Termination and Complexity in Higher-Order
Term Rewriting

Part 2. Termination: non-termination

Cynthia Kop

ISR 2024

Download handout and slides from:
https://www.cs.ru.nl/~cynthiakop/2024_1isr/

https://www.cs.ru.nl/~cynthiakop/2024_isr/

Termination

Definition: there is no infinite reduction sequence
S1 >R S2 7R S3 7R ...

Termination

Definition: there is no infinite reduction sequence
S1 >R S2 7R S3 7R ...

Put differently:

Termination

Definition: there is no infinite reduction sequence
S1 >R S2 7R S3 7R ...
Put differently:

e aterm s is terminating if every reduction sequence starting
in s is finite; i.e., there is no infinite reduction sequence
S =R =R D —R ...

Termination

Definition: there is no infinite reduction sequence
S1 >R S2 7R S3 7R ...
Put differently:

e aterm s is terminating if every reduction sequence starting
in s is finite; i.e., there is no infinite reduction sequence
S =R =R D —R ...

e a HTRS is terminating if all its terms are

Termination

Definition: there is no infinite reduction sequence
S1 >R S2 7R S3 7R ...
Put differently:

e aterm s is terminating if every reduction sequence starting
in s is finite; i.e., there is no infinite reduction sequence
SR DR H =R ...

e a HTRS is terminating if all its terms are

Definition: a HTRS is non-terminating if it has a non-terminating
term.

Termination

Definition: there is no infinite reduction sequence
S1 >R S2 7R S3 7R ...
Put differently:

e aterm s is terminating if every reduction sequence starting
in s is finite; i.e., there is no infinite reduction sequence
SR DR H =R ...

e a HTRS is terminating if all its terms are

Definition: a HTRS is non-terminating if it has a non-terminating
term.

Example:

[V
1
o W

Proving non-termination

Some ways to prove non-termination:

Proving non-termination

Some ways to prove non-termination:
* Obvious self-loop: s —7% s

Proving non-termination

Some ways to prove non-termination:
® Obvious self-loop: s =% s

£f(x, F) — £(F-0,\y.x)

Proving non-termination
Some ways to prove non-termination:
® Obvious self-loop: s =% s
£f(x, F) — £(F-0,\y.x)

¢ Instantiated self-loop: s =7 sy

Proving non-termination
Some ways to prove non-termination:
* Obvious self-loop: s —7% s
£f(x, F) — £(F-0,\y.x)
¢ Instantiated self-loop: s —7% sv

) — gy, sx))
g(s(x),y) — £(xs(y))

Proving non-termination
Some ways to prove non-termination:
* Obvious self-loop: s —7% s
£f(x, F) — £(F-0,\y.x)
¢ Instantiated self-loop: s —7% sv

) — gy, sx))
g(s(x),y) — £(xs(y))

* General self-loop: s =7 C[s7]

Proving non-termination
Some ways to prove non-termination:
* Obvious self-loop: s =% s
£f(x, F) — £(F-0,\y.x)
¢ Instantiated self-loop: s —7% sv

) — gy, sx))
g(s(x),y) — £(xs(y))

* General self-loop: s =7 C[s7]

£ F) = s(£(s(x), Ay-g(F,y, %))

Proving non-termination

Some ways to prove non-termination:
® Obvious self-loop: s =% s

£f(x, F) — £(F-0,\y.x)
¢ Instantiated self-loop: s =7 sy

) — gy, sx))
g(s(x),y) — £(xs(y))

* General self-loop: s =7 C[s7]
£(x, F) — s(£(s(x), Ay.g(F, y,x))

e Specialised methods: note the shape of an infinite
reduction

Proving non-termination

Some ways to prove non-termination:
* Obvious self-loop: s =% s

£f(x, F) — £(F-0,\y.x)
¢ Instantiated self-loop: s =7 sy

) — gy, sx))
g(s(x),y) — £(xs(y))

* General self-loop: s =7 C[s7]
£(x, F) — s(£(s(x), Ay.g(F, y,x))

e Specialised methods: note the shape of an infinite
reduction

Finding self-loops
Question: how to automatically detect a self-loop?

f(x,F) — s(f(S(X)7AY-9(FaYaX)))

Finding self-loops
Question: how to automatically detect a self-loop?
£ 1) = s(£(s(x), Ay-g(F,y,%)))

Idea: for a rule ¢ — C[r] show that {v6 = ry

Finding self-loops
Question: how to automatically detect a self-loop?
£ 1) = s(£(s(x), Ay-g(F,y,%)))

Idea: for a rule ¢ — C[r] show that {v6 = ry

Note: this is a first-order idea!

Finding self-loops
Question: how to automatically detect a self-loop?
£, F) = s(£(s(x), \v.g(F,y,x)))

Idea: for a rule ¢ — C[r] show that {v6 = ry

Note: this is a first-order idea!

The primary higher-order difficulty is extending semi-unification
techniques.

Non-termination of the untyped A-calculus

Recall:
(Ax.s) -t =5 s[x :=1]

Non-termination of the untyped A-calculus

Recall:
(Ax.s) -t =5 s[x :=1]

Self-loop:
o letw:=Axux-x
e Then:w-w =g w-w!

Non-termination of the untyped A-calculus

Recall:
(Ax.s) -t =5 s[x :=1]

Self-loop:
o letw:=Axux-x
e Then:w-w =g w-w!

As a (simply-typed) HTRS:

Non-termination of the untyped A-calculus

Recall:
(Ax.s) -t =5 s[x :=1]

Self-loop:
o letw:=Axux-x
e Then:w-w =g w-w!

As a (simply-typed) HTRS:

L : [term = term] = term
©@ : [term x term] = term

O(L(F),x) — F-x

Non-termination of the untyped A-calculus

Recall:
(Ax.s) -t =5 s[x :=1]

Self-loop:
o letw:=Axux-x
e Then:w-w =g w-w!

As a (simply-typed) HTRS:

L : [term = term] = term
©@ : [term x term] = term

O(L(F),x) — F-x
Self-loop:

Non-termination of the untyped A-calculus

Recall:
(Ax.s) -t =5 s[x :=1]

Self-loop:
o letw:=Axux-x
* Then: w-w —g w-w!

As a (simply-typed) HTRS:
L : [term = term] = term
©@ : [term x term] = term
O(L(F),x) — F-x
Self-loop: Let w := L(Ax.Q(x, x)).

Non-termination of the untyped A-calculus

Recall:
(Ax.s) -t =5 s[x :=1]

Self-loop:
o letw:=Axux-x
e Then:w-w =g w-w!

As a (simply-typed) HTRS:

L : [term = term] = term
©@ : [term x term] = term
O(L(F),x) — F-x
Self-loop: Let w := L(Ax.Q(x, x)).

O(w,w) =g (Ar.0O(x,x)) - w =45 O(w,w)

oL(F), x)—=F-x

The ww self-loop

term=-term

The ww self-loop

term=-term

term

The ww self-loop

O(L(F), x)— F-x
N——— =~
term=-term term

term

The ww self-loop

O(L(F), x)—F-x
term=-term term

term

Finding ww elsewhere

A different example:

f &2 (A=B=C)=A
g & A=B=A=C
h =« C=C

Finding ww elsewhere

A different example:

f 2 (A=B=C)=A
g » A=B=A=C
h = C=C

g(f(F)y, z)—=h(F-z-y)

Finding ww elsewhere

A different example:

f &2 (A=B=C)=A
g & A=B=A=C
h =« C=C

g(f(__F)y, z)—=h(F-z-y)
A=7=C

Finding ww elsewhere

A different example:

f &2 (A=B=C)=A
g & A=B=A=C
h =« C=C

g(£(__F)y, z)—=h(F-z-y)
A=7=C

A

Finding ww elsewhere

A different example:

f &2 (A=B=C)=A
g & A=B=A=C
h =« C=C

)y Z h(F-z-
g(f(__F)y, z)—=h(F-z-y)
A=7=C A

A

Finding ww elsewhere

A different example:

f &2 (A=B=C)=A
g & A=B=A=C
h =« C=C

Finding ww elsewhere

A different example:

f &2 (A=B=C)=A
g & A=B=A=C

h & C=0C
S(EH(__F__ vz) > n(F
A=7=C A

A

Finding ww elsewhere

A different example:

f &2 (A=B=C)=A
g & A=B=A=C

h & C=0C
S(EH(__F__ vz) > n(F
A=7=C A

A

Finding ww elsewhere

A different example:

f &2 (A=B=C)=A
g & A=B=A=C

h & C=0C
S(EH(__F__ vz) > n(F
A=7=C A

A

w = f(Axy.g(x,z,x))

Finding ww elsewhere

A different example:

f &2 (A=B=C)=A
g & A=B=A=C

h & C=0C
S(EH(__F__ vz) > n(F
A=7=C A

A

© t

Not examples

(term = term) = term
term = term = term
term = term

O(L(F),x) = F - c(x)

© t

Not examples

(term = term) = term
term = term = term
term = term

O(L(F),x) = F - c(x)

L = (a=b)=b
@ @ b=>a=b

O(L(F),x) = F-x

The general shape of ww occurrences

e Reduction: C[D[F],x] =* E[F -5y ---x---si]

The general shape of ww occurrences

e Reduction: C[D[F],x] =* E[F -5y ---x---si]

e Variables: F:o1= ... 0, =...=20,=7and x: g;

The general shape of ww occurrences

e Reduction: C[D[F],x] =* E[F -5y ---x---si]
® Variables: F:01 = ...=0,=...= 0 =>T1andx:o;

® C[D[F],x] : 7 and D[F] : o;

The general shape of ww occurrences

Reduction: C[D[F],x] =* E[F - 51+ x- - s]
Variables: F: 01 = ...=0,= ... =0 =>7andx: o;
C[D[F],x] : 7 and D[F] : o;

F and x do not appear at other positions in C or D

The general shape of ww occurrences

Reduction: C[D[F],x] =* E[F - s1---x---sk]

Variables: F:01 = ... 0= ... o, => 7and x: o;
C[D[F],x] : 7 and D[F] : o;

F and x do not appear at other positions in C or D

Then let w := D[Ax; ... x.Clxi, xi]]

The general shape of ww occurrences

Reduction: C[D[F],x] =* E[F - sy -+ x---s¢]

Variables: F:01 = ... 0= ... o, => 7and x: o;
C[D[F],x] : 7 and D[F] : o;

F and x do not appear at other positions in C or D
Then let w := D[Ax; ... x.Clxi, xi]]

We have:
Clw,w] =" E[(A1 ... 0.Clxi, xi]) - w | =5 E[Clw, w]]

Exercises

Construct a (general) self-loop for the following HTRSs:

f & 0=0=0

g = 0=0

h = (0=0)=o0

£(v,h(F)) = F-9(y)
glx) — x

£ c=a

g a=c

h (a=b)=c
k a=c=Db

k(£(n(F)),g(y)) = F -y

Bonus exercises

Construct a (general) self-loop for the following HTRSs:

f » a=(a=a)
g = (@a=a)=a

flgx)) —

(b=a=b=a)=c
b=rc

c=Db
c=>b=b=a=a

>y7h(f(F)),Z) — F- h(g(y)) LZeX

& o Q H

~—

k(g(x

Nasty example

map(F,[]) —]
map(F,cons(x,y)) — cons(F-x,map(F,y))

Nasty example

map(F,[]) —]
map(F,cons(x,y)) — cons(F-x,map(F,y))

Not terminating if:
| = o

cons = (0=0)=0=0
map = ((0=0)=0=0)=0=0

Nasty example

map(F,[]) —]
map(F,cons(x,y)) — cons(F-x,map(F,y))

Not terminating if:

| = o
cons = (0=0)=0=0
map = ((0=0)=0=0)=0=0

Proof: choose w := cons(Mg.map(AVo=o-AZ0-Yo=0 * X0, X0))-
Then:

Nasty example

map(F,[]) —]
map(F,cons(x,y)) — cons(F-x,map(F,y))

Not terminating if:

| = o
cons = (0=0)=0=0
map = ((0=0)=0=0)=0=0

Proof: choose w := cons(Mg.map(AVo=o-AZ0-Yo=0 * X0, X0))-
Then:

map(Ayo=o0-AZo-Vo=o * W, w)
cons((Ay.Az.y - w) (Mmap(Ay.Az.y - x,x)) , map(...))
cons(Az.(Ax.map(Ay.AZ.y - x,x)) - w,map(...))

s cons(Adzmap(Ay.A\Z.y-w,w) ,map(...))

Ly

Nasty example

map(F,[]) — I
map(F,cons(x,y)) — cons(F-x,map(F,y))

Not terminating if:

)
cons = (0=0)=0=0
map = ((0=0)=0=0)=0=0

Proof: choose w := cons(Mg.map(Ayo=o-AZ20-Yo=0 * X0, X0))-
Then:

(But is terminating if cons :: (a=a) = 0= 0.)

