

Complexity Theory

More **NP**-Complete Problems

May 23, 2022

Recap

More **NP**-complete problems

Graph problems

Sums of subsets

Parsing

Extra Topics

Outline

Recap

More NP-complete problems

Graph problems

Sums of subsets

Parsing

Extra Topics

How to prove that a problem is NP-complete?

To show that A is **NP**-complete, take the following steps:

- (i) Show that A is in **NP**.
- (ii) Pick a decision problem A' of which you know that it is **NP**-complete.
- (iii) Prove that $A' \leq_P A$.

Some NP-complete problems (satisfiability)

SAT

Given a formula φ , is φ satisfiable?

CNF

Given a formula φ in conjunctive normal form, is φ satisfiable?

\leq_3 CNF

Given a formula in at most 3-conjunctive normal form, is it satisfiable?

3CNF

Given a formula in exactly 3-conjunctive normal form, is it satisfiable?

Some NP-complete problems (integers)

ILP

Given an integer linear program, does it have a solution?

Some NP-complete problems (graphs)

Clique:

Given a graph G and an integer k , does G have a clique with k vertices?

VertexCover

Given a graph G and an integer k , does G have a vertex cover with k vertices?

3Color

Given a graph G , does G have a 3-coloring?

Outline

Recap

More **NP**-complete problems

Graph problems

Sums of subsets

Parsing

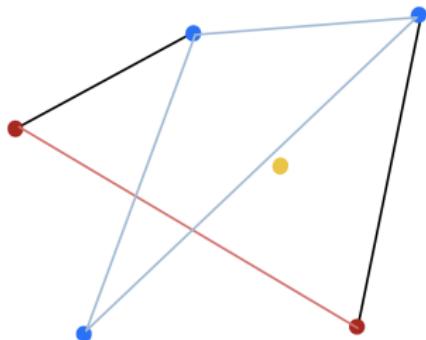
Extra Topics

Covering by 3 cliques

Definition

We say that a graph $G = (V, E)$ can be **covered by 3 cliques** if there are three subsets $V_1 \subseteq V$, $V_2 \subseteq V$, and $V_3 \subseteq V$ such that

- V is covered by V_1 , V_2 , and V_3 : $V = V_1 \cup V_2 \cup V_3$
- The intersections are empty: $V_1 \cap V_2 = V_1 \cap V_3 = V_2 \cap V_3 = \emptyset$
- V_1 , V_2 , and V_3 are cliques



The NP-completeness

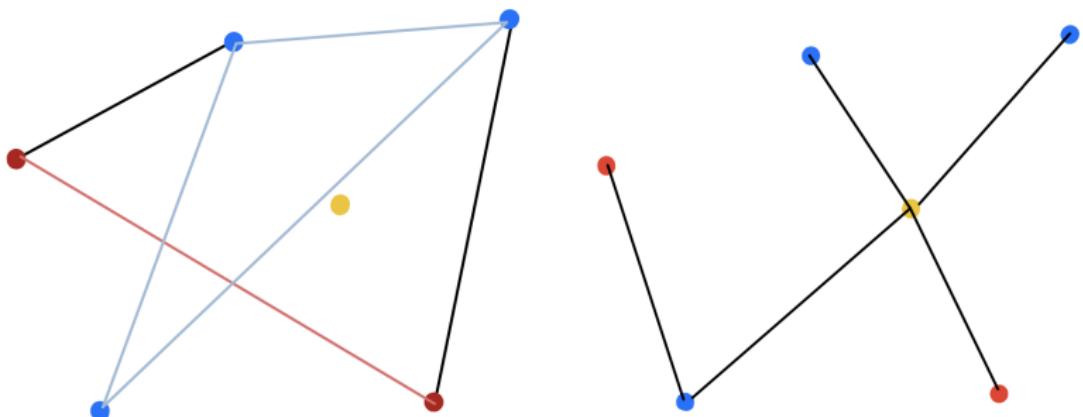
We look at the decision problem Clique-3Cover

Given a graph G , can G be covered with 3 cliques?

Theorem

Clique-3Cover is **NP-complete**

The construction illustrated

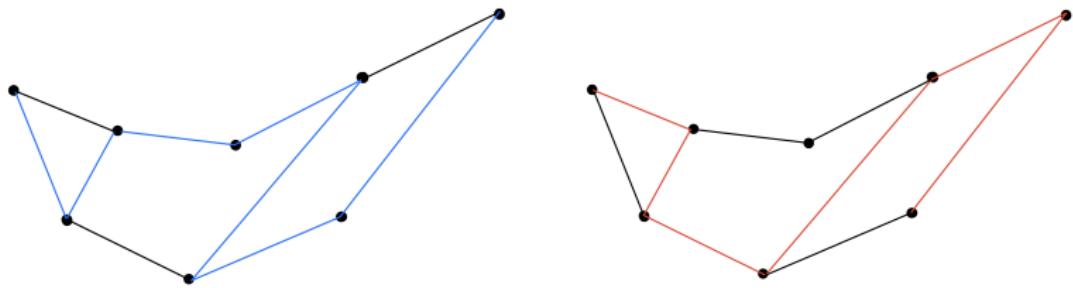


Hamiltonian paths

Definition

Let G be a graph. We say that G has a **Hamiltonian path** if there is a path p in G that crosses every vertex exactly once

Below, the blue path is Hamiltonian while the red is not.



NP-completeness

We look at the decision problem HamPath

Given a graph G , does G have a Hamiltonian path?

Theorem

HamPath is **NP-complete**

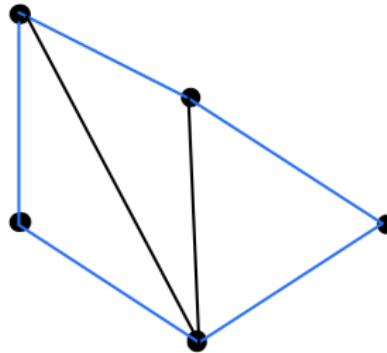
See note!

Hamiltonian cycle

Definition

Let G be a graph. We say that G has a **Hamiltonian cycle** if there is a cycle c in G that crosses every vertex exactly once

A cycle c can be written as v_1, v_2, \dots, v_n such that $\{v_i, v_{i+1}\} \in E$ and $\{v_n, v_1\} \in E$. For a Hamiltonian cycle: $v_i \neq v_j$ if $i \neq j$ and every vertex occurs in this cycle.



NP-completeness

We look at the decision problem HamCycle

Given a graph G , does G have a Hamiltonian cycle?

Theorem

HamCycle is **NP-complete**

Illustration of the proof

From the construction, we get the following graph

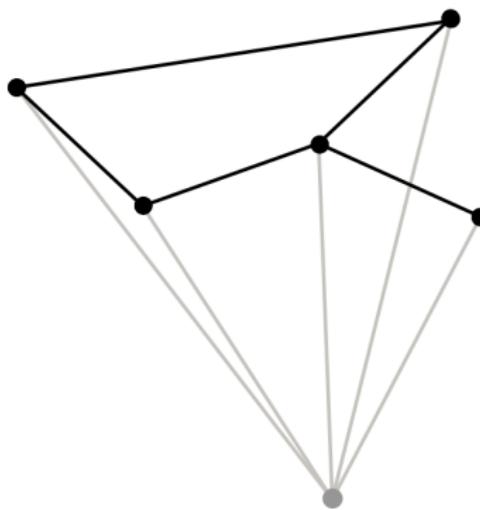
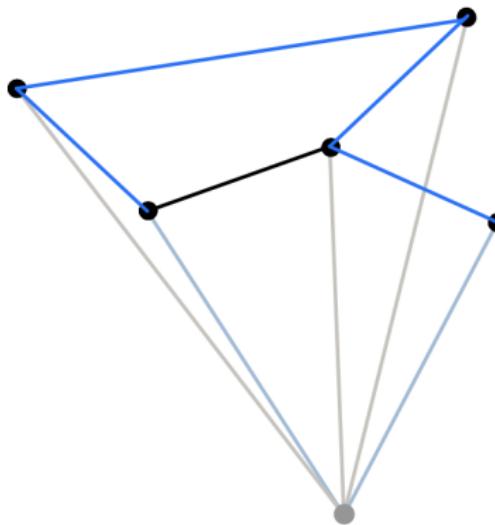


Illustration of the proof

A Hamiltonian cycle in this graph looks as follows



Traveling Salesperson

We look at the decision problem TSP

Given a **complete** graph G , a function c , and an integer k , is there a cycle in G with cost at most k that crosses every vertex?

Theorem

TSP is **NP**-complete.

Sums of subsets

Suppose, we have

- a finite set S of natural numbers
- an integer k

We are interested in finding subsets $S' \subseteq S$ such that

$$\sum_{x \in S'} x = k$$

Sums of subsets

Suppose, we have

- a finite set S of natural numbers
- an integer k

We are interested in finding subsets $S' \subseteq S$ such that

$$\sum_{x \in S'} x = k$$

Example: take $S = \{1, 4, 6, 9, 12\}$

- There is a subset with sum 14, namely $\{1, 4, 9\}$
- There is no subset with sum 8

NP-completeness

We look at the decision problem SubsSum

Given a finite set S of natural numbers and an integer k , is there a subset S' of S with sum k ?

Theorem

SubsSum is **NP**-complete.

Parsing

Parsing:

Given a grammar G and a word w , can we derive $S \Rightarrow w$?

Parsing

Parsing:

Given a grammar G and a word w , can we derive $S \Rightarrow w$?

This is in **P**.

Weighted Parsing

Definition

A **weighted context free grammar** is a context free grammar in which every production rule is assigned a weight.
The weight of a production is the sum of the individual weights.

Weighted Parsing

Definition

A **weighted context free grammar** is a context free grammar in which every production rule is assigned a weight.
The weight of a production is the sum of the individual weights.

$$S \xrightarrow{3} A \mid B$$

$$A \xrightarrow{2} aA$$

$$A \xrightarrow{1} aB$$

$$B \xrightarrow{0} b$$

Weighted Parsing

Definition

A **weighted context free grammar** is a context free grammar in which every production rule is assigned a weight.
The weight of a production is the sum of the individual weights.

$$S \xrightarrow{3} A \mid B$$

$$A \xrightarrow{2} aA$$

$$A \xrightarrow{1} aB$$

$$B \xrightarrow{0} b$$

The following production has weight 6.

$$S \xrightarrow{3} A \xrightarrow{2} aA \xrightarrow{1} aaB \xrightarrow{0} aab$$

NP-completeness

We look at the decision problem WParse

Given a weight context-free grammar G , a word w , and an integer k , is there a production of w in G of weight k ?

Theorem

WParse is **NP-complete**.

Outline

Recap

More NP-complete problems

Graph problems

Sums of subsets

Parsing

Extra Topics

Some decision problems

VertexCover

Given a graph G and an integer k , does G have a vertex cover with k vertices?

TSP

Given a complete graph G , a function c , and an integer k , is there a cycle in G with cost at most k ?

Some optimization problems

VertexCover

Given a graph G , find the **minimal** vertex cover of G

TSP

Given a complete graph G and a function c , find a cycle in G with **minimal** cost.

What does NP-completeness mean for these problems?

- Since we know VertexCover and TSP are **NP**-complete, it will be either difficult or impossible to find efficient algorithms that compute minimal vertex covers or minimal cycles.
- But what if we do not go for the **best** solution, but instead for a solution that is **good enough**?

Finding vertex covers

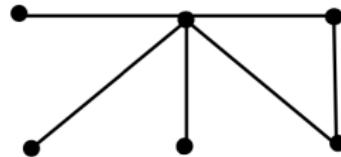
Let $G = (V, E)$ be a graph.

To compute a vertex cover C of G , we take the following steps

1. Let $C := \emptyset$ and $E' := E$
2. While E' is not empty
 - 2.1. Take any edge $\{u, v\}$ from E'
 - 2.2. Take $C := C \cup \{u, v\}$
 - 2.3. Remove every edge from E' that touches either u or v .

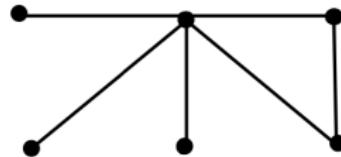
Example

E^1 is black
 C is blue



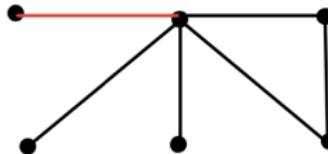
Example

E' is black
 C is blue



We select

E' is black
 C is blue



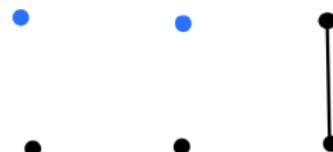
Example

E' is black

C is blue

Example

E^1 is black



C is blue

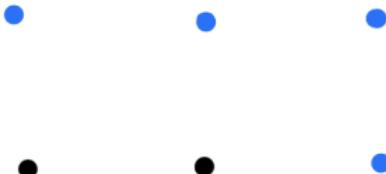
We select

E^1 is black

C is blue

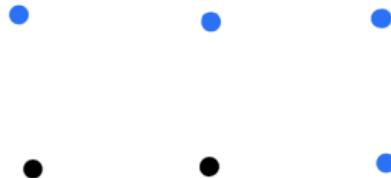
It is not minimal!

The algorithm gave a vertex cover of size 4, namely the following.

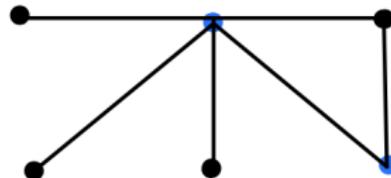


It is not minimal!

The algorithm gave a vertex cover of size 4, namely the following.



But the minimal vertex cover has size 2



But it is a decent approximation

Theorem

The size of the vertex cover computed by the algorithm, is at most twice as big as the size of the minimal vertex cover.

So: while the algorithm does not give the best solution, it gives a solution that is “good enough” within reasonable time.

More approximation algorithms

There are approximation algorithms for

- The traveling salesperson problem
- The knapsack problem
- Finding colorings of graphs

And there are more complexity classes: **PSPACE**

Definition

A decision problem is in **PSPACE** if there is a Turing machine that decides it using only a polynomial amount of space.

Definition

A decision problem is in **NPSPACE** if there is a nondeterministic Turing machine that decides it using only a polynomial amount of space.

Theorem (Savitch's theorem)

PSPACE = **NPSPACE**.

And there are more complexity classes: **PSPACE**

Definition

A decision problem is in **PSPACE** if there is a Turing machine that decides it using only a polynomial amount of space.

Definition

A decision problem is in **NPSPACE** if there is a nondeterministic Turing machine that decides it using only a polynomial amount of space.

Theorem (Savitch's theorem)

PSPACE = NPSPACE.

Quite more theory can be developed. See the master course “Complexity Theory” (in the master MFoCS).