
Where’s Crypto?: Automated Identification and Classification of Proprietary
Cryptographic Primitives in Binary Code

Carlo Meijer
Radboud University

The Netherlands
cmeijer@cs.ru.nl

Veelasha Moonsamy
Ruhr-University Bochum

Germany
email@veelasha.org

Jos Wetzels
Midnight Blue Labs

The Netherlands
a.l.g.m.wetzels@gmail.com

Abstract
The continuing use of proprietary cryptography in embed-
ded systems across many industry verticals, from physical
access control systems and telecommunications to machine-
to-machine authentication, presents a significant obstacle
to black-box security-evaluation efforts. In-depth security
analysis requires locating and classifying the algorithm in
often very large binary images, thus rendering manual inspec-
tion, even when aided by heuristics, time consuming.

In this paper, we present a novel approach to automate
the identification and classification of (proprietary) crypto-
graphic primitives within binary code. Our approach is based
on Data Flow Graph (DFG) isomorphism, previously pro-
posed by Lestringant et al. [43]. Unfortunately, their DFG iso-
morphism approach is limited to known primitives only, and
relies on heuristics for selecting code fragments for analysis.
By combining the said approach with symbolic execution,
we overcome all limitations of [43], and are able to extend
the analysis into the domain of unknown, proprietary crypto-
graphic primitives. To demonstrate that our proposal is practi-
cal, we develop various signatures, each targeted at a distinct
class of cryptographic primitives, and present experimental
evaluations for each of them on a set of binaries, both pub-
licly available (and thus providing reproducible results), and
proprietary ones. Lastly, we provide a free and open-source
implementation of our approach, called Where’s Crypto?, in
the form of a plug-in for the popular IDA disassembler.

1 Introduction

Despite the widely-held academic consensus that cryptog-
raphy should be publicly documented [37, 40, 67], the use
of proprietary cryptography has persisted across many in-
dustry verticals ranging from physical access control sys-
tems [1,61,67,70,71,73] and telecommunications [26,30,55]
to machine-to-machine authentication [13, 67].

This situation presents a significant obstacle to security-
evaluation efforts part of certification, compliance, secure

procurement or individual research since it requires resorting
to highly labor-intensive reverse-engineering in order to deter-
mine the presence and nature of these algorithms before they
can be evaluated. In addition, when a proprietary algorithm
gets broken, details might not be published immediately as
a result of NDAs or court injunctions [5] leaving other po-
tentially affected parties to repeat such expensive efforts and
hampering effective vulnerability management. As such, there
is a real need for practical solutions to automatically scan bi-
naries for the presence of as-of-yet unknown cryptographic
algorithms.

Criteria In order to support the analysis of closed-source
embedded systems for the use of proprietary cryptography,
a suitable solution should meet the following criteria: (i)
identification of as-of-yet unknown cryptographic algorithms
falling within relevant taxonomical classes, (ii) efficient sup-
port of large, real-world embedded firmware binaries, and
(iii) no reliance on full firmware emulation or dynamic instru-
mentation due to issues around platform heterogeneity and
peripheral emulation. As discussed in Section 3, there is no
prior work meeting all of these criteria.

Approach To meet the above criteria, our approach bases
itself on a structural taxonomy of cryptographic primitives.
The idea is that, since the vast majority of proprietary cryptog-
raphy falls within established primitive classes [67], we can
develop structural signatures allowing for the identification
of any algorithm within these classes without having to rely
on knowledge of the algorithm’s particularites. To this end,
we utilize a taxonomy based on [4, 39, 46, 50] and illustrated
in Figure 1. Note that this taxonomy is purely instrumental
and does not intend to be exhaustive or allow for an exclusive
partitioning of algorithms.

Our approach is built on two fundamentals: Data Flow
Graph (DFG) isomorphism and symbolic execution. As de-
scribed in Section 4, the limitations of prior work on DFG
isomorphism [43] are overcome through augmentation with
symbolic execution which allows us to specify structural sig-
natures for taxonomic classes of cryptographic primitives and

1

Cryptographic
primitives

Public-key
primitives

Unkeyed
primitivesSymmetric-key

primitives
.

MAC

. . .
Symmetric

ciphers
Block
ciphers

Stream
ciphers

Feistel
network SPN . . .

Balanced Unbalanced

Classic
Feistel

Matsui
LnR

. . .

FSR ARX . . .

LFSR NLFSR

DES KASUMI

A5/1 KeeLoq

Rounds: 16
Block size: 64

Key size:56

Rounds: 8
Block size: 64
Key size:128

Key size,
Polynomials,
Cycles, . . .

Key size,
Polynomials,
Cycles, . . .

Figure 1: Taxonomical tree of algorithm classes

analyze binary code for matches. The focus of this paper is
on symmetric and unkeyed primitives.

Contribution Our contribution is threefold. First, our novel
approach combines subgraph isomorphism with symbolic
execution, solving the open problem of fragment selection
and eliminating the need for heuristics and thus, overcoming
the limitations of prior work which rendered it unsuited to
identifying unknown ciphers. To the best of our knowledge,
as discussed in Section 3, there is currently no prior work
in either industry or academia that addresses the problem of
identifying unknown cryptographic algorithms. Second, we
propose a new domain-specific language (DSL) for defining
the structural properties of cryptographic primitives, along
with several examples. Finally, a free and open-source proof-
of-concept (PoC) implementation, Where’s Crypto?, is made
available1 and evaluated in terms of analysis time and accu-
racy against relevant real-world binaries.

2 Scope and limitations

Normalization and optimization A single function can
be represented as many different combinations of assembly
instructions depending on architecture and compiler particu-
larities. Attempting to construct a 1–to–1 mapping between
semantic equivalence classes and DFGs is beyond the scope
of this work. When our normalization maps two expressions
to the same DFG node, they are considered to be semanti-
cally equivalent. While the inverse is not necessarily true,
our approach can operate as if this were the case since, for a
compiler to take advantage of semantic equivalences, it must
be consistently aware of them. Therefore, we can leverage
this fact to recognize compiler-generated equivalences.

1https://github.com/wheres-crypto/wheres-crypto

Implicit flows Data dependencies may also arise due
to control-dependent assignments. For example, given
two boolean variables a and b, statements a ← b and
if a then b← true; else b← false are semantically
equivalent. In the former, b directly flows to a, and there-
fore the dependency is apparent in its corresponding DFG,
whereas in the latter, the dependency information is lost. Since
data-dependent branches increase side-channel susceptibility,
developers should refrain from using them for cryptographic
primitives. Therefore, we believe it is justified to declare im-
plicit flows out of scope. Note that implicit flows is a concept
different from data-dependent branches. Support for the latter
is achieved by means of symbolic execution (Section 6).

Function entry points Our PoC implementation relies on
IDA’s recognition of function entry points as input to our
algorithm. As such, inaccuracies in IDA’s function recognition
will reduce our coverage. However, this is not an inherent
limitation of our approach but merely of the implementation.

Code obfuscation Since code obfuscation presents an inher-
ent challenge to any binary-analysis approach, our approach
assumes that the input it operates on is not obfuscated and
delegates this de-obfuscation to a manual and/or automated
pre-processing step. Automated binary deobfuscation is a
well-established research field of its own which consists of
a wide variety of static, dynamic, symbolic and concolic ap-
proaches [24, 57, 75, 77] drawing upon synthesis [9, 11], opti-
mization [31], semantic equivalence [65] and machine learn-
ing [64] based techniques in order to make obfuscated binaries
amenable to analysis.

Taxonomical constraints In our PoC evaluation and the
examples of our DSL, we have limited our discussion to a sub-
set of the taxonomy of cryptographic primitives. This is not
an inherent limitation of our approach, but merely of our PoC
and its evaluation. Our approach is essentially agnostic with
respect to the employed taxonomy, which can be extended as
users see fit, and only assumes that the algorithm the analyst
is looking for is within one of its classes. Given that the vast
majority of proprietary cryptography falls within a specific
subset of established primitive classes [67], namely stream-
and block ciphers and hash functions, we do not consider this
a practical issue.

False positives Certain primitive classes are a subset of
others and some instances fit the definition of several ones.
As such, their matches are prone to false positives. Examples
of such are discussed in Section 11.2.1. We do not consider
this a serious practical problem as our solution is intended to
assist a human analyst who will be easily capable of pruning
a limited number of false positives compared to the burden of
unassisted analysis required by the status quo.

Furthermore, certain primitive classes are essentially un-
derdefined. That is to say, their definition is so broad that

2

https://github.com/wheres-crypto/wheres-crypto

characteristic properties are not distinctive enough for a mean-
ingful identification. For example, the defining property of
stream ciphers is two data streams being XOR-ed together.
Obviously, identifying instances of XOR results in an over-
whelming number of false positives. In case a signature for
such a generic class is desired, an alternative approach is to
craft signatures for every subclass contained within it.

Path oracle policy The path oracle policy discussed in Sec-
tion 6.1 is chosen such that the resulting graph represents n
iterations of an algorithm. While this typically satisfies our
goals, there are a few exceptions to this rule. First, compilers
sometimes ensure loop-guard evaluation during both entry
and exit, resulting in a DFG representing n+1 iterations. Sec-
ond, cryptographic primitives with a constant iteration length
are beyond the control of the path oracle. Finally, loop un-
rolling will result in a DFG representing kn iterations, where
k denotes the number of compiler-grouped iterations. In order
to overcome this limitation, we suggest taking the possibility
of iteration count deviating from n into account during signa-
ture construction as described in Section 10, for example by
defining a minimum rather than an exact match.

3 Prior work

Prior work by academia and industry into the identification of
cryptographic algorithms in binary code can be divided into
(combinations of) the following approaches:

Dedicated functionality identification The most naive and
straight-forward approach consists of identifying dedicated
cryptographic functionality in the form of OS APIs (e.g. Win-
dows CryptoAPI/CNG) [47], library imports or dedicated
instructions (e.g. AES-NI). This approach is inherently inca-
pable of detecting unknown algorithms.

Data signatures The most common approach employed in
practice [3, 36, 44, 45, 52, 56, 58, 74] consists of identifying
cryptographic algorithms on the basis of constants (e.g. IVs,
Nothing-Up-My-Sleeve Numbers, padding) and lookup ta-
bles (e.g. S-Boxes, P-Boxes). The approach is unsuitable for
detecting unknown algorithms. Moreover, the same applies
for known algorithms that do not rely on fixed data, or those
that do, but, for example, use dynamically generated S-Boxes,
rather than embedded ones.

Code heuristics Another series of approaches rely on code
heuristics, which are applied either statically or dynamically,
like mnemonic-constant tuples [35, 42], which take into ac-
count word sizes, endianness, and multiplicative and additive
inverses but otherwise suffer from the same drawbacks as data
signatures.

A second heuristic relies on the observation that symmetric
cryptographic routines tend to consist of a high ratio of bit-
wise arithmetic instructions [18, 35, 42, 47, 56] and attempt to
classify functions based on a threshold. The drawback of this

approach is that it lacks granular taxonomical identification
capabilities as well as being highly prone to false positives,
especially on embedded systems where heavy bitwise arith-
metic is typically present as part of memory-mapped register
operations required for peripheral interaction.

Deep learning Hill et al. [38] propose a Dynamic Con-
volutional Neural Network based approach which, however,
is unsuited for our purposes due to its reliance on dynamic
binary instrumentation and its inherent inability to classify
unknown algorithms.

Data flow analysis One set of approaches to data flow
analysis relies on the static relation between functions and
their inputs and outputs [19, 35, 47, 53]. One plausible ap-
proach is to perform taint analysis and evaluate function I/O
entropy changes, which relies on emulation and as such is un-
suitable as per our criteria in Section 1. Another approach is to
compare emulated or symbolically executed function I/O to a
collection of reference implementations or test vectors, which
is inherently incapable of detecting unknown algorithms.

Another approach [76] utilizes dynamic instrumentation
and symbolic execution to translate candidate cryptographic
algorithms into boolean formulas for subsequent comparison
to reference implementations using guided fuzzing. However,
its reliance on dynamic instrumentation and inherent inabil-
ity to recognize unknown algorithms render the approach
unsuitable for our purposes.

Finally, there is the DFG isomorphism approach as pro-
posed by [43] which produces DFGs from a given binary and
compares it against graphs of known cryptographic algorithms
through the use of Ullmann’s subgraph isomorphism algo-
rithm [66]. A DFG is a Directed Acyclic Graph (DAG) repre-
senting the flow of data within a sequence of arithmetic/logic
operations. A vertex represents either an operation, or an in-
put variable. The presence of an edge between vertex v1 and
v2 means that v1 (or the result of operation v1) is an input to
operation v2. Due to the nature of DFGs, code flow informa-
tion cannot be expressed. As such, the contributions of [43]
are limited to linear sequences of instructions. Moreover, the
authors argue that since cryptographic implementations ought
to avoid data-dependent branching due to side-channel sus-
ceptibility, one can assume all cryptographic code is free from
data-dependent conditional instructions. This latter general-
ization introduces several limitations.

First, no straightforward strategy for selecting code frag-
ments is proposed. Performing the analysis on a per-function
basis is complicated by the fact that cryptographic implemen-
tations are commonly surrounded by some basic control logic,
such as checks on input parameters. As a result, analysis
can neither be applied to entire functions nor across function
boundaries through inlining and hence the authors propose a
limited set of selection heuristics constraining the work.

Second, the approach performs well when identifying
known algorithms since one can take advantage of algorithm-

3

unique characteristics, but this does not hold when attempting
to identify unknown algorithms. Furthermore, a common pat-
tern is that the class of a cryptographic primitive often only
becomes apparent once the analysis incorporates conditional
instructions. We clarify this point using the following toy
examples.

Suppose that we would like to identify a proprietary stream
cipher σ. A typical implementation contains a key-stream gen-
erator, generating pseudo-random bytes in a loop. Inevitably,
this loop contains a conditional instruction causing the pro-
gram to either re-enter or exit the loop, depending on the
length parameter. As there is no support for conditional in-
structions depending on non-constant values, DFG G, gener-
ated from σ will, at most, represent a single iteration, covering
a single unit of input length (bytes or otherwise). In this typi-
cal example, clearly, a stream cipher pattern will not become
apparent in G. The example can be generalized to any pattern
that becomes apparent only after several iterations, where no
additional properties of the target primitive are known.

Similarly, suppose that we would like to identify a pro-
prietary hash function θ, based on a Merkle-Damgård con-
struction. θ invokes compression function F , which processes
blocks of fixed input length. The Merkle-Damgård construc-
tion is then used to allow variable input lengths. As such, in
order to generate a DFG wherein the construction is apparent,
we need it to incorporate several iterations, and perform inlin-
ing of F . The former is problematic (as per the stream cipher
example), and so is the latter in case F performs some kind
of input validation, for e.g. checking for NULL pointers.

4 Solution overview

Cryptographic primitives are essentially a set of arithmetic
and logical operations representing an input/output relation.
This structural relationship between operations and data can
be expressed as a DFG. Since all particular algorithms will
be structurally similar to the general primitive defining their
taxonomical class, the problem of identifying an unknown
algorithm assumed to belong to a well-defined taxonomical
class can be formulated as a DFG subgraph isomorphism prob-
lem. However, due to slight differences in implementation
and compiler peculiarities, DFG representations of semanti-
cally identical algorithms may differ and such representations
require normalization before they can be subjected to iso-
morphism analysis. Lestringant et al. [43] demonstrated that,
by repeatedly applying a set of rewrite rules to the DFG, a
normalized version is obtained, wherein many of these varia-
tions are removed. Although no guarantee can be given that
equivalent semantics will always map to the same DFG, the
result is ‘good enough’ to serve as a data structure for the
purpose.

The identification procedure consists of three stages. A
diagram of the procedure is given in Figure 2. First, given the
entry point of a function, we start executing it symbolically.

A DFG is constructed during the execution, where each in-
struction adds a set of nodes and edges to the graph. In case
a conditional instruction is encountered, the execution path
belonging to the condition evaluating to true, false, or both
paths are explored. In the latter case, the partially constructed
DFG is duplicated and the construction continues indepen-
dently for both execution paths. Hence, the final result of the
DFG construction phase is, in fact, a set of DFGs describing
the input/output relation corresponding to the execution path
taken. Section 5 describes the construction phase in detail.

Second, once a DFG is fully constructed, we enter the purg-
ing phase. This phase is responsible for removing nodes from
the graph that represent neither an output, nor a value used in
the computation of any output. As such, the graph is reduced
to a form in which it only represents the input/output rela-
tion, free from operations introduced due to register spilling
and other possible implementation, compiler, and architecture-
specific operations that are irrelevant to the function’s seman-
tics. Section 7 describes the purging phase in detail.

Last, with the finalized DFG at our disposal, we enter the
pattern-matching phase, where we search for subgraphs in
the DFG that are isomorphic to the graph signature of a given
cryptographic primitive. If such a subgraph is identified, we
conclude that the primitive is indeed present in the instruc-
tions from which the DFG was generated. We use Ullmann’s
subgraph isomorphism algorithm for searching the DFG. Sec-
tion 8 describes the pattern-matching phase in detail.

5 Data Flow Graph construction

The approach of constructing the DFG from assembly instruc-
tions builds upon that of [43]. This section summarizes their
approach, and indicates where ours departs from it.

Suppose we have a sequence of assembly instructions. We
construct its corresponding DFG, G = (V,E), by converting
each instruction i into a set of operations Oi, which can po-
tentially be empty (e.g., a NOP or branch), or contain multiple
operations (e.g., a complex instruction). We distinguish three
cases based on input type, as follows:

Immediate We create a vertex representing a constant value
in G. It is linked by an edge to Oi.

Register In case an instruction takes a register as an input
operand, we create an edge between the last value written to
that register and Oi. In practice, this means we maintain an
array containing, for each register, a reference to the vertex in
G corresponding to that value.

Memory For operands that load or store from/to memory,
we create LOAD and STORE operations. Both operations take
a memory address vertex as input. Like any other vertex,
the address can be a constant, or a more complex symbolic
expression.

4

Function entry point Execute symbolically/
Generate DFGs

DFG

DFG

DFG

Purge

Purge

Purge

Canonical DFG

Canonical DFG

Canonical DFG

Signature Signature

Subgraph
Isomorphism

Subgraph
Isomorphism

Subgraph
Isomorphism

Classification result

Classification result

Classification result

Underdetermined condition

Figure 2: Diagram of primitive identification process

Ideally, we would like all code fragments within a semantic
equivalence class to map to the same DFG, and have the end
result represent the semantics only, free from architecture and
compiler-specific traits. The approach followed by [43] is to
take the generated DFG, and repeatedly apply normalization
rewrite rules until a fixed-point is reached. This is where
our approach deviates from theirs, as we apply normalization
as well, but continuously during graph construction. This
enhances performance, which we argue below in Section 5.1,
and allows us to efficiently keep track of the conditions that
apply during symbolic execution (Section 6).

Processor module Broker DFG

1⃝ Specification

5⃝ Node reference

2⃝ Normalization
3⃝ Query existence

4⃝ Node reference

Figure 3: Flow of the graph-node creation process

A diagram of the graph-node creation process is given in
Figure 3. More concretely: there is a processor module, writ-
ten for a specific architecture that translates each instruction
into graph nodes. The processor module cannot autonomously
create new graph nodes. Instead, it must interact with the bro-
ker. The broker is responsible for the application of normal-
ization rewrite rules and is processor-architecture agnostic.
The processor module provides a specification of the desired
node to the broker, which in turn applies normalization rewrite
rules to the specification. As such, the result either matches
the specification exactly, or a different one that is semantically
equivalent. After normalization, the broker queries the DFG
for whether a node conforming to the normalized specification
already exists. If it does, a reference to it is returned, rather
than a new node being created. Consequently, there cannot
exist two distinct nodes in a graph conforming to the same
specification, or equivalent under normalization. We prove
this property in Lemma 1.

Lemma 1. Let G = (V,E) be a DFG, and h denote the nor-
malization transform, for which holds: (1) h(h(x)) = h(x) for
all x ∈U (universe). Consider arbitrary arithmetic/logical
operation op(v1,v2), where v1,v2 ∈V .

A broker request for op preserves the following properties:
(i) For all v ∈V , v = h(v), i.e. all nodes in G are normalized.
(ii) For all v1,v2 ∈ V , h(v1) = h(v2) =⇒ v1 = v2, i.e. all
nodes in G belong to a unique equivalence class under the
normalization function.

Proof. Assume (i) and (ii) hold for V . We define q =
h(op(v1,v2)) and distinguish two cases.

If q ∈V , then G is not modified and (i) and (ii) are trivially
preserved. If q ̸∈V , then V ′=V ∪{q}. By applying (1), we get
h(q) = q, and thus (i) holds for {q}. Since (i) already holds for
V , (i) also holds for V ′. Furthermore, suppose that there exists
p ∈V , for which h(p) = h(q). By (i), we get h(p) = p, and
hence p = h(q). By definition, q = h(op(v1,v2)) and hence
p = h(h(op(v1,v2))). By (1), we get p = h(op(v1,v2)) and
thus p = q. This contradicts q ̸∈V , and hence no p ∈V exists
such that h(p) = h(q). Therefore, (ii) holds for V ′.

Since (i) and (ii) trivially hold for the base case, i.e., an
empty graph G, where V =∅, and the above shows preserva-
tion during the step case, the properties hold for any G.

At this point, we are ready to describe the normalization
rewrite rules; they include operation simplification, common-
subexpression elimination, and subsequent memory access.

Operation simplification Suppose that we encounter an
arithmetic/logic operation for which all input parameters are
constants. Then, the operation can be replaced by its result.

4 12

+
16

Likewise, in case an element is the identity element for the
operation it serves as an input to, the operation has no effect
and can be removed. In case an element is the zero element,
the operation can be replaced by zero.

Common subexpression elimination Often within a code
fragment, the same value is re-computed several times. This
is especially true when the instruction set allows for express-
ing complex operands, for e.g. supporting offsets and shifts.
Lemma 1 states that broker requests for nodes belonging to a
certain equivalence class all result in references to the same
graph node. Hence, common-subexpression elimination is
already achieved by the design of the node-creation process.

5

SP

+

<<

R2 2

R0

+

<<

R2 2

SP

+
+

<<
R0

R2 2

Memory access Loading and storing of data from/to main
memory is a common operation. However, this need not have
a relation with semantics, but may be due to register filling
and spilling. We attempt to correct for this by substituting
each LOAD operation by its result, which is known in case
a preceding STORE operation to the same memory address
node exists. It is important to be able to identify the potential
equivalence of memory address nodes passed to the STORE
and LOAD operation. Like any other expression, memory ad-
dresses are represented by graph nodes. Given Lemma 1, all
equivalent address nodes are mapped to a single graph node.
By maintaining a lookup table during graph construction, for
e.g., a hash table mapping address nodes to their correspond-
ing stored value, the substitution can be performed in constant
time.

R3 +

SP 8

STORE

+

SP 8

LOAD

AND

0xff

+R3

SP 8

STORE

AND

0xff

For associative operations, the result does not depend on
the order in which they are executed. Therefore we translate
nested associative operations into a single operation taking
all inputs.

SP R0

+ 4

+

SP
R0

4

+

Miscellaneous translations Besides the rewrite rules de-
scribed above, we apply additional miscellaneous rules that do
not fit any of the aforementioned categories. They are listed
in Appendix B.

5.1 Advantages
Applying the normalization rewrite rules during construction
of the graph has several advantages over doing so once the
graph is fully generated. First, in case normalization function
h has constant running time complexity, then the running time
complexity of the construction phase, including normaliza-
tion, grows linearly with the number of assembly instructions,
whereas repeated application on a wholly generated DFG has
quadratic complexity.

Second, by Lemma 1, equivalence of any pair of node refer-
ences can be evaluated in constant time, simply by checking

whether v1 = v2. As such, substitution of LOAD operations
by their result can be achieved in constant time. The prop-
erty is also utilized extensively during symbolic execution
(Section 6). Suppose some predicate P involves node v1 ∈V .
Then, a condition involving v2 ∈V , can be evaluated immedi-
ately under P without the need for proving equivalence of v1
and v2 first.

6 Symbolic execution

During the analysis of a function, we may encounter con-
ditional instructions. By definition, a conditional instruction
carries a condition. We define the terms determined and under-
determined conditions. These terms relate to the terminology
used in the classification of systems of linear equations. For
determined conditions, the input variables are restricted to a
domain such that there is only a single possible evaluation re-
sult. For example, a conditional jump instruction at the end of
a loop consisting of a fixed number of iterations. Conversely,
for underdetermined conditions, the input variables are not
restricted enough to determine a fixed outcome. Below we
describe how we approach this class of conditions.

During the DFG construction of any function f , we keep
a state S = (G,P,B), where G = (V,E) is the partially con-
structed DFG. P is the path condition, which is constructed
during symbolic execution; a predicate restricting unknown
variables to a certain domain so that, if satisfied, the execution
path follows the same path taken during the DFG construc-
tion. Phrased differently: satisfaction of P warrants that G
represents the input/output relation of f . The inverse of this
statement need not be true. Finally, backlog B is a mapping
between an execution address and a list of booleans. For all
underdetermined conditional instructions encountered during
the construction of G, B keeps a record of which evaluation
result was chosen (i.e., true/false). Since the analysis may en-
counter the same conditional instruction several times, a list
is kept. We define Be[i] ∈ B, as the evaluation result chosen
during the ith occurrence of the underdetermined conditional
instruction located at execution address e.

The graph construction begins by initializing S = (G,P,B)
to the empty state, i.e. G is an empty graph, P = true, and
B has no record of any evaluation result. Then, we begin the
construction by processing the instruction located at the entry
point of function f . Some instructions may manipulate the
execution flow, for e.g., a branch instruction, in which case,
we continue at its target address. The construction is complete
when we encounter an instruction causing the execution flow
to return to f ’s calling function. For example, in ARM assem-
bly, this is achieved by writing the initial value of register LR,
as set by the caller of f , to the program counter register PC.

We represent a condition c in the form of a tuple (v1,o,v2),
where v1,v2 ∈V , and o ∈ {<,≤,=,≥,>} is the operator. In
case either v1 or v2 is non-constant, c need not be underdeter-
mined, as predicate P may sufficiently restrict v0 or v1 so that

6

c is determined. In case c is underdetermined, both execution
paths are possible, and we are forced to choose which one to
follow. Alternatively, we may follow both paths, by duplicat-
ing state S , and subsequently assigning each execution path
to one of the instances. This way, the resulting final graph
construction consists of several DFGs; each one representing
a different execution path. We refer to this practice as forking
state S . Forking at the occurrence of every underdetermined
condition maximizes code coverage. However, it is infeasible
due to the state explosion problem. Therefore, we should de-
vise a balanced strategy for when to apply it – as elaborated
below.

6.1 Path Oracle

The strategy of when to apply forking only loosely relates
to the symbolic execution itself. Therefore, we introduce the
Path Oracle, a separate entity that is queried during the graph
construction phase, for every occurrence of an underdeter-
mined condition c. It decides whether c should evaluate to
true or false, or that the construction should fork and follow
both execution paths.

Algorithm 1 Conditional Instruction
Require: S = (G,P,B), ExecutionAddress e, Condition c, PathOracle po

if P∧ c = true then
Evaluate instruction at e

else if P∧ c = false then
Skip over instruction at e

else
d← po.query(e, B)
if d = TAKE_TRUE then

P← P∧ c ▷ expand P with c
Be ← Be ∪{true} ▷ append decision to backlog
Evaluate instruction at e

else if d = TAKE_FALSE then
P← P∧¬c
Be ← Be ∪{false}
Skip over instruction at e

else if d = TAKE_BOTH then
S ′ ← S .fork() ▷ S ′ = (G′,P′,B′)
P← P∧ c
Be ← Be ∪{true}
P′ ← P′ ∧¬c
B′e ← B′e ∪{false}
e is evaluated for S , skipped for S ′

For every decision made by the path oracle, P and B in S are
updated accordingly. The pseudocode given in Algorithm 1
depicts how this is done. In short, predicate P is updated to
include condition c (or the negation thereof), thereby main-
taining satisfaction of its defining property, i.e. satisfaction of
P guarantees G represents the input/output relation of f . An
entry is added to backlog B, reflecting the decision made by
the path oracle. B has no purpose beyond weighing into the
decisions made by the path oracle.

6.1.1 Path Oracle Policy

The goal of the policy described below is, for some number
n, to obtain a DFG consisting of exactly n iterations of a
primitive with variable input length. The target primitive can
subsequently be identified by searching for exactly n iterations
in the resulting DFG.

We define de,i ∈ {TAKE_TRUE,TAKE_FALSE,TAKE_BOTH}
as the path oracle’s decision for the ith query for the condi-
tional instruction found at execution address e. The policy for
the path oracle is defined as follows:

de,0 := TAKE_BOTH

de,i :=
{
TAKE_TRUE iff Be[0] = true, } ∀i ∈ [1,n−1]
TAKE_FALSE iff Be[0] = false

de,i :=
{
TAKE_FALSE iff Be[0] = true, } ∀i ∈ [n,∞]
TAKE_TRUE iff Be[0] = false

We justify the choice of policy by means of an example.
Suppose that we encounter an underdetermined condition
c at address e. We do not know which of the two possible
execution paths leads to a cryptographic primitive (if any).
Hence, for i = 0, i.e., the first occurrence, we fork the state
and explore both. Suppose that, at a later point during the
graph construction, one instance visits address e again, hence
i = 1, and finds itself with another underdetermined condition
c′. Since, at this point, P incorporates c (or ¬c), the outcome
of c can be evaluated. As c′ is underdetermined, c ̸= c′ is
guaranteed.

Such behavior is typical for a loop-guard statement. If this
is indeed the case, the execution path taken at i = 0 made us
revisit e. In light of our goal of constructing a DFG comprising
of n iterations of a primitive, we replicate this path choice
n−1 times, and subsequently take the opposite path, causing
the execution flow to exit the loop. Finally, the construction
phase yields two DFGs: one representing 0 iterations, and
another representing n iterations. A description of the strategy
being applied to a concrete example is given in Appendix A.
The strategy does not produce exactly n iterations in every
situation. Section 2 highlights typical exceptions.

7 Purging process

Once the construction is complete, graph G represents the
input/output relation of f , under predicate P. However, it
contains other information as well, such as nodes created
from temporary loads/stores to the stack, and expressions
rewritten by the broker, leaving the source nodes unused. For
e.g., suppose that v represents ADD(x,y). Then, a request to the
broker for ADD(v,z) yields node w, representing ADD(x,y,z). w
does not depend on v and, unless v is referenced independently
elsewhere, v is not part of f ’s input/output relation.

Leaf nodes are, by definition, graph nodes that are not used
as an input to any arithmetic/logical operation. Our approach
becomes the following: for each leaf node v, we check whether

7

it is part of f ’s semantics. We consider leaf node v to be part
of f ’s semantics, if v is either:

(i) the return value of f ,
(ii) a STORE operation, and the target address is not relative

to the SP register. Thus, information is stored outside of
the stack, or

(iii) a CALL operation, i.e. a function call not subject to inlin-
ing.

In case none of the above applies, v and its incoming edges
can be removed from G, without affecting its semantics. The
removal of leaf nodes continues repeatedly until no more
nodes can be removed. Finally, by construction, all nodes
in G are either leaf nodes that are part of f ’s semantics, or
intermediate results contributing to some leaf.

8 Signature Expression

IDENTIFIER string VARIANT string

TRANSIENT label :

expression ;

VARIANT string

(a) High-level state machine

expression + expression

+

expression
<<

>>
expression

OPAQUE

< clamp-label >

STORE

LOAD

XOR

OR

AND

MULT

ROTATE

(expression

,

)

label

literal

(b) The ‘expression’ type

Figure 4: Diagram representation of the DSL parser

In order to detect subgraph isomorphism, we need a means of
expressing the signature graph. Figure 4a depicts a diagram of
the signature domain-specific language (DSL). Appendix C
provides a concrete example. The round boxes denote a key-
word, whereas the square boxes denote a data type. New
graph nodes are generated through the expression data type
(Figure 4b). The IDENTIFIER keyword allows one to specify
a friendly name for the signature. The VARIANT keyword
enforces the creation of a new empty DFG. Subsequent ex-
pressions are added to this graph, thus, allowing one to specify
multiple variants of a signature. Subgraph isomorphism de-
tection is ultimately performed with all variants. The label
data type is an optional field. It allows the node to be refer-
enced by another expression, enabling node sharing between
expressions. Analogous to DFGs generated from assembly
instructions, a DFG declared in the DSL is also subject to nor-
malization by the broker (Section 5), and purging (Section 7).
In case the TRANSIENT keyword is specified, the node gen-
erated from the expression is considered to be non-essential,
and may be removed during the purging process (i.e. in case
it was translated by the broker).

Figure 4b depicts the expression data type. It is recursively
defined, and hence allows for nested subexpressions. The ‘+’
keyword denotes the addition of two or more subexpressions.
‘<<’ / ‘>>’ denote a left and right shift, respectively. The
label data type is a reference to a previously defined graph
node. The literal data type denotes a constant value. The
STORE, LOAD, XOR, OR, AND, MULT and ROTATE keywords
followed by subexpressions contained in parentheses provoke
creation of a new graph node. The subexpressions serve as
input nodes. Finally, the OPAQUE keyword signifies a special
wildcard node. A comparison with a node of any other type
by the subgraph-isomorphism algorithm always yields true.
The opaque node type can have any number of input nodes,
including zero. The optional clamp-label data type allows one
to assign a name to the node type. Consequently, a comparison
with a node of any other type yields true, with the added
restriction that all opaque nodes carrying the same type label
must map to nodes of the same type. We refer to this practice
as type clamping.

Within the realm of identifying unknown primitives, a
special wildcard applicable to a group of nodes would be
useful. However, to our knowledge, the nature of subgraph-
isomorphism does not allow for the augmentation of any such
algorithm to support one-to-many mappings. Alternatively,
one may declare several variants of a signature, where for each
variant, the wildcard group is denoted by a different number
of nested opaque operations, i.e. OPAQUE, OPAQUE(OPAQUE),
etc. This way, any group consisting of a finite number of oper-
ations can be expressed. Introducing a notation triggering the
translation to multiple variants automatically has been con-
sidered. However, as the number of signature variants grows
exponentially in the usage count of this hypothetical notation,
we prefer to discourage its use. Hence, we omit the notation
altogether, enforcing explicit declaration of multiple variants.

9 Subgraph isomorphism

Subgraph isomorphism is a well-documented problem, and
is known to be NP complete. The solution proposed by Ull-
mann [66] is a recursive backtracking algorithm with pruning.
Our framework implements this algorithm, with added sup-
port for type clamping (see Section 8). For further details
about Ullmann’s algorithm and the optimizations we applied
to it, we refer the reader to the documentation included with
our framework’s source code.

10 Signatures

Before diving into the practical performance evaluation, we
highlight the signatures used throughout the analysis, along
with relevant details and a motivation as to why they are
included. All signature definition files are included in our im-
plementation of the framework. The list given below should

8

not be interpreted as an attempt to cover the entirety of cryp-
tographic primitives in existence. Rather, they showcase the
applicability of our framework. The selection of signatures
was made with a strong focus on proprietary algorithms in
embedded environments. As such, they consist of symmetric
and unkeyed primitives only, although there is no fundamental
incompatibility with asymmetric primitives. To our knowl-
edge, no proprietary primitive exists to date that is studied
in the scientific literature and does not fall within any of the
classes covered in this section.

However, should an additional signature be desired, then it
can be crafted. In broad terms, the approach is to formulate the
primitive’s defining properties, translate those to an abstract
DFG, and finally into a signature definition expressed in the
DSL. The process is somewhat ad-hoc in nature. However,
the examples presented this section should provide sufficient
guidance.

10.1 AES, MD5, XTEA, SHA1
Despite this paper’s strong focus on unknown primitives, and
hence generic signatures, algorithm-specific signatures, such
as AES, MD5, XTEA and SHA1, can be defined and used.
Doing so allows us to directly compare results with [43], and
demonstrate that our approach effectively solves the code
fragment selection problem without resorting to heuristics.

10.2 Feistel cipher L0 R0

XOR F

K0

XOR F

K1

...

Figure 5: DFG of a
Feistel structure

A Feistel cipher is a symmetric
structure used in many block ci-
phers, including DES. In a Feistel
cipher, a plaintext block P is split
in two pieces L0 and R0. Then, for
each round i ∈ [0,1, . . . ,n],

Li+1 = Ri
Ri+1 = Li⊕F(Ri,Ki),

is computed, where ⊕ denotes bit-
wise exclusive-or, F the round
function, and Ki the sub-key for
round i. Translating this defini-
tion into a DFG yields the graph
shown in Figure 5.

The next step is to construct a signature that represents the
DFG from Figure 5. However, F is an algorithm-specific set
of operations, of which thus no properties are known. The
OPAQUE operator (see Section 8), only covers a single opera-
tion, whereas F consists of an unknown number of operations.
F is known to take Ri and Ki as an input, where i∈ [0,1, . . . ,n].
No properties are known for Ki. Hence, we represent F by
introducing multiple variants of the signature. In the first
variant, we substitute F with OPAQUE(Ri), in the second with
OPAQUE(OPAQUE(Ri)), etc., until we reach 8 levels of nested
operations. Thus, the signature identifies Feistel ciphers with

an F whose input/output relation contains between 1 and 8
successive operations.

10.3 (Non-)Linear feedback shift register

(Non-)Linear feedback shift registers ((N)LFSRs) are often
used in pseudo-random number generators, and key-stream
generators for stream ciphers. When designed carefully, an
(N)LFSR offers relatively strong randomness, whilst requiring
very few logic gates, often making it an attractive choice for
algorithms used in embedded devices. Both hardware and
software implementations of (N)LFSRs are common.

Let R be an (N)LFSR. For each round, a new bit is
generated using feedback function L from (a subset of) the
bits in R. If L is linear, for e.g. an exclusive-or over the input
bits, we refer to R as an LFSR. Conversely, R is an NLFSR if
L is non-linear. All bits in register R are shifted one position
to the left, discarding the most significant bit, and the newly
generated bit is placed at position 0. Furthermore, an output
bit is generated by feeding R to some function F . Hence, we
have, for each round i ∈ [0,1, . . . ,n],

R0 F

1<<

OR

L

F

1<<

OR

L

F

...

Figure 6: DFG of an
(N)LFSR

Ri+1 = (Ri << 1) | L(Ri)
outputi = F(Ri),

where << x denotes a left
shift by x bits and | denotes
bitwise or.

Figure 6 depicts a trans-
lation of the above into a
DFG. In order to express
this graph in a signature,
we replace L and F with
OPAQUE operators. The prop-
erty that Ri+1 depends on Ri
via L is lost. However, the
signature remains distinctive
enough in order to warrant
very few false positives (see
Section 11).

10.4 Sequential Block Permutation

Variable-length primitives constructed from fixed-length ones
are a common phenomenon. For e.g., all hash functions built
on the Merkle-Damgård construction, such as MD5, SHA1
and SHA2, have this characteristic. Other examples include
block ciphers in a chaining mode of operation. We refer to
this concept as a sequential block permutation.

Let Hi be the ith output block of a sequential block per-
mutation function, Bi be the ith input block, c be the fixed-
length compression function, for i ∈ [0,1, . . . ,n]. I denotes
the initialization vector. Then, we define the sequential block
permutation as:

H0 = c(I,B0)
Hi = c(Hi−1,Bi) ∀i ∈ [1,n]

9

A DFG representation is given in Figure 7. On inspection, we
find that it only provides structural guidance, and does not
prescribe any arithmetic or logic operations. The definition of
H prescribes that compression function c takes two inputs:

(i) The output of its preceding instance, except for the first
instance, which depends on the IV.

(ii) Any of the input blocks B0,B1, . . . ,Bn.

I

B0c

B1c

B2c

...

c Bn

Figure 7: DFG of
a sequential block
permutation. The
blue arrows depict
the visitation order
by the classifier

In order to express this in a signa-
ture definition, we may opt for an
approach similar to how the Feis-
tel cipher signature definition is con-
structed. However, Figure 7 does not
contain any operation that serves as
an ‘anchor point’ for c, analogous
to the XOR-operation in the Feistel
structure. As such, any pattern of re-
peated operations satisfies property
(i), which is overtly generic. Hence,
we must also take property (ii) into
account. Let ci be the ith instance of
c. The number of arithmetic/logical
operations on the path between ci−1
and ci need not be related to that of
the path between input block Bi and
ci. Therefore, in order to translate c
into multiple variants of the signa-
ture, we have to perform a transla-
tion for both paths independently. Note that the number of
variants grows exponentially in the number of translations.
On top of that, the compression function c can be vastly more
complex than a round function in a Feistel cipher. For e.g.,
the MD5 compression function in itself consists of 64 rounds.
Therefore, the upper bound of the number of operations that
c may consist of is an order of magnitude higher than what
one would typically find in a Feistel cipher’s round function.
All in all, the number of signature variants, and therewith the
running time of the analysis, becomes prohibitively large.

Fortunately, there is no need to restrict ourselves to sub-
graph isomorphism as a means of identifying primitives.
Rather, we can apply any algorithm to the DFGs generated by
the graph construction framework, which is our approach for
the sequential block permutation use case. We take several
observations into account. First, input blocks B0,B1, . . . ,Bn
are typically loaded from a memory address. Second, c has a
fixed (unknown) block size, and thus we can safely assume
that the offsets between the load addresses of Bi, Bi+1 and
Bi+2 are constant. We take the following approach:

(i) We identify all nodes representing LOAD(ADD(x,k)),
where x is an arbitrary graph node, and k is a con-
stant. For each instance of x, we construct a list of tuples
(v0,v1,v2), where vi represents LOAD(ADD(x,ki)). A tu-
ple is valid only if k1− k0 ≥ 16∧ k1− k0 = k2− k1, i.e.
the offsets between v0,v1 and v2 are constant, and at

least 16 bytes. As such, a DFG generated from a sequen-
tial block permutation function yields at least one tuple
such that vi maps to Bi, for all i ∈ [0,1,2].

(ii) For all tuples, we determine the shortest path between v0
and v1. This can be done by means of a simple breadth-
first search. If v0 maps to B0 and v1 to B1, then this path
should take us through two instances of c (see Figure 7).

(iii) Suppose that such a path exists, then we would like to
confirm that a similar path exists between v1 and v2. We
take v1 as a starting point, and traverse paths with edge
directions and node types resembling those on the path
between v0 and v1. Once such a path has been found, it
should reach v2. Satisfaction of this property is a strong
positive indicator.

(iv) To gain more certainty, we also verify that the node types
of all inputs and outputs for all the nodes on both paths
match. However, in case v0 maps to B0, some inputs
may originate from the IV, whereas they originate from
computed values during the second round. Therefore,
we treat constants and inputs of type LOAD as wildcards
in this step.

11 Experimental evaluation

We evaluate our solution’s performance with regards to ac-
curacy and running time on the following four test sets: (a)
the sample set used in [43], (b) a collection of shared libraries
and executables part of the OpenWRT2 network equipment
firmware, (c) a collection of proprietary cipher implementa-
tions built from public sources, and (d) a collection of real-
world embedded firmwares (PLCs, ECUs). The evaluation is
conducted on an AMD Ryzen 3600 machine with 16 GB of
RAM, which is considered mid-range hardware nowadays.

While not containing proprietary cryptography, the Open-
WRT project is publicly available without legal issues around
redistribution, contrary to firmwares which do. As such, this
evaluation benefits the reproducibility of our work, as well
as demonstrates the general principle, accuracy and perfor-
mance on a test set representative of high-end embedded
device firmware. Given the uncertainty over the legality of
redistribution, we refer to the original sources of the propri-
etary cipher implementations rather than publish our binary
test set. Due to copyright restrictions, we unfortunately lack
permission to publish the real-world embedded firmwares.

Section 6.1.1 defines a tunable variable n, the target number
of instances of an algorithm contained within a DFG. The
value chosen for n should be low as it correlates with the
size of the constructed DFGs, and hence running time, but
high enough so that all signatures listed in Section 10 can be
identified. The algorithm-specific and Feistel classifiers only
target a single instance of an algorithm, and hence are not
affected by n. Conversely, the (N)LFSR and sequential block

2https://openwrt.org/docs/techref/targets/mvebu

10

https://openwrt.org/docs/techref/targets/mvebu

Signature Compiler
-O0 /

Debug -O1
-O2 /

Release -O3

XTEA
4 rounds

70 vertices

GCC ok (1ms) ok (2ms) ok (2ms) ok (2ms)

Clang ok (1ms) ok (2ms) ok (2ms) ok (2ms)

MSVC ok (1ms) - ok (2ms) -
MD5

64 rounds
458-618 vertices

GCC ok (267ms) ok (335ms) ok (345ms) ok (348ms)

Clang ok (286ms) ok (241ms) ok (272ms) ok (265ms)

MSVC ok (269ms) - ok (322ms) -
AES

1 round
85-110 vertices

GCC ok (64ms) ok (61ms) ok (53ms) ok (56ms)

Clang ok (37ms) ok (32ms) ok (32ms) ok (27ms)

MSVC ok (30ms) - ok (42ms) -

Table 1: Signature matching step execution times, sample set
of Lestringant et al.

permutation classifiers are, as they identify a primitive based
on multiple instances. The latter identifies two successive
instances of some unknown compression function c. Because
the rewrite rules are designed to promote numeric simplifica-
tion (Section 5), the initialization and finalization step of an
algorithm may become merged with the first and last instance
of c, respectively. Thus, by choosing n = 4, the presence of
two successive instances of c in the DFG is warranted. Choos-
ing a value beyond 4 clearly does not offer any advantages
regarding this property. Furthermore, identifying 4 successive
rounds of an (N)LSFR in a DFG produced from code that
does not actually implement one is highly unlikely. Therefore,
for the remainder of this section, we take n = 4.

11.1 Comparison with Lestringant et al.

Lestringant et al. [43] showcase the effectiveness of their
method by successfully identifying AES, MD5 and XTEA in
binary files. Unfortunately, their sample set was never pub-
lished, and is compiled for x86, which our implementation cur-
rently does not support. Therefore, we constructed a new sam-
ple set for the ARM architecture that is as faithful as possible
to theirs. The algorithms are taken from the cited sources3,4,5,
and subsequently compiled with GCC 9.3.0, Clang 9.0.8, and
MSVC 19.16 on all available optimization levels (O0–O3,
debug/release). We use algorithm-specific signatures in order
to warrant a fair comparison. The results are depicted in Ta-
ble 1. They show that all samples are identified successfully
by (a variant of) their corresponding signatures, regardless
of compiler and optimization level. This effectively demon-
strates that our approach is equally capable of identifying
these algorithms, without resorting to heuristics for fragment
selection.

11.2 Performance on OpenWRT binaries

The version of OpenWRT used is 19.07.2, which is the latest
at time of writing. The sample set consists of several binaries

3https://en.wikipedia.org/w/index.php?title=XTEA
4https://tools.ietf.org/html/rfc1321
5https://github.com/BrianGladman/AES

taken from the distribution and is known to contain crypto-
graphic primitives.

DFG construction from binary code (Section 5) is a special
case of execution, and is thus affected by the halting problem.
As such, graph-construction is not guaranteed to terminate.
Therefore, we introduce a graph construction timeout ttimeout.
Figure 8a depicts a histogram of graph construction time t for
all graphs constructed during the analysis of libcrypto.so.1.1.
It shows that, for the vast majority of all graphs, construction
completes within 10s. Thus, we take ttimeout = 10s.

Furthermore, we must decide what action to take when the
function under analysis invokes another function. Either we
perform inlining, and hence incorporate the entire invocation
in the resulting DFG, or we represent it by a single CALL op-
eration. To address this issue, we define a tunable variable d,
denoting the depth level to which function calls are inlined.
We investigate the impact of d by running the analysis on
libcrypto.so.1.1, while taking on different values, and measur-
ing performance in terms of running time and accuracy. We
then choose a sensible value based on a trade-off between the
two, and use it for the remainder of this section. Figure 8b
depicts the time taken to complete the entire analysis pipeline
over every function in libcrypto.so.1.1, under the influence
of d. Figure 8c contains accuracy measurements for each
signature. True negatives are omitted since they cover an over-
whelming majority of results, and thus impact readability.

Recall that the signature evaluation is performed on graphs,
and the graph construction step may yield several graphs. As
such, several signature evaluation results may exist per func-
tion. The measurements provided in Figure 8c are aggregated
on a per-function level.

Let f be any function in the binary under analysis, and let
signature sα denote a signature targeting primitive α. Further-
more, let F be the set of DFGs generated from f during the
graph construction phase. Finally, match(sα,G) indicates that
signature sα was identified in graph G, imp(f ,α) denotes that
f implements cryptographic primitive α.

A result is marked as a true positive if imp(f ,α)∧∃G.G ∈
F ∧match(sα,G), i.e. f implements cryptographic primitive
α, and its signature is found in at least one graph in F . In-
deed, there is no guarantee that all DFGs in F contain al-
gorithm α, and hence it is expected that the signature is not
found in every graph in F . A result is marked as a false pos-
itive if ¬imp(f ,α)∧ ∃G.G ∈ F ∧match(sα,G), i.e. f does
not implement primitive α, yet its signature is found in at
least one graph in F . A result is marked as a true negative if
¬imp(f ,α)∧¬∃G.G ∈ F ∧match(sα,G). A result is a false
negative if imp(f ,α)∧¬∃G.G ∈ F ∧match(sα,G).

The results in Figure 8c show that accuracy does not
substantially improve when choosing d > 2. However, do-
ing so does impact the running time. We conclude that, for
libcrypto.so.1.1, d = 2 is a reasonable trade-off between ac-
curacy and running time. As such, we continue to use d = 2
for the remainder of this section, unless specified otherwise.

11

https://en.wikipedia.org/w/index.php?title=XTEA
https://tools.ietf.org/html/rfc1321
https://github.com/BrianGladman/AES

(a) Histogram of graph construction (b) Inline depth d vs analysis time (c) Inline depth d vs accuracy

Figure 8: Effect of inline depth d and ttimeout for libcrypto.so.1.1

At this point, sensible values for n, d and ttimeout have been
selected. We continue the evaluation by feeding the entire
set of OpenWRT binaries to our analysis framework. The
results are listed in Table 2. Each cell in the table depicts the
symbol name in the corresponding binary of the first positive
result, or, in case of a false negative, the symbol name where a
positive result is expected. The results indicate our solution is
capable of successfully identifying the vast majority of cryp-
tographic primitives present in various binaries in a timely
manner. Should accuracy take precedence over performance,
it is possible to tune the parameters to improve detection.

Algorithm
signature dropbear libcrypto.so.1.1 libmbedcrypto.so.2.16.31 libnettle.so.7.02

size 145 KB 1,735 KB 197 KB 237 KB
analysis time 6m44s 39m47s 6m56s 11m32s

SHA1
sha1 ✓ Unlabeled3 ✓ SHA1_Update ✓ sha1_update_ret ✓ sha1_compress
bl.perm. ✓ Unlabeled3 ✓ SHA1_Update ✓ sha1_update_ret ✓ sha1_update4

SHA256
bl.perm. ✓ Unlabeled3 ✓ SHA256_Update5 ✓ sha256_update_ret ✓ sha256_update4,5

AES
aes ✓ Unlabeled3 ✓ AES_encrypt ✓ aes_encrypt ✓ aes_encrypt_armv6
MD4
bl.perm. N/A ✓ MD4_Update N/A ✓ md4_update4

MD5
md5 N/A ✓ MD5_Update ✓ md5_update_ret ✓ hmac_md5_update
bl.perm. N/A ✓ MD5_Update ✓ md5_update_ret ✓ hmac_md5_update
RIPEMD160
bl.perm. N/A ✓ RIPEMD160_Update N/A ✓ hmac_ripemd160_update
SHA512
bl.perm. N/A ✓ SHA512_Update5 ✓ sha512_process5 ✓ sha512_update5

SM3
bl.perm. N/A ✓ sm3_block_data_order N/A N/A
BLOWFISH
feistel N/A ✓ BF_encrypt ✓ blowfish_crypt_ecb4 ✓ blowfish_encrypt
CAMELLIA
feistel N/A ✓ Camellia_EncryptBlock N/A ✓ camellia_crypt
CAST
feistel N/A ✓ CAST_ecb_encrypt N/A ✓ cast128_encrypt
DES
feistel N/A ✓ DES_encrypt2 N/A ✓ des_encrypt
RC2
feistel N/A ✗ RC2_encrypt N/A N/A
SEED
feistel N/A ✓ SEED_encrypt N/A N/A
SM4
feistel N/A ✓ SM4_encrypt N/A N/A
GOST
feistel N/A N/A N/A ✓ gosthash94_digest
MD2
bl.perm. N/A N/A N/A ✓ md2_update
TWOFISH
feistel N/A N/A N/A ✗ twofish_encrypt
SHA3
bl.perm. N/A ✓ SHA3_absorb N/A ✓ sha3_update4

1 Symbols prefixed with mbedtls_
2 Symbols prefixed with nettle_
3 Misclassified by IDA as an integer array. Manual cast to function

required.
4 Positive match for d ≥ 4.
5 Positive match for ttimeout ≥ 30s.

Table 2: Analysis result for various binaries in OpenWRT

11.2.1 Discussion of invalid results

Table 2 and Figure 8c contain several false positives and false
negatives. In order to gain insights in the limitations of our
approach, we highlight those instances here.

False negatives RC2 uses a regular addition, i.e. with carry
over, rather than XOR, whereas the Feistel signature high-
lighted in Section 10.2 relies on the XOR operation being
present. Therefore, RC2 is not identified as a Feistel cipher.

Furthermore, SHA512 is consistently among the false neg-
atives for the sequential block permutation class of primitives.
This is due to a DFG consisting of n (i.e. 4) instances of
SHA512 being required for successful identification. How-
ever, said DFG consists of over 1,000,000 vertices, and causes
the construction phase to exceed ttimeout. Increasing this value
successfully mitigates the issue. However, it also affects the
total analysis time. The exact same issue applies to SHA3
with d ≥ 3, causing the Keccak-F function to be inlined, and
consequently the construction to exceed ttimeout.

Twofish is a Feistel cipher with a complex round func-
tion. The Feistel signature used throughout the analysis sup-
ports a round function consisting of up to 8 consecutive
arithmetic/logical operations, whereas the complexity of the
Twofish round function goes beyond that. Unfortunately,
extending the signature beyond 8 consecutive operations
severely impacts the running time of our implementation.

False positives The AES key schedule is identified as a
Feistel network. This is due to the fact that its structure can
actually be formulated as one, i.e. each round Li+1 = Ri, and
Ri+1 = Li⊕F(Ri,Ki), where i denotes the round number for
some function F . This is a perfect example to illustrate that
the taxonomical tree of cryptographic primitives is not neces-
sarily clear-cut. Rather, a degree of ‘fuzziness‘ exists among
different classes.

RC4 and ChaCha, both stream ciphers, are identified as
sequential block permutations. Inspection reveals that both
implementations keep an internal state of some size b. The
state is used directly as the cipher’s keystream. After the inter-
nal state is fully consumed, a new internal state is generated.
As such, the structure can be viewed as a special case of a
block cipher with a block size of b bytes.

12

Algorithm Type Description Reverse- Cryptanalysis Original Target signature
engineered source

CRYPTO1 Stream Cipher used in the Mifare Classic family of RFID tags. [32, 54] [20, 25, 32, 33, 49] 6 ✓ (N)LFSR1

HITAG2 Stream Cipher used in vehicle immobilizers. [72] [22, 59, 60, 62, 68] 7 ✓ (N)LFSR1

A5-1 Stream Provides over-the-air privacy for communication in GSM. [16] [6, 10, 48] 8 ✓ (N)LFSR1

A5-2 Stream GSM export cipher. [16] [34] 8 ✓ (N)LFSR1

A5-GMR Stream Cipher used in GMR, a standard for satellite phones. Heavily inspired by A5/2. [26] [26, 27] 9 ✓ (N)LFSR1

RED PIKE Block Classified UK government encryption algorithm. [23] - 10 ✗ Feistel cipher
COMP128 Hash Family of algorithms used for session key and MAC generation in GSM. [15, 63] [17] 11 ✓ Block permutation
KASUMI Block Feistel cipher used for the confidentiality and integrity of 3G. - [8, 28, 41] 12 ✓ Feistel cipher
MULTI2 Block A block cipher used for broadcast scrambling in Japan. - [2] 13 ✓ Feistel cipher
DST40 Block Digital Signature Transponder cipher, often found in vehicle immobilizers. [14] [14] 14 ✓ (N)LFSR
KEELOQ Block Block cipher used in remote keyless entry systems and home automation. [51] [7, 12, 21, 29] 15,16 ✓ (N)LFSR

1 Positive match for d ≥ 4

Table 3: Analysis result for proprietary samples

Algorithm
signature CWM0576 CWX0470 M340 VW

size 1,717 KB 1,344 KB 4,133 KB 512 KB
analysis time 88m14s 45m53s 83m11s 11m45s

DES
feistel ✓ Match ✓ Match N/A N/A
AES
aes ✓ Match N/A N/A N/A
bl.perm. ✓ Match N/A N/A N/A
MD5
md5 ✓ Match ✓ Match ✓ Match N/A
bl.perm. ✓ Match ✓ Match ✓ Match N/A
MEGAMOS
(n)lfsr N/A N/A N/A ✗ No match

Table 4: Analysis result for various firmware images

Finally, CAST, ARIA and SM4 are all misidentified as
AES. This is due to the fact that for all three primitives, either
the algorithm itself, or its key schedule, is implemented by
means of lookup tables in a fashion similar to that of AES.
Ultimately, the transform completely depends on these tables,
rather than information flows.

11.3 Performance on proprietary algorithms
Next, we turn our attention to various proprietary algorithms.
Most algorithms were originally confidential, but have been
leaked to the public or reverse engineered. As such, source
code for all samples is publicly available. Due to uncertainty
over the legality of redistribution, we point to the original
sources for reference. Table 3 depicts the analysis results
these algorithms. A description, the analysis result, and other
relevant information is condensed into a single table due to

6
https://github.com/nfc-tools/mfcuk/blob/master/src/crypto1.c

7
http://cryptolib.com/ciphers/hitag2/

8
https://cryptome.org/gsm-a512.htm

9
https://github.com/marcelmaatkamp/gnuradio-osmocom-gmr/blob/master/src/l1/a5.c

10
https://en.wikipedia.org/wiki/Red_Pike_(cipher)

11
https://github.com/osmocom/libosmocore/blob/master/src/gsm/comp128.c

12
https://github.com/osmocom/libosmocore/blob/master/src/gsm/kasumi.c

13
https://github.com/OP-TEE/optee_os/blob/master/core/lib/libtomcrypt/src/ciphers/multi2.c

14
https://github.com/jok40/dst40/blob/HEAD/software/dst40test/dst40.c

15
https://github.com/hadipourh/KeeLoq

16
http://cryptolib.com/ciphers/keeloq/

space restrictions. All signatures target a generic class of
primitives and none were pre-constructed to fit a particular
sample. All algorithms are successfully identified, with the
exception of Red Pike. Similar to RC2 from Section 11.2.1,
Red Pike uses addition instead of exclusive-or, and is therefore
not identified as a Feistel cipher.

Finally, the test set of representative real-world firmwares
consists of images for the Emerson ControlWave Micro RTU,
Emerson ControlWave XFC flow computer, Schneider Elec-
tric M340 PLC and Volkswagen IPC. The size, nature and
complexity of these images ensure test-set realism. Table 4
depicts the analysis result for all the firmwares. To the best of
our knowledge, the table covers all cryptographic algorithms
present in the sample set of firmware images. The images are
‘flat’ binaries and hence symbol names are absent. The results
show that all the cryptographic primitives were identified,
except for the Megamos cipher. Verdult et al. [69] revealed
that the Megamos cipher contains an NLFSR, and thus, the
analysis should point this out. Further examination reveals
that the non-linear feedback function is implemented as a
subroutine, and the shift register is updated depending on its
return value via an if-statement. This is a direct violation of
the implicit flow limitation inherent to DFG-based approaches
discussed in Section 2.

12 Conclusions

Despite the ubiquitous availability of royalty-free, publicly
documented, and peer-reviewed cryptographic primitives
and implementations, proprietary alternatives have persisted
across many industry verticals, especially in embedded sys-
tems. Due to the undocumented and proprietary nature of
said primitives, subjecting them to security analysis often re-
quires locating and classifying them in often very large binary
images, which is a time-consuming, labor-intensive effort.

In order to overcome this obstacle in an automated fashion,
a solution should have the capability of identifying as-of-yet
unknown cryptographic algorithms, support large, real-world
firmware binaries, and not depend on peripheral emulation.

13

https://github.com/nfc-tools/mfcuk/blob/master/src/crypto1.c
http://cryptolib.com/ciphers/hitag2/
https://cryptome.org/gsm-a512.htm
https://github.com/marcelmaatkamp/gnuradio-osmocom-gmr/blob/master/src/l1/a5.c
https://en.wikipedia.org/wiki/Red_Pike_(cipher)
https://github.com/osmocom/libosmocore/blob/master/src/gsm/comp128.c
https://github.com/osmocom/libosmocore/blob/master/src/gsm/kasumi.c
https://github.com/OP-TEE/optee_os/blob/master/core/lib/libtomcrypt/src/ciphers/multi2.c
https://github.com/jok40/dst40/blob/HEAD/software/dst40test/dst40.c
https://github.com/hadipourh/KeeLoq
http://cryptolib.com/ciphers/keeloq/

As of yet, no prior work exists that satisfies these criteria.
Our novel approach combines DFG isomorphism with sym-

bolic execution, and introduces a specialized DSL in order to
enable identification of unknown proprietary cryptographic
algorithms falling within well-defined taxonomical classes.
The approach is the first of its kind, is architecture and plat-
form agnostic, and performs well in terms of both accuracy
and running time on real-world binary firmware images.

Future work DFGs do not allow for the expression of code
flow information. Potentially valuable indicators, such as
whether two nodes originate from the same execution ad-
dress, hinting to a round function, are therefore lost. We leave
the incorporation of code flow information for future work.

13 Acknowledgements

This work was funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy - EXC 2092 CaSa - 390781972.

References

[1] Ross Anderson, Mike Bond, Jolyon Clulow, and Sergei
Skorobogatov. Cryptographic processors-a survey. Pro-
ceedings of the IEEE, 94(2):357–369, 2006.

[2] Jean-Philippe Aumasson, Jorge Nakahara, and Pouyan
Sepehrdad. Cryptanalysis of the isdb scrambling al-
gorithm (multi2). In International Workshop on Fast
Software Encryption, pages 296–307. Springer, 2009.

[3] Luigi Auriemma. Signsrch tool. tool for searching
signatures inside files, 2013.

[4] Roberto Avanzi. A salad of block ciphers. IACR Cryp-
tology ePrint Archive, 2016:1171, 2016.

[5] BBC News. Car key immobiliser hack revelations
blocked by uk court. 2013. https://www.bbc.com/
news/technology-23487928.

[6] Eli Biham and Orr Dunkelman. Cryptanalysis of the
a5/1 gsm stream cipher. In International Conference on
Cryptology in India, pages 43–51. Springer, 2000.

[7] Eli Biham, Orr Dunkelman, Sebastiaan Indesteege,
Nathan Keller, and Bart Preneel. How to steal cars
a practical attack on keeloq. In EUROCRYPT, pages
1–18, 2008.

[8] Eli Biham, Orr Dunkelman, and Nathan Keller. A
related-key rectangle attack on the full kasumi. In In-
ternational Conference on the Theory and Application
of Cryptology and Information Security, pages 443–461.
Springer, 2005.

[9] Fabrizio Biondi, Sébastien Josse, Axel Legay, and
Thomas Sirvent. Effectiveness of synthesis in con-
colic deobfuscation. Computers & Security, 70:500–
515, 2017.

[10] Alex Biryukov, Adi Shamir, and David Wagner. Real
time cryptanalysis of a5/1 on a pc. In International Work-
shop on Fast Software Encryption, pages 1–18. Springer,
2000.

[11] Tim Blazytko, Moritz Contag, Cornelius Aschermann,
and Thorsten Holz. Syntia: Synthesizing the semantics
of obfuscated code. In Proceedings of the 26th USENIX
Security Symposium, pages 643–659, 2017.

[12] Andrey Bogdanov. Cryptanalysis of the keeloq block
cipher. IACR Cryptology ePrint Archive, 2007:55, 2007.

[13] Wouter Bokslag. An assessment of ecm authentication
in modern vehicles.

[14] Steve Bono, Matthew Green, Adam Stubblefield, Ari
Juels, Aviel D Rubin, and Michael Szydlo. Security
analysis of a cryptographically-enabled rfid device. In
USENIX Security Symposium, volume 31, pages 1–16,
2005.

[15] Marc Briceno, Ian Goldberg, and David Wagner. An
implementation of comp128. 1998. http://www.iol.
ie/kooltek/a3a8.txt.

[16] Marc Briceno, Ian Goldberg, and David Wagner. A peda-
gogical implementation of the gsm a5/1 and a5/2 “voice
privacy” encryption algorithms. Originally published
at http://www. scard. org, mirror at http://cryptome.
org/gsm-a512. htm, 26, 1999.

[17] Billy Brumley. A3/a8 & comp128. T-79.514 Special
Course on Cryptology, pages 1–18, 2004.

[18] Juan Caballero, Pongsin Poosankam, Christian Kreibich,
and Dawn Song. Dispatcher: Enabling active botnet infil-
tration using automatic protocol reverse-engineering. In
Proceedings of the 16th ACM conference on Computer
and communications security, pages 621–634, 2009.

[19] Joan Calvet, José M Fernandez, and Jean-Yves Marion.
Aligot: cryptographic function identification in obfus-
cated binary programs. In Proceedings of the 2012 ACM
conference on Computer and communications security,
pages 169–182, 2012.

[20] Nicolas T Courtois. The dark side of security by obscu-
rity and cloning mifare classic rail and building passes,
anywhere, anytime. 2009.

[21] Nicolas T Courtois, Gregory V Bard, and David Wagner.
Algebraic and slide attacks on keeloq. In International

14

https://www.bbc.com/news/technology-23487928
https://www.bbc.com/news/technology-23487928
http://www.iol.ie/kooltek/a3a8.txt
http://www.iol.ie/kooltek/a3a8.txt

Workshop on Fast Software Encryption, pages 97–115.
Springer, 2008.

[22] Nicolas T Courtois, Sean O’Neil, and Jean-Jacques
Quisquater. Practical algebraic attacks on the hitag2
stream cipher. In International Conference on Informa-
tion Security, pages 167–176. Springer, 2009.

[23] Gmane Cypherpunk mailing list. Red pike cipher.
2004. http://permalink.gmane.org/gmane.comp.
security.cypherpunks/3680.

[24] Robin David. Formal Approaches for Automatic Deob-
fuscation and Reverse-engineering of Protected Codes.
PhD thesis, 2017.

[25] Gerhard de Koning Gans, Jaap-Henk Hoepman, and
Flavio D Garcia. A practical attack on the mifare classic.
In International Conference on Smart Card Research
and Advanced Applications, pages 267–282. Springer,
2008.

[26] Benedikt Driessen, Ralf Hund, Carsten Willems,
Christof Paar, and Thorsten Holz. Don’t trust satel-
lite phones: A security analysis of two satphone stan-
dards. In 2012 IEEE Symposium on Security and Pri-
vacy, pages 128–142. IEEE, 2012.

[27] Benedikt Driessen, Ralf Hund, Carsten Willems,
Christof Paar, and Thorsten Holz. An experimental
security analysis of two satphone standards. ACM Trans-
actions on Information and System Security (TISSEC),
16(3):1–30, 2013.

[28] Orr Dunkelman, Nathan Keller, and Adi Shamir. A
practical-time related-key attack on the kasumi cryp-
tosystem used in gsm and 3g telephony. In Annual
cryptology conference, pages 393–410. Springer, 2010.

[29] Thomas Eisenbarth, Timo Kasper, Amir Moradi,
Christof Paar, Mahmoud Salmasizadeh, and Mohammad
T Manzuri Shalmani. On the power of power analysis
in the real world: A complete break of the keeloq code
hopping scheme. In Annual International Cryptology
Conference, pages 203–220. Springer, 2008.

[30] ETSI. 300 392-7 v3. 3.1 (2012-07) european stan-
dard (telecommunication series) terrestrial trunked
radio (tetra); voice plus data (v+ d); part 7: Security.
European Telecommunications Standards Institute
(ETSI), 2012. https://www.etsi.org/deliver/
etsi_en/300300_300399/30039207/03.03.01_60/
en_30039207v030301p.pdf.

[31] Peter Garba and Matteo Favaro. Saturn-software deob-
fuscation framework based on llvm. In Proceedings of
the 3rd ACM Workshop on Software Protection, pages
27–38, 2019.

[32] Flavio D Garcia, Gerhard de Koning Gans, Ruben Mui-
jrers, Peter Van Rossum, Roel Verdult, Ronny Wichers
Schreur, and Bart Jacobs. Dismantling mifare classic. In
European symposium on research in computer security,
pages 97–114. Springer, 2008.

[33] Flavio D Garcia, Peter Van Rossum, Roel Verdult, and
Ronny Wichers Schreur. Wirelessly pickpocketing a
mifare classic card. In 2009 30th IEEE Symposium on
Security and Privacy, pages 3–15. IEEE, 2009.

[34] Ian Goldberg, David Wagner, and Lucky Green. The
real-time cryptanalysis of a5/2. Rump session of Crypto,
99:16, 1999.

[35] Felix Gröbert, Carsten Willems, and Thorsten Holz. Au-
tomated identification of cryptographic primitives in
binary programs. In Recent Advances in Intrusion De-
tection, pages 41–60, 2011.

[36] Ilfak Guilfanov. Findcrypt2, february 2006. http://
www.hexblog.com/?p=28.

[37] Peter Gutmann. Cryptographic security architecture:
design and verification. Springer Science & Business
Media, 2003. pages 293.

[38] Gregory D Hill and Xavier JA Bellekens. Deep learn-
ing based cryptographic primitive classification. arXiv
preprint arXiv:1709.08385, 2017.

[39] Liam Timothy Keliher. Linear cryptanalysis of
substitution-permutation networks. Queen’s University,
2003.

[40] Auguste Kerckhoffs. La cryptographie militaire. Jour-
nal des Sciences Militaires, IX:5–83, 161–191, 1883.

[41] Jongsung Kim, Seokhie Hong, Bart Preneel, Eli Bi-
ham, Orr Dunkelman, and Nathan Keller. Related-key
boomerang and rectangle attacks. IACR Cryptology
ePrint Archive, 2010:19, 2010.

[42] Philippe Lagadec. Balbuzard, 2014. http://www.
decalage.info/en/python/balbuzard.

[43] Pierre Lestringant, Frédéric Guihéry, and Pierre-Alain
Fouque. Automated identification of cryptographic
primitives in binary code with data flow graph isomor-
phism. In Proceedings of the 10th ACM Symposium on
Information, Computer and Communications Security,
pages 203–214. ACM, 2015.

[44] Literatecode. Draft crypto analyzer (draca). http://
www.literatecode.com/draca, May 2013.

[45] Loki. Snd crypto scanner (olly/immunity plu-
gin), 2008. https://web.archive.org/web/
20080321134709/http://tuts4you.com/forum/
index.php?showtopic=15447.

15

http://permalink.gmane.org/gmane.comp.security.cypherpunks/3680
http://permalink.gmane.org/gmane.comp.security.cypherpunks/3680
https://www.etsi.org/deliver/etsi_en/300300_300399/30039207/03.03.01_60/en_30039207v030301p.pdf
https://www.etsi.org/deliver/etsi_en/300300_300399/30039207/03.03.01_60/en_30039207v030301p.pdf
https://www.etsi.org/deliver/etsi_en/300300_300399/30039207/03.03.01_60/en_30039207v030301p.pdf
http://www.hexblog.com/?p=28
http://www.hexblog.com/?p=28
http://www.decalage.info/en/python/balbuzard
http://www.decalage.info/en/python/balbuzard
http://www.literatecode.com/draca
http://www.literatecode.com/draca
https://web.archive.org/web/20080321134709/http://tuts4you.com/forum/index.php?showtopic=15447
https://web.archive.org/web/20080321134709/http://tuts4you.com/forum/index.php?showtopic=15447
https://web.archive.org/web/20080321134709/http://tuts4you.com/forum/index.php?showtopic=15447

[46] Charalampos Manifavas, George Hatzivasilis, Konstanti-
nos Fysarakis, and Yannis Papaefstathiou. A survey of
lightweight stream ciphers for embedded systems. Se-
curity and Communication Networks, 9(10):1226–1246,
2016.

[47] Felix Matenaar, Andre Wichmann, Felix Leder, and El-
mar Gerhards-Padilla. Cis: The crypto intelligence sys-
tem for automatic detection and localization of cryp-
tographic functions in current malware. In 2012 7th
International Conference on Malicious and Unwanted
Software, pages 46–53. IEEE, 2012.

[48] Alexander Maximov, Thomas Johansson, and Steve Bab-
bage. An improved correlation attack on a5/1. In Inter-
national Workshop on Selected Areas in Cryptography,
pages 1–18. Springer, 2004.

[49] Carlo Meijer and Roel Verdult. Ciphertext-only crypt-
analysis on hardened mifare classic cards. In Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pages 18–30, 2015.

[50] Alfred J Menezes, Jonathan Katz, Paul C Van Oorschot,
and Scott A Vanstone. Handbook of applied cryptogra-
phy. CRC press, 1996.

[51] Microchip. Hopping code decoder us-
ing a PIC16C56, AN642. 1998. https:
//web.archive.org/web/20080916043223/http:
//www.keeloq.boom.ru/decryption.pdf.

[52] Mr Paradox, AT4RE. Hash & crypto detec-
tor (hcd), 2009. https://web.archive.org/
web/20091203010936/http://www.at4re.com/
download.php?view.8.

[53] James Newsome and Dawn Xiaodong Song. Dynamic
taint analysis for automatic detection, analysis, and sig-
naturegeneration of exploits on commodity software. In
NDSS, volume 5, pages 3–4. Citeseer, 2005.

[54] Karsten Nohl, David Evans, Starbug Starbug, and Hen-
ryk Plötz. Reverse-engineering a cryptographic rfid tag.
In USENIX security symposium, volume 28, 2008.

[55] Karsten Nohl, Erik Tews, and Ralf-Philipp Weinmann.
Cryptanalysis of the dect standard cipher. In Interna-
tional Workshop on Fast Software Encryption, pages
1–18. Springer, 2010.

[56] Daniel Plohmann and Alexander Hanel. simplifire. idas-
cope, 2012.

[57] Jonathan Salwan, Sébastien Bardin, and Marie-Laure
Potet. Symbolic deobfuscation: From virtualized code
back to the original. In International Conference on
Detection of Intrusions and Malware, and Vulnerability
Assessment, pages 372–392. Springer, 2018.

[58] snaker, Maxx. Kanal - krypto analyzer for peid,
2015. http://www.dcs.fmph.uniba.sk/zri/6.
prednaska/tools/PEiD/plugins/kanal.htm.

[59] Mate Soos. Enhanced gaussian elimination in dpll-based
sat solvers. In POS@ SAT, pages 2–14, 2010.

[60] Petr Štembera and Martin Novotny. Breaking hitag2
with reconfigurable hardware. In 2011 14th Euromicro
Conference on Digital System Design, pages 558–563.
IEEE, 2011.

[61] Daehyun Strobel, Benedikt Driessen, Timo Kasper, Gre-
gor Leander, David Oswald, Falk Schellenberg, and
Christof Paar. Fuming acid and cryptanalysis: Handy
tools for overcoming a digital locking and access con-
trol system. In Annual Cryptology Conference, pages
147–164. Springer, 2013.

[62] Siwei Sun, Lei Hu, Yonghong Xie, and Xiangyong Zeng.
Cube cryptanalysis of hitag2 stream cipher. In Interna-
tional Conference on Cryptology and Network Security,
pages 15–25. Springer, 2011.

[63] Jos Tamas. Secrets of the sim. 2013.
http://www.hackingprojects.net/2013/04/
secrets-of-sim.html.

[64] Ramtine Tofighi-Shirazi, Irina-Mariuca Asavoae,
Philippe Elbaz-Vincent, and Thanh-Ha Le. Defeating
opaque predicates statically through machine learning
and binary analysis. In Proceedings of the 3rd ACM
Workshop on Software Protection, pages 3–14, 2019.

[65] Ramtine Tofighi-Shirazi, Maria Christofi, Philippe
Elbaz-Vincent, and Thanh-Ha Le. Dose: Deobfusca-
tion based on semantic equivalence. In Proceedings
of the 8th Software Security, Protection, and Reverse
Engineering Workshop, pages 1–12, 2018.

[66] Julian R Ullmann. An algorithm for subgraph isomor-
phism. Journal of the ACM (JACM), 23(1):31–42, 1976.

[67] Roel Verdult. The (in) security of proprietary cryptog-
raphy. PhD thesis, [Sl: sn], 2015.

[68] Roel Verdult, Flavio D Garcia, and Josep Balasch. Gone
in 360 seconds: Hijacking with hitag2. In Presented
as part of the 21st USENIX Security Symposium, pages
237–252, 2012.

[69] Roel Verdult, Flavio D Garcia, and Baris Ege. Disman-
tling megamos crypto: Wirelessly lockpicking a vehicle
immobilizer. In Supplement to the Proceedings of 22nd
USENIX Security Symposium, pages 703–718, 2015.

[70] Aram Verstegen, Peter Schwabe, Iskander Kuijer, and
Roel Verdult. Press to unlock: Analysis, reverse-
engineering and implementation of hitag2-based remote
keyless entry systems. 2018.

16

https://web.archive.org/web/20080916043223/http://www.keeloq.boom.ru/decryption.pdf
https://web.archive.org/web/20080916043223/http://www.keeloq.boom.ru/decryption.pdf
https://web.archive.org/web/20080916043223/http://www.keeloq.boom.ru/decryption.pdf
https://web.archive.org/web/20091203010936/http://www.at4re.com/download.php?view.8
https://web.archive.org/web/20091203010936/http://www.at4re.com/download.php?view.8
https://web.archive.org/web/20091203010936/http://www.at4re.com/download.php?view.8
http://www.dcs.fmph.uniba.sk/zri/6.prednaska/tools/PEiD/plugins/kanal.htm
http://www.dcs.fmph.uniba.sk/zri/6.prednaska/tools/PEiD/plugins/kanal.htm
http://www.hackingprojects.net/2013/04/secrets-of-sim.html
http://www.hackingprojects.net/2013/04/secrets-of-sim.html

[71] Michael Weiner, Maurice Massar, Erik Tews, Dennis
Giese, and Wolfgang Wieser. Security analysis of a
widely deployed locking system. In Proceedings of the
2013 ACM SIGSAC conference on Computer & commu-
nications security, pages 929–940, 2013.

[72] I.C. Wiener. Hitag2 specification, reference implementa-
tion and test vectors, 2007. http://cryptolib.com/
ciphers/hitag2.

[73] Lennert Wouters, Eduard Marin, Tomer Ashur, Benedikt
Gierlichs, and Bart Preneel. Fast, furious and insecure:
Passive keyless entry and start systems in modern super-
cars. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2019(3):66–85, May 2019.

[74] x3chun. Crypto searcher, 2004. https:
//web.archive.org/web/20050211180634/http:
//x3chun.wo.to/.

[75] Dongpeng Xu, Jiang Ming, Yu Fu, and Dinghao Wu.
Vmhunt: A verifiable approach to partially-virtualized
binary code simplification. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 442–458, 2018.

[76] Dongpeng Xu, Jiang Ming, and Dinghao Wu. Crypto-
graphic function detection in obfuscated binaries via
bit-precise symbolic loop mapping. In 2017 IEEE Sym-
posium on Security and Privacy (SP), pages 921–937.
IEEE, 2017.

[77] Babak Yadegari. Automatic deobfuscation and reverse
engineering of obfuscated code. 2016.

A Path Oracle Policy – an example

1 MOV R4, #0 ; set R4 to 0
2 _begin:
3 CMP R4, R8 ; compare R4 to R8
4 BGE _end ; break loop if R4 >= R8
5 LDRB R5, [R4, R7] ; load R7[R4] into R5
6 BL <keystream_generator> ; call generator
7 EOR R5, R0, R5 ; XOR output byte with R5
8 STRB R5, [R4, R6] ; store result at R6[R4]
9 ADD R4, R4, #1 ; increment R4

10 B _begin ; continue at beginning
11 _end:

Figure 9: Example stream cipher ARM assembly snippet

Suppose the graph construction is run on the example ARM
assembly snippet given in Figure 9. We start with S =
(G,P,B), with P = true. Line 4 contains conditional instruc-
tion Branch Greater/Equal (BGE). During the first visit of this
instruction, we have i = 0, P = true, and c = (R8≤ 0). Since
the value of R8 is unknown, c is underdetermined. The path or-
acle policy prescribes TAKE_BOTH. Thus, we get P= (R8≤ 0),
B4[0] = true, and S ′ = (G′,P′,B′), with P′ = (R8 > 0) and

B′4[0] = false. For state S , the instruction is evaluated, and
thus the construction continues on line 11, and hence termi-
nates. For S ′, the instruction is skipped, thereby visiting the
body of the loop. Eventually, S ′ revisits the instruction at line
4. This time we have c = (R8≤ 1), i = 1, P′ = (R8> 0) and
B′4[0] = false. Since P′∧ c is underdetermined, we query the
path oracle, and obtain TAKE_FALSE, causing another visit
of the loop’s body. Finally, at i = n, we get c = R8 ≤ n and
P′=(R8> n−1). We obtain TAKE_TRUE from the path oracle.
Thus, the construction terminates. We obtain two graphs; one
corresponding to predicate R8≤ 0, and another corresponding
to R8= n. The latter describes n iterations of the algorithm,
exactly conforming to our goal. The former describes zero
iterations, and thus, contains a negligible amount of nodes.
Therefore, we accept the small amount of overhead this graph
induces during later stages of the analysis.

B Miscellaneous rewrite rules

Besides the rewrite rules already described, we apply ad-
ditional miscellaneous rules. They were conceived through
continuous application of our framework to code fragments
from various sources, and subsequent stumbling upon varia-
tions between the processed result generated from supposedly
semantically equivalent code. We highlight these rules below.
Different compilers have different optimization strategies. As
such, some finetuning of these rules may be necessary when
analyzing code produced by a vastly different compiler than
those already accounted for.

There are various means of doubling the value of an arbi-
trary expression x. For example, MULT(x,2), but also ADD(x,x)
and x<<1. We represent all variants by MULT(x,2).

R1

+

R1 2

MULT

Furthermore, suppose we have an arbitrary expression x, and
constants c1 and c2. Then, the results of AND(x >> c1,c2) and
AND(ROTATE(x,c1),c2), are equivalent if c2 < 232−c1 and c1 <
32, for a 32-bit architecture. This equivalence is sometimes
exploited by compilers. In such a scenario, we represent both
variants by AND(x >> c1,c2).

R4

ROT

8

AND

0xff

R4

>>

8

AND

0xff

Lastly, we distribute multiplications over additions.

R3

+

4

MULT

2

R3

MULT

2

+

8

17

http://cryptolib.com/ciphers/hitag2
http://cryptolib.com/ciphers/hitag2
https://web.archive.org/web/20050211180634/http://x3chun.wo.to/
https://web.archive.org/web/20050211180634/http://x3chun.wo.to/
https://web.archive.org/web/20050211180634/http://x3chun.wo.to/

C Sample signature definition

Given below is a snippet taken from the (N)LFSR signature
bundled with our implementation of the framework.

IDENTIFIER (Non-)Linear feedback shift register

VARIANT A
...

VARIANT C
TRANSIENT layer0:OR(AND(1,OPAQUE),OPAQUE<<1);
TRANSIENT layer1:OR(AND(1,OPAQUE),layer0<<1);
TRANSIENT layer2:OR(AND(1,OPAQUE),layer1<<1);
layer3:OR(AND(1,OPAQUE),layer2<<1);

An (N)LFSR can be implemented in software by various
means. For e.g., rather than shifting to the left, the register
may shift to the right instead, placing the new bit generated by
the feedback function at the most significant position. Further-
more, a left shift of one bit is equivalent to a multiplication
with 2, or an addition with itself. Also, the newly generated
bit is normally appended to the register through a bitwise
or. However, directly after a shift operation is performed, the
vacant bit is always 0. Hence, using an exclusive-or, or even
an addition instead is equivalent. Due to these naturally occur-
ring variations, several variants of the signature are defined.
In this example, we take a closer look at variant C, which is
the most typical.

As discussed in Section 11, we take n = 4. Hence, the
signature should capture 4 iterations of an (N)LFSR. Each
iteration, the register shifts one position to the left, and a
new bit is generated by an unknown feedback function L and
placed at position 0 by means of a bitwise or. Each round
refers to the previous through its label, i.e. layer[0-3]. The
initial state is the result of an unknown initialization function,
hence represented by OPAQUE. L is also unknown, and thus
represented by OPAQUE. However, it is known to produce a
single output bit. Therefore, it can be assumed that the single
bit is obtained through a bitwise-and with 1, before being
inserted into the register by means of a bitwise or. Finally, all
iterations except the last form intermediate steps towards the
register’s final value. By specifying the TRANSIENT keyword,
we allow the broker to translate the intermediate steps into a
more optimized DFG representation.

D Implementation

An implementation of the framework described in this paper is
available for download17. It comes in the form of a plug-in for
the popular IDA disassembler. At the time of writing, support
is implemented for 32 bit ARM binaries. The architecture
is modular, and expanding support to other architectures is
relatively straightforward. Figure 10 shows a sample analysis
report, and a DFG plot generated by our implementation.

17https://github.com/wheres-crypto/wheres-crypto

(a) Sample analysis report (b) DFG plot generated from assembly, highlighting an LFSR

Figure 10: An impression of the implementation of our framework

18

https://github.com/wheres-crypto/wheres-crypto

	Introduction
	Scope and limitations
	Prior work
	Solution overview
	Data Flow Graph construction
	Advantages

	Symbolic execution
	Path Oracle
	Path Oracle Policy

	Purging process
	Signature Expression
	Subgraph isomorphism
	Signatures
	AES, MD5, XTEA, SHA1
	Feistel cipher
	(Non-)Linear feedback shift register
	Sequential Block Permutation

	Experimental evaluation
	Comparison with Lestringant et al.
	Performance on OpenWRT binaries
	Discussion of invalid results

	Performance on proprietary algorithms

	Conclusions
	Acknowledgements
	Path Oracle Policy – an example
	Miscellaneous rewrite rules
	Sample signature definition
	Implementation

