1
Handout for part 2:

Termination: non-termination

2
Termination

Definition: there is no infinite reduction sequence s; =g s3 >R S3 =R ...

Put differently:

e a term s is terminating if every reduction sequence starting in s is finite; i.e., there is no infinite
reduction sequence s - t1 >R ts =R ...

e a HTRS is terminating if all its terms are

Definition: a HTRS is non-terminating if it has a non-terminating term.

Example:
a — a
a — b

This system is clearly non-terminating, as there is an infinite reduction sequence a =g ¢ > ¢ =R

It is also weakly normalising; that is, for every term there exists a reduction that ends in a normal
form. This property is also sometimes studied, but is not the question we consider here.

3
Proving non-termination

Some ways to prove non-termination:

e Obvious self-loop: s =% s
f(x,F) — £(F-0,\y.x)

In this system, we have f(z, A\y.z) =g £((Ay.z) -0, Ay.x) =g f(z, A\y.z).

e Instantiated self-loop: s —7, s

f(r,y) — gly,s(x))
= f

(z,5(y))

In this system, we have f(z,s(y)) —r g(s(v),s(x)) =g £(y,s(s(x))) = f(z,s(v))[xr = y,y =

s(z)].
e General self-loop: s =% C[s7]
£, F) = s(E(s(), Mpe(F,y,)

In this system, we have f(z, F') —g Clf(z, F')y] where C[] = s(0) and v = [z = s(z), F :=
Ay-g(F,y, o).

e Specialised methods: note the shape of an infinite reduction

f(s(0), F) — £(0,\y.s(F'-y))
£(0,F) — £(F-s(0),F)

In this system, we have £(0, Az.s"(z)) —% £(s"T1(0), \z.s™(z)) —% £(0, Az.s?"T(z))

4
Finding self-loops

How would you automatically detect that the following rule admits a self-loop?
£(0,F) - s(2(s(2), \yg(F,y, 1))

Idea: for a rule £ — C|r| show that ¢{vyé = rvy

If this is the case, then {yd —r Cvd[ryd] = D[(¢v9)d]

Note: this is a first-order idea!

The primary higher-order difficulty is extending semi-unification techniques.

But instead of extending first-order non-termination techniques, let us focus on particularly higher-
order approach. Recall the first lecture. Without types, we often run into nasty counterexamples for
termination. But even with types, we can often reproduce such examples!

5
Non-termination of the untyped A-calculus
Recall:

(Az.s) -t =g slx :=t]
Self-loop:

o Let w:=Mz.x-x.

e Then: w-w —gw - w!

As a (simply-typed) HTRS:

A @ [term = term] = term
@ : [term X term] = term

QNF),x) — F-x
Self-loop: Let w := A(Az.Q(z, x)).

Q(w,w) =r (Az.Q(z,2)) - w =5 Qw,w)

6
The ww self-loop

Q(A(F),)= F -z
———— N~ —~—
term=-term term

term

The key danger is that a term of higher type, F :: term = term, is hidden inside a strictly smaller type,
Lambda(...) :: term. The rule takes the function out of the constructor, and then applies it.

7

Finding ww elsewhere

A different example:

f @ A=B=C=A
g = A=B=A=C

h & C=C
gf(___F),z)—=h(F-zvy)
A=7=C A

w=f(A\zy.g(z, z,x))

g(w,z,w) =g higw, 2,w))

8
Not examples

A (term = term) = term
@ :: term = term = term
c : term= term

Q(A(F),z) — F - c(x)

A (a=b)=b
Q@ @ b=a=bD

Q(A(F),x) = F-x

9

The general shape of ww occurrences

e Reduction: C[D[F],z] =* E[F - s1---x--- k]

Variables: F:o1=> ... 0, = ... o0, =7and z: 0;

e C[D[F],z]: 7 and D[F]: o;

I and x do not appear at other positions in C or D

Then let w := D[Azy ... 25.Cla;, 4]

e We have: Clw,w] =" E[(Az1...25.Clz;, 24]) - w | =5 E[Clw,w] |

10
Exercises
Construct a (general) self-loop for the following HTRSs:

f @ o=o0=o0
g i 0=0
h = (0=0)=o0

£(y,h(F)) — F-g(y)

c=a
a=c
(a=b)=c
a=c=b

k(f(h(F)),&(y) = F -y

w B0 Hh

11
Bonus exercises
Construct a (general) self-loop for the following HTRSs:

f @ a=(a=a)
g = (a=a)=a

f(g(x)) — =

(b=a=b=a)=c
b=c

c=b
c=b=b=a=a

k(g(r),y,h(£(F)),2) = F"-h(g(y)) -z -«

~ B0

12
Nasty example
map(£,[]) —]
map(F, cons(z,y)) —
Not terminating if:
] = o

cons = (0=0)=o0=o0
map = ((0=0)=0=0)=0=0

Proof: choose w := cons(Azo.map(AlYo=o-A0-Yo=o * Lo, Lo)). Then:

map(AYo=o-AZo-Yomo * W, W)
— cons((Ay.Az.y - w) (Ar.map(Ay.Az.y - z,x)) , map(...))
= cons(Az.(Azmap(Ay. A2y -z, 2)) - w,map(...))
—p cons(Az.map(Ay. A2y - w,w) ,map(...))

(But is terminating if cons :: (a = a) = 0= 0.)

The actual names of the base types matter! And there are indeed termination methods that exploit this.

