
Security of Encryption Modes

Bart Mennink

Radboud University (The Netherlands)

Spring School on Symmetric Cryptography

March 13, 2025

1 / 42

Keyed Symmetric Cryptography

General Setting

AK ←−−−−−−−−−−−−−−−−−−−−−−−−−→ BK

−−−→

←
−−−

E

• Two parties, Alice and Bob, communicate over a public channel

• They have agreed on a joint key K and use it to transmit data

• A malicious party, Eve, may try to exploit/disturb/. . . the communication

• In symmetric cryptography, we are concerned with two main security properties:

• Confidentiality (or data privacy): Eve cannot learn anything about data
• Authenticity: Eve cannot manipulate the data

In this presentation I will mainly focus on confidentiality

2 / 42

General Setting

AK ←−−−−−−−−−−−−−−−−−−−−−−−−−→ BK−−−→

←
−−−

E
• Two parties, Alice and Bob, communicate over a public channel

• They have agreed on a joint key K and use it to transmit data

• A malicious party, Eve, may try to exploit/disturb/. . . the communication

• In symmetric cryptography, we are concerned with two main security properties:

• Confidentiality (or data privacy): Eve cannot learn anything about data
• Authenticity: Eve cannot manipulate the data

In this presentation I will mainly focus on confidentiality

2 / 42

General Setting

AK ←−−−−−−−−−−−−−−−−−−−−−−−−−→ BK−−−→

←
−−−

E
• Two parties, Alice and Bob, communicate over a public channel

• They have agreed on a joint key K and use it to transmit data

• A malicious party, Eve, may try to exploit/disturb/. . . the communication

• In symmetric cryptography, we are concerned with two main security properties:

• Confidentiality (or data privacy): Eve cannot learn anything about data

• Authenticity: Eve cannot manipulate the data

In this presentation I will mainly focus on confidentiality

2 / 42

General Setting

AK ←−−−−−−−−−−−−−−−−−−−−−−−−−→ BK−−−→

←
−−−

E
• Two parties, Alice and Bob, communicate over a public channel

• They have agreed on a joint key K and use it to transmit data

• A malicious party, Eve, may try to exploit/disturb/. . . the communication

• In symmetric cryptography, we are concerned with two main security properties:

• Confidentiality (or data privacy): Eve cannot learn anything about data
• Authenticity: Eve cannot manipulate the data

In this presentation I will mainly focus on confidentiality

2 / 42

General Setting

AK ←−−−−−−−−−−−−−−−−−−−−−−−−−→ BK−−−→

←
−−−

E
• Two parties, Alice and Bob, communicate over a public channel

• They have agreed on a joint key K and use it to transmit data

• A malicious party, Eve, may try to exploit/disturb/. . . the communication

• In symmetric cryptography, we are concerned with two main security properties:

• Confidentiality (or data privacy): Eve cannot learn anything about data
• Authenticity: Eve cannot manipulate the data

In this presentation I will mainly focus on confidentiality
2 / 42

One-Time Pad Encryption

Encryption:

M = 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0

K = 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0
⊕

C = 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0

Decryption:

C = 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0

K = 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0
⊕

M = 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0

3 / 42

One-Time Pad Encryption

Encryption:

M = 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0

K = 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0
⊕

C = 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0

Decryption:

C = 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0

K = 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0
⊕

M = 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0

3 / 42

One-Time Pad Encryption

Encryption:

M = 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0

K = 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0
⊕

C = 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0

Decryption:

C = 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0

K = 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0
⊕

M = 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0

3 / 42

One-Time Pad Encryption

Encryption:

M = 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0

K = 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0
⊕

C = 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0

Decryption:

C = 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0

K = 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0
⊕

M = 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0

3 / 42

Stream Encryption

Properties of One-Time Pad

• One-time pad is a type of stream encryption

• Perfect secrecy (against an attacker that has no knowledge about the key)

• Given C, an attacker correctly guesses M with probability 1/2|K|

• Key must be as long as the plaintext!

Stream Ciphers

• Generate long keystream Z from short key K

• Much more practical!

• Security degrades:

1. Key guessing still succeeds with probability 1/2|K| but now with shorter key

2. The stream cipher mechanism is another focal point of attack

4 / 42

Stream Encryption

Properties of One-Time Pad

• One-time pad is a type of stream encryption

• Perfect secrecy (against an attacker that has no knowledge about the key)

• Given C, an attacker correctly guesses M with probability 1/2|K|

• Key must be as long as the plaintext!

Stream Ciphers

• Generate long keystream Z from short key K

• Much more practical!

• Security degrades:

1. Key guessing still succeeds with probability 1/2|K| but now with shorter key

2. The stream cipher mechanism is another focal point of attack

4 / 42

Stream Encryption

Properties of One-Time Pad

• One-time pad is a type of stream encryption

• Perfect secrecy (against an attacker that has no knowledge about the key)

• Given C, an attacker correctly guesses M with probability 1/2|K|

• Key must be as long as the plaintext!

Stream Ciphers

• Generate long keystream Z from short key K

• Much more practical!

• Security degrades:

1. Key guessing still succeeds with probability 1/2|K| but now with shorter key

2. The stream cipher mechanism is another focal point of attack

4 / 42

Stream Encryption

Properties of One-Time Pad

• One-time pad is a type of stream encryption

• Perfect secrecy (against an attacker that has no knowledge about the key)

• Given C, an attacker correctly guesses M with probability 1/2|K|

• Key must be as long as the plaintext!

Stream Ciphers

• Generate long keystream Z from short key K

• Much more practical!

• Security degrades:

1. Key guessing still succeeds with probability 1/2|K| but now with shorter key

2. The stream cipher mechanism is another focal point of attack

4 / 42

Stream Encryption

Properties of One-Time Pad

• One-time pad is a type of stream encryption

• Perfect secrecy (against an attacker that has no knowledge about the key)

• Given C, an attacker correctly guesses M with probability 1/2|K|

• Key must be as long as the plaintext!

Stream Ciphers

• Generate long keystream Z from short key K

• Much more practical!

• Security degrades:

1. Key guessing still succeeds with probability 1/2|K| but now with shorter key

2. The stream cipher mechanism is another focal point of attack

4 / 42

Stream Encryption

Properties of One-Time Pad

• One-time pad is a type of stream encryption

• Perfect secrecy (against an attacker that has no knowledge about the key)

• Given C, an attacker correctly guesses M with probability 1/2|K|

• Key must be as long as the plaintext!

Stream Ciphers

• Generate long keystream Z from short key K

• Much more practical!

• Security degrades:

1. Key guessing still succeeds with probability 1/2|K| but now with shorter key

2. The stream cipher mechanism is another focal point of attack

4 / 42

Stream Cipher: Vigenère (≈ 1553, Wikipedia)

the
Pritt
stream
cipher

K Z = K∥K∥K∥ · · ·

• Key guessing:

• Exhaustive key search succeeds with probability Pr (success) = 1/2|K|

• Ciphertext Only Attack:

• Long ciphertexts leak info via letter frequencies

• Known Plaintext Attack:

• Knowledge of short plaintext sequence reveals full keystream

We need something more sophisticated!

5 / 42

Stream Cipher: Vigenère (≈ 1553, Wikipedia)

the
Pritt
stream
cipher

K Z = K∥K∥K∥ · · ·

• Key guessing:

• Exhaustive key search succeeds with probability Pr (success) = 1/2|K|

• Ciphertext Only Attack:

• Long ciphertexts leak info via letter frequencies

• Known Plaintext Attack:

• Knowledge of short plaintext sequence reveals full keystream

We need something more sophisticated!

5 / 42

Stream Cipher: Vigenère (≈ 1553, Wikipedia)

the
Pritt
stream
cipher

K Z = K∥K∥K∥ · · ·

• Key guessing:

• Exhaustive key search succeeds with probability Pr (success) = 1/2|K|

• Ciphertext Only Attack:

• Long ciphertexts leak info via letter frequencies

• Known Plaintext Attack:

• Knowledge of short plaintext sequence reveals full keystream

We need something more sophisticated!

5 / 42

Stream Cipher: Vigenère (≈ 1553, Wikipedia)

the
Pritt
stream
cipher

K Z = K∥K∥K∥ · · ·

• Key guessing:

• Exhaustive key search succeeds with probability Pr (success) = 1/2|K|

• Ciphertext Only Attack:

• Long ciphertexts leak info via letter frequencies

• Known Plaintext Attack:

• Knowledge of short plaintext sequence reveals full keystream

We need something more sophisticated!

5 / 42

Stream Cipher: Vigenère (≈ 1553, Wikipedia)

the
Pritt
stream
cipher

K Z = K∥K∥K∥ · · ·

• Key guessing:

• Exhaustive key search succeeds with probability Pr (success) = 1/2|K|

• Ciphertext Only Attack:

• Long ciphertexts leak info via letter frequencies

• Known Plaintext Attack:

• Knowledge of short plaintext sequence reveals full keystream

We need something more sophisticated!

5 / 42

How to Model Security?

Modern Stream Ciphers

stream
cipher

D, ℓ

K

Z = z1z2 . . . zℓ\

n

\
k

\

∗

• Using key K, diversifier D, and length ℓ, keystream Z of length ℓ is generated

• The diversifier must be different for each message that is transmitted

• Example: data streams, e.g., pay TV and telephone, often split data in relatively

short, numbered, frames. The frame number may serve as diversifier:

Ci = Mi ⊕ SC(K, i, |Mi|)

When is a stream cipher strong enough?

6 / 42

Modern Stream Ciphers

stream
cipher

D, ℓ

K

Z = z1z2 . . . zℓ\

n

\
k

\

∗

• Using key K, diversifier D, and length ℓ, keystream Z of length ℓ is generated

• The diversifier must be different for each message that is transmitted

• Example: data streams, e.g., pay TV and telephone, often split data in relatively

short, numbered, frames. The frame number may serve as diversifier:

Ci = Mi ⊕ SC(K, i, |Mi|)

When is a stream cipher strong enough?

6 / 42

Modern Stream Ciphers

stream
cipher

D, ℓ

K

Z = z1z2 . . . zℓ\

n

\
k

\

∗

• Using key K, diversifier D, and length ℓ, keystream Z of length ℓ is generated

• The diversifier must be different for each message that is transmitted

• Example: data streams, e.g., pay TV and telephone, often split data in relatively

short, numbered, frames. The frame number may serve as diversifier:

Ci = Mi ⊕ SC(K, i, |Mi|)

When is a stream cipher strong enough?

6 / 42

Modern Stream Ciphers

stream
cipher

D, ℓ

K

Z = z1z2 . . . zℓ\

n

\
k

\

∗

• Using key K, diversifier D, and length ℓ, keystream Z of length ℓ is generated

• The diversifier must be different for each message that is transmitted

• Example: data streams, e.g., pay TV and telephone, often split data in relatively

short, numbered, frames. The frame number may serve as diversifier:

Ci = Mi ⊕ SC(K, i, |Mi|)

When is a stream cipher strong enough?

6 / 42

Stream Cipher Security, Intuition (1/3)

stream
cipher

D, ℓ

K

Z = z1z2 . . . zℓ\

n

\
k

\

∗

• Kerckhoffs principle: security should be based on secrecy of K

• Thus: attacker knows the algorithm SC

• Attacker can also learn some amount of input-output combinations of SCK

• Intuitively, these data do not expose any irregularities (except for repetition)

• SCK should behave like a random oracle

7 / 42

Stream Cipher Security, Intuition (1/3)

stream
cipher

D, ℓ

K

Z = z1z2 . . . zℓ\

n

\
k

\

∗

• Kerckhoffs principle: security should be based on secrecy of K

• Thus: attacker knows the algorithm SC

• Attacker can also learn some amount of input-output combinations of SCK

• Intuitively, these data do not expose any irregularities (except for repetition)

• SCK should behave like a random oracle

7 / 42

Stream Cipher Security, Intuition (1/3)

stream
cipher

D, ℓ

K

Z = z1z2 . . . zℓ\

n

\
k

\

∗

• Kerckhoffs principle: security should be based on secrecy of K

• Thus: attacker knows the algorithm SC

• Attacker can also learn some amount of input-output combinations of SCK

• Intuitively, these data do not expose any irregularities (except for repetition)

• SCK should behave like a random oracle

7 / 42

Intermezzo: Random Oracle

D Z

.

.

.

.

Random Oracle

• A database of input-output tuples

• Initially empty

• New query (D, ℓ):

• If D is not in the database:

• generate ℓ random bits Z
• add (D,Z) to the list
• return Z

• If D is in the database,

look at corresponding Z:

• If |Z| ≥ ℓ:

return first ℓ bits of Z

• If |Z| < ℓ:

generate ℓ− |Z| random bits Z ′, append Z ′ to Z, return Z∥Z ′

• update (D,Z) in the list

8 / 42

Intermezzo: Random Oracle

D Z

.

.

.

.

Random Oracle

• A database of input-output tuples

• Initially empty

• New query (D, ℓ):

• If D is not in the database:

• generate ℓ random bits Z
• add (D,Z) to the list
• return Z

• If D is in the database,

look at corresponding Z:

• If |Z| ≥ ℓ:

return first ℓ bits of Z

• If |Z| < ℓ:

generate ℓ− |Z| random bits Z ′, append Z ′ to Z, return Z∥Z ′

• update (D,Z) in the list

8 / 42

Intermezzo: Random Oracle

D Z

.

.

.

.

Random Oracle

• A database of input-output tuples

• Initially empty

• New query (D, ℓ):

• If D is not in the database:

• generate ℓ random bits Z
• add (D,Z) to the list
• return Z

• If D is in the database,

look at corresponding Z:

• If |Z| ≥ ℓ:

return first ℓ bits of Z

• If |Z| < ℓ:

generate ℓ− |Z| random bits Z ′, append Z ′ to Z, return Z∥Z ′

• update (D,Z) in the list

8 / 42

Intermezzo: Random Oracle

D Z

1100 101011101010101

.

.

.

Random Oracle

• A database of input-output tuples

• Initially empty

• New query (D, ℓ):

• If D is not in the database:

• generate ℓ random bits Z
• add (D,Z) to the list
• return Z

• If D is in the database,

look at corresponding Z:

• If |Z| ≥ ℓ:

return first ℓ bits of Z

• If |Z| < ℓ:

generate ℓ− |Z| random bits Z ′, append Z ′ to Z, return Z∥Z ′

• update (D,Z) in the list

8 / 42

Intermezzo: Random Oracle

D Z

1100 101011101010101

1111010101101101 110101

.

.

Random Oracle

• A database of input-output tuples

• Initially empty

• New query (D, ℓ):

• If D is not in the database:

• generate ℓ random bits Z
• add (D,Z) to the list
• return Z

• If D is in the database,

look at corresponding Z:

• If |Z| ≥ ℓ:

return first ℓ bits of Z

• If |Z| < ℓ:

generate ℓ− |Z| random bits Z ′, append Z ′ to Z, return Z∥Z ′

• update (D,Z) in the list

8 / 42

Intermezzo: Random Oracle

D Z

1100 101011101010101

1111010101101101 110101

001000011100 101011010111010101011

.

Random Oracle

• A database of input-output tuples

• Initially empty

• New query (D, ℓ):

• If D is not in the database:

• generate ℓ random bits Z
• add (D,Z) to the list
• return Z

• If D is in the database,

look at corresponding Z:

• If |Z| ≥ ℓ:

return first ℓ bits of Z

• If |Z| < ℓ:

generate ℓ− |Z| random bits Z ′, append Z ′ to Z, return Z∥Z ′

• update (D,Z) in the list

8 / 42

Intermezzo: Random Oracle

D Z

1100 101011101010101

1111010101101101 110101

001000011100 101011010111010101011

.

Random Oracle

• A database of input-output tuples

• Initially empty

• New query (D, ℓ):

• If D is not in the database:

• generate ℓ random bits Z
• add (D,Z) to the list
• return Z

• If D is in the database, look at corresponding Z:

• If |Z| ≥ ℓ:

return first ℓ bits of Z

• If |Z| < ℓ:

generate ℓ− |Z| random bits Z ′, append Z ′ to Z, return Z∥Z ′

• update (D,Z) in the list

8 / 42

Intermezzo: Random Oracle

D Z

1100 101011101010101

1111010101101101 110101

001000011100 101011010111010101011

.

Random Oracle

• A database of input-output tuples

• Initially empty

• New query (D, ℓ):

• If D is not in the database:

• generate ℓ random bits Z
• add (D,Z) to the list
• return Z

• If D is in the database, look at corresponding Z:

• If |Z| ≥ ℓ: return first ℓ bits of Z
• If |Z| < ℓ:

generate ℓ− |Z| random bits Z ′, append Z ′ to Z, return Z∥Z ′

• update (D,Z) in the list

8 / 42

Intermezzo: Random Oracle

D Z

1100 101011101010101

1111010101101101 110101

001000011100 101011010111010101011

.

Random Oracle

• A database of input-output tuples

• Initially empty

• New query (D, ℓ):

• If D is not in the database:

• generate ℓ random bits Z
• add (D,Z) to the list
• return Z

• If D is in the database, look at corresponding Z:

• If |Z| ≥ ℓ: return first ℓ bits of Z
• If |Z| < ℓ:

generate ℓ− |Z| random bits Z ′, append Z ′ to Z, return Z∥Z ′

• update (D,Z) in the list

8 / 42

Intermezzo: Random Oracle

D Z

1100 101011101010101

1111010101101101 110101

001000011100 101011010111010101011

.

Random Oracle

• A database of input-output tuples

• Initially empty

• New query (D, ℓ):

• If D is not in the database:

• generate ℓ random bits Z
• add (D,Z) to the list
• return Z

• If D is in the database, look at corresponding Z:

• If |Z| ≥ ℓ: return first ℓ bits of Z
• If |Z| < ℓ: generate ℓ− |Z| random bits Z ′, append Z ′ to Z, return Z∥Z ′

• update (D,Z) in the list

8 / 42

Intermezzo: Random Oracle

D Z

1100 101011101010101

1111010101101101 1101011101111101101

001000011100 101011010111010101011

.

Random Oracle

• A database of input-output tuples

• Initially empty

• New query (D, ℓ):

• If D is not in the database:

• generate ℓ random bits Z
• add (D,Z) to the list
• return Z

• If D is in the database, look at corresponding Z:

• If |Z| ≥ ℓ: return first ℓ bits of Z
• If |Z| < ℓ: generate ℓ− |Z| random bits Z ′, append Z ′ to Z, return Z∥Z ′

• update (D,Z) in the list

8 / 42

Intermezzo: Random Oracle

D Z

1100 101011101010101

1111010101101101 1101011101111101101

001000011100 101011010111010101011

.

Random Oracle

• A database of input-output tuples

• Initially empty

• New query (D, ℓ):

• If D is not in the database:

• generate ℓ random bits Z
• add (D,Z) to the list
• return Z

• If D is in the database, look at corresponding Z:

• If |Z| ≥ ℓ: return first ℓ bits of Z
• If |Z| < ℓ: generate ℓ− |Z| random bits Z ′, append Z ′ to Z, return Z∥Z ′

• update (D,Z) in the list

8 / 42

Stream Cipher Security, Intuition (2/3)

real world ideal world

SCK
stream cipher

RO
random oracle

• We thus want to “compare” SCK with a random oracle RO

• We model a distinguisher D that is given oracle access to either of the worlds

• We toss a coin:

• head: D is given oracle access to SCK

• tail: D is given oracle access to RO

• D does a priori not know which oracle it is given access to
• D can now make queries (D, ℓ) to receive Z
• At the end, D has to guess the outcome of the toss coin (head/tail)

9 / 42

Stream Cipher Security, Intuition (2/3)

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

• We thus want to “compare” SCK with a random oracle RO

• We model a distinguisher D that is given oracle access to either of the worlds

• We toss a coin:

• head: D is given oracle access to SCK

• tail: D is given oracle access to RO

• D does a priori not know which oracle it is given access to
• D can now make queries (D, ℓ) to receive Z
• At the end, D has to guess the outcome of the toss coin (head/tail)

9 / 42

Stream Cipher Security, Intuition (2/3)

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

• We thus want to “compare” SCK with a random oracle RO

• We model a distinguisher D that is given oracle access to either of the worlds

• We toss a coin:

• head: D is given oracle access to SCK

• tail: D is given oracle access to RO

• D does a priori not know which oracle it is given access to

• D can now make queries (D, ℓ) to receive Z
• At the end, D has to guess the outcome of the toss coin (head/tail)

9 / 42

Stream Cipher Security, Intuition (2/3)

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

(D, ℓ;Z)

• We thus want to “compare” SCK with a random oracle RO

• We model a distinguisher D that is given oracle access to either of the worlds

• We toss a coin:

• head: D is given oracle access to SCK

• tail: D is given oracle access to RO

• D does a priori not know which oracle it is given access to
• D can now make queries (D, ℓ) to receive Z

• At the end, D has to guess the outcome of the toss coin (head/tail)

9 / 42

Stream Cipher Security, Intuition (2/3)

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

(D, ℓ;Z)

• We thus want to “compare” SCK with a random oracle RO

• We model a distinguisher D that is given oracle access to either of the worlds

• We toss a coin:

• head: D is given oracle access to SCK

• tail: D is given oracle access to RO

• D does a priori not know which oracle it is given access to
• D can now make queries (D, ℓ) to receive Z
• At the end, D has to guess the outcome of the toss coin (head/tail)

9 / 42

Stream Cipher Security, Intuition (3/3)

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

(D, ℓ;Z)

• Denote D’s success probability in correctly guessing head/tail by Pr (success)

• D can always guess and succeeds with probability ≥ 1/2, so we scale the

probability to D’s advantage:

Adv(D) = 2 ·Pr (success)− 1

= Pr
(
DSCK returns head

)
−Pr

(
DRO returns head

)

• D is limited by certain constraints

• Data (or online) complexity q: total cost of queries D can make
• Computation (or time) complexity t: everything that D can do “on its own”

10 / 42

Stream Cipher Security, Intuition (3/3)

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

(D, ℓ;Z)

• Denote D’s success probability in correctly guessing head/tail by Pr (success)

• D can always guess and succeeds with probability ≥ 1/2, so we scale the

probability to D’s advantage:

Adv(D) = 2 ·Pr (success)− 1

= Pr
(
DSCK returns head

)
−Pr

(
DRO returns head

)
• D is limited by certain constraints

• Data (or online) complexity q: total cost of queries D can make
• Computation (or time) complexity t: everything that D can do “on its own”

10 / 42

Stream Cipher Security, Intuition (3/3)

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

(D, ℓ;Z)

• Denote D’s success probability in correctly guessing head/tail by Pr (success)

• D can always guess and succeeds with probability ≥ 1/2, so we scale the

probability to D’s advantage:

Adv(D) = 2 ·Pr (success)− 1

= Pr
(
DSCK returns head

)
−Pr

(
DRO returns head

)

• D is limited by certain constraints

• Data (or online) complexity q: total cost of queries D can make
• Computation (or time) complexity t: everything that D can do “on its own”

10 / 42

Stream Cipher Security, Intuition (3/3)

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

(D, ℓ;Z)

• Denote D’s success probability in correctly guessing head/tail by Pr (success)

• D can always guess and succeeds with probability ≥ 1/2, so we scale the

probability to D’s advantage:

Adv(D) = 2 ·Pr (success)− 1

= Pr
(
DSCK returns head

)
−Pr

(
DRO returns head

)
• D is limited by certain constraints

• Data (or online) complexity q: total cost of queries D can make
• Computation (or time) complexity t: everything that D can do “on its own”

10 / 42

Stream Cipher Security, Intuition (3/3)

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

(D, ℓ;Z)

• Denote D’s success probability in correctly guessing head/tail by Pr (success)

• D can always guess and succeeds with probability ≥ 1/2, so we scale the

probability to D’s advantage:

Adv(D) = 2 ·Pr (success)− 1

= Pr
(
DSCK returns head

)
−Pr

(
DRO returns head

)
• D is limited by certain constraints

• Data (or online) complexity q: total cost of queries D can make
• Computation (or time) complexity t: everything that D can do “on its own”

10 / 42

Stream Cipher Security, Formal

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

(D, ℓ;Z)

• Two oracles: SCK (for secret key K) and RO (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprf
SC (D) = ∆D (SCK ; RO) =

∣∣Pr
(
DSCK = 1

)
−Pr

(
DRO = 1

)∣∣
• Advprf

SC (q, t): maximum advantage over any distinguisher with complexity q, t

11 / 42

Stream Cipher Security, Formal

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

(D, ℓ;Z)

• Two oracles: SCK (for secret key K) and RO (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprf
SC (D) = ∆D (SCK ; RO) =

∣∣Pr
(
DSCK = 1

)
−Pr

(
DRO = 1

)∣∣
• Advprf

SC (q, t): maximum advantage over any distinguisher with complexity q, t

11 / 42

Stream Cipher Security, Formal

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

(D, ℓ;Z)

• Two oracles: SCK (for secret key K) and RO (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprf
SC (D) = ∆D (SCK ; RO) =

∣∣Pr
(
DSCK = 1

)
−Pr

(
DRO = 1

)∣∣
• Advprf

SC (q, t): maximum advantage over any distinguisher with complexity q, t

11 / 42

Stream Cipher Security, Formal

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

(D, ℓ;Z)

• Two oracles: SCK (for secret key K) and RO (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprf
SC (D) = ∆D (SCK ; RO) =

∣∣Pr
(
DSCK = 1

)
−Pr

(
DRO = 1

)∣∣

• Advprf
SC (q, t): maximum advantage over any distinguisher with complexity q, t

11 / 42

Stream Cipher Security, Formal

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

(D, ℓ;Z)

• Two oracles: SCK (for secret key K) and RO (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprf
SC (D) = ∆D (SCK ; RO) =

∣∣Pr
(
DSCK = 1

)
−Pr

(
DRO = 1

)∣∣
• Advprf

SC (q, t): maximum advantage over any distinguisher with complexity q, t

11 / 42

Generic Stream Cipher Design

Generic Stream Cipher Design (1/2)

• Classical approach: LFSRs strengthened with non-linear component

• Modern approach: building construction from smaller cryptographic primitive

• Suppose (for the sake of argument):

• we know how to build a strong stream cipher F with fixed-length output
• we want to build a stream cipher with variable-length output

· · · FD′

K ′

Z ′\

128

\
k

\

128
· · ·D, ℓ

K

Z = z1z2 . . . zℓ\

96

\
k

\

∗

12 / 42

Generic Stream Cipher Design (1/2)

• Classical approach: LFSRs strengthened with non-linear component

• Modern approach: building construction from smaller cryptographic primitive

• Suppose (for the sake of argument):

• we know how to build a strong stream cipher F with fixed-length output
• we want to build a stream cipher with variable-length output

· · · FD′

K ′

Z ′\

128

\
k

\

128
· · ·D, ℓ

K

Z = z1z2 . . . zℓ\

96

\
k

\

∗

12 / 42

Generic Stream Cipher Design (2/2)

Design

• Feed K to primitive

• Evaluate primitive as often as needed, with D

concatenated with counter

• Concatenate outputs:

Z = Z1 ∥ Z2 ∥ Z3 ∥ · · ·

Security

• If FK is hard to distinguish from a RO′

• Then construction is hard to distinguish from RO

• For the purists: Advprf
SC[F](q, t) ≤ Advprf

F (q, t′)

F

D∥⟨0⟩32

K

Z1

\

128

\
k

\

128

F

D∥⟨1⟩32

K

Z2

\

128

\
k

\

128

F

D∥⟨2⟩32

K

Z3

\

128

\
k

\

128

...

13 / 42

Unfortunately, we do not know

how to easily construct a function

FD′

K ′

Z ′\

128

\
k

\

128

that behaves like a RO′

Generic Stream Cipher Design (2/2)

Design

• Feed K to primitive

• Evaluate primitive as often as needed, with D

concatenated with counter

• Concatenate outputs:

Z = Z1 ∥ Z2 ∥ Z3 ∥ · · ·

Security

• If FK is hard to distinguish from a RO′

• Then construction is hard to distinguish from RO

• For the purists: Advprf
SC[F](q, t) ≤ Advprf

F (q, t′)

FD∥⟨0⟩32

K

Z1

\

128

\
k

\

128

FD∥⟨1⟩32

K

Z2

\

128

\
k

\

128

FD∥⟨2⟩32

K

Z3

\

128

\
k

\

128

...

13 / 42

Unfortunately, we do not know

how to easily construct a function

FD′

K ′

Z ′\

128

\
k

\

128

that behaves like a RO′

Generic Stream Cipher Design (2/2)

Design

• Feed K to primitive

• Evaluate primitive as often as needed, with D

concatenated with counter

• Concatenate outputs:

Z = Z1 ∥ Z2 ∥ Z3 ∥ · · ·

Security

• If FK is hard to distinguish from a RO′

• Then construction is hard to distinguish from RO

• For the purists: Advprf
SC[F](q, t) ≤ Advprf

F (q, t′)

FD∥⟨0⟩32

K

Z1

\

128

\
k

\

128

FD∥⟨1⟩32

K

Z2

\

128

\
k

\

128

FD∥⟨2⟩32

K

Z3

\

128

\
k

\

128

...

13 / 42

Unfortunately, we do not know

how to easily construct a function

FD′

K ′

Z ′\

128

\
k

\

128

that behaves like a RO′

Generic Stream Cipher Design (2/2)

Design

• Feed K to primitive

• Evaluate primitive as often as needed, with D

concatenated with counter

• Concatenate outputs:

Z = Z1 ∥ Z2 ∥ Z3 ∥ · · ·

Security

• If FK is hard to distinguish from a RO′

• Then construction is hard to distinguish from RO

• For the purists: Advprf
SC[F](q, t) ≤ Advprf

F (q, t′)

FD∥⟨0⟩32

K

Z1

\

128

\
k

\

128

FD∥⟨1⟩32

K

Z2

\

128

\
k

\

128

FD∥⟨2⟩32

K

Z3

\

128

\
k

\

128

...

13 / 42

Unfortunately, we do not know

how to easily construct a function

FD′

K ′

Z ′\

128

\
k

\

128

that behaves like a RO′

Generic Stream Cipher Design (2/2)

Design

• Feed K to primitive

• Evaluate primitive as often as needed, with D

concatenated with counter

• Concatenate outputs:

Z = Z1 ∥ Z2 ∥ Z3 ∥ · · ·

Security

• If FK is hard to distinguish from a RO′

• Then construction is hard to distinguish from RO

• For the purists: Advprf
SC[F](q, t) ≤ Advprf

F (q, t′)

RO′D∥⟨0⟩32 Z1

\

128

\

128

RO′D∥⟨1⟩32 Z2

\

128

\

128

RO′D∥⟨2⟩32 Z3

\

128

\

128

...

13 / 42

Unfortunately, we do not know

how to easily construct a function

FD′

K ′

Z ′\

128

\
k

\

128

that behaves like a RO′

Generic Stream Cipher Design (2/2)

Design

• Feed K to primitive

• Evaluate primitive as often as needed, with D

concatenated with counter

• Concatenate outputs:

Z = Z1 ∥ Z2 ∥ Z3 ∥ · · ·

Security

• If FK is hard to distinguish from a RO′

• Then construction is hard to distinguish from RO

• For the purists: Advprf
SC[F](q, t) ≤ Advprf

F (q, t′)

RO′D∥⟨0⟩32 Z1

\

128

\

128

RO′D∥⟨1⟩32 Z2

\

128

\

128

RO′D∥⟨2⟩32 Z3

\

128

\

128

...

13 / 42

Unfortunately, we do not know

how to easily construct a function

FD′

K ′

Z ′\

128

\
k

\

128

that behaves like a RO′

Generic Stream Cipher Design (2/2)

Design

• Feed K to primitive

• Evaluate primitive as often as needed, with D

concatenated with counter

• Concatenate outputs:

Z = Z1 ∥ Z2 ∥ Z3 ∥ · · ·

Security

• If FK is hard to distinguish from a RO′

• Then construction is hard to distinguish from RO

• For the purists: Advprf
SC[F](q, t) ≤ Advprf

F (q, t′)

RO′D∥⟨0⟩32 Z1

\

128

\

128

RO′D∥⟨1⟩32 Z2

\

128

\

128

RO′D∥⟨2⟩32 Z3

\

128

\

128

...

13 / 42

Unfortunately, we do not know

how to easily construct a function

FD′

K ′

Z ′\

128

\
k

\

128

that behaves like a RO′

Generic Stream Cipher Design (2/2)

Design

• Feed K to primitive

• Evaluate primitive as often as needed, with D

concatenated with counter

• Concatenate outputs:

Z = Z1 ∥ Z2 ∥ Z3 ∥ · · ·

Security

• If FK is hard to distinguish from a RO′

• Then construction is hard to distinguish from RO

• For the purists: Advprf
SC[F](q, t) ≤ Advprf

F (q, t′)

RO′D∥⟨0⟩32 Z1

\

128

\

128

RO′D∥⟨1⟩32 Z2

\

128

\

128

RO′D∥⟨2⟩32 Z3

\

128

\

128

...

13 / 42

Unfortunately, we do not know

how to easily construct a function

FD′

K ′

Z ′\

128

\
k

\

128

that behaves like a RO′

Block Ciphers

Block Ciphers

EM

K

C\

n

\
k

\

n

E−1C

K

M\

n

\
k

\

n

• Using key K, message M is bijectively transformed to ciphertext C

• Key, plaintext, and ciphertext are typically of fixed size

• For fixed key, EK is invertible and the inverse is denoted as E−1
K

• Example [DR02]:

AES-128 : {0, 1}128 × {0, 1}128 → {0, 1}128

(K,M) 7→ C

• A good block cipher should behave like a random permutation

14 / 42

Block Ciphers

EM

K

C\

n

\
k

\

n E−1C

K

M\

n

\
k

\

n

• Using key K, message M is bijectively transformed to ciphertext C

• Key, plaintext, and ciphertext are typically of fixed size

• For fixed key, EK is invertible and the inverse is denoted as E−1
K

• Example [DR02]:

AES-128 : {0, 1}128 × {0, 1}128 → {0, 1}128

(K,M) 7→ C

• A good block cipher should behave like a random permutation

14 / 42

Block Ciphers

EM

K

C\

n

\
k

\

n E−1C

K

M\

n

\
k

\

n

• Using key K, message M is bijectively transformed to ciphertext C

• Key, plaintext, and ciphertext are typically of fixed size

• For fixed key, EK is invertible and the inverse is denoted as E−1
K

• Example [DR02]:

AES-128 : {0, 1}128 × {0, 1}128 → {0, 1}128

(K,M) 7→ C

• A good block cipher should behave like a random permutation

14 / 42

Block Ciphers

EM

K

C\

n

\
k

\

n E−1C

K

M\

n

\
k

\

n

• Using key K, message M is bijectively transformed to ciphertext C

• Key, plaintext, and ciphertext are typically of fixed size

• For fixed key, EK is invertible and the inverse is denoted as E−1
K

• Example [DR02]:

AES-128 : {0, 1}128 × {0, 1}128 → {0, 1}128

(K,M) 7→ C

• A good block cipher should behave like a random permutation

14 / 42

Block Cipher Security

real world ideal world

EK
block cipher

p
random permutation

distinguisher D

(M ;C)

• Two oracles: EK (for secret key K) and p (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprp
E (D) = ∆D (EK ; p) =

∣∣Pr
(
DEK = 1

)
−Pr (Dp = 1)

∣∣
• Advprp

E (q, t): maximum advantage over any D with query/time complexity q/t

15 / 42

Block Cipher Security

real world ideal world

EK
block cipher

p
random permutation

distinguisher D

(M ;C)

• Two oracles: EK (for secret key K) and p (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprp
E (D) = ∆D (EK ; p) =

∣∣Pr
(
DEK = 1

)
−Pr (Dp = 1)

∣∣
• Advprp

E (q, t): maximum advantage over any D with query/time complexity q/t

15 / 42

Block Cipher Security

real world ideal world

EK
block cipher

p
random permutation

distinguisher D

(M ;C)

• Two oracles: EK (for secret key K) and p (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprp
E (D) = ∆D (EK ; p) =

∣∣Pr
(
DEK = 1

)
−Pr (Dp = 1)

∣∣
• Advprp

E (q, t): maximum advantage over any D with query/time complexity q/t

15 / 42

Block Cipher Security

real world ideal world

EK
block cipher

p
random permutation

distinguisher D

(M ;C)

• Two oracles: EK (for secret key K) and p (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprp
E (D) = ∆D (EK ; p) =

∣∣Pr
(
DEK = 1

)
−Pr (Dp = 1)

∣∣

• Advprp
E (q, t): maximum advantage over any D with query/time complexity q/t

15 / 42

Block Cipher Security

real world ideal world

EK
block cipher

p
random permutation

distinguisher D

(M ;C)

• Two oracles: EK (for secret key K) and p (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprp
E (D) = ∆D (EK ; p) =

∣∣Pr
(
DEK = 1

)
−Pr (Dp = 1)

∣∣
• Advprp

E (q, t): maximum advantage over any D with query/time complexity q/t

15 / 42

Counter Mode Encryption

Counter (CTR) Mode

EK EK EK EK· · ·

N∥⟨1⟩ N∥⟨2⟩ N∥⟨3⟩ N∥⟨ℓ⟩· · ·

M1 M2 M3 Mℓ

C1 C2 C3 Cℓ· · ·

Features

• Stream-based encryption mode

• Fully parallelizable (encryption and decryption) and extremely simple

• Decryption needs no E−1
K

Security

• “Hopefully” secure as long as N is never repeated and EK is a secure PRP

• Let us investigate that!

16 / 42

Counter (CTR) Mode

EK EK EK EK· · ·

N∥⟨1⟩ N∥⟨2⟩ N∥⟨3⟩ N∥⟨ℓ⟩· · ·

M1 M2 M3 Mℓ

C1 C2 C3 Cℓ· · ·

Features

• Stream-based encryption mode

• Fully parallelizable (encryption and decryption) and extremely simple

• Decryption needs no E−1
K

Security

• “Hopefully” secure as long as N is never repeated and EK is a secure PRP

• Let us investigate that!

16 / 42

Counter (CTR) Mode

EK EK EK EK· · ·

N∥⟨1⟩ N∥⟨2⟩ N∥⟨3⟩ N∥⟨ℓ⟩· · ·

M1 M2 M3 Mℓ

C1 C2 C3 Cℓ· · ·

Features

• Stream-based encryption mode

• Fully parallelizable (encryption and decryption) and extremely simple

• Decryption needs no E−1
K

Security

• “Hopefully” secure as long as N is never repeated and EK is a secure PRP

• Let us investigate that!

16 / 42

Security of Counter Mode Based on AES

• Let us consider counter mode based on AES: CTR[AESK]

AESK AESK AESK AESK· · ·

N∥⟨1⟩ N∥⟨2⟩ N∥⟨3⟩ N∥⟨ℓ⟩· · ·

M1 M2 M3 Mℓ

C1 C2 C3 Cℓ· · ·

• We focus on the keystream generation portion

• Assumptions

• Distinguisher never repeats nonce N
• AES itself is sufficiently secure: Advprp

AES(q, t) is small

17 / 42

Security of Counter Mode Based on AES

• Let us consider counter mode based on AES: CTR[AESK]

AESK AESK AESK AESK· · ·

N∥⟨1⟩ N∥⟨2⟩ N∥⟨3⟩ N∥⟨ℓ⟩· · ·

M1 M2 M3 Mℓ

C1 C2 C3 Cℓ· · ·

• We focus on the keystream generation portion

• Assumptions

• Distinguisher never repeats nonce N
• AES itself is sufficiently secure: Advprp

AES(q, t) is small

17 / 42

Security of Counter Mode Based on AES

• Let us consider counter mode based on AES: CTR[AESK]

AESK AESK AESK AESK· · ·

N∥⟨1⟩ N∥⟨2⟩ N∥⟨3⟩ N∥⟨ℓ⟩· · ·

M1 M2 M3 Mℓ

C1 C2 C3 Cℓ· · ·

• We focus on the keystream generation portion

• Assumptions

• Distinguisher never repeats nonce N
• AES itself is sufficiently secure: Advprp

AES(q, t) is small

17 / 42

Security of Counter Mode Based on AES: Model

real world ideal world

CTR[AESK]
counter mode with AES

RO
random oracle

distinguisher D

(N,M ;C)

• Two oracles: CTR[AESK] (for secret key K) and RO (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprf
CTR[AES](D) = ∆D (CTR[AESK] ; RO) =

∣∣∣Pr
(
DCTR[AESK] = 1

)
−Pr

(
DRO = 1

)∣∣∣
• Advprf

CTR[AES](q, t): maximum advantage over any D with q/t blocks/time

18 / 42

Security of Counter Mode Based on AES: Model

real world ideal world

CTR[AESK]
counter mode with AES

RO
random oracle

distinguisher D

(N,M ;C)

• Two oracles: CTR[AESK] (for secret key K) and RO (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprf
CTR[AES](D) = ∆D (CTR[AESK] ; RO) =

∣∣∣Pr
(
DCTR[AESK] = 1

)
−Pr

(
DRO = 1

)∣∣∣
• Advprf

CTR[AES](q, t): maximum advantage over any D with q/t blocks/time

18 / 42

Security of Counter Mode Based on AES: Model

real world ideal world

CTR[AESK]
counter mode with AES

RO
random oracle

distinguisher D

(N,M ;C)

• Two oracles: CTR[AESK] (for secret key K) and RO (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprf
CTR[AES](D) = ∆D (CTR[AESK] ; RO) =

∣∣∣Pr
(
DCTR[AESK] = 1

)
−Pr

(
DRO = 1

)∣∣∣
• Advprf

CTR[AES](q, t): maximum advantage over any D with q/t blocks/time

18 / 42

Security of Counter Mode Based on AES: Model

real world ideal world

CTR[AESK]
counter mode with AES

RO
random oracle

distinguisher D

(N,M ;C)

• Two oracles: CTR[AESK] (for secret key K) and RO (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprf
CTR[AES](D) = ∆D (CTR[AESK] ; RO) =

∣∣∣Pr
(
DCTR[AESK] = 1

)
−Pr

(
DRO = 1

)∣∣∣

• Advprf
CTR[AES](q, t): maximum advantage over any D with q/t blocks/time

18 / 42

Security of Counter Mode Based on AES: Model

real world ideal world

CTR[AESK]
counter mode with AES

RO
random oracle

distinguisher D

(N,M ;C)

• Two oracles: CTR[AESK] (for secret key K) and RO (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprf
CTR[AES](D) = ∆D (CTR[AESK] ; RO) =

∣∣∣Pr
(
DCTR[AESK] = 1

)
−Pr

(
DRO = 1

)∣∣∣
• Advprf

CTR[AES](q, t): maximum advantage over any D with q/t blocks/time

18 / 42

Proof: Overview

real world ideal world

CTR[AESK]
counter mode with AES

RO
random oracle

distinguisher D

(N,M ;C) (N,M ;C)

• For any (fixed) distinguisher D (later, we maximize over all), we have to bound:

Advprf
CTR[AES](D) = ∆D (CTR[AESK] ; RO) =

∣∣∣Pr
(
DCTR[AESK] = 1

)
−Pr

(
DRO = 1

)∣∣∣

• We add intermediate worlds CTR[p] and CTR[f] for random p and f

• By the triangle inequality:

∆D (CTR[AESK] ; RO) ≤ ∆D (CTR[AESK] ; CTR[p]) + ∆D (CTR[p] ; CTR[f]) + ∆D (CTR[f] ; RO)

19 / 42

Proof: Overview

real world intermediate 1 intermediate 2 ideal world

CTR[AESK]
counter mode with AES

CTR[p]
CTR with permutation

CTR[f]
CTR with function

RO
random oracle

distinguisher D

(N,M ;C) (N,M ;C)

• For any (fixed) distinguisher D (later, we maximize over all), we have to bound:

Advprf
CTR[AES](D) = ∆D (CTR[AESK] ; RO) =

∣∣∣Pr
(
DCTR[AESK] = 1

)
−Pr

(
DRO = 1

)∣∣∣
• We add intermediate worlds CTR[p] and CTR[f] for random p and f

• By the triangle inequality:

∆D (CTR[AESK] ; RO) ≤ ∆D (CTR[AESK] ; CTR[p]) + ∆D (CTR[p] ; CTR[f]) + ∆D (CTR[f] ; RO)

19 / 42

Proof: Overview

real world intermediate 1 intermediate 2 ideal world

CTR[AESK]
counter mode with AES

CTR[p]
CTR with permutation

CTR[f]
CTR with function

RO
random oracle

distinguisher D

(N,M ;C) (N,M ;C)

• For any (fixed) distinguisher D (later, we maximize over all), we have to bound:

Advprf
CTR[AES](D) = ∆D (CTR[AESK] ; RO) =

∣∣∣Pr
(
DCTR[AESK] = 1

)
−Pr

(
DRO = 1

)∣∣∣
• We add intermediate worlds CTR[p] and CTR[f] for random p and f

• By the triangle inequality:

∆D (CTR[AESK] ; RO) ≤ ∆D (CTR[AESK] ; CTR[p]) + ∆D (CTR[p] ; CTR[f]) + ∆D (CTR[f] ; RO)

19 / 42

Proof: Overview

real world intermediate 1 intermediate 2 ideal world

CTR[AESK]
counter mode with AES

CTR[p]
CTR with permutation

CTR[f]
CTR with function

RO
random oracle

distinguisher D

(N,M ;C)

distinguisher D

(N,M ;C)

distinguisher D

(N,M ;C)

• For any (fixed) distinguisher D (later, we maximize over all), we have to bound:

Advprf
CTR[AES](D) = ∆D (CTR[AESK] ; RO) =

∣∣∣Pr
(
DCTR[AESK] = 1

)
−Pr

(
DRO = 1

)∣∣∣
• We add intermediate worlds CTR[p] and CTR[f] for random p and f

• By the triangle inequality:

∆D (CTR[AESK] ; RO) ≤ ∆D (CTR[AESK] ; CTR[p]) + ∆D (CTR[p] ; CTR[f]) + ∆D (CTR[f] ; RO)

19 / 42

Proof: From CTR[AESK] to CTR[p]

• D’s goal: distinguish CTR[AESK] from CTR[p]

• We replace D by a distinguisher D′ that has more power

• D′’s goal: distinguish AESK from p

• D′ simulates the oracles of D:
• Once D makes its final guess, D′ makes the same guess

• D′ success probability turns out to be at least that of D:
∆D (CTR[AESK] ; CTR[p]) ≤ ∆D′ (AESK ; p)

• But we have seen this distance before:

∆D′ (AESK ; p) = Advprp
AES(D′) ≤ Advprp

AES(q, t
′)

(t′ slightly larger than t)

AESK p

D′

• ℓ = ⌈|M |/n⌉
• for i = 1, . . . , ℓ:

query Xi = N∥⟨i⟩ to get Yi

• return first |M | bits of
C = Y1∥ . . . ∥Yℓ ⊕M

D

X Y X Y

N,M C

20 / 42

Proof: From CTR[AESK] to CTR[p]

• D’s goal: distinguish CTR[AESK] from CTR[p]

• We replace D by a distinguisher D′ that has more power

• D′’s goal: distinguish AESK from p

• D′ simulates the oracles of D:
• Once D makes its final guess, D′ makes the same guess

• D′ success probability turns out to be at least that of D:
∆D (CTR[AESK] ; CTR[p]) ≤ ∆D′ (AESK ; p)

• But we have seen this distance before:

∆D′ (AESK ; p) = Advprp
AES(D′) ≤ Advprp

AES(q, t
′)

(t′ slightly larger than t)

AESK p

D′

• ℓ = ⌈|M |/n⌉
• for i = 1, . . . , ℓ:

query Xi = N∥⟨i⟩ to get Yi

• return first |M | bits of
C = Y1∥ . . . ∥Yℓ ⊕M

D

X Y X Y

N,M C

20 / 42

Proof: From CTR[AESK] to CTR[p]

• D’s goal: distinguish CTR[AESK] from CTR[p]

• We replace D by a distinguisher D′ that has more power

• D′’s goal: distinguish AESK from p

• D′ simulates the oracles of D:
• Once D makes its final guess, D′ makes the same guess

• D′ success probability turns out to be at least that of D:
∆D (CTR[AESK] ; CTR[p]) ≤ ∆D′ (AESK ; p)

• But we have seen this distance before:

∆D′ (AESK ; p) = Advprp
AES(D′) ≤ Advprp

AES(q, t
′)

(t′ slightly larger than t)

AESK p

D′

• ℓ = ⌈|M |/n⌉
• for i = 1, . . . , ℓ:

query Xi = N∥⟨i⟩ to get Yi

• return first |M | bits of
C = Y1∥ . . . ∥Yℓ ⊕M

D

X Y X Y

N,M C

20 / 42

Proof: From CTR[AESK] to CTR[p]

• D’s goal: distinguish CTR[AESK] from CTR[p]

• We replace D by a distinguisher D′ that has more power

• D′’s goal: distinguish AESK from p

• D′ simulates the oracles of D:
• Once D makes its final guess, D′ makes the same guess

• D′ success probability turns out to be at least that of D:
∆D (CTR[AESK] ; CTR[p]) ≤ ∆D′ (AESK ; p)

• But we have seen this distance before:

∆D′ (AESK ; p) = Advprp
AES(D′) ≤ Advprp

AES(q, t
′)

(t′ slightly larger than t)

AESK p

D′

• ℓ = ⌈|M |/n⌉
• for i = 1, . . . , ℓ:

query Xi = N∥⟨i⟩ to get Yi

• return first |M | bits of
C = Y1∥ . . . ∥Yℓ ⊕M

D

X Y X Y

N,M C

20 / 42

Proof: From CTR[AESK] to CTR[p]

• D’s goal: distinguish CTR[AESK] from CTR[p]

• We replace D by a distinguisher D′ that has more power

• D′’s goal: distinguish AESK from p

• D′ simulates the oracles of D:
• Once D makes its final guess, D′ makes the same guess

• D′ success probability turns out to be at least that of D:
∆D (CTR[AESK] ; CTR[p]) ≤ ∆D′ (AESK ; p)

• But we have seen this distance before:

∆D′ (AESK ; p) = Advprp
AES(D′) ≤ Advprp

AES(q, t
′)

(t′ slightly larger than t)

AESK p

D′

• ℓ = ⌈|M |/n⌉
• for i = 1, . . . , ℓ:

query Xi = N∥⟨i⟩ to get Yi

• return first |M | bits of
C = Y1∥ . . . ∥Yℓ ⊕M

D

X Y X Y

N,M C

20 / 42

Proof: From CTR[AESK] to CTR[p]

• D’s goal: distinguish CTR[AESK] from CTR[p]

• We replace D by a distinguisher D′ that has more power

• D′’s goal: distinguish AESK from p

• D′ simulates the oracles of D:
• Once D makes its final guess, D′ makes the same guess

• D′ success probability turns out to be at least that of D:
∆D (CTR[AESK] ; CTR[p]) ≤ ∆D′ (AESK ; p)

• But we have seen this distance before:

∆D′ (AESK ; p) = Advprp
AES(D′) ≤ Advprp

AES(q, t
′)

(t′ slightly larger than t)

AESK p

D′

• ℓ = ⌈|M |/n⌉
• for i = 1, . . . , ℓ:

query Xi = N∥⟨i⟩ to get Yi

• return first |M | bits of
C = Y1∥ . . . ∥Yℓ ⊕M

D

X Y X Y

N,M C

20 / 42

Proof: From CTR[p] to CTR[f] (1/2)

• D’s goal: distinguish CTR[p] from CTR[f]

• We replace D by a distinguisher D′ that has more power

• D′’s goal: distinguish p from f

• D′ simulates the oracles of D:
• Once D makes its final guess, D′ makes the same guess

• D′ success probability turns out to be at least that of D:
∆D (CTR[p] ; CTR[f]) ≤ ∆D′ (p ; f)

• This is a well-known distance, called the RP-RF switch

p f

D′

• ℓ = ⌈|M |/n⌉
• for i = 1, . . . , ℓ:

query Xi = N∥⟨i⟩ to get Yi

• return first |M | bits of
C = Y1∥ . . . ∥Yℓ ⊕M

D

X Y X Y

N,M C

21 / 42

Proof: From CTR[p] to CTR[f] (1/2)

• D’s goal: distinguish CTR[p] from CTR[f]

• We replace D by a distinguisher D′ that has more power

• D′’s goal: distinguish p from f

• D′ simulates the oracles of D:
• Once D makes its final guess, D′ makes the same guess

• D′ success probability turns out to be at least that of D:
∆D (CTR[p] ; CTR[f]) ≤ ∆D′ (p ; f)

• This is a well-known distance, called the RP-RF switch

p f

D′

• ℓ = ⌈|M |/n⌉
• for i = 1, . . . , ℓ:

query Xi = N∥⟨i⟩ to get Yi

• return first |M | bits of
C = Y1∥ . . . ∥Yℓ ⊕M

D

X Y X Y

N,M C

21 / 42

Proof: From CTR[p] to CTR[f] (1/2)

• D’s goal: distinguish CTR[p] from CTR[f]

• We replace D by a distinguisher D′ that has more power

• D′’s goal: distinguish p from f

• D′ simulates the oracles of D:
• Once D makes its final guess, D′ makes the same guess

• D′ success probability turns out to be at least that of D:
∆D (CTR[p] ; CTR[f]) ≤ ∆D′ (p ; f)

• This is a well-known distance, called the RP-RF switch

p f

D′

• ℓ = ⌈|M |/n⌉
• for i = 1, . . . , ℓ:

query Xi = N∥⟨i⟩ to get Yi

• return first |M | bits of
C = Y1∥ . . . ∥Yℓ ⊕M

D

X Y X Y

N,M C

21 / 42

Proof: From CTR[p] to CTR[f] (1/2)

• D’s goal: distinguish CTR[p] from CTR[f]

• We replace D by a distinguisher D′ that has more power

• D′’s goal: distinguish p from f

• D′ simulates the oracles of D:
• Once D makes its final guess, D′ makes the same guess

• D′ success probability turns out to be at least that of D:
∆D (CTR[p] ; CTR[f]) ≤ ∆D′ (p ; f)

• This is a well-known distance, called the RP-RF switch

p f

D′

• ℓ = ⌈|M |/n⌉
• for i = 1, . . . , ℓ:

query Xi = N∥⟨i⟩ to get Yi

• return first |M | bits of
C = Y1∥ . . . ∥Yℓ ⊕M

D

X Y X Y

N,M C

21 / 42

Proof: From CTR[p] to CTR[f] (1/2)

• D’s goal: distinguish CTR[p] from CTR[f]

• We replace D by a distinguisher D′ that has more power

• D′’s goal: distinguish p from f

• D′ simulates the oracles of D:
• Once D makes its final guess, D′ makes the same guess

• D′ success probability turns out to be at least that of D:
∆D (CTR[p] ; CTR[f]) ≤ ∆D′ (p ; f)

• This is a well-known distance, called the RP-RF switch

p f

D′

• ℓ = ⌈|M |/n⌉
• for i = 1, . . . , ℓ:

query Xi = N∥⟨i⟩ to get Yi

• return first |M | bits of
C = Y1∥ . . . ∥Yℓ ⊕M

D

X Y X Y

N,M C

21 / 42

Proof: From CTR[p] to CTR[f] (1/2)

• D’s goal: distinguish CTR[p] from CTR[f]

• We replace D by a distinguisher D′ that has more power

• D′’s goal: distinguish p from f

• D′ simulates the oracles of D:
• Once D makes its final guess, D′ makes the same guess

• D′ success probability turns out to be at least that of D:
∆D (CTR[p] ; CTR[f]) ≤ ∆D′ (p ; f)

• This is a well-known distance, called the RP-RF switch

p f

D′

• ℓ = ⌈|M |/n⌉
• for i = 1, . . . , ℓ:

query Xi = N∥⟨i⟩ to get Yi

• return first |M | bits of
C = Y1∥ . . . ∥Yℓ ⊕M

D

X Y X Y

N,M C

21 / 42

Proof: From CTR[p] to CTR[f] (2/2)

real world ideal world

p
random permutation

f
random function

distinguisher D′

• Distinguisher D′ gets q random n-bit samples:

• real world: without replacement
• ideal world: with replacement

• The two worlds can only be distinguished if f ever outputs colliding samples

• This happens with probability at most
(
q
2

)
/2n

• Hence: ∆D′ (p ; f) ≤
(
q
2

)
/2n

22 / 42

Proof: From CTR[p] to CTR[f] (2/2)

real world ideal world

p
random permutation

f
random function

distinguisher D′

• Distinguisher D′ gets q random n-bit samples:

• real world: without replacement
• ideal world: with replacement

• The two worlds can only be distinguished if f ever outputs colliding samples

• This happens with probability at most
(
q
2

)
/2n

• Hence: ∆D′ (p ; f) ≤
(
q
2

)
/2n

22 / 42

Proof: From CTR[p] to CTR[f] (2/2)

real world ideal world

p
random permutation

f
random function

distinguisher D′

• Distinguisher D′ gets q random n-bit samples:

• real world: without replacement
• ideal world: with replacement

• The two worlds can only be distinguished if f ever outputs colliding samples

• This happens with probability at most
(
q
2

)
/2n

• Hence: ∆D′ (p ; f) ≤
(
q
2

)
/2n

22 / 42

Proof: From CTR[p] to CTR[f] (2/2)

real world ideal world

p
random permutation

f
random function

distinguisher D′

• Distinguisher D′ gets q random n-bit samples:

• real world: without replacement
• ideal world: with replacement

• The two worlds can only be distinguished if f ever outputs colliding samples

• This happens with probability at most
(
q
2

)
/2n

• Hence: ∆D′ (p ; f) ≤
(
q
2

)
/2n

22 / 42

Proof: From CTR[f] to RO

f f f f· · ·

N∥⟨1⟩ N∥⟨2⟩ N∥⟨3⟩ N∥⟨ℓ⟩· · ·

M1 M2 M3 Mℓ

C1 C2 C3 Cℓ· · ·

RO

N

M

C

distinguisher D

(N,M ;C)

• In real world: f is a random function that is never evaluated for repeated N∥⟨i⟩
• In ideal world: RO is a random oracle that is never evaluated for repeated N

• Hence: ∆D (CTR[f] ; RO) = 0

23 / 42

Proof: From CTR[f] to RO

f f f f· · ·

N∥⟨1⟩ N∥⟨2⟩ N∥⟨3⟩ N∥⟨ℓ⟩· · ·

M1 M2 M3 Mℓ

C1 C2 C3 Cℓ· · ·

RO

N

M

C

distinguisher D

(N,M ;C)

• In real world: f is a random function that is never evaluated for repeated N∥⟨i⟩
• In ideal world: RO is a random oracle that is never evaluated for repeated N

• Hence: ∆D (CTR[f] ; RO) = 0

23 / 42

Proof: Conclusion

• Recall goal: bounding Advprf
CTR[AES](D) for any D querying q blocks in t time

• From the triangle inequality and bounds on the three individual terms:

Advprf
CTR[AES](D) = ∆D (CTR[AESK] ; RO)

≤ ∆D (CTR[AESK] ; CTR[p]) + ∆D (CTR[p] ; CTR[f]) + ∆D (CTR[f] ; RO)

≤ Advprp
AES(q, t

′) +

(
q

2

)
/2n + 0

• As this reasoning holds for all distinguishers D querying q blocks in t time, we

obtain:

Advprf
CTR[AES](q, t) ≤ Advprp

AES(q, t
′) +

(
q

2

)
/2n

24 / 42

Proof: Conclusion

• Recall goal: bounding Advprf
CTR[AES](D) for any D querying q blocks in t time

• From the triangle inequality and bounds on the three individual terms:

Advprf
CTR[AES](D) = ∆D (CTR[AESK] ; RO)

≤ ∆D (CTR[AESK] ; CTR[p]) + ∆D (CTR[p] ; CTR[f]) + ∆D (CTR[f] ; RO)

≤ Advprp
AES(q, t

′) +

(
q

2

)
/2n + 0

• As this reasoning holds for all distinguishers D querying q blocks in t time, we

obtain:

Advprf
CTR[AES](q, t) ≤ Advprp

AES(q, t
′) +

(
q

2

)
/2n

24 / 42

Proof: Conclusion

• Recall goal: bounding Advprf
CTR[AES](D) for any D querying q blocks in t time

• From the triangle inequality and bounds on the three individual terms:

Advprf
CTR[AES](D) = ∆D (CTR[AESK] ; RO)

≤ ∆D (CTR[AESK] ; CTR[p]) + ∆D (CTR[p] ; CTR[f]) + ∆D (CTR[f] ; RO)

≤ Advprp
AES(q, t

′) +

(
q

2

)
/2n + 0

• As this reasoning holds for all distinguishers D querying q blocks in t time, we

obtain:

Advprf
CTR[AES](q, t) ≤ Advprp

AES(q, t
′) +

(
q

2

)
/2n

24 / 42

Beyond Birthday Bound Security

Birthday Paradox

For a random selection of 23 people, with a prob-

ability at least 50% two of them share the same

birthday

General Birthday Paradox

• Consider space S = {0, 1}n

• Randomly draw q elements from S
• Expected number of collisions:

Ex [collisions] =

(
q

2

)
/2n

• Important phenomenon in cryptography

25 / 42

Birthday Paradox

For a random selection of 23 people, with a prob-

ability at least 50% two of them share the same

birthday

General Birthday Paradox

• Consider space S = {0, 1}n

• Randomly draw q elements from S
• Expected number of collisions:

Ex [collisions] =

(
q

2

)
/2n

• Important phenomenon in cryptography

25 / 42

Birthday Paradox

For a random selection of 23 people, with a prob-

ability at least 50% two of them share the same

birthday

General Birthday Paradox

• Consider space S = {0, 1}n

• Randomly draw q elements from S
• Expected number of collisions:

Ex [collisions] =

(
q

2

)
/2n

• Important phenomenon in cryptography

25 / 42

Counter Mode Based on Pseudorandom Permutation

N∥⟨1⟩ N∥⟨2⟩ N∥⟨ℓ⟩

EK EK
· · · · · · EK

M1

C1

M2

C2

Mℓ

Cℓ

• Security bound:

Advprf
CTR[E](q, t) ≤ Advprp

E (q, t′) +

(
q

2

)
/2n

• CTR[E] is secure as long as:

• EK is a secure PRP
• Number of encrypted blocks q ≪ 2n/2

26 / 42

Counter Mode Based on Pseudorandom Permutation

N∥⟨1⟩ N∥⟨2⟩ N∥⟨ℓ⟩

EK EK
· · · · · · EK

M1

C1

M2

C2

Mℓ

Cℓ

• Security bound:

Advprf
CTR[E](q, t) ≤ Advprp

E (q, t′) +

(
q

2

)
/2n

• CTR[E] is secure as long as:

• EK is a secure PRP
• Number of encrypted blocks q ≪ 2n/2

26 / 42

Counter Mode Based on Pseudorandom Permutation

N∥⟨1⟩ N∥⟨2⟩ N∥⟨ℓ⟩

EK EK
· · · · · · EK

M1

C1

M2

C2

Mℓ

Cℓ

• Security bound:

Advprf
CTR[E](q, t) ≤ Advprp

E (q, t′) +

(
q

2

)
/2n

• CTR[E] is secure as long as:

• EK is a secure PRP
• Number of encrypted blocks q ≪ 2n/2

26 / 42

Counter Mode Based on Pseudorandom Permutation

N∥⟨1⟩ N∥⟨2⟩ N∥⟨ℓ⟩

EK EK
· · · · · · EK

M1

C1

M2

C2

Mℓ

Cℓ

• Mi ⊕ Ci is distinct for all q blocks

• Unlikely to happen for random string

• Distinguishing attack in q ≈ 2n/2 blocks:(
q

2

)
/2n ≲ Advprf

CTR[E](q, t)

27 / 42

Counter Mode Based on Pseudorandom Permutation

N∥⟨1⟩ N∥⟨2⟩ N∥⟨ℓ⟩

EK EK
· · · · · · EK

M1

C1

M2

C2

Mℓ

Cℓ

• Mi ⊕ Ci is distinct for all q blocks

• Unlikely to happen for random string

• Distinguishing attack in q ≈ 2n/2 blocks:(
q

2

)
/2n ≲ Advprf

CTR[E](q, t)

27 / 42

Counter Mode Based on Pseudorandom Function

N∥⟨1⟩ N∥⟨2⟩ N∥⟨ℓ⟩

FK FK
· · · · · · FK

M1

C1

M2

C2

Mℓ

Cℓ

• Security bound:

Advprf
CTR[F](q, t) ≤ Advprf

F (q, t′)

• CTR[F] is secure as long as FK is a secure PRF

• Birthday bound security loss disappeared

28 / 42

Counter Mode Based on Pseudorandom Function

N∥⟨1⟩ N∥⟨2⟩ N∥⟨ℓ⟩

FK FK
· · · · · · FK

M1

C1

M2

C2

Mℓ

Cℓ

• Security bound:

Advprf
CTR[F](q, t) ≤ Advprf

F (q, t′)

• CTR[F] is secure as long as FK is a secure PRF

• Birthday bound security loss disappeared

28 / 42

Counter Mode Based on Pseudorandom Function

N∥⟨1⟩ N∥⟨2⟩ N∥⟨ℓ⟩

FK FK
· · · · · · FK

M1

C1

M2

C2

Mℓ

Cℓ

• Security bound:

Advprf
CTR[F](q, t) ≤ Advprf

F (q, t′)

• CTR[F] is secure as long as FK is a secure PRF

• Birthday bound security loss disappeared

28 / 42

Counter Mode Based on XoP

· · · · · ·EK EK EK EK EK EK

N∥⟨1⟩ N∥⟨2⟩ N∥⟨3⟩ N∥⟨4⟩ N∥⟨2ℓ−1⟩ N∥⟨2ℓ⟩

M1

C1

M2

C2

Mℓ

Cℓ

• Security bound [Pat08a, DHT17]:

Advprf
CTR[XoP](q, t) ≤ Advprf

XoP(q, t
′)

≤ Advprp
E (2q, t′′) + q/2n

• Beyond birthday bound but 2x as expensive as CTR[E]

29 / 42

Counter Mode Based on XoP

· · · · · ·EK EK EK EK EK EK

N∥⟨1⟩ N∥⟨2⟩ N∥⟨3⟩ N∥⟨4⟩ N∥⟨2ℓ−1⟩ N∥⟨2ℓ⟩

M1

C1

M2

C2

Mℓ

Cℓ

• Security bound [Pat08a, DHT17]:

Advprf
CTR[XoP](q, t) ≤ Advprf

XoP(q, t
′)

≤ Advprp
E (2q, t′′) + q/2n

• Beyond birthday bound but 2x as expensive as CTR[E]

29 / 42

Counter Mode Based on XoP

· · · · · ·EK EK EK EK EK EK

N∥⟨1⟩ N∥⟨2⟩ N∥⟨3⟩ N∥⟨4⟩ N∥⟨2ℓ−1⟩ N∥⟨2ℓ⟩

M1

C1

M2

C2

Mℓ

Cℓ

• Security bound [Pat08a, DHT17]:

Advprf
CTR[XoP](q, t) ≤ Advprf

XoP(q, t
′)

≤ Advprp
E (2q, t′′) + q/2n

• Beyond birthday bound but 2x as expensive as CTR[E]

29 / 42

CENC by Iwata [Iwa06]

· · · · · · · · ·EK EK EK EK EK EK EK EK

N∥⟨1⟩ N∥⟨2⟩ N∥⟨1⟩ N∥⟨3⟩ N∥⟨1⟩ N∥⟨w+1⟩ N∥⟨w+2⟩N∥⟨w+3⟩

M1

C1

M2

C2

Mw

Cw

Mw+1

Cw+1

• One subkey used for w ≥ 1 encryptions

• Almost as expensive as CTR[E]

• Security bound [IMV16]:

Advprf
CTR[XoP[w]](q, t) ≤ Advprf

XoP[w](q, t
′)

≤ Advprp
E ((w + 1)q, t′′) + wq/2n

• Security of XoP and XoP[w] can be proven using mirror theory [Pat03]

30 / 42

CENC by Iwata [Iwa06]

· · · · · · · · ·EK EK EK EK EK EK EK EK

N∥⟨1⟩ N∥⟨2⟩ N∥⟨1⟩ N∥⟨3⟩ N∥⟨1⟩ N∥⟨w+1⟩ N∥⟨w+2⟩N∥⟨w+3⟩

M1

C1

M2

C2

Mw

Cw

Mw+1

Cw+1

• One subkey used for w ≥ 1 encryptions

• Almost as expensive as CTR[E]

• Security bound [IMV16]:

Advprf
CTR[XoP[w]](q, t) ≤ Advprf

XoP[w](q, t
′)

≤ Advprp
E ((w + 1)q, t′′) + wq/2n

• Security of XoP and XoP[w] can be proven using mirror theory [Pat03]

30 / 42

CENC by Iwata [Iwa06]

· · · · · · · · ·EK EK EK EK EK EK EK EK

N∥⟨1⟩ N∥⟨2⟩ N∥⟨1⟩ N∥⟨3⟩ N∥⟨1⟩ N∥⟨w+1⟩ N∥⟨w+2⟩N∥⟨w+3⟩

M1

C1

M2

C2

Mw

Cw

Mw+1

Cw+1

• One subkey used for w ≥ 1 encryptions

• Almost as expensive as CTR[E]

• Security bound [IMV16]:

Advprf
CTR[XoP[w]](q, t) ≤ Advprf

XoP[w](q, t
′)

≤ Advprp
E ((w + 1)q, t′′) + wq/2n

• Security of XoP and XoP[w] can be proven using mirror theory [Pat03]

30 / 42

CENC by Iwata [Iwa06]

· · · · · · · · ·EK EK EK EK EK EK EK EK

N∥⟨1⟩ N∥⟨2⟩ N∥⟨1⟩ N∥⟨3⟩ N∥⟨1⟩ N∥⟨w+1⟩ N∥⟨w+2⟩N∥⟨w+3⟩

M1

C1

M2

C2

Mw

Cw

Mw+1

Cw+1

• One subkey used for w ≥ 1 encryptions

• Almost as expensive as CTR[E]

• Security bound [IMV16]:

Advprf
CTR[XoP[w]](q, t) ≤ Advprf

XoP[w](q, t
′)

≤ Advprp
E ((w + 1)q, t′′) + wq/2n

• Security of XoP and XoP[w] can be proven using mirror theory [Pat03]
30 / 42

Authenticated Encryption and GCM

Authenticated Encryption

AEA,M

K

N

C, T

• Using key K:

• Message M is encrypted in ciphertext C
• Associated data A and message M are authenticated using T

• Nonce N randomizes the scheme

• Key, nonce, and tag are typically of fixed size

• Associated data, message, and ciphertext could be arbitrary length

31 / 42

Authenticated Encryption

AEA,M

K

N

C, T

• Using key K:

• Message M is encrypted in ciphertext C
• Associated data A and message M are authenticated using T

• Nonce N randomizes the scheme

• Key, nonce, and tag are typically of fixed size

• Associated data, message, and ciphertext could be arbitrary length

31 / 42

Authenticated Encryption

AEA,M

K

N

C, T

• Using key K:

• Message M is encrypted in ciphertext C
• Associated data A and message M are authenticated using T

• Nonce N randomizes the scheme

• Key, nonce, and tag are typically of fixed size

• Associated data, message, and ciphertext could be arbitrary length

31 / 42

Authenticated Decryption

AE−1A,C, T

K

N

• Authenticated decryption needs to satisfy that

• Message disclosed if tag is correct
• Message is not leaked if tag is incorrect

32 / 42

Authenticated Decryption

AE−1A,C, T

K

N

{
M if T correct

⊥ otherwise

• Authenticated decryption needs to satisfy that

• Message disclosed if tag is correct
• Message is not leaked if tag is incorrect

32 / 42

Authenticated Encryption Security

real world ideal world

AEK ,AE−1
K

AE scheme

$,⊥
random cipher, ⊥ function

distinguisher D

• Two oracles: (AEK ,AE−1
K) (for secret key K) and ($,⊥) (secret)

• Distinguisher D has query access to one of these

→ unique nonce for each encryption query, and no trivial queries

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advae
AE(D) = ∆D

(
AEK ,AE−1

K ; $,⊥
)
=

∣∣∣Pr
(
DAEK ,AE−1

K = 1
)
−Pr

(
D$,⊥ = 1

)∣∣∣
• Advae

AE(qe, qv): maximum advantage over any D with query complexity qe, qv

33 / 42

Authenticated Encryption Security

real world ideal world

AEK ,AE−1
K

AE scheme

$,⊥
random cipher, ⊥ function

distinguisher D

• Two oracles: (AEK ,AE−1
K) (for secret key K) and ($,⊥) (secret)

• Distinguisher D has query access to one of these

→ unique nonce for each encryption query, and no trivial queries

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advae
AE(D) = ∆D

(
AEK ,AE−1

K ; $,⊥
)
=

∣∣∣Pr
(
DAEK ,AE−1

K = 1
)
−Pr

(
D$,⊥ = 1

)∣∣∣
• Advae

AE(qe, qv): maximum advantage over any D with query complexity qe, qv

33 / 42

Authenticated Encryption Security

real world ideal world

AEK ,AE−1
K

AE scheme

$,⊥
random cipher, ⊥ function

distinguisher D

• Two oracles: (AEK ,AE−1
K) (for secret key K) and ($,⊥) (secret)

• Distinguisher D has query access to one of these

→ unique nonce for each encryption query, and no trivial queries

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advae
AE(D) = ∆D

(
AEK ,AE−1

K ; $,⊥
)
=

∣∣∣Pr
(
DAEK ,AE−1

K = 1
)
−Pr

(
D$,⊥ = 1

)∣∣∣
• Advae

AE(qe, qv): maximum advantage over any D with query complexity qe, qv

33 / 42

Authenticated Encryption Security

real world ideal world

AEK ,AE−1
K

AE scheme

$,⊥
random cipher, ⊥ function

distinguisher D

• Two oracles: (AEK ,AE−1
K) (for secret key K) and ($,⊥) (secret)

• Distinguisher D has query access to one of these

→ unique nonce for each encryption query, and no trivial queries

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advae
AE(D) = ∆D

(
AEK ,AE−1

K ; $,⊥
)
=

∣∣∣Pr
(
DAEK ,AE−1

K = 1
)
−Pr

(
D$,⊥ = 1

)∣∣∣

• Advae
AE(qe, qv): maximum advantage over any D with query complexity qe, qv

33 / 42

Authenticated Encryption Security

real world ideal world

AEK ,AE−1
K

AE scheme

$,⊥
random cipher, ⊥ function

distinguisher D

• Two oracles: (AEK ,AE−1
K) (for secret key K) and ($,⊥) (secret)

• Distinguisher D has query access to one of these

→ unique nonce for each encryption query, and no trivial queries

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advae
AE(D) = ∆D

(
AEK ,AE−1

K ; $,⊥
)
=

∣∣∣Pr
(
DAEK ,AE−1

K = 1
)
−Pr

(
D$,⊥ = 1

)∣∣∣
• Advae

AE(qe, qv): maximum advantage over any D with query complexity qe, qv
33 / 42

Intermezzo: Universal Hashing

Universal Hash Functions

• Consider hash function H : {0, 1}k × {0, 1}∗ → {0, 1}t

• H is ε-XOR-universal if PrK (HK(M)⊕HK(M ′) = T) ≤ ε (∀ M ̸= M ′, T)

GHASH

• Addition and multiplication over finite field

• ℓ2−t-XOR-universal [MV04]

34 / 42

· · ·0

M1
K

M2
K

Mℓ
K

T

· · ·

Intermezzo: Universal Hashing

Universal Hash Functions

• Consider hash function H : {0, 1}k × {0, 1}∗ → {0, 1}t

• H is ε-XOR-universal if PrK (HK(M)⊕HK(M ′) = T) ≤ ε (∀ M ̸= M ′, T)

GHASH

• Addition and multiplication over finite field

• ℓ2−t-XOR-universal [MV04]

34 / 42

· · ·0

M1
K

M2
K

Mℓ
K

T

· · ·

Simple Example

FN

K

M

∥\

n

\

κ

\

2n

Encryption

• Input: (N,M)

• Compute keystream Z1 ∥ Z2

• Output:

• C = Z1 ⊕M

• T = Z2 ⊕ (M ⊗ L)

Decryption

• Input: (N,C, T)

• Compute keystream Z1 ∥ Z2

• Compute M = Z1 ⊕ C

• Compute T ⋆ = Z2 ⊕ (M ⊗ L)

• Output:

{
M if T = T ⋆

⊥ otherwise

35 / 42

FN

K

M

∥\

n

\

κ

\

2n

Simple Example

FN

K

M

Z1 Z2∥\

n

\

κ

\

2n

Encryption

• Input: (N,M)

• Compute keystream Z1 ∥ Z2

• Output:

• C = Z1 ⊕M

• T = Z2 ⊕ (M ⊗ L)

Decryption

• Input: (N,C, T)

• Compute keystream Z1 ∥ Z2

• Compute M = Z1 ⊕ C

• Compute T ⋆ = Z2 ⊕ (M ⊗ L)

• Output:

{
M if T = T ⋆

⊥ otherwise

35 / 42

FN

K

M

Z1 Z2∥\

n

\

κ

\

2n

Simple Example

FN

K

M

Z1 Z2∥

C

\

n

\

κ

\

n

\

2n

\

n

Encryption

• Input: (N,M)

• Compute keystream Z1 ∥ Z2

• Output:

• C = Z1 ⊕M

• T = Z2 ⊕ (M ⊗ L)

Decryption

• Input: (N,C, T)

• Compute keystream Z1 ∥ Z2

• Compute M = Z1 ⊕ C

• Compute T ⋆ = Z2 ⊕ (M ⊗ L)

• Output:

{
M if T = T ⋆

⊥ otherwise

35 / 42

FN

K

M

Z1 Z2∥

C

\

n

\

κ

\

n

\

2n

\

n

Simple Example

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n

\

n

Encryption

• Input: (N,M)

• Compute keystream Z1 ∥ Z2

• Output:

• C = Z1 ⊕M
• T = Z2 ⊕ (M ⊗ L)

Decryption

• Input: (N,C, T)

• Compute keystream Z1 ∥ Z2

• Compute M = Z1 ⊕ C

• Compute T ⋆ = Z2 ⊕ (M ⊗ L)

• Output:

{
M if T = T ⋆

⊥ otherwise

35 / 42

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n
\

n

Simple Example

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n

\

n

Encryption

• Input: (N,M)

• Compute keystream Z1 ∥ Z2

• Output:

• C = Z1 ⊕M
• T = Z2 ⊕ (M ⊗ L)

Decryption

• Input: (N,C, T)

• Compute keystream Z1 ∥ Z2

• Compute M = Z1 ⊕ C

• Compute T ⋆ = Z2 ⊕ (M ⊗ L)

• Output:

{
M if T = T ⋆

⊥ otherwise

35 / 42

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n
\

n

Simple Example

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n

\

n

Encryption

• Input: (N,M)

• Compute keystream Z1 ∥ Z2

• Output:

• C = Z1 ⊕M
• T = Z2 ⊕ (M ⊗ L)

Decryption

• Input: (N,C, T)

• Compute keystream Z1 ∥ Z2

• Compute M = Z1 ⊕ C

• Compute T ⋆ = Z2 ⊕ (M ⊗ L)

• Output:

{
M if T = T ⋆

⊥ otherwise

35 / 42

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n
\

n

Simple Example

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n

\

n

Encryption

• Input: (N,M)

• Compute keystream Z1 ∥ Z2

• Output:

• C = Z1 ⊕M
• T = Z2 ⊕ (M ⊗ L)

Decryption

• Input: (N,C, T)

• Compute keystream Z1 ∥ Z2

• Compute M = Z1 ⊕ C

• Compute T ⋆ = Z2 ⊕ (M ⊗ L)

• Output:

{
M if T = T ⋆

⊥ otherwise

35 / 42

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n
\

n

Simple Example

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n

\

n

Encryption

• Input: (N,M)

• Compute keystream Z1 ∥ Z2

• Output:

• C = Z1 ⊕M
• T = Z2 ⊕ (M ⊗ L)

Decryption

• Input: (N,C, T)

• Compute keystream Z1 ∥ Z2

• Compute M = Z1 ⊕ C

• Compute T ⋆ = Z2 ⊕ (M ⊗ L)

• Output:

{
M if T = T ⋆

⊥ otherwise
35 / 42

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n
\

n

Simple Example: Confidentiality

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n

\

n

Confidentiality

• Consider new query (N,M)

• N should be fresh

• Random Z1 ∥ Z2

(if F is a good stream cipher)

• Random (C, T)

36 / 42

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n
\

n

Simple Example: Confidentiality

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n

\

n

Confidentiality

• Consider new query (N,M)

• N should be fresh

• Random Z1 ∥ Z2

(if F is a good stream cipher)

• Random (C, T)

36 / 42

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n
\

n

Simple Example: Confidentiality

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n

\

n

Confidentiality

• Consider new query (N,M)

• N should be fresh

• Random Z1 ∥ Z2

(if F is a good stream cipher)

• Random (C, T)

36 / 42

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n
\

n

Simple Example: Authenticity

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n

\

n

Authenticity

• Consider forgery attempt (N,C, T)

• N could be repeated nonce

• N fresh:

• T ⋆ is random, unpredictable

• N repeated:

• Let (N,M ′, C ′, T ′) be old

• M = Z1 ⊕ C = M ′ ⊕ C ′ ⊕ C
• T ⋆ = Z2 ⊕ (M ⊗ L)

T ⋆ = T ′ ⊕ ((M ⊕M ′)⊗ L)

T ⋆ = T ′ ⊕ ((C ⊕ C ′)⊗ L)
• Forgery successful if

T ⊕ T ′ = (C ⊕ C ′)⊗ L
• Requires guessing L

37 / 42

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n
\

n

Simple Example: Authenticity

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n

\

n

Authenticity

• Consider forgery attempt (N,C, T)

• N could be repeated nonce

• N fresh:

• T ⋆ is random, unpredictable

• N repeated:

• Let (N,M ′, C ′, T ′) be old

• M = Z1 ⊕ C = M ′ ⊕ C ′ ⊕ C
• T ⋆ = Z2 ⊕ (M ⊗ L)

T ⋆ = T ′ ⊕ ((M ⊕M ′)⊗ L)

T ⋆ = T ′ ⊕ ((C ⊕ C ′)⊗ L)
• Forgery successful if

T ⊕ T ′ = (C ⊕ C ′)⊗ L
• Requires guessing L

37 / 42

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n
\

n

Simple Example: Authenticity

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n

\

n

Authenticity

• Consider forgery attempt (N,C, T)

• N could be repeated nonce

• N fresh:

• T ⋆ is random, unpredictable

• N repeated:

• Let (N,M ′, C ′, T ′) be old

• M = Z1 ⊕ C = M ′ ⊕ C ′ ⊕ C
• T ⋆ = Z2 ⊕ (M ⊗ L)

T ⋆ = T ′ ⊕ ((M ⊕M ′)⊗ L)

T ⋆ = T ′ ⊕ ((C ⊕ C ′)⊗ L)
• Forgery successful if

T ⊕ T ′ = (C ⊕ C ′)⊗ L
• Requires guessing L

37 / 42

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n
\

n

Simple Example: Authenticity

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n

\

n

Authenticity

• Consider forgery attempt (N,C, T)

• N could be repeated nonce

• N fresh:

• T ⋆ is random, unpredictable

• N repeated:

• Let (N,M ′, C ′, T ′) be old

• M = Z1 ⊕ C = M ′ ⊕ C ′ ⊕ C
• T ⋆ = Z2 ⊕ (M ⊗ L)

T ⋆ = T ′ ⊕ ((M ⊕M ′)⊗ L)

T ⋆ = T ′ ⊕ ((C ⊕ C ′)⊗ L)
• Forgery successful if

T ⊕ T ′ = (C ⊕ C ′)⊗ L
• Requires guessing L

37 / 42

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n
\

n

Simple Example: Authenticity

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n

\

n

Authenticity

• Consider forgery attempt (N,C, T)

• N could be repeated nonce

• N fresh:

• T ⋆ is random, unpredictable

• N repeated:

• Let (N,M ′, C ′, T ′) be old
• M = Z1 ⊕ C = M ′ ⊕ C ′ ⊕ C

• T ⋆ = Z2 ⊕ (M ⊗ L)

T ⋆ = T ′ ⊕ ((M ⊕M ′)⊗ L)

T ⋆ = T ′ ⊕ ((C ⊕ C ′)⊗ L)
• Forgery successful if

T ⊕ T ′ = (C ⊕ C ′)⊗ L
• Requires guessing L

37 / 42

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n
\

n

Simple Example: Authenticity

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n

\

n

Authenticity

• Consider forgery attempt (N,C, T)

• N could be repeated nonce

• N fresh:

• T ⋆ is random, unpredictable

• N repeated:

• Let (N,M ′, C ′, T ′) be old
• M = Z1 ⊕ C = M ′ ⊕ C ′ ⊕ C
• T ⋆ = Z2 ⊕ (M ⊗ L)

T ⋆ = T ′ ⊕ ((M ⊕M ′)⊗ L)

T ⋆ = T ′ ⊕ ((C ⊕ C ′)⊗ L)

• Forgery successful if

T ⊕ T ′ = (C ⊕ C ′)⊗ L
• Requires guessing L

37 / 42

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n
\

n

Simple Example: Authenticity

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n

\

n

Authenticity

• Consider forgery attempt (N,C, T)

• N could be repeated nonce

• N fresh:

• T ⋆ is random, unpredictable

• N repeated:

• Let (N,M ′, C ′, T ′) be old
• M = Z1 ⊕ C = M ′ ⊕ C ′ ⊕ C
• T ⋆ = Z2 ⊕ (M ⊗ L)

T ⋆ = T ′ ⊕ ((M ⊕M ′)⊗ L)

T ⋆ = T ′ ⊕ ((C ⊕ C ′)⊗ L)
• Forgery successful if

T ⊕ T ′ = (C ⊕ C ′)⊗ L

• Requires guessing L

37 / 42

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n
\

n

Simple Example: Authenticity

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n

\

n

Authenticity

• Consider forgery attempt (N,C, T)

• N could be repeated nonce

• N fresh:

• T ⋆ is random, unpredictable

• N repeated:

• Let (N,M ′, C ′, T ′) be old
• M = Z1 ⊕ C = M ′ ⊕ C ′ ⊕ C
• T ⋆ = Z2 ⊕ (M ⊗ L)

T ⋆ = T ′ ⊕ ((M ⊕M ′)⊗ L)

T ⋆ = T ′ ⊕ ((C ⊕ C ′)⊗ L)
• Forgery successful if

T ⊕ T ′ = (C ⊕ C ′)⊗ L
• Requires guessing L

37 / 42

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n
\

n

Simple Example: How to Support Variable Length?

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n

\

n

Suppose M is Variable-Length?

• |M |+ n bits of keystream suffice:

• Use streaming mode for F
• Replace M ⊗ L by HL(M)

What about AD A?

• Can be processed by HL as well:

• HL(A,M)

This is almost exactly GCM!

• Encrypt-then-MAC: HL(A,C)

• Take CTR mode for F

38 / 42

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n
\

n

Simple Example: How to Support Variable Length?

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n

\

n

Suppose M is Variable-Length?

• |M |+ n bits of keystream suffice:

• Use streaming mode for F
• Replace M ⊗ L by HL(M)

What about AD A?

• Can be processed by HL as well:

• HL(A,M)

This is almost exactly GCM!

• Encrypt-then-MAC: HL(A,C)

• Take CTR mode for F

38 / 42

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n
\

n

Simple Example: How to Support Variable Length?

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n

\

n

Suppose M is Variable-Length?

• |M |+ n bits of keystream suffice:

• Use streaming mode for F
• Replace M ⊗ L by HL(M)

What about AD A?

• Can be processed by HL as well:

• HL(A,M)

This is almost exactly GCM!

• Encrypt-then-MAC: HL(A,C)

• Take CTR mode for F

38 / 42

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n
\

n

Simple Example: How to Support Variable Length?

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n

\

n

Suppose M is Variable-Length?

• |M |+ n bits of keystream suffice:

• Use streaming mode for F
• Replace M ⊗ L by HL(M)

What about AD A?

• Can be processed by HL as well:

• HL(A,M)

This is almost exactly GCM!

• Encrypt-then-MAC: HL(A,C)

• Take CTR mode for F

38 / 42

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n
\

n

Simple Example: How to Support Variable Length?

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n

\

n

Suppose M is Variable-Length?

• |M |+ n bits of keystream suffice:

• Use streaming mode for F
• Replace M ⊗ L by HL(M)

What about AD A?

• Can be processed by HL as well:

• HL(A,M)

This is almost exactly GCM!

• Encrypt-then-MAC: HL(A,C)

• Take CTR mode for F

38 / 42

FN

K

M

Z1 Z2∥

C

L

T

\

n

\

κ

\

n

\

2n

\

n

\

n
\

n

GCM for 96-bit Nonce N

EK EK EK· · ·

N∥1 N∥2 N∥ℓ· · ·

M1 M2 Mℓ

C1 C2 Cℓ· · ·

EK

GHASHL

N∥0

A

T

ENC

MAC

• McGrew and Viega (2004)

• Widely used (TLS!)

• L = EK(0n)

• Parallelizable

• Evaluates E only (no E−1)

• Provably secure (if E is PRP)

• Note: equally popular is

ChaCha20-Poly1305!

39 / 42

EK EK EK· · ·

N∥1 N∥2 N∥ℓ· · ·

M1 M2 Mℓ

C1 C2 Cℓ· · ·

EK

GHASHL

N∥0

A

T

ENC

MAC

GCM for 96-bit Nonce N

EK EK EK· · ·

N∥1 N∥2 N∥ℓ· · ·

M1 M2 Mℓ

C1 C2 Cℓ· · ·

EK

GHASHL

N∥0

A

T

ENC

MAC

• McGrew and Viega (2004)

• Widely used (TLS!)

• L = EK(0n)

• Parallelizable

• Evaluates E only (no E−1)

• Provably secure (if E is PRP)

• Note: equally popular is

ChaCha20-Poly1305!

39 / 42

EK EK EK· · ·

N∥1 N∥2 N∥ℓ· · ·

M1 M2 Mℓ

C1 C2 Cℓ· · ·

EK

GHASHL

N∥0

A

T

ENC

MAC

GCM for 96-bit Nonce N

EK EK EK· · ·

N∥1 N∥2 N∥ℓ· · ·

M1 M2 Mℓ

C1 C2 Cℓ· · ·

EK

GHASHL

N∥0

A

T

ENC

MAC

• McGrew and Viega (2004)

• Widely used (TLS!)

• L = EK(0n)

• Parallelizable

• Evaluates E only (no E−1)

• Provably secure (if E is PRP)

• Note: equally popular is

ChaCha20-Poly1305!

39 / 42

EK EK EK· · ·

N∥1 N∥2 N∥ℓ· · ·

M1 M2 Mℓ

C1 C2 Cℓ· · ·

EK

GHASHL

N∥0

A

T

ENC

MAC

Problems With GCM for 96-bit Nonce N

EK EK EK· · ·

N∥1 N∥2 N∥ℓ· · ·

M1 M2 Mℓ

C1 C2 Cℓ· · ·

EK

GHASHL

N∥0

A

T

ENC

MAC

Nonce Reuse

• Leaks M ⊕M ′ = C ⊕ C ′ and L

Short Key

• Problematic in multi-user setting

• TLS 1.3 masks N with K ′ [BT16]

• AES-192/AES-256?

Short Nonce

• Random nonces are dangerous

• Nonce-dependent key? [Gue24]

Short Block Size

• Could be problematic in general

• Rijndael-256? [KCCP23, PST23]

No Tag Truncation

• Easier subkey recovery [Fer05]

• Alternative hashing? [CMP23]

40 / 42

EK EK EK· · ·

N∥1 N∥2 N∥ℓ· · ·

M1 M2 Mℓ

C1 C2 Cℓ· · ·

EK

GHASHL

N∥0

A

T

ENC

MAC

Problems With GCM for 96-bit Nonce N

EK EK EK· · ·

N∥1 N∥2 N∥ℓ· · ·

M1 M2 Mℓ

C1 C2 Cℓ· · ·

EK

GHASHL

N∥0

A

T

ENC

MAC

Nonce Reuse

• Leaks M ⊕M ′ = C ⊕ C ′ and L

Short Key

• Problematic in multi-user setting

• TLS 1.3 masks N with K ′ [BT16]

• AES-192/AES-256?

Short Nonce

• Random nonces are dangerous

• Nonce-dependent key? [Gue24]

Short Block Size

• Could be problematic in general

• Rijndael-256? [KCCP23, PST23]

No Tag Truncation

• Easier subkey recovery [Fer05]

• Alternative hashing? [CMP23]

40 / 42

EK EK EK· · ·

N∥1 N∥2 N∥ℓ· · ·

M1 M2 Mℓ

C1 C2 Cℓ· · ·

EK

GHASHL

N∥0

A

T

ENC

MAC

Problems With GCM for 96-bit Nonce N

EK EK EK· · ·

N∥1 N∥2 N∥ℓ· · ·

M1 M2 Mℓ

C1 C2 Cℓ· · ·

EK

GHASHL

N∥0

A

T

ENC

MAC

Nonce Reuse

• Leaks M ⊕M ′ = C ⊕ C ′ and L

Short Key

• Problematic in multi-user setting

• TLS 1.3 masks N with K ′ [BT16]

• AES-192/AES-256?

Short Nonce

• Random nonces are dangerous

• Nonce-dependent key? [Gue24]

Short Block Size

• Could be problematic in general

• Rijndael-256? [KCCP23, PST23]

No Tag Truncation

• Easier subkey recovery [Fer05]

• Alternative hashing? [CMP23]

40 / 42

EK EK EK· · ·

N∥1 N∥2 N∥ℓ· · ·

M1 M2 Mℓ

C1 C2 Cℓ· · ·

EK

GHASHL

N∥0

A

T

ENC

MAC

Problems With GCM for 96-bit Nonce N

EK EK EK· · ·

N∥1 N∥2 N∥ℓ· · ·

M1 M2 Mℓ

C1 C2 Cℓ· · ·

EK

GHASHL

N∥0

A

T

ENC

MAC

Nonce Reuse

• Leaks M ⊕M ′ = C ⊕ C ′ and L

Short Key

• Problematic in multi-user setting

• TLS 1.3 masks N with K ′ [BT16]

• AES-192/AES-256?

Short Nonce

• Random nonces are dangerous

• Nonce-dependent key? [Gue24]

Short Block Size

• Could be problematic in general

• Rijndael-256? [KCCP23, PST23]

No Tag Truncation

• Easier subkey recovery [Fer05]

• Alternative hashing? [CMP23]

40 / 42

EK EK EK· · ·

N∥1 N∥2 N∥ℓ· · ·

M1 M2 Mℓ

C1 C2 Cℓ· · ·

EK

GHASHL

N∥0

A

T

ENC

MAC

Problems With GCM for 96-bit Nonce N

EK EK EK· · ·

N∥1 N∥2 N∥ℓ· · ·

M1 M2 Mℓ

C1 C2 Cℓ· · ·

EK

GHASHL

N∥0

A

T

ENC

MAC

Nonce Reuse

• Leaks M ⊕M ′ = C ⊕ C ′ and L

Short Key

• Problematic in multi-user setting

• TLS 1.3 masks N with K ′ [BT16]

• AES-192/AES-256?

Short Nonce

• Random nonces are dangerous

• Nonce-dependent key? [Gue24]

Short Block Size

• Could be problematic in general

• Rijndael-256? [KCCP23, PST23]

No Tag Truncation

• Easier subkey recovery [Fer05]

• Alternative hashing? [CMP23]

40 / 42

EK EK EK· · ·

N∥1 N∥2 N∥ℓ· · ·

M1 M2 Mℓ

C1 C2 Cℓ· · ·

EK

GHASHL

N∥0

A

T

ENC

MAC

Problems With GCM for 96-bit Nonce N

EK EK EK· · ·

N∥1 N∥2 N∥ℓ· · ·

M1 M2 Mℓ

C1 C2 Cℓ· · ·

EK

GHASHL

N∥0

A

T

ENC

MAC

Nonce Reuse

• Leaks M ⊕M ′ = C ⊕ C ′ and L

Short Key

• Problematic in multi-user setting

• TLS 1.3 masks N with K ′ [BT16]

• AES-192/AES-256?

Short Nonce

• Random nonces are dangerous

• Nonce-dependent key? [Gue24]

Short Block Size

• Could be problematic in general

• Rijndael-256? [KCCP23, PST23]

No Tag Truncation

• Easier subkey recovery [Fer05]

• Alternative hashing? [CMP23]
40 / 42

EK EK EK· · ·

N∥1 N∥2 N∥ℓ· · ·

M1 M2 Mℓ

C1 C2 Cℓ· · ·

EK

GHASHL

N∥0

A

T

ENC

MAC

Use Case: Amazon Web Services [KCCP23]

PRACTICAL CHALLENGES WITH AES-GCM

Panos Kampanakis, Matt Campagna, Eric Crocket, Adam Petcher

Amazon Web Services (AWS)

Practical Challenges with AES-GCM
and the need for a new mode and wide-block cipher

1

41 / 42

Use Case: Amazon Web Services [KCCP23]

PRACTICAL CHALLENGES WITH AES-GCM

Random IVs and the 232 invocation limit

High-volume Transport Encryption for
virtualized networks

Distributed transport encryption can collectively
encrypt ~232 messages in 2 seconds.

Re-keying every 2 seconds is not practical.

High-volume AWS KMS Encryption

AWS Key Management Service (AWS KMS) key
sometimes can encrypt 232 plaintexts / week.

Rekeying weekly and managing AWS keys for
thousands of accounts annually adds overhead.

4

AWS KMS key

AWS KMS

…
Fleet of HSMs

>>232 / week

(in some cases)

Fleet of devices Fleet of devices

Encrypted Transport

Traffic

41 / 42

Use Case: Amazon Web Services [KCCP23]

PRACTICAL CHALLENGES WITH AES-GCM

Deterministic 96-bit IVs

Transport Encryption
deterministic IV challenges

Support for large # of identifiers
limits the counter size which
means less messages per key.

Unique identifiers in distributed
systems add complexity.

We prefer random IVs.

Transport Encryption
FIPS challenges

IV uniqueness proof, reuse checks,
zeroization in distributed, zero-
downtime systems has challenges.

Efficient counter management adds
complexity.

We prefer random IVs.

Fabric Encryption
performance challenges

OTN / FlexO

• ~80KB frames = 5,000 AES blocks.

• 100x Gbps speeds

• AES-GCM can be slow for 5,000 AES
blocks at 400Gbps speeds.

5

IV

Identifier Counter

Need >32 bits Need ≥ 64 bits

… …

41 / 42

Conclusion

Conclusion

Provable Security in Symmetric Cryptography

• Basic modes proved secure using quite simple ideas

• More sophisticated modes require nice tricks in graph theory

• Often this boils down to trying to upper or lower bound solutions

Current Directions in Provable Security

• Difficulties in beyond birthday bound security

• Accordion modes

• Arithmetization-oriented modes

Thank you for your attention!

42 / 42

Conclusion

Provable Security in Symmetric Cryptography

• Basic modes proved secure using quite simple ideas

• More sophisticated modes require nice tricks in graph theory

• Often this boils down to trying to upper or lower bound solutions

Current Directions in Provable Security

• Difficulties in beyond birthday bound security

• Accordion modes

• Arithmetization-oriented modes

Thank you for your attention!

42 / 42

Conclusion

Provable Security in Symmetric Cryptography

• Basic modes proved secure using quite simple ideas

• More sophisticated modes require nice tricks in graph theory

• Often this boils down to trying to upper or lower bound solutions

Current Directions in Provable Security

• Difficulties in beyond birthday bound security

• Accordion modes

• Arithmetization-oriented modes

Thank you for your attention!

42 / 42

References i

Mihir Bellare and Björn Tackmann.

The Multi-user Security of Authenticated Encryption: AES-GCM in TLS 1.3.

In Matthew Robshaw and Jonathan Katz, editors, Advances in Cryptology - CRYPTO

2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA, USA, August

14-18, 2016, Proceedings, Part I, volume 9814 of Lecture Notes in Computer Science,

pages 247–276. Springer, 2016.

Matthew Campagna, Alexander Maximov, and John Preuß Mattsson.

Galois counter mode with secure short tags (GCM-SST).
Third NIST Workshop on Block Cipher Modes of Operation 2023, October 2023.

https://www.amazon.science/publications/

galois-counter-mode-with-secure-short-tags-gcm-sst.

42 / 42

https://www.amazon.science/publications/galois-counter-mode-with-secure-short-tags-gcm-sst
https://www.amazon.science/publications/galois-counter-mode-with-secure-short-tags-gcm-sst

References ii

Shan Chen and John P. Steinberger.

Tight Security Bounds for Key-Alternating Ciphers.

In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology -

EUROCRYPT 2014 - 33rd Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014.

Proceedings, volume 8441 of Lecture Notes in Computer Science, pages 327–350.

Springer, 2014.

Wei Dai, Viet Tung Hoang, and Stefano Tessaro.

Information-Theoretic Indistinguishability via the Chi-Squared Method.

In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology - CRYPTO 2017 -

37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24,

2017, Proceedings, Part III, volume 10403 of Lecture Notes in Computer Science, pages

497–523. Springer, 2017.

42 / 42

References iii

Joan Daemen and Vincent Rijmen.

The Design of Rijndael: AES - The Advanced Encryption Standard.

Information Security and Cryptography. Springer, 2002.

Shimon Even and Yishay Mansour.

A Construction of a Cipher From a Single Pseudorandom Permutation.

In Hideki Imai, Ronald L. Rivest, and Tsutomu Matsumoto, editors, Advances in

Cryptology - ASIACRYPT ’91, International Conference on the Theory and Applications of

Cryptology, Fujiyoshida, Japan, November 11-14, 1991, Proceedings, volume 739 of

Lecture Notes in Computer Science, pages 210–224. Springer, 1991.

Niels Ferguson.

Authentication Weaknesses in GCM.
Public Comment to NIST, 2005.

http://csrc.nist.gov/groups/ST/toolkit/BCM/comments.html.

42 / 42

http://csrc.nist.gov/groups/ST/toolkit/BCM/comments.html

References iv

Shay Gueron.

Double-Nonce-Derive-Key-GCM (DNDK-GCM): General design paradigms and

application.
NIST Workshop on the Requirements for an Accordion Cipher Mode 2024, June 2024.

https://csrc.nist.gov/csrc/media/Presentations/2024/

double-nonce-derive-key-gcm-dndk-gcm/images-media/

sess-6-gueron-acm-workshop-2024.pdf.

Tetsu Iwata, Bart Mennink, and Damian Vizár.

CENC is Optimally Secure.
Cryptology ePrint Archive, Report 2016/1087, 2016.

http://eprint.iacr.org/2016/1087.

42 / 42

https://csrc.nist.gov/csrc/media/Presentations/2024/double-nonce-derive-key-gcm-dndk-gcm/images-media/sess-6-gueron-acm-workshop-2024.pdf
https://csrc.nist.gov/csrc/media/Presentations/2024/double-nonce-derive-key-gcm-dndk-gcm/images-media/sess-6-gueron-acm-workshop-2024.pdf
https://csrc.nist.gov/csrc/media/Presentations/2024/double-nonce-derive-key-gcm-dndk-gcm/images-media/sess-6-gueron-acm-workshop-2024.pdf
http://eprint.iacr.org/2016/1087

References v

Tetsu Iwata.

New Blockcipher Modes of Operation with Beyond the Birthday Bound Security.

In Matthew J. B. Robshaw, editor, Fast Software Encryption, 13th International

Workshop, FSE 2006, Graz, Austria, March 15-17, 2006, Revised Selected Papers, volume

4047 of Lecture Notes in Computer Science, pages 310–327. Springer, 2006.

Panos Kampanakis, Matt Campagna, Eric Crocket, and Adam Petcher.

Practical Challenges with AES-GCM and the need for a new cipher.
Third NIST Workshop on Block Cipher Modes of Operation 2023, October 2023.

https://csrc.nist.gov/csrc/media/Events/2023/

third-workshop-on-block-cipher-modes-of-operation/documents/accepted-papers/

Practical%20Challenges%20with%20AES-GCM.pdf.

42 / 42

https://csrc.nist.gov/csrc/media/Events/2023/third-workshop-on-block-cipher-modes-of-operation/documents/accepted-papers/Practical%20Challenges%20with%20AES-GCM.pdf
https://csrc.nist.gov/csrc/media/Events/2023/third-workshop-on-block-cipher-modes-of-operation/documents/accepted-papers/Practical%20Challenges%20with%20AES-GCM.pdf
https://csrc.nist.gov/csrc/media/Events/2023/third-workshop-on-block-cipher-modes-of-operation/documents/accepted-papers/Practical%20Challenges%20with%20AES-GCM.pdf

References vi

David A. McGrew and John Viega.

The Security and Performance of the Galois/Counter Mode (GCM) of Operation.

In Anne Canteaut and Kapalee Viswanathan, editors, Progress in Cryptology -

INDOCRYPT 2004, 5th International Conference on Cryptology in India, Chennai, India,

December 20-22, 2004, Proceedings, volume 3348 of Lecture Notes in Computer Science,

pages 343–355. Springer, 2004.

Jacques Patarin.

Étude des Générateurs de Permutations Basés sur le Schéma du D.E.S.

PhD thesis, Université Paris 6, Paris, France, November 1991.

Jacques Patarin.

Luby-Rackoff: 7 Rounds Are Enough for 2n(1−ϵ) Security.

In Dan Boneh, editor, Advances in Cryptology - CRYPTO 2003, 23rd Annual International

Cryptology Conference, Santa Barbara, California, USA, August 17-21, 2003, Proceedings,

volume 2729 of Lecture Notes in Computer Science, pages 513–529. Springer, 2003.

42 / 42

References vii

Jacques Patarin.

A Proof of Security in O(2n) for the Xor of Two Random Permutations.

In Reihaneh Safavi-Naini, editor, Information Theoretic Security, Third International

Conference, ICITS 2008, Calgary, Canada, August 10-13, 2008, Proceedings, volume 5155

of Lecture Notes in Computer Science, pages 232–248. Springer, 2008.

Jacques Patarin.

The “Coefficients H” Technique.

In Roberto Maria Avanzi, Liam Keliher, and Francesco Sica, editors, Selected Areas in

Cryptography, 15th International Workshop, SAC 2008, Sackville, New Brunswick,

Canada, August 14-15, Revised Selected Papers, volume 5381 of Lecture Notes in

Computer Science, pages 328–345. Springer, 2008.

42 / 42

References viii

John Preuß Mattsson, Ben Smeets, and Erik Thormarker.

Proposals for Standardization of Encryption Schemes.
Third NIST Workshop on Block Cipher Modes of Operation 2023, October 2023.

https://csrc.nist.gov/csrc/media/Events/2023/

third-workshop-on-block-cipher-modes-of-operation/documents/accepted-papers/

Proposals%20for%20Standardization%20of%20Encryption%20Schemes%20Final.pdf.

42 / 42

https://csrc.nist.gov/csrc/media/Events/2023/third-workshop-on-block-cipher-modes-of-operation/documents/accepted-papers/Proposals%20for%20Standardization%20of%20Encryption%20Schemes%20Final.pdf
https://csrc.nist.gov/csrc/media/Events/2023/third-workshop-on-block-cipher-modes-of-operation/documents/accepted-papers/Proposals%20for%20Standardization%20of%20Encryption%20Schemes%20Final.pdf
https://csrc.nist.gov/csrc/media/Events/2023/third-workshop-on-block-cipher-modes-of-operation/documents/accepted-papers/Proposals%20for%20Standardization%20of%20Encryption%20Schemes%20Final.pdf

Supporting Slides

H-Coefficient Technique and

Security of Even-Mansour

H-Coefficient Technique

• Patarin [Pat91, Pat08b]

• Popularized by Chen and Steinberger [CS14]

O P

distinguisher D

• Basic idea:

• Each conversation defines a transcript τ

• O ≈ P for most of the transcripts
• Remaining transcripts occur with small probability

43 / 42

H-Coefficient Technique

• Patarin [Pat91, Pat08b]

• Popularized by Chen and Steinberger [CS14]

O P

distinguisher D

• Basic idea:

• Each conversation defines a transcript τ

• O ≈ P for most of the transcripts
• Remaining transcripts occur with small probability

43 / 42

H-Coefficient Technique

• Patarin [Pat91, Pat08b]

• Popularized by Chen and Steinberger [CS14]

O P

distinguisher D

• Basic idea:

• Each conversation defines a transcript τ

• O ≈ P for most of the transcripts
• Remaining transcripts occur with small probability

43 / 42

H-Coefficient Technique

• Patarin [Pat91, Pat08b]

• Popularized by Chen and Steinberger [CS14]

O P

distinguisher D

• Basic idea:

• Each conversation defines a transcript τ
• O ≈ P for most of the transcripts

• Remaining transcripts occur with small probability

43 / 42

H-Coefficient Technique

• Patarin [Pat91, Pat08b]

• Popularized by Chen and Steinberger [CS14]

O P

distinguisher D

• Basic idea:

• Each conversation defines a transcript τ
• O ≈ P for most of the transcripts
• Remaining transcripts occur with small probability

43 / 42

H-Coefficient Technique

• D is computationally unbounded and deterministic

• Complexity only measured by the number of queries

• Each conversation defines a transcript τ

• Consider good and bad transcripts

Lemma

Let ε ≥ 0 be such that for all good transcripts τ :

Pr (O gives τ)

Pr (P gives τ)
≥ 1− ε

Then, ∆D(O;P) ≤ ε+Pr (bad transcript for P)

Trade-off: define bad transcripts smartly!

44 / 42

H-Coefficient Technique

• D is computationally unbounded and deterministic

• Complexity only measured by the number of queries

• Each conversation defines a transcript τ

• Consider good and bad transcripts

Lemma

Let ε ≥ 0 be such that for all good transcripts τ :

Pr (O gives τ)

Pr (P gives τ)
≥ 1− ε

Then, ∆D(O;P) ≤ ε+Pr (bad transcript for P)

Trade-off: define bad transcripts smartly!

44 / 42

H-Coefficient Technique

• D is computationally unbounded and deterministic

• Complexity only measured by the number of queries

• Each conversation defines a transcript τ

• Consider good and bad transcripts

Lemma

Let ε ≥ 0 be such that for all good transcripts τ :

Pr (O gives τ)

Pr (P gives τ)
≥ 1− ε

Then, ∆D(O;P) ≤ ε+Pr (bad transcript for P)

Trade-off: define bad transcripts smartly!

44 / 42

H-Coefficient Technique

• D is computationally unbounded and deterministic

• Complexity only measured by the number of queries

• Each conversation defines a transcript τ

• Consider good and bad transcripts

Lemma

Let ε ≥ 0 be such that for all good transcripts τ :

Pr (O gives τ)

Pr (P gives τ)
≥ 1− ε

Then, ∆D(O;P) ≤ ε+Pr (bad transcript for P)

Trade-off: define bad transcripts smartly!

44 / 42

Security of Even-Mansour (1/6)

• Even-Mansour construction [EM91]:

M P C

K K

EK(M) = P (M ⊕K)⊕K

45 / 42

Security of Even-Mansour (2/6)

E±
K p±

distinguisher D

Slightly Different Security Model

• Underlying permutation

randomized

• Information-theoretic distinguisher D
• q construction queries
• t offline evaluations ≈ t primitive queries

• Unbounded computational power

46 / 42

Security of Even-Mansour (2/6)

E±
K P± p±

distinguisher D

Slightly Different Security Model

• Underlying permutation

randomized

• Information-theoretic distinguisher D
• q construction queries
• t offline evaluations ≈ t primitive queries

• Unbounded computational power

46 / 42

Security of Even-Mansour (2/6)

E±
K P± P±p±

distinguisher D

Slightly Different Security Model

• Underlying permutation randomized

• Information-theoretic distinguisher D
• q construction queries
• t offline evaluations ≈ t primitive queries

• Unbounded computational power

46 / 42

Security of Even-Mansour (2/6)

E±
K P± P±p±

distinguisher D

Slightly Different Security Model

• Underlying permutation randomized

• Information-theoretic distinguisher D
• q construction queries
• t offline evaluations ≈ t primitive queries
• Unbounded computational power

46 / 42

Security of Even-Mansour (3/6)

E±
K P± P±p±

distinguisher D

• Two construction oracles: (EK , E−1
K) (for secret key K) and (p, p−1) (secret)

• Two primitive oracles: (P, P−1) (secret)

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advsprp
E (D) = ∆D

(
EK , E−1

K ; p, p−1
)
=

∣∣∣Pr
(
DEK ,E−1

K = 1
)
−Pr

(
Dp,p−1

= 1
)∣∣∣

• Advsprp
E (q, t): maximum advantage over any A with query/time complexity q/t

47 / 42

Security of Even-Mansour (3/6)

E±
K P± P±p±

distinguisher D

• Two construction oracles: (EK , E−1
K) (for secret key K) and (p, p−1) (secret)

• Two primitive oracles: (P, P−1) (secret)

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advsprp
E (D) = ∆D

(
EK , E−1

K ; p, p−1
)
=

∣∣∣Pr
(
DEK ,E−1

K = 1
)
−Pr

(
Dp,p−1

= 1
)∣∣∣

• Advsprp
E (q, t): maximum advantage over any A with query/time complexity q/t

47 / 42

Security of Even-Mansour (3/6)

E±
K P± P±p±

distinguisher D

• Two construction oracles: (EK , E−1
K) (for secret key K) and (p, p−1) (secret)

• Two primitive oracles: (P, P−1) (secret)

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advsprp
E (D) = ∆D

(
EK , E−1

K ; p, p−1
)
=

∣∣∣Pr
(
DEK ,E−1

K = 1
)
−Pr

(
Dp,p−1

= 1
)∣∣∣

• Advsprp
E (q, t): maximum advantage over any A with query/time complexity q/t

47 / 42

Security of Even-Mansour (3/6)

E±
K P± P±p±

distinguisher D

• Two construction oracles: (EK , E−1
K) (for secret key K) and (p, p−1) (secret)

• Two primitive oracles: (P, P−1) (secret)

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advsprp
E (D) = ∆D

(
EK , E−1

K ; p, p−1
)
=

∣∣∣Pr
(
DEK ,E−1

K = 1
)
−Pr

(
Dp,p−1

= 1
)∣∣∣

• Advsprp
E (q, t): maximum advantage over any A with query/time complexity q/t

47 / 42

Security of Even-Mansour (4/6)

E±
K P± P±p±

distinguisher D

Theorem

For any distinguisher D making q queries to E±
K/p± and t primitive queries

Advsprp
E (D) = ∆D(E

±
K , P±; p±, P±) ≤ ???

48 / 42

Security of Even-Mansour (5/6)

Step 1. Define how transcripts look like

Step 2. Define good and bad transcripts

Step 3. Upper bound Pr (bad transcript for (p±, P±))

Step 4. Lower bound
Pr((E±

K ,P±) gives τ)
Pr((p± ,P±) gives τ)

≥ 1− ε (∀ good τ)

49 / 42

Security of Even-Mansour (6/6)

1. Define how transcripts look like

• Construction queries:

τE = {(M1, C1), . . . , (Mq, Cq)}

• Primitive queries:

τP = {(X1, Y1), . . . , (Xt, Yt)}

• Unordered lists (ordering not needed in current proof)

• 1-to-1 correspondence between any D and any (τE , τP)

• Bonus information!

• After interaction of D with oracles: reveal the key

• Real world (E±
K , P±): key used for encryption

• Ideal world (p±, P±): dummy key K
$←− {0, 1}n

50 / 42

Security of Even-Mansour (6/6)

1. Define how transcripts look like

• Construction queries:

τE = {(M1, C1), . . . , (Mq, Cq)}

• Primitive queries:

τP = {(X1, Y1), . . . , (Xt, Yt)}

• Unordered lists (ordering not needed in current proof)

• 1-to-1 correspondence between any D and any (τE , τP)

• Bonus information!

• After interaction of D with oracles: reveal the key

• Real world (E±
K , P±): key used for encryption

• Ideal world (p±, P±): dummy key K
$←− {0, 1}n

50 / 42

Security of Even-Mansour (6/6)

1. Define how transcripts look like

• Construction queries:

τE = {(M1, C1), . . . , (Mq, Cq)}

• Primitive queries:

τP = {(X1, Y1), . . . , (Xt, Yt)}

• Unordered lists (ordering not needed in current proof)

• 1-to-1 correspondence between any D and any (τE , τP)

• Bonus information!

• After interaction of D with oracles: reveal the key

• Real world (E±
K , P±): key used for encryption

• Ideal world (p±, P±): dummy key K
$←− {0, 1}n

50 / 42

Security of Even-Mansour (6/6)

1. Define how transcripts look like

• Construction queries:

τE = {(M1, C1), . . . , (Mq, Cq)}

• Primitive queries:

τP = {(X1, Y1), . . . , (Xt, Yt)}

• Unordered lists (ordering not needed in current proof)

• 1-to-1 correspondence between any D and any (τE , τP)

• Bonus information!

• After interaction of D with oracles: reveal the key

• Real world (E±
K , P±): key used for encryption

• Ideal world (p±, P±): dummy key K
$←− {0, 1}n

50 / 42

Security of Even-Mansour (6/6)

1. Define how transcripts look like

• Construction queries:

τE = {(M1, C1), . . . , (Mq, Cq)}

• Primitive queries:

τP = {(X1, Y1), . . . , (Xt, Yt)}

• Unordered lists (ordering not needed in current proof)

• 1-to-1 correspondence between any D and any (τE , τP)

• Bonus information!

• After interaction of D with oracles: reveal the key

• Real world (E±
K , P±): key used for encryption

• Ideal world (p±, P±): dummy key K
$←− {0, 1}n

50 / 42

	Keyed Symmetric Cryptography
	How to Model Security?
	Generic Stream Cipher Design
	Block Ciphers
	Counter Mode Encryption
	Beyond Birthday Bound Security
	Authenticated Encryption and GCM
	Intermezzo: Universal Hashing
	Simple Example
	Example: GCM Authenticated Encryption

	Conclusion
	Supporting Slides
	H-Coefficient Technique and Security of Even-Mansour

