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Keyed Symmetric Cryptography



General Setting

A ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ B

−−−→

←
−−−

• Two parties, Alice and Bob, communicate over a public channel

• They have agreed on a joint key and use it to transmit data

• A malicious party, Eve, may try to exploit/disturb/. . . the communication

• In symmetric cryptography, we are concerned with two main security properties:

• Confidentiality (or data privacy): Eve cannot learn anything about data
• Authenticity: Eve cannot manipulate the data

In this presentation I will focus on confidentiality
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One-Time Pad Encryption

Encryption:

M = 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0

K = 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0
⊕

C = 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0

Decryption:

C = 1 0 1 0 1 1 1 0 1 0 1 0 1 0 0

K = 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0
⊕

M = 1 1 1 1 0 0 1 0 1 1 0 0 0 1 0
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Stream Encryption

Properties of One-Time Pad

• One-time pad is a type of stream encryption

• Perfect secrecy (against an attacker that has no knowledge about the key)

• Given C, an attacker correctly guesses M with probability 1/2|K|

• Key must be as long as the plaintext!

Stream Ciphers

• Generate long keystream Z from short key K

• Much more practical!

• Security degrades:

1. Key guessing still succeeds with probability 1/2|K| but now with shorter key

2. The stream cipher mechanism is another focal point of attack
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Stream Cipher: Vigenère (≈ 1553, Wikipedia)

the
UHU stic
stream
cipher

K Z = K∥K∥K∥ · · ·

• Key guessing:

• Exhaustive key search succeeds with probability Pr (success) = 1/2|K|

• Ciphertext Only Attack:

• Long ciphertexts leak info via letter frequencies

• Known Plaintext Attack:

• Knowledge of short plaintext sequence reveals full keystream

We need something more sophisticated!
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How to Model Security?



Modern Stream Ciphers

stream
cipher

D, ℓ

K

Z = z1z2 . . . zℓ\

n

\
k

\

∗

• Using key K, diversifier D, and length ℓ, keystream Z of length ℓ is generated

• The diversifier must be different for each message that is transmitted

• Example: data streams, e.g., pay TV and telephone, often split data in relatively

short, numbered, frames. The frame number may serve as diversifier:

Ci = Mi ⊕ SC(K, i, |Mi|)

When is a stream cipher strong enough?
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Stream Cipher Security, Intuition (1/3)

stream
cipher

D, ℓ

K

Z = z1z2 . . . zℓ\

n

\
k

\

∗

• Kerckhoffs principle: security should be based on secrecy of K

• Thus: attacker knows the algorithm SC

• Attacker can also learn some amount of input-output combinations of SCK

• Intuitively, these data do not expose any irregularities (except for repetition)

• SCK should behave like a random oracle
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Intermezzo: Random Oracle

D Z

. . . . . .

. . . . . .

. . . . . .

. . . . . .

Random Oracle

• A database of input-output tuples

• Initially empty

• New query (D, ℓ):

• If D is not in the database:

• generate ℓ random bits Z
• add (D,Z) to the list
• return Z

• If D is in the database,

look at corresponding Z:

• If |Z| ≥ ℓ:

return first ℓ bits of Z

• If |Z| < ℓ:

generate ℓ− |Z| random bits Z ′, append Z ′ to Z, return Z∥Z ′

• update (D,Z) in the list

8 / 40
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Stream Cipher Security, Intuition (2/3)

real world ideal world

SCK
stream cipher

RO
random oracle

• We thus want to “compare” SCK with a random oracle RO

• We model a distinguisher D that is given oracle access to either of the worlds

• We toss a coin:

• head: D is given oracle access to SCK

• tail: D is given oracle access to RO

• D does a priori not know which oracle it is given access to
• D can now make queries (D, ℓ) to receive Z
• At the end, D has to guess the outcome of the toss coin (head/tail)
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Stream Cipher Security, Intuition (3/3)

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

(D, ℓ;Z)

• Denote D’s success probability in correctly guessing head/tail by Pr (success)

• D can always guess and succeeds with probability ≥ 1/2, so we scale the

probability to D’s advantage:

Adv(D) = 2 ·Pr (success)− 1

= Pr
(
DSCK returns head

)
−Pr

(
DRO returns head

)

• D is limited by certain constraints

• Data (or online) complexity q: total cost of queries D can make
• Computation (or time) complexity t: everything that D can do “on its own”
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10 / 40



Stream Cipher Security, Intuition (3/3)

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

(D, ℓ;Z)

• Denote D’s success probability in correctly guessing head/tail by Pr (success)

• D can always guess and succeeds with probability ≥ 1/2, so we scale the

probability to D’s advantage:

Adv(D) = 2 ·Pr (success)− 1

= Pr
(
DSCK returns head

)
−Pr

(
DRO returns head

)
• D is limited by certain constraints

• Data (or online) complexity q: total cost of queries D can make
• Computation (or time) complexity t: everything that D can do “on its own”

10 / 40



Stream Cipher Security, Intuition (3/3)

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

(D, ℓ;Z)

• Denote D’s success probability in correctly guessing head/tail by Pr (success)

• D can always guess and succeeds with probability ≥ 1/2, so we scale the

probability to D’s advantage:

Adv(D) = 2 ·Pr (success)− 1

= Pr
(
DSCK returns head

)
−Pr

(
DRO returns head

)
• D is limited by certain constraints

• Data (or online) complexity q: total cost of queries D can make
• Computation (or time) complexity t: everything that D can do “on its own”

10 / 40



Stream Cipher Security, Formal

real world ideal world

SCK
stream cipher

RO
random oracle

distinguisher D

(D, ℓ;Z)

• Two oracles: SCK (for secret key K) and RO (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprf
SC (D) = ∆D (SCK ; RO) =

∣∣Pr
(
DSCK = 1

)
−Pr

(
DRO = 1

)∣∣
• Advprf

SC (q, t): maximum advantage over any distinguisher with complexity q, t
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Generic Stream Cipher Design (1/2)

• Classical approach: LFSRs strengthened with non-linear component

• Modern approach: building construction from smaller cryptographic primitive

• Suppose (for the sake of argument):

• we know how to build a strong stream cipher F with fixed-length output
• we want to build a stream cipher with variable-length output

· · · FD′

K ′

Z ′\

128

\
k

\

128
· · ·D, ℓ

K

Z = z1z2 . . . zℓ\

96

\
k

\

∗

12 / 40



Generic Stream Cipher Design (1/2)

• Classical approach: LFSRs strengthened with non-linear component

• Modern approach: building construction from smaller cryptographic primitive

• Suppose (for the sake of argument):

• we know how to build a strong stream cipher F with fixed-length output
• we want to build a stream cipher with variable-length output

· · · FD′

K ′

Z ′\

128

\
k

\

128
· · ·D, ℓ

K

Z = z1z2 . . . zℓ\

96

\
k

\

∗

12 / 40



Generic Stream Cipher Design (2/2)

Design

• Feed K to primitive

• Evaluate primitive as often as needed, with D

concatenated with counter

• Concatenate outputs:

Z = Z1 ∥ Z2 ∥ Z3 ∥ · · ·

Security

• If FK is hard to distinguish from a RO′

• Then construction is hard to distinguish from RO

• For the purists: Advprf
SC[F ](q, t) ≤ Advprf

F (q, t′)

F

D∥⟨0⟩32

K

Z1

\

128

\
k

\

128

F

D∥⟨1⟩32

K

Z2

\

128

\
k

\

128

F

D∥⟨2⟩32
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13 / 40

Unfortunately, we do not know

how to easily construct a function
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Block Ciphers

EM

K

C\

n

\
k

\

n

E−1C

K

M\

n

\
k

\

n

• Using key K, message M is bijectively transformed to ciphertext C

• Key, plaintext, and ciphertext are typically of fixed size

• For fixed key, EK is invertible and the inverse is denoted as E−1
K

• Example [DR02]:

AES-128 : {0, 1}128 × {0, 1}128 → {0, 1}128

(K,M) 7→ C

• A good block cipher should behave like a random permutation
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Block Cipher Security

real world ideal world

EK
block cipher

p
random permutation

distinguisher D

(M ;C)

• Two oracles: EK (for secret key K) and p (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprp
E (D) = ∆D (EK ; p) =

∣∣Pr
(
DEK = 1

)
−Pr (Dp = 1)

∣∣
• Advprp

E (q, t): maximum advantage over any D with query/time complexity q/t
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Counter (CTR) Mode

EK EK EK EK· · ·

N∥⟨1⟩ N∥⟨2⟩ N∥⟨3⟩ N∥⟨ℓ⟩· · ·

M1 M2 M3 Mℓ

C1 C2 C3 Cℓ· · ·

Features

• Stream-based encryption mode

• Fully parallelizable (encryption and decryption) and extremely simple

• Decryption needs no E−1
K

Security

• “Hopefully” secure as long as N is never repeated and EK is a secure PRP

• Let us investigate that!
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Security of Counter Mode Based on AES

• Let us consider counter mode based on AES: CTR[AESK ]

AESK AESK AESK AESK· · ·

N∥⟨1⟩ N∥⟨2⟩ N∥⟨3⟩ N∥⟨ℓ⟩· · ·

M1 M2 M3 Mℓ

C1 C2 C3 Cℓ· · ·

• We focus on the keystream generation portion

• Assumptions

• Distinguisher never repeats nonce N
• AES itself is sufficiently secure: Advprp

AES(q, t) is small
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Security of Counter Mode Based on AES: Model

real world ideal world

CTR[AESK]
counter mode with AES

RO
random oracle

distinguisher D

(N,M ;C)

• Two oracles: CTR[AESK] (for secret key K) and RO (secret)

• Distinguisher D has query access to one of these

• D tries to determine which oracle it communicates with

• Its advantage is defined as:

Advprf
CTR[AES](D) = ∆D (CTR[AESK ] ; RO) =

∣∣∣Pr
(
DCTR[AESK ] = 1

)
−Pr

(
DRO = 1

)∣∣∣
• Advprf

CTR[AES](q, t): maximum advantage over any D with q/t blocks/time
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Proof: Overview

real world ideal world

CTR[AESK ]
counter mode with AES

RO
random oracle

distinguisher D

(N,M ;C) (N,M ;C)

• For any (fixed) distinguisher D (later, we supremize over all), we have to bound:

Advprf
CTR[AES](D) = ∆D (CTR[AESK ] ; RO) =

∣∣∣Pr
(
DCTR[AESK ] = 1

)
−Pr

(
DRO = 1

)∣∣∣

• We add intermediate worlds CTR[p] and CTR[f ] for random p and f

• By the triangle inequality:

∆D (CTR[AESK ] ; RO) ≤ ∆D (CTR[AESK ] ; CTR[p]) + ∆D (CTR[p] ; CTR[f ]) + ∆D (CTR[f ] ; RO)

19 / 40



Proof: Overview

real world intermediate 1 intermediate 2 ideal world
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Proof: From CTR[AESK ] to CTR[p]

• D’s goal: distinguish CTR[AESK ] from CTR[p]

• We replace D by a distinguisher D′ that has more power

• D′’s goal: distinguish AESK from p

• D′ simulates the oracles of D:
• Once D makes its final guess, D′ makes the same guess

• D′ success probability turns out to be at least that of D:
∆D (CTR[AESK ] ; CTR[p]) ≤ ∆D′ (AESK ; p)

• But we have seen this distance before:

∆D′ (AESK ; p) = Advprp
AES(D′) ≤ Advprp

AES(q, t
′)

(t′ slightly larger than t)

AESK p

D′

• ℓ = ⌈|M |/n⌉
• for i = 1, . . . , ℓ:

query Xi = N∥⟨i⟩ to get Yi

• return first |M | bits of
C = Y1∥ . . . ∥Yℓ ⊕M

D

X Y X Y

N,M C
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Proof: From CTR[p] to CTR[f ] (1/2)

• D’s goal: distinguish CTR[p] from CTR[f ]

• We replace D by a distinguisher D′ that has more power

• D′’s goal: distinguish p from f

• D′ simulates the oracles of D:
• Once D makes its final guess, D′ makes the same guess

• D′ success probability turns out to be at least that of D:
∆D (CTR[p] ; CTR[f ]) ≤ ∆D′ (p ; f)

• This is a well-known distance, called the RP-RF switch

p f

D′

• ℓ = ⌈|M |/n⌉
• for i = 1, . . . , ℓ:

query Xi = N∥⟨i⟩ to get Yi

• return first |M | bits of
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Proof: From CTR[p] to CTR[f ] (2/2)

real world ideal world

p
random permutation

f
random function

distinguisher D′

• Distinguisher D′ gets q random n-bit samples:

• real world: without replacement
• ideal world: with replacement

• The two worlds can only be distinguished if f ever outputs colliding samples

• This happens with probability at most
(
q
2

)
/2n

• Hence: ∆D′ (p ; f) ≤
(
q
2

)
/2n
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Proof: From CTR[f ] to RO

f f f f· · ·

N∥⟨1⟩ N∥⟨2⟩ N∥⟨3⟩ N∥⟨ℓ⟩· · ·

M1 M2 M3 Mℓ

C1 C2 C3 Cℓ· · ·

RO

N

M

C

distinguisher D

(N,M ;C)

• In real world: f is a random function that is never evaluated for repeated N∥⟨i⟩
• In ideal world: RO is a random oracle that is never evaluated for repeated N

• Hence: ∆D (CTR[f ] ; RO) = 0
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Proof: Conclusion

• Recall goal: bounding Advprf
CTR[AES](D) for any D querying q blocks in t time

• From the triangle inequality and bounds on the three individual terms:

Advprf
CTR[AES](D) = ∆D (CTR[AESK ] ; RO)

≤ ∆D (CTR[AESK ] ; CTR[p]) + ∆D (CTR[p] ; CTR[f ]) + ∆D (CTR[f ] ; RO)

≤ Advprp
AES(q, t

′) +

(
q

2

)
/2n + 0

• As this reasoning holds for all distinguishers D querying q blocks in t time, we

obtain:

Advprf
CTR[AES](q, t) ≤ Advprp

AES(q, t
′) +

(
q

2

)
/2n
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Beyond Birthday Bound Security



Birthday Paradox

For a random selection of 23 people, with a prob-

ability at least 50% two of them share the same

birthday

General Birthday Paradox

• Consider space S = {0, 1}n

• Randomly draw q elements from S
• Expected number of collisions:

Ex [collisions] =

(
q

2

)
/2n

• Important phenomenon in cryptography
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Counter Mode Based on Pseudorandom Permutation

N∥⟨1⟩ N∥⟨2⟩ N∥⟨ℓ⟩

EK EK
· · · · · · EK

M1

C1

M2

C2

Mℓ

Cℓ

• Security bound:

Advprf
CTR[E](q, t) ≤ Advprp

E (q, t′) +

(
q

2

)
/2n

• CTR[E] is secure as long as:

• EK is a secure PRP
• Number of encrypted blocks q ≪ 2n/2

26 / 40



Counter Mode Based on Pseudorandom Permutation

N∥⟨1⟩ N∥⟨2⟩ N∥⟨ℓ⟩

EK EK
· · · · · · EK

M1

C1

M2

C2

Mℓ

Cℓ

• Security bound:

Advprf
CTR[E](q, t) ≤ Advprp

E (q, t′) +

(
q

2

)
/2n

• CTR[E] is secure as long as:

• EK is a secure PRP
• Number of encrypted blocks q ≪ 2n/2

26 / 40



Counter Mode Based on Pseudorandom Permutation

N∥⟨1⟩ N∥⟨2⟩ N∥⟨ℓ⟩

EK EK
· · · · · · EK

M1

C1

M2

C2

Mℓ

Cℓ

• Security bound:

Advprf
CTR[E](q, t) ≤ Advprp

E (q, t′) +

(
q

2

)
/2n

• CTR[E] is secure as long as:

• EK is a secure PRP
• Number of encrypted blocks q ≪ 2n/2

26 / 40



Counter Mode Based on Pseudorandom Permutation

N∥⟨1⟩ N∥⟨2⟩ N∥⟨ℓ⟩

EK EK
· · · · · · EK

M1

C1

M2

C2

Mℓ

Cℓ

• Mi ⊕ Ci is distinct for all q blocks

• Unlikely to happen for random string

• Distinguishing attack in q ≈ 2n/2 blocks:(
q

2

)
/2n ≲ Advprf

CTR[E](q, t)

27 / 40



Counter Mode Based on Pseudorandom Permutation

N∥⟨1⟩ N∥⟨2⟩ N∥⟨ℓ⟩

EK EK
· · · · · · EK

M1

C1

M2

C2

Mℓ

Cℓ

• Mi ⊕ Ci is distinct for all q blocks

• Unlikely to happen for random string

• Distinguishing attack in q ≈ 2n/2 blocks:(
q

2

)
/2n ≲ Advprf

CTR[E](q, t)

27 / 40



Counter Mode Based on Pseudorandom Function

N∥⟨1⟩ N∥⟨2⟩ N∥⟨ℓ⟩

FK FK
· · · · · · FK

M1

C1

M2

C2

Mℓ

Cℓ

• Security bound:

Advprf
CTR[F ](q, t) ≤ Advprf

F (q, t′)

• CTR[F ] is secure as long as FK is a secure PRF

• Birthday bound security loss disappeared
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Counter Mode Based on XoP

· · · · · ·EK EK EK EK EK EK

N∥⟨1⟩ N∥⟨2⟩ N∥⟨3⟩ N∥⟨4⟩ N∥⟨2ℓ−1⟩ N∥⟨2ℓ⟩

M1

C1

M2

C2

Mℓ

Cℓ

• Security bound [Pat08a, DHT17]:

Advprf
CTR[XoP](q, t) ≤ Advprf

XoP(q, t
′)

≤ Advprp
E (2q, t′′) + q/2n

• Beyond birthday bound but 2x as expensive as CTR[E]
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CENC by Iwata [Iwa06]

· · · · · · · · ·EK EK EK EK EK EK EK EK

N∥⟨1⟩ N∥⟨2⟩ N∥⟨1⟩ N∥⟨3⟩ N∥⟨1⟩ N∥⟨w+1⟩ N∥⟨w+2⟩N∥⟨w+3⟩

M1

C1

M2

C2

Mw

Cw

Mw+1

Cw+1

• One subkey used for w ≥ 1 encryptions

• Almost as expensive as CTR[E]

• Security bound [IMV16]:

Advprf
CTR[XoP[w]](q, t) ≤ Advprf

XoP[w](q, t
′)

≤ Advprp
E ((w + 1)q, t′′) + wq/2n

• Security of XoP and XoP[w] can be proven using mirror theory [Pat03]
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Accordion Modes



Block Ciphers

EM

K
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\
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• Message M encrypted to ciphertext C with secret key K

• Fixed block size

• In order to encrypt variable sized messages, we need a mode of operation

• These modes require a nonce
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Wide Block Ciphers
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• Alternatively, we can design a wide block cipher

• A wide block cipher is a block cipher with a variable block size

• Every part of the output (ideally) depends on every part of the input
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Tweakable Wide Block Ciphers
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• A tweakable wide block cipher additionally has a tweak

• Tweak W public, ciphertext completely changes with a different tweak

• Useful for e.g. disk encryption, where every sector gets its own tweak
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NIST’s Incentive to Develop Accordion Mode

• March 2024: NIST announced quest for tweakable wide block ciphers

• There is a workshop right now aimed to discuss ideas on requirements, designs,

security goals, targets, . . .

• Quote from the website:

NIST plans to develop a new mode of the AES that is a tweakable,

variable-input-length-strong pseudorandom permutation (VIL-SPRP) with a

reduction proof to the security of the underlying block cipher.

Now: high-level idea of our recent proposals
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Docked Double Decker [GDM19]

HL

FK

HL

∗

∗

n

nn

n
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X Y Z

W

W

0001

0010

FK

Building Blocks

• FK : stream cipher

• HL: universal hash

Construction

• Feistel-like structure

• Outer lanes of fixed size

• Inner lane of variable size
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Goals and Hurdles

Goals

• Instantiation using components as used in NIST standardized schemes:

• AES [DR02, DR20]
• Operations in binary extension fields, e.g., as in GHASH [MV04]

• Present birthday bound secure ddd -AES and beyond birthday bound secure

bbb-ddd -AES that seamlessly fit NIST’s accordion idea

Hurdles

• AES is not a tweakable blockcipher

• AES is rather small (circular reasoning?)

• AES in typical stream cipher modes only gives birthday bound security
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Efficient Instantiations of Docked Double Decker [DMMT24]

ddd-AES

• HL instantiated using Polyval (as in GCM-SIV)

• FK instantiated as variant of CTR: tweak used to randomize inputs to AESK

bbb-ddd-AES

• HL instantiated using Polyval (as in GCM-SIV)

• FK instantiated as variant of CENC: tweak used to randomize inputs to AESK

Instantiations turn out to be very competitive and well parallelizable
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Implementation Design of ddd-AES (512-Bit Message)
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Implementation Design of bbb-ddd-AES (512-Bit Message)
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Conclusion



Conclusion

Provable Security in Symmetric Cryptography

• Basic modes proved secure using quite simple ideas

• More sophisticated modes require nice tricks in graph theory

• Often this boils down to trying to upper or lower bound solutions

Current Directions in Provable Security

• Difficulties in beyond birthday bound security

• Accordion modes

• Arithmetization-oriented modes

Thank you for your attention!
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Mirror Theory (Intuition)



Mirror Theory

System of Equations

• Consider r distinct unknowns P = {P1, . . . , Pr}
• Consider a system of q equations of the form:

Pa1
⊕ Pb1 = λ1

Pa2
⊕ Pb2 = λ2

...

Paq ⊕ Pbq = λq

for some surjection φ : {a1, b1, . . . , aq, bq} → {1, . . . , r}

Goal

• Lower bound on the number of solutions to P
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Mirror Theory

• Extremely powerful lower bound

• First introduced by Patarin in 2003 [Pat03]

• Has remained rather unknown since introduction until 2017 [MN17]

• Has been debated since

• Conclusive proof given in 2023 [CDN+23]

Now: graph-based intuition behind mirror theory
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Mirror Theory

System of Equations

• r distinct unknowns P = {P1, . . . , Pr}
• System of equations Pai

⊕ Pbi = λi

• Surjection φ : {a1, b1, . . . , aq, bq} → {1, . . . , r}
Graph Based View
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Mirror Theory: Toy Example 1

• System of equations:

Pa ⊕ Pb = λ1

Pb ⊕ Pc = λ2

If λ1 = 0 or λ2 = 0 or λ1 = λ2

• Contradiction: Pa = Pb or Pb = Pc or Pa = Pc

• Scheme is degenerate

If λ1, λ2 ̸= 0 and λ1 ̸= λ2

• 2n choices for Pa

• Fixes Pb = λ1 ⊕ Pa (which is ̸= Pa as desired)

• Fixes Pc = λ2 ⊕ Pb (which is ̸= Pa, Pb as desired)
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Mirror Theory: Toy Example 2

• System of equations:

Pa ⊕ Pb = λ1

Pc ⊕ Pd = λ2

If λ1 = 0 or λ2 = 0

• Contradiction: Pa = Pb or Pb = Pc

• Scheme is degenerate

If λ1, λ2 ̸= 0

• 2n choices for Pa (which fixes Pb)

• For Pc and Pd we require

• Pc ̸= Pa, Pb

• Pd = λ2 ⊕ Pc ̸= Pa, Pb

• At least 2n − 4 choices for Pc (which fixes Pd)
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Mirror Theory: Toy Example 3

• System of equations:

Pa ⊕ Pb = λ1

Pb ⊕ Pc = λ2

Pc ⊕ Pa = λ3

• Assume λi ̸= 0 and λi ̸= λj

If λ1 ⊕ λ2 ⊕ λ3 ̸= 0

• Contradiction: equations sum to 0 = λ1 ⊕ λ2 ⊕ λ3

• Scheme contains a circle

If λ1 ⊕ λ2 ⊕ λ3 = 0

• One redundant equation, no contradiction

• Removing this equation brings us back at toy example 1
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Mirror Theory: Two Problematic Cases

Circle Degeneracy

Pa1
= Pb5

Pb1 = Pa2

Pb2 = Pa3

Pb3 = Pa4

Pb4 = Pa5

λ1

λ2

λ3

λ4

λ5

Pa1 =Pa2 Pb1

Pa3
=Pa4

Pb4 = Pa5

Pb2 =Pb3

λ1

λ2

λ3

λ4

Pa8

Pb7 = Pb8

λ1 ⊕ λ2 ⊕ · · · ⊕ λ7

Pb5 = Pa6

Pb6 = Pb7λ6

λ5

λ7
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Mirror Theory: Main Result

System of Equations

• r distinct unknowns P = {P1, . . . , Pr}
• System of equations Pai

⊕ Pbi = λi

• Surjection φ : {a1, b1, . . . , aq, bq} → {1, . . . , r}

Main Result [CDN+23]

If the system of equations is circle-free and non-degenerate, the number of solutions

to P is at least

(2n)r
2nq

provided the maximum tree size ξ satisfies ξ2 ≲ min{2n/(12r), 2n/2/n}
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Mirror Theory Applied to XoP

x 1∥· p

p0∥·

y

General Setting

• Distinguisher gets transcript τ = {(x1, y1), . . . , (xq, yq)}

• Each tuple relates to 0∥xi 7→ p(0∥xi) =: Pai
and 1∥xi 7→ p(1∥xi) =: Pbi

• System of q equations Pai
⊕ Pbi = yi

• Inputs to p are all distinct: 2q unknowns
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Mirror Theory Applied to XoP

Pa1

Pb1

Pa2

Pb2

Paq

Pbq

· · ·y1 y2 yq

Applying Mirror Theory

• Circle-free: no collisions in inputs to p

• Non-degenerate: provided that yi ̸= 0 (∀i)
−→ Call this a bad transcript

• Maximum tree size 2

• If q ≤ 2n/96: at least
(2n)2q
2nq solutions to unknowns
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Mirror Theory Applied to XoP

H-Coefficient Technique [Pat08b, CS14]

Let ε ≥ 0 be such that for all good transcripts τ :

Pr (XoP gives τ)

Pr (f gives τ)
≥ 1− ε

Then, Advprf
XoP(q) ≤ ε+Pr (bad transcript for f)

• Bad transcript: if yi = 0 for some i

• Pr (bad transcript for f) = q/2n

• For any good transcript:

• Pr (XoP gives τ) ≥ (2n)2q
2nq · 1

(2n)2q

• Pr (f gives τ) = 1
2nq

Advprf
XoP(q) ≤ q/2n
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Mirror Theory Applied to CENC

Pa1

Pb1

Pb2

Pb3

Pbw

y1

y2

y3

y
w

Pa2

Pbw+1

Pbw+2

Pbw+3

Pb2w

yw
+
1

yw+2

yw+3

y
2w

· · · Paq/w

Pbq–w+1

Pbq–w+2

Pbq–w+3

Pbq

yq–
w
+
1

yq–w
+2

yq–w+3

y
q

Applying Mirror Theory

• Circle-free: no collisions in inputs to p

• Non-degenerate: provided that yi ̸= 0 and yi ̸= yj (∀i, j) within all w-blocks

−→ Call this a bad transcript

• Maximum tree size w + 1

• If (w + 1)3q ≤ 2n/12: at least (2n)r
2nq solutions to unknowns

• H-coefficient technique: Advprf
CENC(q) ≤ q/2n + wq/2n+1
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Accordion Modes (Instantiations)



Universal Hash Function Instantiation for Both ddd-AES and bbb-ddd-AES

Polyval [GLL17]

• Operates on finite field GF (2128)[x]/(x128 + x127 + x126 + x121 + 1)

• Defined as follows, for a padded message (I1, I2, . . . , Is):

PolyvalL(I1, I2, . . . , Is) =
s∑

i=1

(
Ls−i+1 · Ii · x−128·(s−i+1)

)
• We use zero-padding with length encoding
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Stream Cipher Instantiation

Recall Goal

SCI

K

W,B

Z\

n

\
k

\

∗

\
w + 4

• Construction should be built on top of AES

• We give one construction with birthday bound security

one construction with beyond birthday bound security
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Stream Cipher Instantiation for Birthday Bound Secure ddd-AES

XE-style [Rog04] Tweakable Blockcipher in Counter Mode

• Let S = EK(B∥W )

EK EK

I

20S

I

21S

Z0 Z1

• Stream cipher (and thus ddd -AES ) is 2n/2 PRF-secure
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Bonus: Extension ddd-AES+ to Accommodate Variable-Length Tweaks

• ddd -AES almost seamlessly fits NIST’s accordion idea

• Only thing missing: variable-length tweaks

XE+-style [Rog04] Tweakable Blockcipher in Counter Mode

• Pad B,W into (W0,W1, . . . ,Wl−1∥B′∥0∗) with B′ = B ⊕ 1000

• Let S = EK(W0∥0)⊕ EK(W1∥1)⊕ · · · ⊕ EK(Wl−1∥B′∥0∗∥(l − 1))

EK EK

I

20S

I

21S

Z0 Z1

• Stream cipher (and thus ddd -AES+) is 2n/2 PRF-secure
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Stream Cipher Instantiation for Beyond Birthday Bound Secure bbb-ddd-AES

X̃oP[w] PRF in Counter Mode

• X̃oP[w]: XoP[w] as used in CENC [Iwa06], and extended to include tweak

• Introduction is new and comes with separate security proof
• Let Sj = EK2(B∥W∥c∥j)

EK1

S0

EK1

S1

I

Z1

EK1

S0

EK1

Sv

I

Zv

R0 R1 R0 Rv

• Corresponding stream cipher runs X̃oP[w] in counter mode

• Stream cipher (and thus bbb-ddd -AES ) is 22n/3 PRF-secure

when tweaks are not used too often
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Implementation Design of ddd-AES (512-Bit Message)

128 128128 128

EK

1∥W
L4

L3

L2

EKEK1

2∥W

EK2EK2EK2

L2

L3

L4

128

128

L

48

L

48

2 2

C1 C2 C3 C4

P1 P2 P3 P4

AES 1

AES 2

Mul 1

Mul 2

1 2 3 4 5 6 7 8 9 10 11
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Implementation Design of ddd-AES (1024-Bit Message)
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