Leakage Resilience of the ISAP Mode: a Vulgarized Summary

Christoph Dobraunig, Bart Mennink *

Radboud University (The Netherlands)

NIST Lightweight Cryptography Workshop 2019 November 6, 2019

* Thanks to the ISAP team!

Sponges [BDPV07]

- Cryptographic hash function
- SHA-3, XOFs, lightweight hashing, ...
- Behaves as RO up to query complexity $pprox 2^{c/2}$ [BDPV08]

Keying Sponges

Keyed Sponge

- $\mathsf{PRF}(K, P) = \mathsf{Sponge}(K \| P)$
- Message authentication
- Keystream generation

Keying Sponges

Keyed Sponge

- $\mathsf{PRF}(K, P) = \mathsf{Sponge}(K \| P)$
- Message authentication
- Keystream generation

Keyed Duplex

- Authenticated encryption
- Multiple CAESAR and NIST LWC submissions

Evolution of Keyed Sponges

• Outer-Keyed Sponge [BDPV11,ADMV15,NY16,Men18]

Evolution of Keyed Sponges

- Outer-Keyed Sponge [BDPV11,ADMV15,NY16,Men18]
- Inner-Keyed Sponge [CDHKN12, ADMV15, NY16]

Evolution of Keyed Sponges

- Outer-Keyed Sponge [BDPV11,ADMV15,NY16,Men18]
- Inner-Keyed Sponge [CDHKN12, ADMV15, NY16]
- Full-Keyed Sponge [BDPV12,GPT15,MRV15]

Evolution of Keyed Duplexes

• Unkeyed Duplex [BDPV11]

Evolution of Keyed Duplexes

- Unkeyed Duplex [BDPV11]
- Outer-Keyed Duplex [BDPV11]

Evolution of Keyed Duplexes

- Unkeyed Duplex [BDPV11]
- Outer-Keyed Duplex [BDPV11]
- Full-Keyed Duplex [MRV15,DMV17]

Security of Generalized Keyed Duplex [DMV17]

Security of Generalized Keyed Duplex [DMV17]

- M: data complexity (calls to construction)
- N: time complexity (calls to primitive)
- q_{IV} : max # init calls for single IV
- L: # queries with repeated path (e.g., nonce-violation)
- Ω : # queries with overwriting outer part (e.g., RUP)
- $\nu_{r.c.}^M$: some multicollision coefficient \rightarrow often small constant

Simplified Security Bound

$$\frac{q_{IV}N}{2^k} + \frac{(L+\Omega+\nu^M_{r,c})N}{2^c}$$

Leakage Resilience of the Duplex Construction

Security of the Suffix Keyed Sponge

Application to ISAP

Conclusion

Leakage Resilience of the Duplex Construction

Security of the Suffix Keyed Sponge

Application to ISAP

Conclusion

Leakage Resilience of Keyed Duplex

- Permutation p repeatedly evaluated on secret state
- Any evaluation of p may leak information

Leakage Resilience of Keyed Duplex

- Permutation p repeatedly evaluated on secret state
- Any evaluation of p may leak information

Is keyed duplex secure under leakage?

Formalizing Leakage

- L is any fixed leakage function (non-adaptive leakage)
- For each evaluation of p: L leaks λ bits of $(S_{\text{prev}}, S_{\text{next}})$

Influence of Leakage

- Suppose S_{prev} invoked at most R times
- At most R+1 leakages of $S_{
 m prev}$
- Min-entropy of $S_{
 m prev}$: at least $c-(R+1)\lambda$

Leakage Resilience of Keyed Duplex

- M: data complexity (calls to construction)
- N: time complexity (calls to primitive)
- q_{IV} : max # init calls for single IV
- q_{δ} : maximum # init calls for single δ
- L: # queries with repeated path (e.g., nonce-violation)
- Ω : # queries with overwriting outer part (e.g., RUP)
- R: max # duplexing calls for single non-empty subpath
- $\nu^M_{r,c}$: some multicollision coefficient \rightarrow often small constant

Simplified Security Bound

$$\frac{q_{IV}N}{2^{k-q_{\delta}\lambda}} + \frac{(L+\Omega+\nu_{r,c}^{M})N}{2^{c-(R+1)\lambda}}$$

Application: Managing Leakage

$\begin{array}{l} \textbf{Simplified Security Bound} \\ \frac{q_{IV}N}{2^{k-q_{\delta}\lambda}} + \frac{(L+\Omega+\nu^M_{r,c})N}{2^{c-(R+1)\lambda}} \end{array}$

Application: Managing Leakage

 $q_{\delta} \leq \#$ allowed *IV*'s

Application: Managing Leakage

 $q_{\delta} \leq \#$ allowed *IV*'s

Limit $L + \Omega$ or limit R?

• Gain entropy in KD₁ from nonce at small rate

- Gain entropy in KD₁ from nonce at small rate
- Final state of KD₁ has high entropy (w.h.p.)

- Gain entropy in KD₁ from nonce at small rate
- Final state of KD₁ has high entropy (w.h.p.)
- Inner part of state of KD_1 forms key to KD_2

- Gain entropy in KD₁ from nonce at small rate
- Final state of KD₁ has high entropy (w.h.p.)
- Inner part of state of KD₁ forms key to KD₂
- Encrypt in KD₂ at high rate while maintaining high entropy (w.h.p.)

 $\mathbf{Adv}^{nalr\text{-}cpa}_{\mathcal{E}}(\mathsf{D}) \leq 4 \cdot \mathbf{Adv}^{nalr}_{\mathsf{KD}_1}(\mathsf{D}') + 2 \cdot \mathbf{Adv}^{nalr}_{\mathsf{KD}_2}(\mathsf{D}'')$

Leakage Resilience of the Duplex Construction

Security of the Suffix Keyed Sponge

Application to ISAP

Conclusion

Leakage Resilience of Keyed Sponges

- Permutation p repeatedly evaluated on secret state
- Any evaluation of p may leak information

Leakage Resilience of Keyed Sponges

- Permutation p repeatedly evaluated on secret state
- Any evaluation of p may leak information

Minimizing leakage of keyed sponge?

Hash-then-MAC

Typical Approach

- Hash function is unkeyed \rightarrow nothing to be protected
- Keyed function F applied to fixed-size input
- Hash output (hence F input) must be at least 2k bits for k-bit security

Suffix Keyed Sponge

Suffix Keyed Sponge

SuKS versus Full-Keyed Sponge

- No full-state absorption
- Side-channel leakage limited
- s, t arbitrary (typical: s = t = c/2)

Suffix Keyed Sponge

SuKS versus Full-Keyed Sponge

- No full-state absorption
- Side-channel leakage limited
- s, t arbitrary (typical: s = t = c/2)

SuKS versus Hash-then-MAC

- State of keyed function half as large
- *G* need not be cryptographically strong (a XOR suffices)
- Single cryptographic primitive needed

•
$$k, s, t \leq b$$

$$\mathbf{Adv}_F^{\mathrm{prf}}(\mathsf{D}) \le \frac{2N^2}{2^c} + \frac{\nu_{b-s,s}^{2(N-q)} \cdot N}{2^{\min\{\delta,\varepsilon\}}} + \frac{\nu_{t,b-t}^q \cdot N}{2^{b-t}}$$

•
$$k, s, t \leq b$$

$$\mathbf{Adv}_{F}^{\mathrm{prf}}(\mathsf{D}) \leq \underbrace{\frac{2N^{2}}{2^{c}}}_{2^{c}} + \frac{\nu_{b-s,s}^{2(N-q)} \cdot N}{2^{\min\{\delta,\varepsilon\}}} + \frac{\nu_{t,b-t}^{q} \cdot N}{2^{b-t}}$$

•
$$k, s, t \leq b$$

$$\mathbf{Adv}_{F}^{\mathrm{prf}}(\mathsf{D}) \leq \underbrace{\frac{2N^{2}}{2^{c}}}_{2^{c}} + \underbrace{\frac{\nu_{b-s,s}^{2(N-q)}}{2^{\min\{\delta,\varepsilon\}}}N}_{2^{\min\{\delta,\varepsilon\}}} + \frac{\nu_{t,b-t}^{q}\cdot N}{2^{b-t}}$$

inner collision "break at *G*", bounds primitive queries with same inner part

•
$$k, s, t \leq b$$

$$\mathbf{Adv}_{F}^{\mathrm{prf}}(\mathsf{D}) \leq \underbrace{2N^{2}}_{2^{c}} + \underbrace{\nu_{b-s,s}^{2(N-q)} N}_{2^{\min}\{\delta,\varepsilon\}} + \underbrace{\nu_{t,b-t}^{q} N}_{2^{b-t}}$$
 "break at T ", bounds construction queries with same tag "break at G ", bounds primitive queries with same inner part

Application to MAC Part of ISAP [DEMMMPU19]

Application to MAC Part of ISAP [DEMMMPU19]

$$\begin{array}{l} (b,c,r,k) = (400,256,144,128) \\ \bullet \ \nu_{b-s,s}^{2(N-q)} = \mu_{272,128}^{2^{129}} \leq 3 \\ \bullet \ \nu_{t,b-t}^q = \mu_{128,272}^{2^{128}} \leq 80 \end{array}$$

$$\mathbf{Adv}_{\mathrm{IsapMAC}}^{\mathrm{prf}}(\mathsf{D}) \le \frac{2N^2}{2^{256}} + \frac{3N}{2^{128}} + \frac{80N}{2^{272}}$$

Application to MAC Part of ISAP [DEMMMPU19]

$$egin{aligned} (b,c,r,k) &= (400,256,144,128) \ &
u_{b-s,s}^{2(N-q)} &= \mu_{272,128}^{2^{129}} \leq 3 \ &
u_{t,b-t}^q &= \mu_{128,272}^{2^{128}} \leq 80 \end{aligned}$$

$$\mathbf{Adv}_{\mathrm{IsapMAC}}^{\mathrm{prf}}(\mathsf{D}) \le \frac{2N^2}{2^{256}} + \frac{3N}{2^{128}} + \frac{80N}{2^{272}}$$

 $egin{aligned} (b,c,r,k) &= (320,256,64,128) \ & ar{
u}_{b-s,s}^{2(N-q)} &= \mu_{192,128}^{2129} \leq 5 \ & ar{
u}_{t,b-t}^q &= \mu_{128,192}^{2128} \leq 67 \end{aligned}$

$$\mathbf{Adv}_{\mathrm{IsapMAC}}^{\mathrm{prf}}(\mathsf{D}) \le \frac{2N^2}{2^{256}} + \frac{5N}{2^{128}} + \frac{67N}{2^{272}}$$

Leakage Resilience of SuKS

•
$$k, s, t \leq b$$

• G is strongly protected, $2^{-\delta}$ -uniform, and $2^{-\epsilon}$ -universal

$$\mathbf{Adv}_{F}^{\text{nalr-prf}}(\mathsf{D}) \le \frac{2N^{2}}{2^{c}} + \frac{\nu_{s,b-s}^{2(N-q)}}{2^{b-s}} + \frac{\nu_{b-s,s}^{2(N-q)} \cdot N}{2^{\min\{\delta,\varepsilon\} - \nu_{s,b-s}^{2(N-q)}\lambda}} + \frac{\nu_{t,b-t}^{2q} \cdot N}{2^{b-t-\lambda}}$$

Leakage Resilience of SuKS

•
$$k, s, t \leq b$$

• G is strongly protected, $2^{-\delta}$ -uniform, and $2^{-\epsilon}$ -universal

$$\mathbf{Adv}_{F}^{\text{nalr-prf}}(\mathsf{D}) \leq \frac{2N^{2}}{2^{c}} + \underbrace{\nu_{s,b-s}^{2(N-q)}}_{2^{b-s}} + \underbrace{\nu_{b-s,s}^{2(N-q)} \cdot N}_{2^{\min\{\delta,\varepsilon\}} - \underbrace{\nu_{s,b-s}^{2(N-q)} \lambda}_{2^{b-t-\lambda}}} + \underbrace{\nu_{t,b-t}^{2q} \cdot N}_{2^{b-t-\lambda}}$$

bounds the number of repeated leakages on same $G(K, X)$

Leakage Resilience of the Duplex Construction

Security of the Suffix Keyed Sponge

Application to ISAP

Conclusion

• LWC candidate [DEMMMPU19]

- Originally proposed at FSE 2017 [DEMMU17]
- Sponge/duplex-based authenticated encryption mode
- Instantiation:
 - Keccak-p[400]
 - Ascon-p
- Carefully selected capacities and rates:
 - Protection against DPA
 - Hardening against fault attacks: DFA, SFA, SIFA

IsapRK

IsapEnc

IsapMAC

 $\mathsf{IsapMAC}$

IsapMAC

 $\mathsf{IsapMAC}$

Leakage Resilience of the Duplex Construction

Security of the Suffix Keyed Sponge

Application to ISAP

Conclusion

Conclusion

ISAP

- Built-in security against side-channel and fault attacks
- Higher order security without higher order masking!

Conclusion

ISAP

- Built-in security against side-channel and fault attacks
- Higher order security without higher order masking!

Leakage Resilience

- Follows from:
 - Leakage resilience of Keyed Duplex [DM19a]
 - Leakage resilience of Suffix Keyed Sponge [DM19b]
- Proof in alternative model given by Guo et al. [GPPS19]

Thank you for your attention!