
Complexity exercise set #4

for the tutorial on
May 12, 2022

Exercises marked with an asterisk (∗) may be handed in for grading and can
earn you a small bonus1 on the exam, provided you submit your solutions via
Brightspace in PDF before 15:15 on Monday May 16.

Exercise 1∗ (30 points) Prove the following

1. If A ∈ NP and B ∈ NP, then A ∪B ∈ NP

2. If A ∈ NP and B ∈ NP, then A ∩B ∈ NP

3. If A ∈ NP and B ∈ NP, then A ·B ∈ NP

Solution. For each item, suppose we have A,B ∈ NP, we also call the verifica-
tion algorithms A and B.

• We define a verifier for A ∪B as follows:

(A ∪B)(x, y) :=
if A(x, y) = 1 then return 1;
else if B(x, y) = 1 then return 1;
else return 0;

If x ∈ A ∪B then there is some y with |y| = O(|x|d) such that A(x, y) = 1
or B(x, y) = 1, if x 6∈ A∪B there can be no such certificate by definition of
the verifiers for A and B, so we indeed have a verifier with certificate size
polynomial in |x|. It is a polynomial-time verifier because we run two
polynomial-time algorithms consecutively followed by a constant time
operation i.e. O(|(x, y)|c + |(x, y)|d + 1) = O(|(x, y)|max{c,d}).

• We define a similar verifier for A ∩B:

(A ∩B)(x, y) :=
if A(x, y.1) = 0 then return 0;
else if B(x, y.2) = 0 then return 0;
else return 1;

Where we interpret y as a pair (y.1, y.2).

For x ∈ A ∩ B, there are certificates y1, y2 such that A(x, y1) = 1 and
B(x, y2) = 1, so taking y to be an encoding (which we can decode in

1For more details, see https://cs.ru.nl/˜awesterb/teaching/2022/complexity.
html.

1

https://cs.ru.nl/~awesterb/teaching/2022/complexity.html
https://cs.ru.nl/~awesterb/teaching/2022/complexity.html

polynomial time) of the pair (y1, y2), we have (A ∩ B)(x, y) = 1. If x 6∈
A ∩B, then x 6∈ A or x 6∈ B, so there can be no certificates for both A and
B, so also no certificate for x. We therefore have a verifier with certificate
size polynomial in |x| for x ∈ A∩B. The verifier runs in polynomial time
by the same argument as above.

• For A ·B, we take the verifier:

(A ·B)(x, y) :=
if x 6= y.1 · y.2 then return 0;
if A(y.1, y.3) = 0 then return 0;
else if B(y.2, y.4) = 0 then return 0;
else return 1;

where we now interpret the input y as a tuple (y.1, y.2, y.3, y.4). Then, by
definition, x ∈ A · B if and only if there are y1 ∈ A and y2 ∈ B such that
x = y1 · y2. By assumption we have certificates y3, y4 for y1 and y2 with
|y3| = O(|y1|c) and |y4| = O(|y2|d) if and only if y1 ∈ A and y2 ∈ B. For
x ∈ A ·B, clearly |y1| = O(|x|) = |y2|, so the size of the tuple we construct
is polynomial in |x|. Thus, we can provide a certificate of polynomial size
if and only if x ∈ A · B. Note that we can check the equality in the first
step in O(|x|) steps, so the algorithm is polynomial by a similar argument
to the above.

�

Grading. For each item 5 points are given for the verification algorithm and 5
points are given for the explanation.

Exercise 2∗ (40 points) In this exercise, A and B are arbitrary decision prob-
lems. Prove the following

1. If A ≤P B and B is in NP, then A ∈ NP

2. Suppose that we have a set B and two elements x, y ∈ {0, 1}∗ such that
x ∈ B and y /∈ B. If A ∈ P, then A ≤P B

3. A ≤P B if and only if A ≤P B

Solution. • Suppose f is the function witnessing the reduction A ≤P B and
consider the following algorithm:

A(x, y) :=
return B(f(x), y)

As B ∈ NP, for f(x) ∈ B there is a y with |y| = O(|f(x)|d) such that
B(f(x), y) = 1 and by assumption on f , f(x) ∈ B ⇐⇒ x ∈ A. For
f(x) 6∈ B ⇐⇒ x 6∈ A there is no such y, so we have a verifier for A.
Note also that |f(x)| = O(|x|c) as f is polynomial-time computable, so
|y| is also polynomial in |x|. The verifier for A is then polynomial-time
computable as f and B are by definition/assumption. Thus, A ∈ NP.

2

• We require a polynomial-time computable function f : {0, 1}∗ → {0, 1}∗
such that s ∈ A ⇐⇒ f(s) ∈ B. Consider the following algorithm:

f(s) :=
if A(s) = 1 then return x;
else return y;

As A ∈ P, we can check A(s) = 1 in time polynomial in |s|, all other steps
can be performed in constant time. Further, we have

s ∈ A =⇒ A(s) = 1 =⇒ f(s) = x =⇒ f(s) ∈ B

and
s 6∈ A =⇒ A(s) = 0 =⇒ f(s) = y =⇒ f(s) 6∈ B.

Thus, f is of the required form giving A ≤P B.

• Suppose A ≤P B. Then there is a polynomial-time computable function
f : {0, 1}∗ → {0, 1}∗ such that x ∈ A ⇐⇒ f(x) ∈ B. For the same f , we
have

x ∈ A ⇐⇒ x 6∈ A ⇐⇒ f(x) 6∈ B ⇐⇒ f(x) ∈ B.

So, A ≤P B.

Now suppose A ≤P B and let g : {0, 1}∗ → {0, 1}∗ be the reducing func-
tion. Then

x ∈ A ⇐⇒ x 6∈ A ⇐⇒ g(x) 6∈ B ⇐⇒ g(x) ∈ B.

So, A ≤P B.

We can also show either implication from the other. For example, if we
have shown A ≤P B =⇒ A ≤P B, then we can show the converse as
follows:

Suppose A ≤P B, then also A ≤P B = B, so by the above implication we
have A = A ≤P B.

�

Grading. For the first two items, 5 points are given for a correct algorithm and
5 points for explanation.

For the third item, 10 points are given for each direction of the implica-
tion, with 5 points for choosing the correct algorithm (the assumed computable
function) and 5 points for the explanation in each case. If the second implica-
tion is proven from the first, the full 10 points is given for a correct explanation.

For each item: if the answer is imprecise, then at most 5 points are given.

Exercise 3∗ (10 points) Suppose, B ∈ NP and f : {0, 1}∗ → {0, 1}∗ is com-
putable in polynomial time. Show that {a ∈ {0, 1}∗ | f(a) ∈ B} ∈ NP.

Solution. Define X := {a ∈ {0, 1}∗ | f(a) ∈ B} and consider the following
algorithm:

X(x, y) :=
return B(f(x), y)

3

Now x ∈ X if and only if f(x) ∈ B by definition. Then, as B ∈ NP,
B(f(x), y) is polynomial-time computable and there is y such that X(x, y) =
B(f(x), y) = 1 if and only if f(x) ∈ B. We have therefore constructed a verifier
for X , so X ∈ NP. �

Grading. Again, 5 points for a correct algorithm and 5 points for a correct ex-
planation.

If the answer is imprecise, then at most 5 points are given

Exercise 4∗ (20 points) Put the following formulas in CNF

1. A→ ((C ∨ ¬B) ∧A)

2. ¬((C ∧A) ∨ (B ∧ C))

3. (A ∨ (B ∧ ¬(B → ¬A)))↔ ¬A

Which of these formulas are satisfiable?

Solution. • An equivalent CNF formula is: (¬A∨¬B∨C). This is satisfiable
(by any assignment making A or B false, or C true).

• An equivalent CNF formula is: (¬C∨¬A)∧(¬B∨¬C), which is satisfiable
(for example, by any assignment making C false).

• An equivalent CNF formula is: A ∧ ¬A. This formula is not satisfiable.
�

Grading. For each formula:

• 6 points are given if the correct conjunctive normal form is given.

• 0 points are given if the incorrect or no conjunctive normal form is given

• If the answer is not in conjunctive normal form, then 0 points are given.

For the satisfiable formulas:

• 2 points are given if all the correct formulas are denoted as satisfiable.

• 0 points are given otherwise

4

