1 - y.2 then return 0;

if A(y.1,y.3) = 0 then return 0;

else if B(y.2,y.4) = 0 then return 0;
else return 1;

where we now interpret the input y as a tuple (y.1,y.2,y.3, y.4). Then, by
definition, # € A - B if and only if there are y; € A and y» € B such that
x = Y1 - Y2. By assumption we have certificates y3, y4 for y; and y» with
lys| = O(|y1]°) and |ya| = O(|y2|?) if and only if y; € A and y» € B. For
x € A- B, clearly |y1| = O(|z|) = |y|, so the size of the tuple we construct
is polynomial in |z|. Thus, we can provide a certificate of polynomial size
if and only if z € A - B. Note that we can check the equality in the first
step in O(|z|) steps, so the algorithm is polynomial by a similar argument
to the above.

Grading. For each item 5 points are given for the verification algorithm and 5
points are given for the explanation.

Exercise 2x (40 points) In this exercise, A and B are arbitrary decision prob-
lems. Prove the following

1. If A <p Band Bisin NP, then A € NP

2. Suppose that we have a set B and two elements z,y € {0, 1}* such that
x€Bandy ¢ B.If Ac P,then A <p B

3. A<p Bifandonlyif A <p B

Solution. ® Suppose f is the function witnessing the reduction A <p B and
consider the following algorithm:

Az, y) =
return B(f(z),y)

As B € NP, for f(z) € B there is a y with |y| = O(|f()|¢) such that
B(f(z),y) = 1 and by assumption on f, f(z) € B <= z € A. For
f(z) € B < =z ¢ A there is no such y, so we have a verifier for A.
Note also that |f(z)| = O(|z|°) as f is polynomial-time computable, so
ly| is also polynomial in |z|. The verifier for A is then polynomial-time
computable as f and B are by definition/assumption. Thus, A € NP.



¢ We require a polynomial-time computable function f: {0,1}* — {0,1}"
such that s € A <= f(s) € B. Consider the following algorithm:

fls) =
if A(s) =1 then return x;
else return y;

As A € P, we can check A(s) = 1in time polynomial in |s|, all other steps
can be performed in constant time. Further, we have

s€eAd = A(s)=1 = f(s)=2 = f(s)eB

and
s€ A = A(s)=0 = f(s)=y = f(s) & B.

Thus, f is of the required form giving A <p B.

* Suppose A <p B. Then there is a polynomial-time computable function
f:{0,1}* — {0,1}* such that x € A <= f(x) € B. For the same f, we
have

1r€A = ¢ A = f(z)¢B < f(x) €B.

SO,ZSP B.

Now suppose A <p B and let g: {0,1}* — {0,1}* be the reducing func-
tion. Then

r€A = ¢ A < g(x)¢B < g(x) € B.

SO,A Sp E

We can also show egher imglication from the other. For example, if we
have shown A <p B — A <p B, then we can show the converse as
follows:

Suppose ng p B, thenalso A <p B = B, s0 by the above implication we

have A = A <p B.
|

Grading. For the first two items, 5 points are given for a correct algorithm and
5 points for explanation.

For the third item, 10 points are given for each direction of the implica-
tion, with 5 points for choosing the correct algorithm (the assumed computable
function) and 5 points for the explanation in each case. If the second implica-
tion is proven from the first, the full 10 points is given for a correct explanation.

For each item: if the answer is imprecise, then at most 5 points are given.

Exercise 3« (10 points) Suppose, B € NP and f : {0,1}* — {0,1}* is com-
putable in polynomial time. Show that {a € {0,1}* | f(a) € B} € NP.

Solution. Define X := {a € {0,1}* | f(a) € B} and consider the following
algorithm:

X(z,y) :=

return B(f(x), y)



Now z € X if and only if f(z) € B by definition. Then, as B € NP,
B(f(x),y) is polynomial-time computable and there is y such that X (z,y) =
B(f(x),y) = lifand only if f(z) € B. We have therefore constructed a verifier
for X,so X € NP. [ |

Grading. Again, 5 points for a correct algorithm and 5 points for a correct ex-
planation.
If the answer is imprecise, then at most 5 points are given
Exercise 4x (20 points) Put the following formulas in CNF
1. A= ((CVv—-B)ANA)
2. 2((CNA)V(BACO))
3. (AV(BA=(B— —A))) < -A
Which of these formulas are satisfiable?

Solution. ¢ Anequivalent CNF formulais: (—AV-BV (). This is satisfiable
(by any assignment making A or B false, or C true).

¢ Anequivalent CNF formulais: (-CV—-A)A(=BV-C), which is satisfiable
(for example, by any assignment making C false).

* An equivalent CNF formula is: A A =A. This formula is not satisfiable.
|

Grading. For each formula:
® 6 points are given if the correct conjunctive normal form is given.
* 0 points are given if the incorrect or no conjunctive normal form is given
e If the answer is not in conjunctive normal form, then 0 points are given.
For the satisfiable formulas:
® 2 points are given if all the correct formulas are denoted as satisfiable.

* 0 points are given otherwise



