
C O M P L E ✗ I T Y

LECTURE 2

April 25, 2022

Brad WESTERB_AAN

Institute for Computing and Information
Sciences

Radboud University Nijmegen

NWI- IBC028

PREVIOUSLY
. . .

solving
using e.g. ,

analyse MASTER THEOREM
Recursive

Algorithm
→

Recurrence
→ Asymptotic

Relation Complexity

Merge Sort → TCNKTCT>421+1-11×121/+n → TCnl=④(ntoglnl)

THIS WEEK

• Walk through an example : karatsuba Multiplication

• Solving recurrence relations with and without the Master Theorem

B R E A K

(one of
the most important)Fast Fourier Transform and widely used algorithms .

COMPLEXITY OF MULTIPLICATION ?

COMPLEXITY OF MULTIPLICATION ?

• constant time, ④(1), for e. g. , int64 's

• But what about
"

Big int
'

's ? (E.g. , array of uinta,
with bool for sign)

✓

COMPLEXITY OF MULTIPLICATION ?

• constant time, ④G), for e. g. , int64 's

• But what about
"

Big int
"

s ? (E.g. , array of uinta,
with bool for sign)

- Kolmogorov conjectured < 1960 : RCN),
where "

n
"

is the number of digits in the largest factor .

✓

COMPLEXITY OF MULTIPLICATION ?

• constant time, ④(1), for e. g. , int64 's

• But what about
"

Big int
"

s ? (E.g. , array of uinta,
with bool for sign)

- Kolmogorov conjectured < 1956 :I(n2#
Where "

n
"

is the number of digits in the largest factor .
(or " limbs

")

- Karatsuba (just 234.0!!) , in 19600, ④(n'0920
'

)

still used ! (E.g. in galang 's math . big - Int)

f- Current
theoretical best :

Harvey oindander Hoeven , 2021 : Olnidogn))

KARATSUBA 'S TRICK

Given a
,
beIN

,
and BE{2,3, _ . . } , write

a = aibtao b=b>Btbo .
ao >bo←B

Then : a.b = a. • b. B2 + (aiib, + bo.ae/Btaoebo
↑ ↑
4 multiplications of numbers

at best 42 the size

KARATSUBA 'S TRICK

Given a
,
beIN

,
and BE{2,3, _ . . } , write

a = aibtao b=b>Btbo .
aosbo ← B

Then : a.b = a. • b. B2 + (aiib, + bo.ae/Btaoebo
↑
4 multiplications of numbers

at best 42 the size

But also :

a.b= ai.be/32t((ao+ad;fbotbi1-ai.k-aibo)Btao.boI ↑
just 3 multiplications, since aobo and an .ba

can be reused !

fbat more additions)

EXAMPLE

ÉI% • 4%-6%5 = 7.45.1002 + (43+1)^(45+67) - 1.45-23-6-7) -100 1-23-67
= 45.1002 +(- 45_ - 100 t23?⃝

⑧ 24 . 112 = 22.102+16.13-22-8) -10 to
= 78

= 2200+480 to = 2688

gg.gg = ,, ,,, gg.gg , ,,,, , , ,, , ,,
=85

= 1200 + 320 +27 = 1541

= 45.1002 + (261%52-1-541) -100 + 1541

450000

= 120200

1541--1
561741

KARATSUBALA, b) :
let N = max (lengthCal , length 161)
if he = 1 : return ORDINARYMULTIPLICATION (aib)

write a=⇒⇒
b = ITEi

t.EE#g-n:T-ni2$ZetC2--KARATSUBA(04 , be)

Let co = KARATSUBA (do, bo)

Let ce = KARATS UBA (do+ai , botbi)

return I
,

The sum of:| _[
ix.

KARATSUBA / a. b) :
COMPLEXITY ANALYSIS

Let R = max (lengthCal , length 161) ⑥(e)

if N = 1 : return ORDINARYMULTIPLICATION (aib) ②(1)

write a=⇒⇒
6=11ij Gcn)

t.fm#eng-TnEni2$ZetC2--KARATsuBA(oG.b
,) 1-(5%7)

TEN/27)
TCLMZJDLet co = KARATSUBA (do, bo) - T(L%J) Trinity

Zet ce = KARATS UBA (do+ai , both)T(5%7+1)
return CE

The sum of:| #_[⑨CH

TETE
!
IF V12]

KARATSUBA MULTIPLICATION COMPLEXITY

T(n)=T(14211+1-(1-427) +171-42^+11+-004

Mastertheorem
?

SOLVING T(n)=T(1-4211+1-(1-427) +1-(1-4271) + ④ (n)

TCM ≤ 31-11-42
>
+ 1) + ⑦(n)

because

⇒ f- c-01h)
TCM) = 31-(5%41) + Oh,

I 5-≤9-0441

The Master Theorem still does not apply to T,

but it will to some Sofn) : = T(n+2d) where de≥ .

Sdcn) = 3T('-427+d#1) +0cm
≤ 31-(13427+201) -10cm if2d≥dM

⇔ d≥ 1
= 3 Sd (1-427) +0cm .

Thus , when d≥1 ,
IIUSI : Sd=④(n'

% I
Sdcn)=3 Salty>) +Gent

109291>1

SOLVING T(n)=T(1-4211+1-(1-427) +1-(1-4271) + ④ Cn)

Since Tfn +20¢) = ④ (n'9201) ,

we get Tcn) = Tan-2d) +2d)
= ④ kn-2dg

/0923) = ?⃝ (n'%) .
*

Computing whether

fcni-GCgcny.li?oofgYm-<• ⇒ fcm=0(guy
<*

(and

gcni-rcfcnMEXAMPLE-si-lim%d1-lin.cn?-1 '
± cntdieocnc)

n→oo a-

= .li?aoC+d-nI=i--z2-
.

since An\

A " Polynomial
"

MASTER THEOREM

Let a C-¢1,0) and be (7-0) and T : IN→ [0,0) be given .
Write y :=1ogbcai .

CaseI Tay -_ ④ (W) ⇐ Ten, = aT(1-467) + Gcnd)
(orjust≤) for some ☒<8

-

Case I Tlntocnrtogcnl) ⇐ TCn1=aT(%) + ② (no)
i.e.AT/tYbJ)+fCnisTCn1saT(TMbYtfCn)

for some 5- c- (no)

Caselli T(n1= (nd) ⇐ Tcn!=aTK%D*n)d
for some d>y

MASTER THEOREM from the book

Basically the same as the
"

Polynomial
"

Master Theorem ,

except for case III :

"polynomial
"

Caselli TCM= (nd) ⇐ Tcn!=aTK%t) * nd)
for some d>g

Becomes :

Tent _=aTK%J)tfCn)
for some fat=RCnᵈ)

case# TIM= ④(fem) ⇐ { for some et >g-= logbca)
provided f- is regular :

Fca,Ntn≥N[af('-45) ≤ Cfa)]
"

Polynomial
"
Case# can't deal with :

TCM= 1-4-42')+ ntogcnl

BEYOND MASTER THEOREM (§4.3 and §4.4)

TCH =ntTE42lt2TH5) F-②(a)

Guess : ④Cn) ⇔ 0cal anCn)

Find N
,
and Gos.t.vn≥N TCH ≤Ch by strong induction

Let new be given such that

✓man Tcml ≤ Cm .
? Tai ≤Cn

T(nl=ntT(into) + 21-(2%-1)
N= 20

≤ h + C 1-%> + 2C Msg
C=20V TCH

VICI)
V.

. . vT(20)
E-((%+t%7 + 2L %-))
≤ C (%t%t1 1- 2 %-)
= C NIE + % 't ;-) ≤ Cn if 420

E- to ≤Yeo n ≥2o

FOURIER TRANSFORM 430.2)

→
&

¥7. I71111111111*1111-1111%01
• #ÉÉM

OS ;•7s 0HZ↑µz 241-1-2

FOURIER TRANSFORM

* →
,÷

÷ii•"""""•
◦µ!%*%it⇔t◦ S '

, 241-1-2
•

a

:*

signal frequencies

APPLICATIONS :

• sound compression (throwaway frequencies
(mp3) we can't hear)

• image compression (using 20- waves
,
JPEG

, MPEG)

• noise filtering (remove 50 Hz)

• auto tune

:

• fast polynomial multiplication ← we'll show this !

• fast integer multiplication
• solving differential equations (¥ × .)
• factoring integers into prime numbers in polynomial time

on a quantum computer using Shor 's algorithm
(breaking RSA encryption .)

Before we start , we need some trigonometry. . .

Recall that sin 120-1 = Hsiao cos ⊖

COS (20-1 ⇐ 1- 25in2-0

:

Before we start , we need some trigonometry. . .

Recallthatsinl20-l-28.in#fC0SC20-1-=1-2Sih20:
We only need Complex Numbers

COMPLEX NUMBERS
fi .

. . . . -
-- - - - - - • atib

i.
. .
. are just pairs of real numbers, ,

i

① = { a + ib : a.be/R } '

;••→;with a new constant 2
.

-2

•
_ j

Addition is pointwise ,
atib + ctid = Catctilbtdl . • -21

.

Multiplication is fixed by the rule : 2.2=-1

@+ ib / fetid) = act icbctadltibd
= ac- bd + ilbctadl

I

MULTIPLICATION BY É

"

icati b) = -b + ia

Multiplication by i

is rotation over 90° !

EULER'S FORMULA

i.in?:I:ei---Cos0-tisin0-

EULER'S FORMULA

ei⊖ = cos ⊖ + isino "iConsequences :
- Any EEG can be written

2-= rei⊖ for some retort , ⊖ C- [0,21T)

i
- Multiplication by ⇐ rei⊖ is

(rei⊖ / (seise) = rsei
+91

scaling by r and rotation by ⊖
.

MORAL :

While a real number represents just scale,

a complex number represents scale and rotation .

Sane notation :

Recatibl = a real part
Imcati b) ⇐ b imaginary part
latibl =Ta2-b length

' 9

Pure tones
@

Are represented by :
frequency . •

I ← time
⇒ : : i.÷

É¥ᵗ pe.GE?o-j-- costsample size

'

Pure tones
'

I % •
& a

Are represented by :
frequency
↓ ← time ;

•

•
.

•

•
•

&

É¥ᵗ pe.EE?o-j-- costsample size

DISCRETE given Cao , . . . > an -1) c- ,

FOURIER TRANSFORM finds (yo . . . - yn-MEC
' " with :

µ-1
I 7 -Kt

where w=É .at = ↳KW

1<=0

(to be consistent with the book)

Finding Yo, yes . - - .Yµ-1 w=e2
So wN=e2ñi=1

Since at-_ÉykÑ"ᵗ we have :
1<=0

Clo 1 1 11 - - . 1 Yo
"")= ±[

" '
"⇔

""
" \1 W'2W" w

"
- - -

↳) ?⃝I µ : :
: : : :

:(aw- i
1 W at wˢ

. . .

ai
'

YN-1

So we have to invert this matrix
↑

.

1 1 11 - - . 1 -1

11
1 11 - - ' 1

?⃝
" "
°" ʰ °

" " " ' °"
"

¥ 1 w2W"w" - - -

at) 1 w2w"w° - - -); ;
: :

-

.

I =
; ;

: :
-

. ;

I W at wˢ
. . .

at
' 1 W

"

at is
. . .

w

⇐◦"↑# tf:*N- I N- I

€

because:{ uikmw "ⁿ==É(wⁿY" Eik=N
1<=0

wN=1

/ e-

ym-n.EE?-Y-w:I--5#i.?----.-wm.n--wN--¢u /
"
=e =L

DISCRETE FOURIER TRANSFORM

= (¥%J . ①Cay
N-1

Ys=[dew
"ˢ

14=0

*

,
É

µ
.

i•iiimm%•
.

I!¥¥#•Ét
"
.
"
••

act =±Éykw*ᵗ
N
1<=0

signal frequencies
(Ao , An -

. _
, AN-1) EEN ftp.yi/---.gn-i-1CN

FAST FOURIER TRANSFORM (FFT)

Computing the DFT [Yo , ya , - - , Yiu- 1) from (ao.ae. . . _ , and

naively takes (NZ) arithmetic operations on ?⃝ (or rather flops,)
because of the matrix times vector involved :

tilt 11¥ .

:

And for an arbitrary matrix this is probably the
best we can do .

Hower, this matrix is not arbitrary , and we can use

a clever divide- and- conquer trick
to get down to ④(NIOGCND !

- . . if N is a power of 2 .

FFT : Divide and Conquer
Let N be a power of 2 .

Write ; given Cao, . . . ,aµ-e) C- ICN,

N-I

DFTC-aom.am- it = (204×9%1
"-1

where wµ=e".
k=o 5=0

Then
, splitting even and odd terms :

142--1 142-1

DFT(ao, . . - ran- 1)s=£kkwÉ" +{ azkt, wÉ
"""

k=o K=o

NK- 1 Nts-1

= { ask@Ñ)
""

t wˢ{a2k+,@Ñ)
""

k=o
⇔

because
-
- w,f=É%=wNk

DFTfao.az, AN-2) s DFT(Arian - . - AN-1) s

FFT/Ao , _ _

, AN-1) : (N power of 2)

if N=1 : return @G)
let W = eatin
let us = 1 ✗ will be wˢ

Zet Yeven = FFT (do , 92 , - - - , AN-2)
let yodd = FFT (ai , as, - - - , AN-1)

for 5=0 to NK-2 :

Let y = (1)events + wstyoddls
Ws = Ws - W

return (yo , - - - iyiv-1)

FFT/Ao , _ . _ , an,) :
COMPLEXITY

'

ANALYSIS (N power of 2)

if N=1 : return @G)
Let W = eatin
let us = 1 ✗ will be ws} ②"

"

ZEE 1)even = FFT / do , 92 , - - - i 9N-2)
let Yodd = FFT /a. , as, . . . ,aµ.≥) } 2T/%)
for 5=0 to 1%-2 :

Let y = (1)events + wstyoddls } ④ (N)Ws = Ws - W

return (yo , _ _ . . ,yµ-1))

-

COMPLEXITY
FFT/Ao , _ _

, AN-1) : ANAN
'S (N power of 2)

if N=1 : return @co)

let W = eatin
let us = 1- ✗ will be us} "°"

"

TCN)=2T(%) t (N)
2etyeven-FF-ldo.az/---iaN-2) } 2T/%)let yodd = FFT/and}, - - - , AN-1)

It
for 5=0 to 1%-2 :µ,.⇔,,⇔⇔,y. µ , , @µ ,,µ,Ws = Ws - W

return (yo , _ _ . . ,yµ-1))

INVERSE ?

For the inverse DFT, IDFT
,
there is a

similar algorithm with runtime ④(N logCNY .

(Replace w by w
-1

,

and add -IN at the end .)

Application : fast polynomial multiplication

Recall that a polynomial over ① is of the form :

ffxl = Aot aixt .
_

. + an-Pitt = ÉakxN-1,
⇐ o 1

where ao, a, , - . . . an-1
are the coefficients of f.

Multiplying polynomials is not simply a matter of multiplying
coefficients, because e. g.

Cao+9,24 (both a) = aobo + (aob, + aibo)x + aibex?

In general : Hence, the2N-2 ki
naive algorithmakxk) bi.pk/--E(Eaeb*e)x" will be : ④(ri)

1<=0 1<=0 1=0

WE CAN DO BETTER . . .

By multiplying DFT 's . Given a. be
N

,
se { o, N-1}

µ-1

Dfttals • DFT (b) s =/{akwsk) (bew
"

)k=o 2=0
.

•

= 04, be wslkte
)

K,l=o as polynomialmutt.←
= EYE-ambn.mm.nu/ws*

""

2N-2 ki

{ ({aebx.ie/x-kk=ol--on--Om--
0

But w
'

wraps
'

around :

wN+k= wk
☒N+k≠xk

WE CAN DO BETTER . . .

By multiplying DFT 's . Given a. be ?⃝
N

,
SE { o, N-1}

µ-1

Dfttals • DFT (b) s =/{akwsk) (bew
"

)k=o 2=0
.

•

= 04, be wslkte
)

K,l=o as polynomialmutt.←
= ambn.mm.my ws

,

same

2N-2 ki

E- ({aebx.ie/x-kk--ol--on--Om--
0

Double
°

_BÉp5
that
an
__bn=°

for
"
>
"" É([ambn-m) ws" around :

wN+k= wk=
n=o m=0

☒N+k≠xk

FAST POLYNOMIAL MULTIPLICATION

To compute the coefficients of

(Éakxk) bkxk) ,
K=o 1<=0

?⃝ write a-_ Cao , _ _ . . an-1,90 . . . ,o) , b= Cbo, - - - , but , 0,0, _ _ . ,o) E ①
M
,

where Misa power of 2 with M > 2N
,

② compute y :=DFT(a) and 2- :=DFT / b) ,

③ multiply y and 2- pointwise : Us :=(Ys - 2-s)sM=o
.

④ Compute c := IDFTCU) , and return the first 2N elements ofc .

FAST POLYNOMIAL MULTIPLICATION

To compute the coefficients of

(Éakxk) bkxk) ,
k=o 1<=0

?⃝ write a-_ Cao , _ _ . . an-1,90 . . . ,o) , b= Cbo, - - - , but , 0,0, _ _ . ,o) E ①
M
,

where Misa power of 2 with M > 2N
,

OCN)

② compute y :=DFT(a) and 2- :=DFT / b) , uocwlogcnt

③ multiply y and 2- pointwise : Us :=(Ys - Zs)sM=o ?⃝CN)

④ Compute c :=IDFT(a) , and return the first 2N •④(NIOGN)

OVERALL : ⑦(N log N)

Fin

Next week : no lecture

(spring break)

May g : start of Part II

(COMPLEXITY of PROBLEMS)

