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Sponges [BDPV07]

M pad trunc Z

outer
inner

0

0

r

c

f f f f f f

absorbing squeezing

P pad trunc Z

r 0

p p p p p p

c 0

• Cryptographic hash function

• SHA-3, XOFs, lightweight hashing, . . .

• Behaves as RO up to query complexity ≈ 2c/2 [BDPV08]
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Keying Sponges

Keyed Sponge

• PRF(K,P ) = Sponge(K‖P )

• Message authentication

• Keystream generation

Keyed Duplex

• Authenticated encryption

• Multiple CAESAR and NIST LWC submissions
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Evolution of Keyed Sponges
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• Outer-Keyed Sponge [BDPV11,ADMV15,NY16,Men18]

• Inner-Keyed Sponge [CDHKN12,ADMV15,NY16]

• Full-Keyed Sponge [BDPV12,GPT15,MRV15]
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Evolution of Keyed Duplexes
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• Unkeyed Duplex [BDPV11]

• Outer-Keyed Duplex [BDPV11]

• Full-Keyed Duplex [MRV15,DMV17]
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Security of Generalized Keyed Duplex [DMV17]
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• M : data complexity (calls to construction)

• N : time complexity (calls to primitive)

• qIV : max # init calls for single IV

• L: # queries with repeated path (e.g., nonce-violation)

• Ω: # queries with overwriting outer part (e.g., RUP)

• νMr,c: some multicollision coe�cient → often small constant

Simpli�ed Security Bound

qIVN

2k
+

(L+ Ω + νMr,c)N

2c
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Outline

Leakage Resilience of the Duplex Construction

Security of the Su�x Keyed Sponge

Application to ISAP

Conclusion
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Leakage Resilience of Keyed Duplex
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` ` `

• Permutation p repeatedly evaluated on secret state

• Any evaluation of p may leak information

Is keyed duplex secure under leakage?
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Formalizing Leakage

0

leftr(P )

rightc(P )

flagZ

p

leftr(Sprev)

rightc(Sprev)

leftr(Snext)

rightc(Snext)

• L is any �xed leakage function (non-adaptive leakage)

• For each evaluation of p: L leaks λ bits of (Sprev, Snext)

• Sprev
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In�uence of Leakage
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• Suppose Sprev invoked at most R times

• At most R+ 1 leakages of Sprev

• Min-entropy of Sprev: at least c− (R+ 1)λ
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Leakage Resilience of Keyed Duplex
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• M : data complexity (calls to construction)

• N : time complexity (calls to primitive)

• qIV : max # init calls for single IV

• qδ: maximum # init calls for single δ

• L: # queries with repeated path (e.g., nonce-violation)

• Ω: # queries with overwriting outer part (e.g., RUP)

• R: max # duplexing calls for single non-empty subpath

• νMr,c: some multicollision coe�cient → often small constant

Simpli�ed Security Bound
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(L+ Ω + νMr,c)N
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Application: Managing Leakage

Simpli�ed Security Bound

qIVN

2k−qδλ
+

(L+ Ω + νMr,c)N

2c−(R+1)λ

←−
−−
−−
−−

←−
−−
−−
−−

qδ ≤ # allowed IV 's Limit L + Ω or limit R?
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Application: Leakage Resilient Encryption (1)
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• Gain entropy in KD1 from nonce at small rate

• Final state of KD1 has high entropy (w.h.p.)

• Inner part of state of KD1 forms key to KD2

• Encrypt in KD2 at high rate while maintaining high entropy (w.h.p.)
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Application: Leakage Resilient Encryption (2)
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Application: Leakage Resilient Encryption (3)
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Leakage Resilience of Keyed Sponges
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• Permutation p repeatedly evaluated on secret state

• Any evaluation of p may leak information

Minimizing leakage of keyed sponge?
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Hash-then-MAC

P hash F T

K

Typical Approach

• Hash function is unkeyed → nothing to be protected

• Keyed function F applied to �xed-size input

• Hash output (hence F input) must be at least 2k bits for k-bit security
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Su�x Keyed Sponge
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SuKS versus Full-Keyed Sponge

• No full-state absorption

• Side-channel leakage limited

• s, t arbitrary (typical: s = t = c/2)

SuKS versus Hash-then-MAC

• State of keyed function half as large

• G need not be cryptographically
strong (a XOR su�ces)

• Single cryptographic primitive needed
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Security of SuKS
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inner collision

�break at G�, bounds primitive queries with same inner part

�break at T �,
bounds construction
queries with same tag
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Application to MAC Part of ISAP [DEMMMPU19]
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Application to MAC Part of ISAP [DEMMMPU19]
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Leakage Resilience of SuKS
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ISAP

• LWC candidate [DEMMMPU19]

• Originally proposed at FSE 2017 [DEMMU17]

• Sponge/duplex-based authenticated encryption mode

• Instantiation:
• Keccak-p[400]
• Ascon-p

• Carefully selected capacities and rates:
• Protection against DPA
• Hardening against fault attacks: DFA, SFA, SIFA
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Security of ISAP Mode

In this brief note, we show how the leakage resilience of the keyed duplex and the
leakage resilience of the suffix keyed sponge accumulate to the leakage resilience of the Isap
mode. The ingredients of keyed duplex security are summarized in Section 3, and those on
suffix keyed sponge security in Section 4. The main result on the Isap mode is stated and
discussed in Section 5. The note is purposely high-level: in the body of this note we omit
all technicalities and use [7, 8] as a black-box insofar possible. Nevertheless, a more formal
reasoning is included, but only in Appendix A. Section 6 contains an interpretation of the
results.

Finally, we remark that Guo et al. (GPPS) [11] independently constructed a security
argument for Isap. It follows a different strategy, and henceforth resulted in different bounds
and underlying assumptions. We elaborate on the argument of GPPS in Section 7.

2 ISAP

Isap is specified by a security parameter k. Authenticated encryption of Isap gets as input
a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}k, associated data A ∈ {0, 1}∗, and a message
M ∈ {0, 1}∗. It outputs a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k. It is an encrypt-
then-MAC design. Encryption IsapEnc is depicted in Figure 1b and message authentication
IsapMAC in Figure 1c. Both functions internally use a rekeying function IsapRK, which
is depicted in Figure 1a. We remark that, although we have sticked to the figures of the
specification of Isap of Dobraunig et al. [5], we have simplified notation here and there to
suit the readability of this short note.

Isap comes with four variants, two of which have n = 320 and two of which have
n = 400. In any case, the security level is k = 128. The compression in IsapRK occurs at
rate rk = 1. The hashing capacity satisfies ch = 2k = 256 for all variants, and the hashing
rate subsequently satisfies rh = n− 2k. In our bounds, we will keep n and k as parameters,
and express rk, ck, rh, ch as function of these.
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In this brief note, we show how the leakage resilience of the keyed duplex and the
leakage resilience of the suffix keyed sponge accumulate to the leakage resilience of the Isap
mode. The ingredients of keyed duplex security are summarized in Section 3, and those on
suffix keyed sponge security in Section 4. The main result on the Isap mode is stated and
discussed in Section 5. The note is purposely high-level: in the body of this note we omit
all technicalities and use [7, 8] as a black-box insofar possible. Nevertheless, a more formal
reasoning is included, but only in Appendix A. Section 6 contains an interpretation of the
results.

Finally, we remark that Guo et al. (GPPS) [11] independently constructed a security
argument for Isap. It follows a different strategy, and henceforth resulted in different bounds
and underlying assumptions. We elaborate on the argument of GPPS in Section 7.

2 ISAP

Isap is specified by a security parameter k. Authenticated encryption of Isap gets as input
a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}k, associated data A ∈ {0, 1}∗, and a message
M ∈ {0, 1}∗. It outputs a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k. It is an encrypt-
then-MAC design. Encryption IsapEnc is depicted in Figure 1b and message authentication
IsapMAC in Figure 1c. Both functions internally use a rekeying function IsapRK, which
is depicted in Figure 1a. We remark that, although we have sticked to the figures of the
specification of Isap of Dobraunig et al. [5], we have simplified notation here and there to
suit the readability of this short note.

Isap comes with four variants, two of which have n = 320 and two of which have
n = 400. In any case, the security level is k = 128. The compression in IsapRK occurs at
rate rk = 1. The hashing capacity satisfies ch = 2k = 256 for all variants, and the hashing
rate subsequently satisfies rh = n− 2k. In our bounds, we will keep n and k as parameters,
and express rk, ck, rh, ch as function of these.
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In this brief note, we show how the leakage resilience of the keyed duplex and the
leakage resilience of the suffix keyed sponge accumulate to the leakage resilience of the Isap
mode. The ingredients of keyed duplex security are summarized in Section 3, and those on
suffix keyed sponge security in Section 4. The main result on the Isap mode is stated and
discussed in Section 5. The note is purposely high-level: in the body of this note we omit
all technicalities and use [7, 8] as a black-box insofar possible. Nevertheless, a more formal
reasoning is included, but only in Appendix A. Section 6 contains an interpretation of the
results.

Finally, we remark that Guo et al. (GPPS) [11] independently constructed a security
argument for Isap. It follows a different strategy, and henceforth resulted in different bounds
and underlying assumptions. We elaborate on the argument of GPPS in Section 7.

2 ISAP

Isap is specified by a security parameter k. Authenticated encryption of Isap gets as input
a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}k, associated data A ∈ {0, 1}∗, and a message
M ∈ {0, 1}∗. It outputs a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k. It is an encrypt-
then-MAC design. Encryption IsapEnc is depicted in Figure 1b and message authentication
IsapMAC in Figure 1c. Both functions internally use a rekeying function IsapRK, which
is depicted in Figure 1a. We remark that, although we have sticked to the figures of the
specification of Isap of Dobraunig et al. [5], we have simplified notation here and there to
suit the readability of this short note.

Isap comes with four variants, two of which have n = 320 and two of which have
n = 400. In any case, the security level is k = 128. The compression in IsapRK occurs at
rate rk = 1. The hashing capacity satisfies ch = 2k = 256 for all variants, and the hashing
rate subsequently satisfies rh = n− 2k. In our bounds, we will keep n and k as parameters,
and express rk, ck, rh, ch as function of these.
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Security of ISAP Mode

In this brief note, we show how the leakage resilience of the keyed duplex and the
leakage resilience of the suffix keyed sponge accumulate to the leakage resilience of the Isap
mode. The ingredients of keyed duplex security are summarized in Section 3, and those on
suffix keyed sponge security in Section 4. The main result on the Isap mode is stated and
discussed in Section 5. The note is purposely high-level: in the body of this note we omit
all technicalities and use [7, 8] as a black-box insofar possible. Nevertheless, a more formal
reasoning is included, but only in Appendix A. Section 6 contains an interpretation of the
results.

Finally, we remark that Guo et al. (GPPS) [11] independently constructed a security
argument for Isap. It follows a different strategy, and henceforth resulted in different bounds
and underlying assumptions. We elaborate on the argument of GPPS in Section 7.

2 ISAP

Isap is specified by a security parameter k. Authenticated encryption of Isap gets as input
a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}k, associated data A ∈ {0, 1}∗, and a message
M ∈ {0, 1}∗. It outputs a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k. It is an encrypt-
then-MAC design. Encryption IsapEnc is depicted in Figure 1b and message authentication
IsapMAC in Figure 1c. Both functions internally use a rekeying function IsapRK, which
is depicted in Figure 1a. We remark that, although we have sticked to the figures of the
specification of Isap of Dobraunig et al. [5], we have simplified notation here and there to
suit the readability of this short note.

Isap comes with four variants, two of which have n = 320 and two of which have
n = 400. In any case, the security level is k = 128. The compression in IsapRK occurs at
rate rk = 1. The hashing capacity satisfies ch = 2k = 256 for all variants, and the hashing
rate subsequently satisfies rh = n− 2k. In our bounds, we will keep n and k as parameters,
and express rk, ck, rh, ch as function of these.
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In this brief note, we show how the leakage resilience of the keyed duplex and the
leakage resilience of the suffix keyed sponge accumulate to the leakage resilience of the Isap
mode. The ingredients of keyed duplex security are summarized in Section 3, and those on
suffix keyed sponge security in Section 4. The main result on the Isap mode is stated and
discussed in Section 5. The note is purposely high-level: in the body of this note we omit
all technicalities and use [7, 8] as a black-box insofar possible. Nevertheless, a more formal
reasoning is included, but only in Appendix A. Section 6 contains an interpretation of the
results.

Finally, we remark that Guo et al. (GPPS) [11] independently constructed a security
argument for Isap. It follows a different strategy, and henceforth resulted in different bounds
and underlying assumptions. We elaborate on the argument of GPPS in Section 7.

2 ISAP

Isap is specified by a security parameter k. Authenticated encryption of Isap gets as input
a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}k, associated data A ∈ {0, 1}∗, and a message
M ∈ {0, 1}∗. It outputs a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k. It is an encrypt-
then-MAC design. Encryption IsapEnc is depicted in Figure 1b and message authentication
IsapMAC in Figure 1c. Both functions internally use a rekeying function IsapRK, which
is depicted in Figure 1a. We remark that, although we have sticked to the figures of the
specification of Isap of Dobraunig et al. [5], we have simplified notation here and there to
suit the readability of this short note.

Isap comes with four variants, two of which have n = 320 and two of which have
n = 400. In any case, the security level is k = 128. The compression in IsapRK occurs at
rate rk = 1. The hashing capacity satisfies ch = 2k = 256 for all variants, and the hashing
rate subsequently satisfies rh = n− 2k. In our bounds, we will keep n and k as parameters,
and express rk, ck, rh, ch as function of these.
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In this brief note, we show how the leakage resilience of the keyed duplex and the
leakage resilience of the suffix keyed sponge accumulate to the leakage resilience of the Isap
mode. The ingredients of keyed duplex security are summarized in Section 3, and those on
suffix keyed sponge security in Section 4. The main result on the Isap mode is stated and
discussed in Section 5. The note is purposely high-level: in the body of this note we omit
all technicalities and use [7, 8] as a black-box insofar possible. Nevertheless, a more formal
reasoning is included, but only in Appendix A. Section 6 contains an interpretation of the
results.

Finally, we remark that Guo et al. (GPPS) [11] independently constructed a security
argument for Isap. It follows a different strategy, and henceforth resulted in different bounds
and underlying assumptions. We elaborate on the argument of GPPS in Section 7.

2 ISAP

Isap is specified by a security parameter k. Authenticated encryption of Isap gets as input
a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}k, associated data A ∈ {0, 1}∗, and a message
M ∈ {0, 1}∗. It outputs a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k. It is an encrypt-
then-MAC design. Encryption IsapEnc is depicted in Figure 1b and message authentication
IsapMAC in Figure 1c. Both functions internally use a rekeying function IsapRK, which
is depicted in Figure 1a. We remark that, although we have sticked to the figures of the
specification of Isap of Dobraunig et al. [5], we have simplified notation here and there to
suit the readability of this short note.

Isap comes with four variants, two of which have n = 320 and two of which have
n = 400. In any case, the security level is k = 128. The compression in IsapRK occurs at
rate rk = 1. The hashing capacity satisfies ch = 2k = 256 for all variants, and the hashing
rate subsequently satisfies rh = n− 2k. In our bounds, we will keep n and k as parameters,
and express rk, ck, rh, ch as function of these.
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Security of ISAP Mode

In this brief note, we show how the leakage resilience of the keyed duplex and the
leakage resilience of the suffix keyed sponge accumulate to the leakage resilience of the Isap
mode. The ingredients of keyed duplex security are summarized in Section 3, and those on
suffix keyed sponge security in Section 4. The main result on the Isap mode is stated and
discussed in Section 5. The note is purposely high-level: in the body of this note we omit
all technicalities and use [7, 8] as a black-box insofar possible. Nevertheless, a more formal
reasoning is included, but only in Appendix A. Section 6 contains an interpretation of the
results.

Finally, we remark that Guo et al. (GPPS) [11] independently constructed a security
argument for Isap. It follows a different strategy, and henceforth resulted in different bounds
and underlying assumptions. We elaborate on the argument of GPPS in Section 7.

2 ISAP

Isap is specified by a security parameter k. Authenticated encryption of Isap gets as input
a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}k, associated data A ∈ {0, 1}∗, and a message
M ∈ {0, 1}∗. It outputs a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k. It is an encrypt-
then-MAC design. Encryption IsapEnc is depicted in Figure 1b and message authentication
IsapMAC in Figure 1c. Both functions internally use a rekeying function IsapRK, which
is depicted in Figure 1a. We remark that, although we have sticked to the figures of the
specification of Isap of Dobraunig et al. [5], we have simplified notation here and there to
suit the readability of this short note.

Isap comes with four variants, two of which have n = 320 and two of which have
n = 400. In any case, the security level is k = 128. The compression in IsapRK occurs at
rate rk = 1. The hashing capacity satisfies ch = 2k = 256 for all variants, and the hashing
rate subsequently satisfies rh = n− 2k. In our bounds, we will keep n and k as parameters,
and express rk, ck, rh, ch as function of these.
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In this brief note, we show how the leakage resilience of the keyed duplex and the
leakage resilience of the suffix keyed sponge accumulate to the leakage resilience of the Isap
mode. The ingredients of keyed duplex security are summarized in Section 3, and those on
suffix keyed sponge security in Section 4. The main result on the Isap mode is stated and
discussed in Section 5. The note is purposely high-level: in the body of this note we omit
all technicalities and use [7, 8] as a black-box insofar possible. Nevertheless, a more formal
reasoning is included, but only in Appendix A. Section 6 contains an interpretation of the
results.

Finally, we remark that Guo et al. (GPPS) [11] independently constructed a security
argument for Isap. It follows a different strategy, and henceforth resulted in different bounds
and underlying assumptions. We elaborate on the argument of GPPS in Section 7.

2 ISAP

Isap is specified by a security parameter k. Authenticated encryption of Isap gets as input
a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}k, associated data A ∈ {0, 1}∗, and a message
M ∈ {0, 1}∗. It outputs a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k. It is an encrypt-
then-MAC design. Encryption IsapEnc is depicted in Figure 1b and message authentication
IsapMAC in Figure 1c. Both functions internally use a rekeying function IsapRK, which
is depicted in Figure 1a. We remark that, although we have sticked to the figures of the
specification of Isap of Dobraunig et al. [5], we have simplified notation here and there to
suit the readability of this short note.

Isap comes with four variants, two of which have n = 320 and two of which have
n = 400. In any case, the security level is k = 128. The compression in IsapRK occurs at
rate rk = 1. The hashing capacity satisfies ch = 2k = 256 for all variants, and the hashing
rate subsequently satisfies rh = n− 2k. In our bounds, we will keep n and k as parameters,
and express rk, ck, rh, ch as function of these.
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In this brief note, we show how the leakage resilience of the keyed duplex and the
leakage resilience of the suffix keyed sponge accumulate to the leakage resilience of the Isap
mode. The ingredients of keyed duplex security are summarized in Section 3, and those on
suffix keyed sponge security in Section 4. The main result on the Isap mode is stated and
discussed in Section 5. The note is purposely high-level: in the body of this note we omit
all technicalities and use [7, 8] as a black-box insofar possible. Nevertheless, a more formal
reasoning is included, but only in Appendix A. Section 6 contains an interpretation of the
results.

Finally, we remark that Guo et al. (GPPS) [11] independently constructed a security
argument for Isap. It follows a different strategy, and henceforth resulted in different bounds
and underlying assumptions. We elaborate on the argument of GPPS in Section 7.

2 ISAP

Isap is specified by a security parameter k. Authenticated encryption of Isap gets as input
a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}k, associated data A ∈ {0, 1}∗, and a message
M ∈ {0, 1}∗. It outputs a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k. It is an encrypt-
then-MAC design. Encryption IsapEnc is depicted in Figure 1b and message authentication
IsapMAC in Figure 1c. Both functions internally use a rekeying function IsapRK, which
is depicted in Figure 1a. We remark that, although we have sticked to the figures of the
specification of Isap of Dobraunig et al. [5], we have simplified notation here and there to
suit the readability of this short note.

Isap comes with four variants, two of which have n = 320 and two of which have
n = 400. In any case, the security level is k = 128. The compression in IsapRK occurs at
rate rk = 1. The hashing capacity satisfies ch = 2k = 256 for all variants, and the hashing
rate subsequently satisfies rh = n− 2k. In our bounds, we will keep n and k as parameters,
and express rk, ck, rh, ch as function of these.
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suffix keyed sponge security in Section 4. The main result on the Isap mode is stated and
discussed in Section 5. The note is purposely high-level: in the body of this note we omit
all technicalities and use [7, 8] as a black-box insofar possible. Nevertheless, a more formal
reasoning is included, but only in Appendix A. Section 6 contains an interpretation of the
results.
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argument for Isap. It follows a different strategy, and henceforth resulted in different bounds
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M ∈ {0, 1}∗. It outputs a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k. It is an encrypt-
then-MAC design. Encryption IsapEnc is depicted in Figure 1b and message authentication
IsapMAC in Figure 1c. Both functions internally use a rekeying function IsapRK, which
is depicted in Figure 1a. We remark that, although we have sticked to the figures of the
specification of Isap of Dobraunig et al. [5], we have simplified notation here and there to
suit the readability of this short note.

Isap comes with four variants, two of which have n = 320 and two of which have
n = 400. In any case, the security level is k = 128. The compression in IsapRK occurs at
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In this brief note, we show how the leakage resilience of the keyed duplex and the
leakage resilience of the suffix keyed sponge accumulate to the leakage resilience of the Isap
mode. The ingredients of keyed duplex security are summarized in Section 3, and those on
suffix keyed sponge security in Section 4. The main result on the Isap mode is stated and
discussed in Section 5. The note is purposely high-level: in the body of this note we omit
all technicalities and use [7, 8] as a black-box insofar possible. Nevertheless, a more formal
reasoning is included, but only in Appendix A. Section 6 contains an interpretation of the
results.
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argument for Isap. It follows a different strategy, and henceforth resulted in different bounds
and underlying assumptions. We elaborate on the argument of GPPS in Section 7.
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M ∈ {0, 1}∗. It outputs a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k. It is an encrypt-
then-MAC design. Encryption IsapEnc is depicted in Figure 1b and message authentication
IsapMAC in Figure 1c. Both functions internally use a rekeying function IsapRK, which
is depicted in Figure 1a. We remark that, although we have sticked to the figures of the
specification of Isap of Dobraunig et al. [5], we have simplified notation here and there to
suit the readability of this short note.

Isap comes with four variants, two of which have n = 320 and two of which have
n = 400. In any case, the security level is k = 128. The compression in IsapRK occurs at
rate rk = 1. The hashing capacity satisfies ch = 2k = 256 for all variants, and the hashing
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and express rk, ck, rh, ch as function of these.

K ‖ IV

pk

Initialize

Yi

rk

pb
ck

Re-keying

Yw

rk

ck

pk

K∗

z

Squeeze

(a) IsapRK, with (IV, z) = (IVke, n−k) if
called by IsapEnc and (IV, z) = (IVka, k)
if called by IsapMAC

N

k

IsapRK

K(IVke, n−k)
k

K∗
en−k

Initialize

pe

Mi Ci

rh

ch

Encrypt Plaintext

pe

Mt Ct

≤ rh

(b) IsapEnc

N

IVa

ph

k

Initialize

Ai

rh

ph
ch

Authenticate Ass. Data

As

rh

ph
ch

0∗ ‖ 1

Ci

rh

ph
ch

Authenticate Ciphertext

Ct

rh

ph
ch

phIsapRK

T

K(IVka, k)

k

k

Y
k

K∗
a k

Finalize

(c) IsapMAC

Fig. 1: Isap authenticated encryption

2

IsapEnc

In this brief note, we show how the leakage resilience of the keyed duplex and the
leakage resilience of the suffix keyed sponge accumulate to the leakage resilience of the Isap
mode. The ingredients of keyed duplex security are summarized in Section 3, and those on
suffix keyed sponge security in Section 4. The main result on the Isap mode is stated and
discussed in Section 5. The note is purposely high-level: in the body of this note we omit
all technicalities and use [7, 8] as a black-box insofar possible. Nevertheless, a more formal
reasoning is included, but only in Appendix A. Section 6 contains an interpretation of the
results.

Finally, we remark that Guo et al. (GPPS) [11] independently constructed a security
argument for Isap. It follows a different strategy, and henceforth resulted in different bounds
and underlying assumptions. We elaborate on the argument of GPPS in Section 7.
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M ∈ {0, 1}∗. It outputs a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k. It is an encrypt-
then-MAC design. Encryption IsapEnc is depicted in Figure 1b and message authentication
IsapMAC in Figure 1c. Both functions internally use a rekeying function IsapRK, which
is depicted in Figure 1a. We remark that, although we have sticked to the figures of the
specification of Isap of Dobraunig et al. [5], we have simplified notation here and there to
suit the readability of this short note.

Isap comes with four variants, two of which have n = 320 and two of which have
n = 400. In any case, the security level is k = 128. The compression in IsapRK occurs at
rate rk = 1. The hashing capacity satisfies ch = 2k = 256 for all variants, and the hashing
rate subsequently satisfies rh = n− 2k. In our bounds, we will keep n and k as parameters,
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In this brief note, we show how the leakage resilience of the keyed duplex and the
leakage resilience of the suffix keyed sponge accumulate to the leakage resilience of the Isap
mode. The ingredients of keyed duplex security are summarized in Section 3, and those on
suffix keyed sponge security in Section 4. The main result on the Isap mode is stated and
discussed in Section 5. The note is purposely high-level: in the body of this note we omit
all technicalities and use [7, 8] as a black-box insofar possible. Nevertheless, a more formal
reasoning is included, but only in Appendix A. Section 6 contains an interpretation of the
results.

Finally, we remark that Guo et al. (GPPS) [11] independently constructed a security
argument for Isap. It follows a different strategy, and henceforth resulted in different bounds
and underlying assumptions. We elaborate on the argument of GPPS in Section 7.

2 ISAP

Isap is specified by a security parameter k. Authenticated encryption of Isap gets as input
a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}k, associated data A ∈ {0, 1}∗, and a message
M ∈ {0, 1}∗. It outputs a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k. It is an encrypt-
then-MAC design. Encryption IsapEnc is depicted in Figure 1b and message authentication
IsapMAC in Figure 1c. Both functions internally use a rekeying function IsapRK, which
is depicted in Figure 1a. We remark that, although we have sticked to the figures of the
specification of Isap of Dobraunig et al. [5], we have simplified notation here and there to
suit the readability of this short note.

Isap comes with four variants, two of which have n = 320 and two of which have
n = 400. In any case, the security level is k = 128. The compression in IsapRK occurs at
rate rk = 1. The hashing capacity satisfies ch = 2k = 256 for all variants, and the hashing
rate subsequently satisfies rh = n− 2k. In our bounds, we will keep n and k as parameters,
and express rk, ck, rh, ch as function of these.
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In this brief note, we show how the leakage resilience of the keyed duplex and the
leakage resilience of the suffix keyed sponge accumulate to the leakage resilience of the Isap
mode. The ingredients of keyed duplex security are summarized in Section 3, and those on
suffix keyed sponge security in Section 4. The main result on the Isap mode is stated and
discussed in Section 5. The note is purposely high-level: in the body of this note we omit
all technicalities and use [7, 8] as a black-box insofar possible. Nevertheless, a more formal
reasoning is included, but only in Appendix A. Section 6 contains an interpretation of the
results.

Finally, we remark that Guo et al. (GPPS) [11] independently constructed a security
argument for Isap. It follows a different strategy, and henceforth resulted in different bounds
and underlying assumptions. We elaborate on the argument of GPPS in Section 7.

2 ISAP

Isap is specified by a security parameter k. Authenticated encryption of Isap gets as input
a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}k, associated data A ∈ {0, 1}∗, and a message
M ∈ {0, 1}∗. It outputs a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k. It is an encrypt-
then-MAC design. Encryption IsapEnc is depicted in Figure 1b and message authentication
IsapMAC in Figure 1c. Both functions internally use a rekeying function IsapRK, which
is depicted in Figure 1a. We remark that, although we have sticked to the figures of the
specification of Isap of Dobraunig et al. [5], we have simplified notation here and there to
suit the readability of this short note.

Isap comes with four variants, two of which have n = 320 and two of which have
n = 400. In any case, the security level is k = 128. The compression in IsapRK occurs at
rate rk = 1. The hashing capacity satisfies ch = 2k = 256 for all variants, and the hashing
rate subsequently satisfies rh = n− 2k. In our bounds, we will keep n and k as parameters,
and express rk, ck, rh, ch as function of these.
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In this brief note, we show how the leakage resilience of the keyed duplex and the
leakage resilience of the suffix keyed sponge accumulate to the leakage resilience of the Isap
mode. The ingredients of keyed duplex security are summarized in Section 3, and those on
suffix keyed sponge security in Section 4. The main result on the Isap mode is stated and
discussed in Section 5. The note is purposely high-level: in the body of this note we omit
all technicalities and use [7, 8] as a black-box insofar possible. Nevertheless, a more formal
reasoning is included, but only in Appendix A. Section 6 contains an interpretation of the
results.

Finally, we remark that Guo et al. (GPPS) [11] independently constructed a security
argument for Isap. It follows a different strategy, and henceforth resulted in different bounds
and underlying assumptions. We elaborate on the argument of GPPS in Section 7.

2 ISAP

Isap is specified by a security parameter k. Authenticated encryption of Isap gets as input
a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}k, associated data A ∈ {0, 1}∗, and a message
M ∈ {0, 1}∗. It outputs a ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}k. It is an encrypt-
then-MAC design. Encryption IsapEnc is depicted in Figure 1b and message authentication
IsapMAC in Figure 1c. Both functions internally use a rekeying function IsapRK, which
is depicted in Figure 1a. We remark that, although we have sticked to the figures of the
specification of Isap of Dobraunig et al. [5], we have simplified notation here and there to
suit the readability of this short note.

Isap comes with four variants, two of which have n = 320 and two of which have
n = 400. In any case, the security level is k = 128. The compression in IsapRK occurs at
rate rk = 1. The hashing capacity satisfies ch = 2k = 256 for all variants, and the hashing
rate subsequently satisfies rh = n− 2k. In our bounds, we will keep n and k as parameters,
and express rk, ck, rh, ch as function of these.
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Conclusion

ISAP

• Built-in security against side-channel and fault attacks

• Higher order security without higher order masking!

Leakage Resilience

• Follows from:
• Leakage resilience of Keyed Duplex [DM19a]

• Leakage resilience of Su�x Keyed Sponge [DM19b]

• Proof in alternative model given by Guo et al. [GPPS19]

Thank you for your attention!
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