

Complexity Theory

Complexity Classes

May 9, 2022

Decision Problems

Complexity Classes

NP-hardness and **NP**-completeness

Outline

Decision Problems

Complexity Classes

NP-hardness and **NP**-completeness

Basics on Decision Problems

- Decision problem: a yes/no-problem. So, does a given input satisfy a certain property?
- Decision problems represent **subsets** of $\{0, 1\}^*$.

Basics on Decision Problems

- Decision problem: a yes/no-problem. So, does a given input satisfy a certain property?
- Decision problems represent **subsets** of $\{0, 1\}^*$.
- Examples of decision problems:
 - (i) Given $n \in \mathbb{N}$, is n prime?
 - (ii) Given a graph G , does G have a Hamiltonian path?
 - (iii) Given a graph G , does G have an Euler path?
 - (iv) Given a formula φ , is φ satisfiable?

Recall

- Hamiltonian path: visits every **node** exactly once
- Euler path: visits every **edge** exactly once

Encodings

- More complicated data types (graphs, formulas) need to be encoded.
- So: represent the set of graphs/formulas as subsets of $\{0, 1\}^*$
- Precisely defining such an encoding is “high effort, little gain”.
- We will leave the encodings implicit.

Recall: Operations on Languages

Recall from Languages and Automata:

- $A \cap B = \{x \in A \mid x \in B\}$
- $x \in A \cup B$ if and only if $x \in A$ or $x \in B$
- $\overline{A} = \{w \in \{0, 1\}^* \mid w \notin A\}$
- $x \in AB$ if we can write $x = vw$ with $v \in A$ and $w \in B$
- $x \in A^*$ if we can write $x = w_1 \dots w_n$ with $w_i \in A$ for all i

Note: we work with subsets of $\{0, 1\}^*$.

Outline

Decision Problems

Complexity Classes

NP-hardness and **NP**-completeness

Polynomial Decision Problems

Definition

Let X be a decision problem. An algorithm A **decides** X if for all $w \in \{0, 1\}^*$, we have $w \in X$ if and only if $A(w) = 1$.

Polynomial Decision Problems

Definition

Let X be a decision problem. An algorithm A **decides** X if for all $w \in \{0, 1\}^*$, we have $w \in X$ if and only if $A(w) = 1$.

Definition

An algorithm A **runs in polynomial time** if for its time complexity we have $T(n) = \mathcal{O}(n^k)$ for some k

Polynomial Decision Problems

Definition

Let X be a decision problem. An algorithm A **decides** X if for all $w \in \{0, 1\}^*$, we have $w \in X$ if and only if $A(w) = 1$.

Definition

An algorithm A **runs in polynomial time** if for its time complexity we have $T(n) = \mathcal{O}(n^k)$ for some k

Definition

A decision problem X is said to be **polynomial** if there is an algorithm that runs in polynomial time and that decides X .

If this is the case, we write $X \in \mathbf{P}$.

Polynomial Decision Problems

Definition

Let X be a decision problem. An algorithm A **decides** X if for all $w \in \{0, 1\}^*$, we have $w \in X$ if and only if $A(w) = 1$.

Definition

An algorithm A **runs in polynomial time** if for its time complexity we have $T(n) = \mathcal{O}(n^k)$ for some k

Definition

A decision problem X is said to be **polynomial** if there is an algorithm that runs in polynomial time and that decides X .

If this is the case, we write $X \in \mathbf{P}$.

Some Decision Problems

Are the following decision problems in **P**?

- Given $n \in \mathbb{N}$, is n even?

Some Decision Problems

Are the following decision problems in **P**?

- Given $n \in \mathbb{N}$, is n even?
- Given a formula φ , does φ contain a negation?

Some Decision Problems

Are the following decision problems in **P**?

- Given $n \in \mathbb{N}$, is n even?
- Given a formula φ , does φ contain a negation?
- Given a graph G and nodes x and y , is there a path from x to y ?

Hint: think of what you learned in Algorithms and Data Structures!

Some Decision Problems

Are the following decision problems in **P**?

- Given $n \in \mathbb{N}$, is n even?
- Given a formula φ , does φ contain a negation?
- Given a graph G and nodes x and y , is there a path from x to y ?
Hint: think of what you learned in Algorithms and Data Structures!
- Given a formula φ , is φ in conjunctive normal form?

A formula is in conjunctive normal form if it is a conjunction of disjunctions of possibly negated atoms

Examples: $(x \vee \neg y) \wedge (x \vee y)$, $\neg x \vee \neg y$

Counterexamples: $(x \wedge y) \rightarrow z$, $(x \wedge y) \vee (x \wedge \neg y)$

Some Decision Problems

Are the following decision problems in **P**?

- Given $n \in \mathbb{N}$, is n even?
- Given a formula φ , does φ contain a negation?
- Given a graph G and nodes x and y , is there a path from x to y ?

Hint: think of what you learned in Algorithms and Data Structures!

- Given a formula φ , is φ in conjunctive normal form?

A formula is in conjunctive normal form if it is a conjunction of disjunctions of possibly negated atoms

Examples: $(x \vee \neg y) \wedge (x \vee y)$, $\neg x \vee \neg y$

Counterexamples: $(x \wedge y) \rightarrow z$, $(x \wedge y) \vee (x \wedge \neg y)$

Closure Operations

Theorem

- If $A \in \mathbf{P}$, then $\bar{A} \in \mathbf{P}$ (complement)
- If $A \in \mathbf{P}$ and $B \in \mathbf{P}$, then $A \cup B \in \mathbf{P}$ (union)
- If $A \in \mathbf{P}$ and $B \in \mathbf{P}$, then $A \cap B \in \mathbf{P}$ (intersection)
- If $A \in \mathbf{P}$ and $B \in \mathbf{P}$, then $A \cdot B \in \mathbf{P}$ (concatenation)

A short remark on encodings

Definition

Suppose, we have two encodings $e_1, e_2 : I \rightarrow \{0, 1\}^*$.

We say that e_1 and e_2 are **polynomially related** if we have polynomial functions $f, g : I \rightarrow I$ such that for all $i \in I$ we have

$$f(e_1(i)) = e_2(i)$$

$$g(e_2(i)) = e_1(i)$$

A short remark on encodings

Definition

Suppose, we have two encodings $e_1, e_2 : I \rightarrow \{0, 1\}^*$.

We say that e_1 and e_2 are **polynomially related** if we have polynomial functions $f, g : I \rightarrow I$ such that for all $i \in I$ we have

$$f(e_1(i)) = e_2(i)$$

$$g(e_2(i)) = e_1(i)$$

Note: if e_1 and e_2 are polynomial related, then we can decide Q in polynomial time with encoding e_1 if and only if we can decide Q in polynomial time with encoding e_2 .

Nondeterministic Polynomial Decision Problems

Definition

An algorithm $A : \{0, 1\}^* \times \{0, 1\}^* \rightarrow \{0, 1\}$ **verifies** X if for all $w \in \{0, 1\}^*$, we have $w \in X$ if and only if there is a $y \in \{0, 1\}^*$ such that $A(w, y) = 1$. This y is called **the certificate**.

Nondeterministic Polynomial Decision Problems

Definition

An algorithm $A : \{0, 1\}^* \times \{0, 1\}^* \rightarrow \{0, 1\}$ **verifies** X if for all $w \in \{0, 1\}^*$, we have $w \in X$ if and only if there is a $y \in \{0, 1\}^*$ such that $A(w, y) = 1$. This y is called **the certificate**.

Definition

An algorithm $A : \{0, 1\}^* \times \{0, 1\}^* \rightarrow \{0, 1\}$ **verifies** X in **nondeterministic polynomial time** if A verifies X and if for its time complexity we have $T(n) = \mathcal{O}(n^k)$ for some k .

Nondeterministic Polynomial Decision Problems

Definition

An algorithm $A : \{0, 1\}^* \times \{0, 1\}^* \rightarrow \{0, 1\}$ **verifies** X if for all $w \in \{0, 1\}^*$, we have $w \in X$ if and only if there is a $y \in \{0, 1\}^*$ such that $A(w, y) = 1$. This y is called **the certificate**.

Definition

An algorithm $A : \{0, 1\}^* \times \{0, 1\}^* \rightarrow \{0, 1\}$ verifies X in **nondeterministic polynomial time** if A verifies X and if for its time complexity we have $T(n) = \mathcal{O}(n^k)$ for some k .

Definition

We say that $X \in \mathbf{NP}$ if there is an algorithm A that verifies X in nondeterministic polynomial time.

Nondeterministic Polynomial Decision Problems

Definition

An algorithm $A : \{0, 1\}^* \times \{0, 1\}^* \rightarrow \{0, 1\}$ **verifies** X if for all $w \in \{0, 1\}^*$, we have $w \in X$ if and only if there is a $y \in \{0, 1\}^*$ such that $A(w, y) = 1$. This y is called **the certificate**.

Definition

An algorithm $A : \{0, 1\}^* \times \{0, 1\}^* \rightarrow \{0, 1\}$ verifies X in **nondeterministic polynomial time** if A verifies X and if for its time complexity we have $T(n) = \mathcal{O}(n^k)$ for some k .

Definition

We say that $X \in \mathbf{NP}$ if there is an algorithm A that verifies X in nondeterministic polynomial time.

Examples

Are the following problems in **NP**?

- Given $n \in \mathbb{N}$, is n a composite number?

Examples

Are the following problems in **NP**?

- Given $n \in \mathbb{N}$, is n a composite number?
- Given a formula φ , is φ satisfiable?

Examples

Are the following problems in **NP**?

- Given $n \in \mathbb{N}$, is n a composite number?
- Given a formula φ , is φ satisfiable?
- Given a graph G , does G have a Hamiltonian path?

Examples

Are the following problems in **NP**?

- Given $n \in \mathbb{N}$, is n a composite number?
- Given a formula φ , is φ satisfiable?
- Given a graph G , does G have a Hamiltonian path?
- Suppose, we have n items with weight w_i and value v_i . Can we pick items in such a way that the sum of values is at least V and the sum of the weights is at most W ? (*Knapsack problem*)

Examples

Are the following problems in **NP**?

- Given $n \in \mathbb{N}$, is n a composite number?
- Given a formula φ , is φ satisfiable?
- Given a graph G , does G have a Hamiltonian path?
- Suppose, we have n items with weight w_i and value v_i . Can we pick items in such a way that the sum of values is at least V and the sum of the weights is at most W ? (*Knapsack problem*)
- Given an $n^2 \times n^2$ Sudoku, does it have a solution?

Examples

Are the following problems in **NP**?

- Given $n \in \mathbb{N}$, is n a composite number?
- Given a formula φ , is φ satisfiable?
- Given a graph G , does G have a Hamiltonian path?
- Suppose, we have n items with weight w_i and value v_i . Can we pick items in such a way that the sum of values is at least V and the sum of the weights is at most W ? (*Knapsack problem*)
- Given an $n^2 \times n^2$ Sudoku, does it have a solution?

Closure Operations

Theorem

- If $A \in \mathbf{NP}$ and $B \in \mathbf{NP}$, then $A \cup B \in \mathbf{NP}$ (union)
- If $A \in \mathbf{NP}$ and $B \in \mathbf{NP}$, then $A \cap B \in \mathbf{NP}$ (intersection)
- If $A \in \mathbf{NP}$ and $B \in \mathbf{NP}$, then $A \cdot B \in \mathbf{NP}$ (concatenation)

Open problem: if $A \in \mathbf{NP}$, is $\overline{A} \in \mathbf{NP}$?

Intermezzo: non-deterministic Turing Machines

Using Turing machines, we can define **P** and **NP** as follows:

- $X \in \mathbf{P}$ if there is a **deterministic** Turing machine running in polynomial time that decides X
- $X \in \mathbf{NP}$ if there is a **nondeterministic** Turing machine running in polynomial time that decides X

This is why we call **NP** nondeterministic polynomial.

P versus NP

- Is **P** a subset of **NP**?

P versus NP

- Is **P** a subset of **NP**?
Yes!

P versus NP

- Is **P** a subset of **NP**?
Yes!
- Are **P** and **NP** equal?

P versus NP

- Is **P** a subset of **NP**?

Yes!

- Are **P** and **NP** equal?

That is an open problem

Famous problem in computer science: do we have **P** = **NP**?

Outline

Decision Problems

Complexity Classes

NP-hardness and NP-completeness

Reducibility

Definition

We say that **A (polynomially) reduces to B** if we have a function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ such that

- $f \in \mathcal{O}(n^k)$ for some k ;
- for all $w \in \{0, 1\}^*$ we have $w \in A$ if and only if $f(w) \in B$.

If this is the case, we write $A \leq_P B$.

Properties of Reduction

Theorem

- For each decision problem A , we have $A \leq_P A$
- If $A \leq_P B$ and $B \leq_P C$, then we also have $A \leq_P C$
- If $A \leq_P B$ and B is in \mathbf{P} , then $A \in \mathbf{P}$
- If $A \leq_P B$ and B is in \mathbf{NP} , then $A \in \mathbf{NP}$

Properties of Reduction

Theorem

- For each decision problem A , we have $A \leq_P A$
- If $A \leq_P B$ and $B \leq_P C$, then we also have $A \leq_P C$
- If $A \leq_P B$ and B is in \mathbf{P} , then $A \in \mathbf{P}$
- If $A \leq_P B$ and B is in \mathbf{NP} , then $A \in \mathbf{NP}$

NP-hard and NP-complete

Definition

A decision problem B is said to be **NP-hard** if for all decision problems $A \in \mathbf{NP}$ we have $A \leq_P B$.

NP-hard and NP-complete

Definition

A decision problem B is said to be **NP-hard** if for all decision problems $A \in \mathbf{NP}$ we have $A \leq_P B$.

Definition

A decision problem B is said to be **NP-complete** if $B \in \mathbf{NP}$ and if B is **NP-hard**.

NP-hard and NP-complete

Definition

A decision problem B is said to be **NP-hard** if for all decision problems $A \in \mathbf{NP}$ we have $A \leq_P B$.

Definition

A decision problem B is said to be **NP-complete** if $B \in \mathbf{NP}$ and if B is **NP-hard**.

Theorem

If A reduces to B , A is NP-hard, then B is NP-hard

NP-hard and NP-complete

Definition

A decision problem B is said to be **NP-hard** if for all decision problems $A \in \mathbf{NP}$ we have $A \leq_P B$.

Definition

A decision problem B is said to be **NP-complete** if $B \in \mathbf{NP}$ and if B is **NP-hard**.

Theorem

*If A reduces to B , A is **NP-hard**, then B is **NP-hard***

Proof.

Suppose, $A \leq_P B$ and A is **NP-hard**.

Let $X \in \mathbf{NP}$. To show: $X \leq_P B$.

Since A is **NP-hard**: $X \leq_P A$.

Since we also have $A \leq_P B$, we get $X \leq_P B$. □

NP-hard and NP-complete

Definition

A decision problem B is said to be **NP-hard** if for all decision problems $A \in \mathbf{NP}$ we have $A \leq_P B$.

Definition

A decision problem B is said to be **NP-complete** if $B \in \mathbf{NP}$ and if B is **NP-hard**.

Theorem

If A reduces to B , A is NP-hard, then B is NP-hard

Proof.

Suppose, $A \leq_P B$ and A is **NP-hard**.

Let $X \in \mathbf{NP}$. To show: $X \leq_P B$.

Since A is **NP-hard**: $X \leq_P A$.

Since we also have $A \leq_P B$, we get $X \leq_P B$. □

SAT

The **Boolean satisfiability problem**, also known as SAT is the following problem

Given a formula φ , is φ satisfiable? So: is there an assignment of atoms to truth values under which φ is true?

We already saw: SAT is in **NP**.

In fact: SAT is **NP**-complete.

Variations of SAT

Definition

A formula is in **disjunctive normal form** if it is written as disjunction of conjunctions of possibly negated atoms.

Variations of SAT

Definition

A formula is in **disjunctive normal form** if it is written as disjunction of conjunctions of possibly negated atoms.

Examples:

- $(A \wedge \neg B \wedge C) \vee (A \wedge C) \vee (A \wedge B \wedge \neg B)$
- $A \wedge \neg B \wedge C$

Not in DNF:

- $(A \vee \neg B \wedge C) \vee (A \wedge C)$
- $A \wedge \neg(B \vee C) \wedge C$

Variations of SAT

Definition

A formula is in **disjunctive normal form** if it is written as disjunction of conjunctions of possibly negated atoms.

Examples:

- $(A \wedge \neg B \wedge C) \vee (A \wedge C) \vee (A \wedge B \wedge \neg B)$
- $A \wedge \neg B \wedge C$

Not in DNF:

- $(A \vee \neg B \wedge C) \vee (A \wedge C)$
- $A \wedge \neg(B \vee C) \wedge C$

SAT for formulas in DNF is in **P**.

Variations of SAT

Definition

A formula is in **conjunctive normal form** if it is written as conjunction of disjunctions of possibly negated atoms.

Variations of SAT

Definition

A formula is in **conjunctive normal form** if it is written as conjunction of disjunctions of possibly negated atoms.

Examples:

- $(A \vee \neg B \vee C) \wedge (A \vee C) \wedge (A \vee B \vee \neg B)$
- $A \vee \neg B \vee C$

Not in CNF:

- $(A \vee \neg B \wedge C) \wedge (A \vee C)$
- $A \vee \neg(B \wedge C) \vee C$

Variations of SAT

Definition

A formula is in **conjunctive normal form** if it is written as conjunction of disjunctions of possibly negated atoms.

Examples:

- $(A \vee \neg B \vee C) \wedge (A \vee C) \wedge (A \vee B \vee \neg B)$
- $A \vee \neg B \vee C$

Not in CNF:

- $(A \vee \neg B \wedge C) \wedge (A \vee C)$
- $A \vee \neg(B \wedge C) \vee C$

SAT for formulas in CNF is **NP**-complete.

We call this problem: CNF.

Putting formulas in CNF

Note: every formula ϕ is equivalent to a formula ψ in CNF.

One way to determine ψ :

- Remove (bi)implications (use $A \rightarrow B \equiv \neg A \vee B$)
- Put negations next to literals (use $\neg(A \wedge B) \equiv \neg A \vee \neg B$ and $\neg(A \vee B) \equiv \neg A \wedge \neg B$)
- Put in CNF using $(A \wedge B) \vee C \equiv (A \vee C) \wedge (B \vee C)$