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Definition: a HTRS is non-terminating if it has a non-terminating
term.

Example:
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Finding self-loops
Question: how to automatically detect a self-loop?
£, F) = s(£(s(x), \v.g(F,y,x)))

Idea: for a rule ¢ — C[r] show that {v6 = ry

Note: this is a first-order idea!

The primary higher-order difficulty is extending semi-unification
techniques.
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Non-termination of the untyped A-calculus

Recall:
(Ax.s) -t =5 s[x :=1]

Self-loop:
o letw:=Axux-x
e Then:w-w =g w-w!

As a (simply-typed) HTRS:

L : [term = term] = term
©@ : [term x term] = term
O(L(F),x) — F-x
Self-loop: Let w := L(Ax.Q(x, x)).

O(w,w) =g (Ar.0O(x,x)) - w =45 O(w,w)



oL( F ), x )—=F-x



The ww self-loop

term=-term



The ww self-loop

term=-term

term



The ww self-loop

O(L( F ), x )— F-x
N——— =~
term=-term term

term



The ww self-loop

O(L( F ), x )—F-x
term=-term term

term



Finding ww elsewhere

A different example:

f &2 (A=B=C)=A
g & A=B=A=C
h =« C=C



Finding ww elsewhere

A different example:

f 2 (A=B=C)=A
g » A=B=A=C
h = C=C

g(f(  F )y, z )—=h(F-z-y)



Finding ww elsewhere

A different example:

f &2 (A=B=C)=A
g & A=B=A=C
h =« C=C

g(f(__F )y, z )—=h(F-z-y)
A=7=C



Finding ww elsewhere

A different example:

f &2 (A=B=C)=A
g & A=B=A=C
h =« C=C

g(£(__F )y, z )—=h(F-z-y)
A=7=C

A



Finding ww elsewhere

A different example:

f &2 (A=B=C)=A
g & A=B=A=C
h =« C=C

)y Z h(F-z-
g(f(__F )y, z )—=h(F-z-y)
A=7=C A

A



Finding ww elsewhere

A different example:

f &2 (A=B=C)=A
g & A=B=A=C
h =« C=C



Finding ww elsewhere

A different example:

f &2 (A=B=C)=A
g & A=B=A=C

h & C=0C
S(EH(__F__ vz ) > n(F
A=7=C A

A



Finding ww elsewhere

A different example:

f &2 (A=B=C)=A
g & A=B=A=C

h & C=0C
S(EH(__F__ vz ) > n(F
A=7=C A

A



Finding ww elsewhere

A different example:

f &2 (A=B=C)=A
g & A=B=A=C

h & C=0C
S(EH(__F__ vz ) > n(F
A=7=C A

A

w = f(Axy.g(x,z,x))



Finding ww elsewhere

A different example:

f &2 (A=B=C)=A
g & A=B=A=C

h & C=0C
S(EH(__F__ vz ) > n(F
A=7=C A

A






© t

Not examples

(term = term) = term
term = term = term
term = term

O(L(F),x) = F - c(x)




© t

Not examples

(term = term) = term
term = term = term
term = term

O(L(F),x) = F - c(x)

L = (a=b)=b
@ @ b=>a=b

O(L(F),x) = F-x
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The general shape of ww occurrences

Reduction: C[D[F],x] =* E[F - sy -+ x---s¢]

Variables: F:01 = ... 0= ... o, => 7and x: o;
C[D[F],x] : 7 and D[F] : o;

F and x do not appear at other positions in C or D
Then let w := D[Ax; ... x.Clxi, xi]]

We have:
Clw,w] =" E[ (A1 ... 0.Clxi, xi]) - w | =5 E[ Clw, w] ]



Exercises

Construct a (general) self-loop for the following HTRSs:

f & 0=0=0

g = 0=0

h = (0=0)=o0

£(v,h(F)) = F-9(y)
glx) — x

£ c=a

g a=c

h (a=b)=c
k a=c=Db

k(£(n(F)),g(y)) = F -y



Bonus exercises

Construct a (general) self-loop for the following HTRSs:

f » a=(a=a)
g = (@a=a)=a

flgx)) —

(b=a=b=a)=c
b=rc

c=Db
c=>b=b=a=a

>y7h(f(F)),Z) — F- h(g(y)) LZeX

& o Q H

~—

k(g(x
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map(F,[]) — ]
map(F,cons(x,y)) — cons(F-x,map(F,y))

Not terminating if:

| = o
cons = (0=0)=0=0
map = ((0=0)=0=0)=0=0

Proof: choose w := cons(Mg.map(AVo=o-AZ0-Yo=0 * X0, X0))-
Then:

map(Ayo=o0-AZo-Vo=o * W, w)
cons( (Ay.Az.y - w) (Mmap(Ay.Az.y - x,x)) , map(...))
cons( Az.(Ax.map(Ay.AZ.y - x,x)) - w,map(...))

s cons( Adzmap(Ay.A\Z.y-w,w) ,map(...))

Ly




Nasty example

map(F,[]) — I
map(F,cons(x,y)) — cons(F-x,map(F,y))

Not terminating if:

)
cons = (0=0)=0=0
map = ((0=0)=0=0)=0=0

Proof: choose w := cons(Mg.map(Ayo=o-AZ20-Yo=0 * X0, X0))-
Then:

(But is terminating if cons :: (a=a) = 0= 0.)



