
C O M P L E ✗ I T Y

LECTURE 6

May 30 , 2022

Brad WESTERB_AAN

Institute for Computing and Information
Sciences

Radboud University Nijmegen

NWI- IBC028

This week

1. CNF is ☆- complete

2. Tips for the exam

Refresher

P is the class of problems that 's solvable

in polynomial time .

NP is the class of problems that 's solvable

in polynomial time, given the right
'

hint
'

.

EXAMPLE While it's difficult (unknown to be in AP)

to determine if a graph has a clique of size
K
,

it's easy to verify that whether a given set of nodes

clique of size K .

•

⑧_•

a clique of size 4

Refresher : P v.s .
NP

While clearly P ≤ NP,

it's unknown whether D= NP
,

bat P≠ NP is generally expected .

''

"

Refresher : NP- completeness

while no problem AE NPIP is known,

there are problems in NP
'

harder
'

than all others
.

A problem A is NP-hard when

B ≤PA for all BE NP . Egg
,

An NP-hard problem that 's in

NP is called NP-complete .

Note

If any NP-complete problem
is inP, then P=NP.
So NP-complete problems are

likely to be difficult to solve . situation when P≠NP

Refresher : proving NP- completeness
•

To prove
that a problem A is NP-complete one

generally proceeds as follows :

1. show that A ENP directly ,

2. show that A is NP-hard by reducing
an NP-hard problem B to A

.

This leads to a free of
reductions , such as :

SAT
Kp

CNF ≤p 3CNF ≤p Clique ≤p Vertexcover ≤p
HamPath ≤p Hamcycle

TSP
%
3Color

f For this scheme to work , we must start with one NP-hard problem
• at the root , which is CNF , and show it 's NP-hard

, directly .

Why CNF instead of SAT ?

We'll prove that
CNF is NP-hard, but the famous theorem is :

THEOREM (COOK- LEVIN, 1971,1973) SAT is NP-complete .

Of course, since CNF
≤PSAT

,
Cook- LEVIN follows when CNF is NP-hard,

but getting SAT ≤p (NF is not simply a matter of putting a formula

q into conjunctive normal form
:

Why CNF instead of SAT ?

We'll prove that
CNF is NP-hard, but the famous theorem is :

THEOREM (COOK- LEVIN, 1971,1973) SAT is NP-complete .

Of course, since CNF
≤PSAT

,
Cook- LEVIN follows when CNF is NP-hard,

but getting SAT ≤p (NF is not simply a matter of putting a formula

q into conjunctive normal form
:

(041^912) ✓ (921/1922) → (all V92,) ✗ (an ✓ 922) h (912 ✓ 921) ACAKV 922)

EI
dit ^ Aiz A ditch 421421

f : I→{1,2's

Why CNF instead of SAT ?

We'll prove that
CNF is NP-hard, but the famous theorem is :

THEOREM (COOK- LEVIN, 1971,1973) SAT is NP-complete .

Of course, since CNF
≤PSAT

,
Cook- LEVIN follows when CNF is NP-hard,

but getting SAT ≤p (NF is not simply a matter of putting a formula

q into conjunctive normal form
:

(041^912) ✓ (921/1922) → (all ✓ 921) ✗ (an ✓ 922) h (912 ✓ 921) ACAKV 922)

↳I dit ^ Aiz → A ditch 42421
← 211=1 clauses !

f:I→{1,2} so not polynomial

Why CNF instead of SAT ?

We'll prove that
CNF is NP-hard, but the famous theorem is :

THEOREM (COOK- LEVIN, 1971,1973) SAT is NP-complete .

Of course, since CNF
≤PSAT

,
Cook- LEVIN follows when CNF is NP-hard,

but getting SAT ≤p (NF is not simply a matter of putting a formula

q into conjunctive normal form
:

(041^912) ✓ (921/1922) → (all V92,) ✗ (Au ✓ 922) h (912 ✓ 921) A (042 ✓ 922)

I
dit ^ Aiz A ditch 42421

← 211=1 clauses !
f : I→{1,2} so not polynomial

while it is possible to get SAT ≤PCNF directly, Richard
KARP decided to

modify Cook 's proof instead to show that
CNF is NP-hard,

and we'll follow his lead .

THEILEN (KARP, 1972) CNF is NP-hard .

PREF Let ✗ c- NP ; we must show that ✗≤p CNF .

That is, we must find f :{oil}ᵗ→{gift that runs

in polynomial time, such that , {on}*

w

Vw c- {on}* [WE ✗ ⇔ few) ECNF]

RECALL that decision problems are formally subsets of {0,1 }?

So we have implicitly assumed a sensible encoding

E := { q formula in CNF }⇒ {0,1}* .

E.g. CAVS) A- y→ ASCII-encoding of
"
(A \ / beta) / \ ~ gamma

"

THEILEN CNF is NP-hard
.

PR Let ✗ c- NP ; we must show that ✗≤p CNF .

That is, it suffices to find f :{on}ᵗ→E that (or rather eof)

runs in polynomial time, such that , e
"

V-we {on}* [WE✗ ⇔ few) ECNF]

RECALL that decision problems are formally subsets of {0,1 }?

So we have implicitly assumed a sensible encoding

E := { q formula in CNF }⇒ {0,1}* .

E.g. CAVS) A- y→ ASCII-encoding of
"
(A \ / beta) / \ ~ gamma

"

Proof that CNF is NP-hard
,
continued

what do we know about ✗ c- NP ?

Proof that CNF is NP-hard
,
continued

what do we know about ✗ c- NP ?

There is a polynomial time algorithm A :{0,13* ✗ {on}
*
→ {on}

(the "verifier ") and some C> 0 and ke IN such that for all we {on}*,

we ✗ ⇔ Fye {o.it?1ykC1wlk--LA(wiy)-- 11
"
certificate?not too big

Proof that CNF is NP-hard
,
continued

what do we know about ✗ c- NP ?

There is a polynomial time algorithm A :{0,13* ✗ {on}
*
→ {on}

(the "verifier ") and some C> 0 and ke IN such that for all we {on}*,

we ✗ ⇔ Fye {o.it?1ykC1wlk--LA(wiy)-- 11
"
certificate?not too big

We must somehow use A to map wc-zo.is
" in polynomial time

to a CNF - formula Cfw Such that WE✗⇔ qw is satisfiable
.

Proof that CNF is NP-hard
,
continued

What do we know about ✗ c- NP ?

There is a polynomial time algorithm A :{0,13* ✗ {on}
*
→ {on}

(the "verifier ") and some C> 0 and ke IN such that for all WE {on}*,

we ✗ ⇔ Fye {o.it?1ykC1w1k--LA(wiy)-- 11
"
certificate?not too big

We must somehow use A to map wc-zo.is
" in polynomial time

to a CNF - formula Cfw Such that WE✗⇔ qw is satisfiable
.

IDEA :
"simulate" A using qw , using part of qw variables

to encode Y .

Proof that CNF is NP-hard
,
continued

To simulate the algorithm A : 20,1# ✗ {915×-790,13 ,
we need to be more precise about the

word
"

algorithm
"

.

j

Book (Lemma 34.6) : Random Access Machines
Correct

,
but vague .

These slides ,
and ZANTEMA 'S i Turing Machines
lecture notes More concrete
(seepage 147

TURING MACHINE * proof that CNF is NP-hard
,
continued

E- {☒☒ It} .
1 infinite tape containing ⑧ , ⑤ ,

and blanks ,
"

☐
"

s .

- -t.DE#T .
_ .

2 head→

3 a finite set Q of states, one of which is the
current state

4 an initial state go c-
Q and apartial transition function

:

8 : Q ✗2 →→ QxEx {⇐→}

* There are many different definitions
let 9=90 of Turing Machine that achieve the
while let Cqgb , d) = 819 , symbol at the head)

same result .
We use one that

write the symbol b at the head is convenient for the proof.
move the head in direction d

In the lecture notes , the tape
let 9=9

'

is infinite only in one direction, andelse
a half

" more symbols are allowed on the tape.

EXAMPLE : DOUBLING Proof that CNF is NP-hard
,
continued

OBJECTIVE

#_☒1lÑ_ →

COMPUTATION

TURING MACHINE
#_☒l1II r

Q={ r, 2,4 } #l☒lT r

go :=r -111010111T£ r

-1110111011--1 r

r¥;É÷É #Ha-☐r
-1110111901=1 2

7 r It → ¥11101011T 2

Err ¥42 ←

#µ☒41 2

n 2 ☒ 2 ☒ ← -1010111%1--2
{ 1¥ { '¥5 #④loñI 2

-1010111%5 h

TURING MACHINE
#

FOR Proof that CNF is NP-hard
,
continued

A :{0,1}
*
✗ {0,13*-7 {0,1}

Given Y=YoY ,
- - - yn- , and W= Wow,

- - - Wm- i from {0,1 }*.

Our Turing Machine for A does
,
when started in configuration

I . -T.EE/EhEI-.-Jyn--FIJ--.-- (tape otherwise blank)

halt in a configuration with Afwiy) under its head :

- -
- - (tape need not

be otherwise blank)

* Again, multiple definitionsEXAMPLES : exist .

In the lecture notes
,

51*011-7-7=11-17-7 - - - → II☒☒ITI then A-(101, 111=1 a special marking symbol
is used to separate the

]=☒=o☐IEE☒ - - - → I¥I☐I then A- (101^110)=0 inputs, and a special
state is used to indicate

]=☒=o☐IEE☒ - - - → II☒=EI☒ ✗ does not happen Acw,y\=1 .

SITUATION Proof that CNF is NP-hard
,
continued

• Given ✗ C- NP
,
we must map we {on}* in polynomial time to

a CNF- formula cfw with : Ew satisfiable ⇔ WEX
.

• Since ✗ c-NP
,
there is a Turing Machine CQ , go , 8, . . .) computing

a map A :{on}
*
✗ {0,13*-72011} in polynomial time such that

✗ = {WE {0,15×1 Fye{aB*, ly/≤Clwlkt Alw,.yl=1] } ,

for some C>0, KEIN .

• We'll define qw such that :

qw Satisfiable ⇔ Fye {on# lykclw# [Alw ,y1=1]

MAIN DIFFICULTY : how to deal with the infinite tape?

r

Proof that CNF is NP-hard
,
continued

DEFINITION OF Cfw : BOUNDS

Let we {0,1 }* be given .

Since our Turing Machine for A has

polynomial runtime, there are D >◦ and LEIN with

TA In) ≤ one
←worst-case runtime of our TM on an input of size n

The input to A will be w and a certificate gesso,13* with size

lyl ≤ awk,
Clwik)e steps

so the T.M. will take at most IN =D (/w/
+ ' +

before halting , and its head will move at most N positions
so any cell on

the tape beyond that will remain untouched

by our T.

M
.

,
and need not be simulated

. 16:25

Proof that CNF is NP-hard
,
continued

DEFINITION OF Cfw : ATOMS

The atoms f- variables) of our formula qw are :

A TO M INT E N DE D M E A N I N G

at step t of the computation ,TÉ
,
s the symbol s is on the tape at position x .

HE at step C- of the computation,
the head is at position x.

Stay at step £ of the computation,
the machine is in state q .

where C-c- {0
,
.
. _

,
N }

,
KEEN, - - - no, . . _ , N} , SE {④ ☐5=2

, QEQ .

Note that the number of atoms is polynomial in N , and thus in Iwl .

DEFINITION OF Cfw : CLAUSES Proof that CNF is NP-hard
,
continued

Gw is the conjunction of the following clauses :

• H : ^ 5% the T.tl. starts in state go with
the head at position 0, . . .

• Ñ T:c
,☐ the tape blank to the left of the head, . . .

✗= - N

IWI -1

• A 1-
°

✗= ,
× ,w☒

and w written to the right , . .
. position 0

↓

• Tiwi
,☐ followed by a blank, _ . - .

.
. IEEE . -T.EE/EEI-.-JEFII----

initial tape configuration
N

• N (Tx,°✓Tx%☐✓TÉ☐) followed by a string of ⑥ and ☒ s. the certificate y,
F- lwltl

A (Tx?☐
→ Tx!,☐) and then only as Cblanks) , . . .

N

• A Tx?☐\ where lyl ≤ Clwlk. Note that we do

not fix any value for y ,I.= lwltltclwl
"

but only restrict its

length . Here we tap into
• (next page) A-→B = naris the difficulty of solving CNF.

DEFINITION OF @W : CLAUSES
.
-1T Proof that CNF is NP-hard

,
continued

- (Saf #Saf)
"I

• Ñ A →Sir - Sqt The T.M.is not at two states at once .

t=o 9,9'EQ

9=19
'

N N

• A A - HE r - Hyᵗ The head is not in two positions
f-ok,y=-N at the same time .

x≠y

N N

•• A M N -TÉs ✓ -1T¥ . There is at most one symbol on each
f- ◦ x=-N s.ie -2 position of the tape .s≠s'

• (next page)

DEFINITION OF Cfw : CLAUSES
,
III proof that CNF is NP-hard

,
continued

• The state changes, the head moves, and the tape
is modified

according to the instructions
in the transition function 8:

N-L N-1

xtd
^Ttt'N N A SÉ^HÉ^ T.is → 5¥'^Hᵗ

"

X
,
S'

(lg, SI , lg:S:D)/c- -8 £-0 ✗=-Ntl ↑ ↑
(AiAi)→AjBj= Aj Bjrvi -Ai ✗+→ := ✗+1

✗+← : = x - 1

• When the Turing Machine has halted
, nothing happens :

N-1 N

N N A SÉ^HÉ^ → 5¥'^Hᵗ
" att"
x X

,
$

cq.si -4 dom(8) £-0 ✗=-N

• The tape remains otherwise unchanged
:

N- I N

N N N THE→ (T.is→TE:')
-1=0 ✗= - N SEE

• (next page)

DEFINITION OF Cfw : CLAUSES
,
II Proof that CNF is NP-hard

,
continued

and
, finally :

• =µHÉ→TÉ☐ At the end there is a ☒ under the head .

-

¥¥Éiʰ*%)

DEFINITION OF Cfw : CLAUSES
,

Proof that CNF is NP-hard
,
continued

and
, finally :

• HE→ TÉ☐ At the end there is a ☒ under the head .

✗= - N

-

Then : qw is satisfiable iff J-yesro.is?lykClwlkfACw.y1--1]

iff WEX .

DEFINITION OF §w : CLAUSES
,

Proof that CNF is NP-hard
,
continued

and
, finally :

• HE→ TÉ, At the end there is a ☒ under the head .

✗= - N

-

Then : qw is satisfiable iff J-yesro.is?lykClwlkfACw.y1--1]

iff WEX .

Thus wi→qw gives a reduction from ✗ to CNF,

and CNF is NP-hard, right ?

COMPLEXITY OF @w Proof that CNF is NP-hard
,
continued

ALMOST. . . it remains to be shown that qw
Can be computed in polynomial time .

To this end
,
note that 4W is a conjunction of

④ (NY clauses , each of which is a disjunction of

④ (1) literals
,
each of which contains some of the

④(NZ) atoms ,

so qw can clearly be encoded with a number of characters

that is polynomial in N ,
and thus in IWI (since IN :=D(Iwi + Clwik)?)

since computing these clauses requires
no additional complex

computation , clw Can be computed in polynomial time .

Whence CNF is NP-hard .

V0

SAT solvers

Although SAT is NP-complete ,

• there are powerful tools called SAT solvers that

can solve many large SAT problems (105 variables,
106 clauses)

in reasonable time-just not all of them .

• When you encounter a problem with many distinct

cases
,
it might be worth translating it to SAT

,

and apply a SAT solver .

• Also used in Mathematics : in 2016
, Marija HEULE e. a.

solved the Boolean Pythagorean triples problem using

a SAT solver, which
was an open problem PROBLEM Is there S≤ IN such that

since the 1980s . there are no distinct a
,
b
,
CEIN

with a' + b'=D and

a,b,CES or a.b. CEINIS. SOLUTION : No.

Hints for the Exam

• Study the weekly assignments and their
solutions

.

• Practise :

- solving recurrence relations (using the substitution

method and Master 's Theorem,)

- and proving NP -completeness of problems ,

and you'll greatly increase your
chances to pass .

• Memorize NP-complete problems from
the lectures

,

and from the assignments :

SAT , 3CNF, 3Color , TSP,
subsSum , Clique , Vertexcover, . . .

Good luck !

Cand happy holidays)

