
FINDING HAMILTONIAN PATHS IS NP-COMPLETE

In this note, we show that the problem whether a graph has a Hamiltonian path,
is NP-complete. We start by recalling some definitions.

Definition 1. Let G be a graph. A path in G is called simple if it crosses every
vertex at most once.

Definition 2. Let G be a graph. A path in G is called Hamiltonian if it crosses
every vertex exactly once.

Note that every Hamiltonian path must be simple. For example, the yellow
path in the graph below is Hamiltonian.

However, while the red path below is simple, it is not Hamiltonian, because it
doesn’t cross every vertex. The blue path below is neither Hamiltonian nor simple.

In the remainder of this note, we study the decision problem HamPath:
Given a graph G, does G have a Hamiltonian path?

Our goal is to show that HamPath is NP-complete, and for that, we must show
the following

• HamPath ∈ NP.
• HamPath is NP-hard.

Let us start by showing the first.

Proposition 3. HamPath ∈ NP.

Proof. A certificate for this problem is a path p. To check whether p is Hamiltonian,
we must count how often every vertex is crossed by this path. This can be done by
going through the path and keeping track of how often we see every vertex. Since
this can be done in polynomial time, we can conclude that HamPath ∈ NP. �

To finish the proof of NP-completeness, it remains to show that HamPath is
NP-hard. We prove this by constructing a reduction 3CNF ≤P HamPath. Spe-
cifically, this means that for every formula ϕ in 3-conjunctive normal form, we
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must construct a graph Gϕ such that Gϕ has a Hamiltonian path if and only if ϕ is
satisfiable.

Before we do so, let us start by thinking what it means for a formula ϕ in 3-
conjunctive normal form to be satisfiable. By definition, ϕ is of the shape ϕ =∧n

i=1 ϕi where each ϕi is a disjunction ψi,1 ∨ ψi,2 ∨ ψi,3 of literals ψi,j . If ϕ is
satisfiable, then there is a model m for which we have m(ϕ) = 1. For such models,
the following must hold.

Proposition 4. For each conjunct ϕi, we either have m(ψi,1) = 1 or m(ψi,2) = 1 or
m(ψi,3) = 1.

Proof. Note that we have m(
∧n

i=1 ϕi) = m(ϕ) = 1. Since the left hand side is
a conjuction, we must have m(ϕi) = 1 for every i. Next observe that we have
m(ψi,1 ∨ ψi,2 ∨ ψi,3) = m(ϕi) = 1. A disjunction can only be evaluated to true if
one of the disjuncts is evaluated to true. Hence, either m(ψi,1) = 1 or m(ψi,2) = 1
or m(ψi,3) = 1, which is precisely what we wanted to prove. �

This already gives an idea of what the desired graph Gϕ should look like: a
Hamiltonian path through Gϕ must pick out a ψi,j for every ϕi. To define Gϕ like
that, we start by adding vertices and edges for every conjunct ϕi:

Going through the edge ψi,j means that in the model that will correspond to this
graph, the literal ψi,j is false. We do this for every conjunct and they are connected
in serial. In addition, we add node t with an edge to it from the last node of the
last conjunct. For a formula with 2 conjuncts, this looks as follows

However, this graph always has a Hamiltonian path, and we must do more to
guarantee the graph has the desired property. First of all, we add vertices and



FINDING HAMILTONIAN PATHS IS NP-COMPLETE 3

edges in such a way that a Hamiltonian path in Gϕ is unable to cross all the edges
ψi,1, ψi,2, and ψi,3. For every conjunct ϕi we add the following

We call this part V , because we use it to guarantee that the formula is valid.
Since we do this for every conjunct, the resulting graph would look as follow
where the V refers to the part we discussed before.

Note that in the remainder of this construction, we are not going to add any
edges with endpoints in one of the red vertices. If the resulting graph has a
Hamiltonian path, then that path is unable to cross all the edges ψi,1, ψi,2, and
ψi,3. You can see this from the following pictures. First of all, we show why no
Hamiltonian path is able to cross all these edges.
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Since there are no additional edges going to the red nodes, it is impossible to
visit any of those nodes, because doing so, would require the path to cross the blue
vertices twice. However, it is possible to construct a Hamiltonian path through
this part of the graph by avoiding at least one of the edges ψi,1, ψi,2, and ψi,3. For
example, if we do not cross ψi,3, then we can consider the following path:
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Exercise. Draw Hamiltonian paths for the case where you avoid only ψi,1 and for
the case where you avoid both ψi,1 and ψi,3.

Up to now, we have constructed a graph such that a Hamiltonian path through
it picks out a ψi,j from each ϕi. However, this does yet not give rise to a model: the
choices must be coherent in some way. For example, if there is a conjunct a ∨ b ∨ c
and a conjunct ¬a∨¬b∨¬c, then it might pick out a from the first and ¬a from the
second. Since in models m we cannot have both m(a) = m(¬a) = 1, we did not
add enough yet to guarantee that this construction gives rise to a reduction.

For that reason, we need to add more vertices and edges to the graph. We look
at the following component

If this is a subgraph of some graph, then a Hamiltonian path is unable to cross
both True and False. We add these parts in serial, and we add a node s, which
we connect to the first node of the added component. We also connect all of this
to the graph discussed before arising from the conjuncts. For a formula with two
conjuncts and three atoms, we obtain the following graph (where we leave out the
V -components).

The next component we need to consider, functions like the xor-operation from
logic. More specifically, this component connects two edges, and in the resulting
graph, a Hamiltonian path can only cross one of the two edges. Suppose, we have
two edges e1 = {v1, w1} and e2 = {v2, w2}. Consider the following graph:
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We call this graph an X-component. If this graph is a subgraph such that the
red vertices are not connected to any other vertices, then there are at most two
possibilities for a Hamiltonian path. These are given below

If we already have a graph G with two edges e1 = {v1, w1} and e2 = {v2, w2},
then we can “add” this component in the following way

• Remove the edges e1 and e2
• Add the red vertices
• Add the edges from the graph using the v1, w1, v2, and w2.

Note that any number of X-components can share an edge. For example, if we
have edges e1 = {v1, w1}, e2 = {v2, w2}, and e3 = {v3, w3}, then we use the fol-
lowing graph.

Now we add the following every literal ψi,j

• If ψi,j is an atom ak, then we add an X-component between ψi,j and the
True edge of ak.

• If ψi,j is a negation ¬ak, then we add an X-component between ψi,j and
the False edge of ak.

We call the resulting graph Gϕ. Let us briefly recap what it looks like

• We have a node s.
• From that node s, we have one edge going to a part A, where we added a

component A for each atom ai.
• We have a part C, where we added a component V for each conjunct ϕi

• For each literal ψi,j , we added a component X between ψi,j and an edge
in A depending on whether this literal is a negation or not.

• We have a node t and an edge from the component V .

Schematically, Gϕ looks as follows
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where the red part represents the atoms and the blue part represents the conjuncts.
The yellow part connects the blue and red part in such a way that the edges of
representing literals are connected to the correct edge in the part of the atoms.

Now we show that this gives rise to a reduction.

Lemma 5. If Gϕ has a Hamiltonian path, then ϕ is satisfiable.

Proof. Suppose, Gϕ has a Hamiltonian path p. This path must cross the vertex s,
and go through the edge from s to component A. In A, this path goes through
either True or False for every atom a, and this gives rise to a model m. To show
that m(ϕ) = 1, we must show that m(ϕi) = 1 for every i. More specifically, p
should not cross the edge ψi,j for every i and j. We observed before that this must
be the case for every Hamiltonian path. �

Lemma 6. If ϕ is satisfiable, then Gϕ has a Hamiltonian path.

Proof. Let m be a model such that m(ϕ) = 1. We construct the following path p
• We start at s and we go through A
• For every atom a, we cross True if m(a) = 1 and we cross False if m(a) =
0. This way, we cross all nodes in A.

• Next we go to C. For each literal ψi,j , we cross ψi,j only if m(ψi,j) = 0.
Note that there also are X-components through which the path must go. Each of
these X-components is added between ψi,j and e, where e is either True or False.
By construction, p crosses ψi,j only if m(ψi,j) = 0, and m(e) only if m(ψi,j) = 1.
This allows us to modify p in such a way that all vertices in the X-components are
crossed. Since all vertices are crossed exactly once, we can conclude that Gϕ has a
Hamiltonian path. �

Theorem 7. HamPath is NP-complete.

Proof. To prove this theorem, we need to show that HamPath ∈ NP and that
HamPath is NP-hard. In Proposition 3, we showed the former. For the latter,
note that we constructed a reduction from 3CNF to HamPath, and we proved the
correctness of this in Lemmas 5 and 6. In addition, the amount of vertices and
edges in Gϕ depends polynomially on the size of ϕ, so this construction can be
done in polynomial time. Hence, HamPath is indeed NP-complete. �


