
Tentamen Complexiteit IBC028
= herkansing Analyse van Algoritmen IBC013

23 juni 2015, 8.30 - 11.30 uur
Met uitwerkingen

Dit tentamen bestaat uit vijf opgaven die alle even zwaar tellen.
Het tentamen is een gesloten-boek-tentamen, dat wil zeggen dat er tijdens het tentamen

geen gebruik mag worden gemaakt van het boek en/of aantekeningen.
Voor alle vragen geldt: motiveer uw antwoord.

Opgave 1.

a. De functie T is gegeven door T (n) = 1 als n ≤ 2 en T (n) = T (bn/2c) + T (bn/3c) + n
als n > 2. Bewijs dat T (n) = O(n).

Uitwerking:

We bewijzen met inductie naar n dat T (n) ≤ 6n. Voor n = 1, 2 klopt dit, voor n > 2
mogen we als inductiehypothese aannemen dat T (k) ≤ 6k voor k < n. In het bijzonder
geldt bn/2c < n en bn/3c < n, dus geldt

T (n) = T (bn/2c) + T (bn/3c) + n
≤ 6bn/2c+ 6bn/3c+ n
≤ 6(n/2) + 6(n/3) + n
= 3n+ 2n+ n
= 6n,

waarmee het gevraagde is bewezen.

b. De functie T is gegeven door T (1) = 1 en T (n) = 5T (bn/2c) +n2 als n > 1. Bepaal een
functie f zodanig dat T (n) = Θ(f(n)).

Uitwerking:
We stellen vast dat log2 5 > 2, dus is voor ε = log2 5 − 2 > 0 geldt n2 = O(nlog2 5−ε).

Volgens de Master stelling geldt nu T (n) = Θ(nlog2 5), dus voor f gedefinieerd door f(n) =
nlog2 5 geldt het gevraagde.

Opgave 2.

Er is een methode om twee 2 × 2 matrices met elkaar te vermenigvuldigen door naast een
eindig aantal optellingen en aftrekkingen, 7 vermenigvuldigingen uit te voeren. Geef een
algoritme dat gebruik makend hiervan het product van twee n × n matrices bepaalt en laat
zien dat hiervan de complexiteit O(n2,81) is. Hierbij hoeft n geen 2-macht te zijn; er geldt
22,81 > 7.

Uitwerking:

We geven een methode die werkt voor 2-machten; als n geen 2-macht is kiezen we de
kleinste k met n ≤ 2k. We breiden de n × n matrices uit tot 2k × 2k matrices door de
diagonalen aan te vullen met enen en de rest met nullen. Het gevraagde product is dan het
n× n stuk linksboven van het berekende product. Aangezien 2k ≤ 2n heeft dit geen invloed
op de O van het uiteindelijke algoritme. Vanaf nu nemen we aan dat n een 2-macht is.

Het algoritme splitst beide matrices op in vier n/2× n/2 deelmatrices. Op deze deelma-
trices wordt het gegeven algoritme toegepast, waarbij de 7 vermengvuldigingen uitgevoerd
worden als recursieve aanroep van het te bouwen algoritme. De complexiteit T (n) hiervan
voldoet aan

T (n) = 7T (n/2) +O(n2);

de 7T (n/2) vanwege de 7 recursieve aanroepen, en de O(n2) omdat de rest bestaat uit eindig
aantal optellingen en aftrekkingen van n/2× n/2 matrices.

Vanwege log2 7 > 2 kunnen we kiezen ε = log2 7−2 > 0 en geldt hiervoor n2 = O(nlog2 7−ε).
Volgens de Master stelling geldt nu T (n) = Θ(nlog2 7) = O(n2,81), gebruik makend van 22,81 >
7.

Opgave 3.

Gegeven zijn n cirkels in het platte vlak, elk gegeven door hun middelpunt en straal. Geef
een O(n log n) algoritme dat als uitvoer een getal y geeft waarvoor de horizontale lijn door
(0, y) een zo groot mogelijk aantal van deze cirkels snijdt.

Uitwerking:
Voor alle cirkels met middelpunt (xi, yi) en straal ri sorteren we de getallen yi − ri en

yi + ri. Vervolgens gaan we hier met een sweep line doorheen met oplopende y-waarde.
Hierbij houden we het aantal snijdende cirkels bij door te beginnen met 0, en elke keer als we
een yi−ri tegenkomen deze waarde een op te hogen en elke keer als we een yi+ri tegenkomen
deze waarde een te verminderen.

Het gevraagde algoritme wordt verkregen door in dit proces de maximale waarde van deze
aantallen en de bijbehorende y-waarde bij te houden.

Het voorwerk van dit algoritme bestaat uit sorteren en is O(n log n); in het algoritme zelf
kost elke stap constante tijd, wat O(n) oplevert. De totale complexiteit is dus O(n log n).

Opgave 4.

a. Geef de definitie van NP.

Uitwerking:

NP is de klasse van alle talen L waarvoor er een polynomiaal algoritme A en getallen
c,N bestaan zodanig dat

L = {x ∈ {0, 1}∗ | ∃y ∈ {0, 1}∗ : |y| < N |x|c ∧A(x, y) = 1}.

b. Laat φ een CNF zijn waarin alle clauses uit precies vier literals bestaan. Geef een
polynomiale constructie f die φ omzet naar een 3-CNF f(φ) waarvoor φ vervulbaar is
dan en slechts dan als f(φ) vervulbaar is.

Uitwerking:
Voer voor elke clause Ci in φ een verse variabele ai in. Laat f de operatie zijn die elke

clause Ci = l1 ∨ l2 ∨ l3 ∨ l4 in φ vervangt door door de twee clauses l1 ∨ l2 ∨ ai en ¬ai ∨ l3 ∨ l4.
Als φ vervulbaar is, is f(φ) dat ook, met dezelfde vervulling, aangevuld met de waarde

true voor ai als l3 ∨ l4 waar is, en anders false. Omgekeerd, als f(φ) vervulbaar is, zijn voor
die vervulling voor elke i de beide clauses l1 ∨ l2 ∨ ai en ¬ai ∨ l3 ∨ l4 waar, waaruit volgt (met
gevalsonderscheid voor ai) dat ook de oorspronkelijke clause l1 ∨ l2 ∨ l3 ∨ l4 waar is. Dit geldt
voor elke i; deze vervulling is hierdoor ook een vervulling voor φ. Hiermee is aangetoond dat
f de gevraagde eigenschap heeft.

Opgave 5.

Het partition problem (PART) luidt als volgt:

Gegeven een eindige verzameling natuurlijke getallen, stel vast of deze verzameling
opgesplitst kan worden in twee deelverzamelingen die dezelfde som hebben.

a. Geef aan wat er bewezen moet worden als we willen concluderen dat PART NP-compleet
is, gebruikmakend van het feit dat het subset sum problem NP-compleet is.

Uitwerking:

We moeten laten zien dat PART in NP zit, en we moeten een polynomiale f geven
zodanig dat voor elke x ∈ {0, 1}∗ geldt

x ∈ SSS ⇐⇒ f(x) ∈ PART,

waarin SSS staat voor subset sum problem. Hierin zijn x en f(x) coderingen van
instanties van de problemen. Als we deze codering wegwerken is de eis dat f losgelaten
wordt op een verzameling S en een getal t en resulteert in een verzameling, en is de eis
dat voor elke S, t geldt

∃A ⊆ S :
∑
s∈A

s = t ⇐⇒ ∃B ⊆ f(S, t) :
∑
s∈B

s =
1
2

∑
s∈f(S,t)

s.

b. Geef dit bewijs. (Aanwijzing: voeg een of twee grote getallen toe aan de verzameling)

Uitwerking:
Er geldt dat PART in NP zit omdat we de codering van een van beide deelverzamelingen

als certificaat y kunnen kiezen. Het checken dat de som van deze deelverzameling precies de
helft is van de som van de hele verzameling kan in polynomiale tijd gedaan worden.

Voor de constructie van f is het idee dat we twee grote getallen aan S toevoegen zodanig
dat S een deelverzameling heeft met som S dan en slechts dan als de uitgebreide verzameling
in twee gelijke stukken opgesplitst kan worden. Laat k =

∑
s∈S s. Als k = 2t hoeven we niets

te doen. Anders kiezen we N een heel groot getal, bijvoorbeeld N = 10k, en definiëren

f(S, t) = S ∪ {N − k + t,N − t}.

Merk op dat
∑

s∈f(S,t) s = 2N . Als er een A ⊆ S is met
∑

s∈A s = t dan kiezen we
B = A ∪ {N − t} en geldt

∑
s∈B s = N = 1

2

∑
s∈f(S,t) s.

Omgekeerd, als er een B ⊆ f(S, t) is met
∑

s∈B s = 1
2

∑
s∈f(S,t) s = N , dan dan bevat B

precies een van de twee grote toegevoegde getallen N − k+ t en N − t. Als het N − t is, dan
kiezen we A = B \ {N − t} en geldt

∑
s∈A s = t. Anders kiezen we A′ = B \ {N − k+ t} en

geldt
∑

s∈A′ s = k− t. Door dan te kiezen A = S \A′ hebben we
∑

s∈A s = k− (k− t) = t.
In alle gevallen hebben we dus een A ⊆ S met

∑
s∈A s = t, waarmee het gevraagde is

bewezen.

Opmerking: er is ook een constructie waarbij er maar één getal wordt toegevoegd, maar
dan vergt de redenering wat meer gevalsonderscheid en moet je toestaan dat eenzelfde getal
ook meerdere keren voor mag komen.

