

Complexity Theory

NP-Complete Problems

May 16, 2022

Recap

More Satisfiability Problems

Integer Linear Programming

Graph Problems

Clique

Vertex Cover

Coloring

This lecture

- Most important topic: **NP**-completeness proofs
- Details will be written on the board (not on the slides)
- When possible, I give references to the book

Outline

Recap

More Satisfiability Problems

Integer Linear Programming

Graph Problems

Clique

Vertex Cover

Coloring

Nondeterministic Polynomial Decision Problems

Definition

An algorithm $A : \{0, 1\}^* \times \{0, 1\}^* \rightarrow \{0, 1\}$ **verifies** X if for all $w \in \{0, 1\}^*$, we have $w \in X$ if and only if there is a $y \in \{0, 1\}^*$ such that $A(w, y) = 1$. This y is called **the certificate**.

Definition

An algorithm $A : \{0, 1\}^* \times \{0, 1\}^* \rightarrow \{0, 1\}$ verifies X in **nondeterministic polynomial time** if A verifies X and if for its time complexity we have $T(n) = \mathcal{O}(n^k)$ for some k .

Definition

We say that $X \in \mathbf{NP}$ if there is an algorithm A that verifies X in nondeterministic polynomial time.

Reducibility

Definition

We say that **A (polynomially) reduces to B** if we have a function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ such that

- $f \in \mathcal{O}(n^k)$ for some k ;
- for all $w \in \{0, 1\}^*$ we have $w \in A$ if and only if $f(w) \in B$.

If this is the case, we write $A \leq_P B$.

NP-hard and NP-complete

Definition

A decision problem B is said to be **NP-hard** if for all decision problems $A \in \mathbf{NP}$ we have $A \leq_P B$.

Definition

A decision problem B is said to be **NP-complete** if $B \in \mathbf{NP}$ and if B is **NP-hard**.

Theorem

If A reduces to B , A is NP-hard, then B is NP-hard

SAT

The **Boolean satisfiability problem**, also known as SAT is the following problem

Given a formula φ , is φ satisfiable? So: is there an assignment of atoms to truth values under which φ is true?

We already saw: SAT is in **NP**.

In fact: SAT is **NP**-complete.

Variations of SAT

Definition

A formula is in **conjunctive normal form** if it is written as conjunction of disjunctions of possibly negated atoms.

Examples:

- $(A \vee \neg B \vee C) \wedge (A \vee C) \wedge (A \vee B \vee \neg B)$
- $A \vee \neg B \vee C$

Not in CNF:

- $(A \vee \neg B \wedge C) \wedge (A \vee C)$
- $A \vee \neg(B \wedge C) \vee C$

SAT for formulas in CNF is **NP**-complete.

Outline

Recap

More Satisfiability Problems

Integer Linear Programming

Graph Problems

Clique

Vertex Cover

Coloring

How to prove that a problem is NP-complete?

How to prove that a problem is NP-complete?

To show that A is **NP**-complete, take the following steps:

- (i) Show that A is in **NP**.
- (ii) Pick a decision problem C of which you know that it is **NP**-complete.
- (iii) Prove that $C \leq_P A$.

At most 3-conjunctive normal form

Definition

A formula is in **at most 3-conjunctive normal form** if it can be written as a conjunction of disjunctions of literals, and each disjunction has at most 3 literals.

Example:

$$(A \vee \neg B \vee C) \wedge (\neg A \vee B) \wedge \neg C$$

Not an example:

$$(A \vee \neg B \vee C \vee D \vee \neg E) \wedge (\neg A \vee B) \wedge \neg C$$

$\leq_3\text{CNF}$ is NP-complete

We look at the decision problem $\leq_3\text{CNF}$

Given a formula in at most 3-conjunctive normal form, is it satisfiable?

Theorem

$\leq_3\text{CNF}$ is NP-complete

Exactly 3-conjunctive normal form

Definition

A formula is in **exactly 3-conjunctive normal form** if it can be written as a conjunction of disjunctions of literals, and each disjunction has exactly 3 literals.

Example:

$$(A \vee \neg B \vee C) \wedge (\neg A \vee B \vee \neg D) \wedge (\neg A \vee \neg B \vee \neg C)$$

Not an example:

$$(A \vee \neg B \vee C) \wedge (\neg A \vee B) \wedge \neg C$$

3CNF is NP-complete

We look at the decision problem 3CNF

Given a formula in exactly 3-conjunctive normal form, is it satisfiable?

Theorem

3CNF is NP-complete

Theorem 34.10 in “Introduction to Algorithms”.

Outline

Recap

More Satisfiability Problems

Integer Linear Programming

Graph Problems

Clique

Vertex Cover

Coloring

Integer Linear Programming

Integer linear programming:

Given a finite set of variables and a finite set of inequalities using those variables, is there a solution that satisfies all the inequalities?

Examples of Integer Linear Programming

Can we find integers x_1, x_2, x_3 such that

$$\begin{aligned} 3 \cdot x_1 + 5 \cdot x_2 - 2 \cdot x_3 &\leq 7 \\ 8 \cdot x_1 + 2 \cdot x_2 - 4 \cdot x_3 &\leq 4 \\ x_1 + x_2 + x_3 &\leq 37 \end{aligned}$$

Examples of Integer Linear Programming

Can we find integers x_1, x_2, x_3 such that

$$\begin{aligned} 3 \cdot x_1 + 5 \cdot x_2 - 2 \cdot x_3 &\leq 7 \\ 8 \cdot x_1 + 2 \cdot x_2 - 4 \cdot x_3 &\leq 4 \\ x_1 + x_2 + x_3 &\leq 37 \end{aligned}$$

Solution $x_1 = x_2 = x_3 = 0$.

Examples of Integer Linear Programming

Can we find integers x_1, x_2, x_3 such that

$$\begin{aligned} 3 \cdot x_1 + 5 \cdot x_2 - 2 \cdot x_3 &\leq 7 \\ 8 \cdot x_1 + 2 \cdot x_2 - 4 \cdot x_3 &\leq 4 \\ x_1 + x_2 + x_3 &\leq 37 \end{aligned}$$

Solution $x_1 = x_2 = x_3 = 0$.

Can we find integers x_1 and x_2 such that

$$\begin{aligned} 2 \cdot x_1 + 3 \cdot x_2 &\geq 37 \\ x_1 + x_2 &\leq 3 \\ x_1 &\geq 1 \\ x_2 &\geq 1 \end{aligned}$$

Examples of Integer Linear Programming

Can we find integers x_1, x_2, x_3 such that

$$\begin{aligned}3 \cdot x_1 + 5 \cdot x_2 - 2 \cdot x_3 &\leq 7 \\8 \cdot x_1 + 2 \cdot x_2 - 4 \cdot x_3 &\leq 4 \\x_1 + x_2 + x_3 &\leq 37\end{aligned}$$

Solution $x_1 = x_2 = x_3 = 0$.

Can we find integers x_1 and x_2 such that

$$\begin{aligned}2 \cdot x_1 + 3 \cdot x_2 &\geq 37 \\x_1 + x_2 &\leq 3 \\x_1 &\geq 1 \\x_2 &\geq 1\end{aligned}$$

No solution!

NP-completeness of ILP

We look at the decision problem ILP

Given an integer linear program, does it have a solution?

Theorem

ILP is **NP-complete**.

Exercises 34.5-2 and 34.5-3 in the book.

Outline

Recap

More Satisfiability Problems

Integer Linear Programming

Graph Problems

Clique

Vertex Cover

Coloring

Cliques

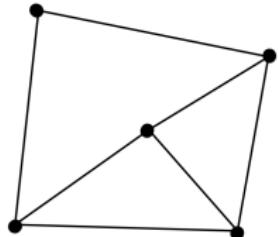
Definition

Let $G = (V, E)$ be a graph. A **clique** in G is a subset $V' \subseteq V$ such that for every distinct $v, v' \in V'$ there is an edge between v and v' .

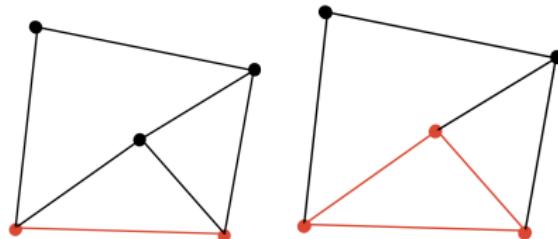
Briefly, a clique is a subgraph in which every two distinct vertices are adjacent.

Example of cliques

Consider the following graph:



Some cliques in that graph:



Clique is NP-complete

We look the following decision problem Clique:

Given a graph G and an integer k , does G have a clique with k vertices?

Theorem

Clique is **NP-complete**.

Theorem 34.11 in “Introduction to Algorithms”.

Illustration of the proof

Consider $(a \vee b \vee c) \wedge (\neg a \vee \neg b \vee c) \wedge (\neg a \vee b \vee c)$.

$$(a \vee b \vee c) \wedge (\neg a \vee \neg b \vee c) \wedge (\neg a \vee b \vee c)$$

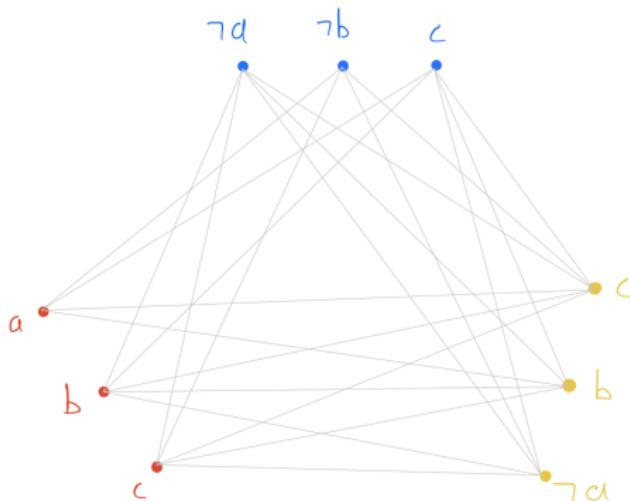
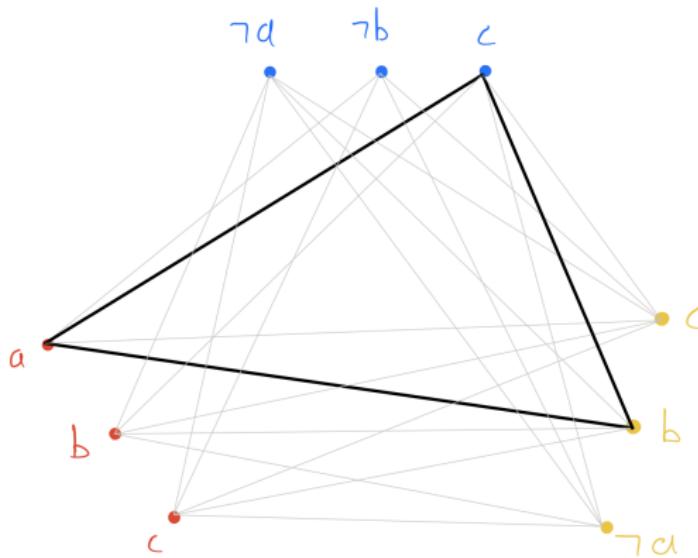


Illustration of the proof

Pick a from $(a \vee b \vee c)$, b from $(\neg a \vee b \vee c)$, and c from $(\neg a \vee \neg b \vee c)$.
We get the following clique



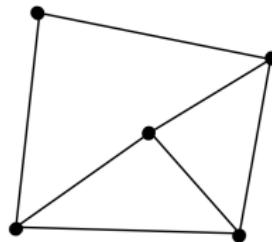
Vertex Covers

Definition

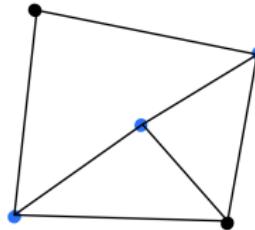
Let $G = (V, E)$ be a graph. A **vertex cover** of G is a subset $V' \subseteq V$ of vertices such that every edge has at least 1 endpoint in V' .

Example of a vertex cover

Consider the following graph:



A vertex cover in that graph:



VertexCover is NP-complete

We look at the decision problem VertexCover

Given a graph G and an integer k , does G have a vertex cover with k vertices?

Theorem

VertexCover is **NP-complete**.

Theorem 34.12 in “Introduction to Algorithms”.

Illustration of the proof

Consider the following graph (clique in blue):

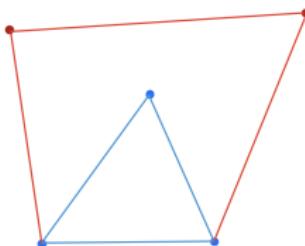
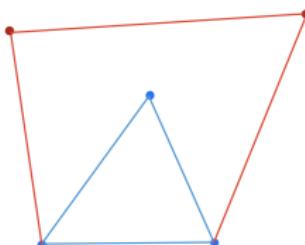
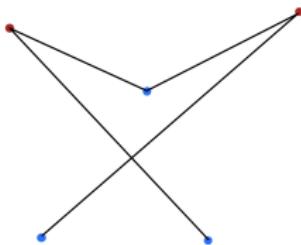


Illustration of the proof

Consider the following graph (clique in blue):



From the construction, we get (vertex cover in red):



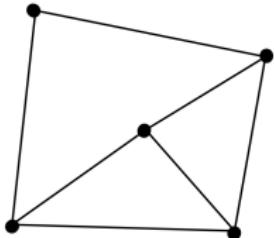
Coloring

Definition

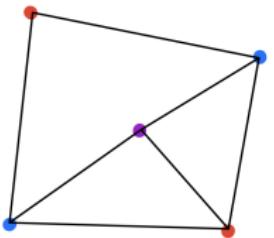
Let $G = (V, E)$ be a graph. A **3-coloring** is a function $c : V \rightarrow \{b, p, r\}$ such that for every edge e between v and w we have $c(v) \neq c(w)$.

Example of a coloring

Consider the following graph:



A 3-coloring of that graph:



3Color is NP-complete

We look at the decision problem 3Color

Given a graph G , does G have a 3-coloring?

Theorem

3Color is **NP-complete**.

See the note!