
1

Handout for part 4:

Termination:
modular termination proofs using dependency pairs

1. Modularity

2

Motivation
Goal:

We want to prove termination of large higher-order term rewriting systems.

This is useful with an eye on program analysis. Programs tend to be more than just a few lines!

Secondary goal:

We want to prove termination properties of part of a higher-order TRS.

In a programming context, it makes sense to separately analyse modules without knowing the full
program. This allows us to create certified libraries, or to not have to completely redo an expensive
analysis.

3

Running example

I(x) → x
minus(x, 0) → x

minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
ack(0, y) → s(y)

ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, ack(s(x), y))

inc(0) → s(inc(s(0)))
fexp(0, y) → y

fexp(s(x), y) → double(x, y, 0)
double(x, 0, z) → fexp(x, z)

double(x, s(y), z) → double(x, y, s(s(z)))
hd(cons(x, l)) → x

len([]) → 0

len(cons(x, l)) → s(len(l))
map(F , []) → []

map(F , cons(x, l)) → cons(F · x, map(F , l))
fold(F , x, []) → x

fold(F , x, cons(y, l)) → fold(F , F · x · y, l)
mkbig(l, x) → map(ack(x), l)
mkdiv(l, x) → map(λy.quot(y, x), l)
sma(b, F , 0) → 0

sma(true, F , s(x)) → s(x)
sma(false, F , s(x)) → sma(F · x, F , quot(x, s (s 0)))

twice(F , x) → F · (F · x)
H(s(x)) → H(twice(I, x))

4

Modularity
Ideal situation:

• split R into R = A ∪B (signatures share only constructors)

• prove termination of A and B separately

• conclude termination of R

However, this situation is not to be. Even in first-order rewriting this does not hold, as evidenced by the
example below.

Toyama’s counterexample:

• A = { f(a, b, x) → f(x, x, x) }

• B = { π(x, y) → x ; π(x, y) → y }

• non-termination of A ∪B due to f(a, b, π(a, b))

5

Modularity
Pretty good situation:

• split R into R = A ∪B (signatures share only constructors)

• prove termination of A ∪ Cϵ and B ∪ Cϵ separately
(here, Cϵ = { π x y → x ; π x y → y })

• conclude termination of R∪ Cϵ

This one does hold in first-order rewriting! Unfortunately, in the higher-order case it still does not hold.

My counterexample:

A =



comp2(0, s(y)) → false

comp2(s(0), s(y)) → false

comp2(x, 0) → true

comp2(s(s(x)), s(y)) → comp2(x, y)
find(F , x, false) → end(x)
find(F , x, true) → find(F , s(x), comp2(F · x, x))


B = { double(0) → 0 double(s(x)) → s(s(double(x))) }

Note that comp2(sn(0), sm(0)) reduces to true if n ≥ 2 ∗ m, and to false otherwise. If we can only
use λ-terms, constructors and find, then we cannot construct a function F such that F (n) ≥ 2n for
all n, so eventually any term in the signature of A terminates. But in the combined system, the term
find(double, 0, true) does not terminate.

6

Higher-order Modularity is hard!
Appel, Oostrom, Simonsen (2010):

Almost no modularity properties hold for higher-order rewriting! (Even when they do hold for
first-order rewriting.)

7

Dependency Pairs
Idea:

• isolate function calls in reduction rules

• determine groups of recursive calls

• prove for each group of recursive calls that it doesn’t lead to an infinite loop

Practice:

• “dependency pair” ≈ “function call”

• “dependency pair problem” ≈ “group of calls”

• each dependency pair problem can be finite or infinite:

– finite: harmless; this group of calls does not lead to non-termination

– infinite: harmful: this group of calls does lead to non-termination

2. First-order

8

First-order dependency pairs

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)

quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

Question: what is a “function call”?

Answer: subterms whose root symbol is a defined symbol.

(I conveniently colour-coded them for you!)

Dependency pairs:

minus♯(s(x), s(y)) → minus♯(x, y)
quot♯(s(x), s(y)) → minus♯(x, y), s(y)
quot♯(s(x), s(y)) → quot♯(minus(x, y), s(y))

Technically, we introduce a fresh symbol f♯ for each defined symbol f, with the same arity. These
symbols are constructors with respect to the original set R, but are the defined symbols of the rules
DP(R) forming the dependency pairs of R.

9

First-order dependency pair chain
Definition: a minimal DP chain over (P,R) is a reduction chain:

s1 →P t1 →∗
R s2 →P t2 →∗

R . . .

Such that:

• each reduction si →P ti is at the root
(so si = ℓγ and ti = rγ for some ℓ → r ∈ P)

• each reduction si →∗
R ti occurs below the root

(this is actually automatic: root symbols are constructors)

• each ti is terminating with respect to →R

10

Dependency chain claim
Claim:

there is an infinite minimal (DP(R),R)-chain
if and only if →R is non-terminating

Proof:

⇒ If s →DP(R) t then |s| →R · � |t|, where |s| is s with every f♯ replaced by f, and � is the subterm
relation. Hence, an infinite chain induces an infinite reduction |s1| →R C1[|t1|] →∗

R C1[|s2|] →R
C1[C2[|t2|]] →∗

R

⇐ If →R is non-terminating, there is a minimal non-terminating term s (that is, a term s that is
non-terminating, but all its subterms do terminate).
Hence, there is an infinite reduction

s = f(s1, . . . , sk) →∗
R,in f(s′1, . . . , s

′
k) = ℓγ →R rγ →R . . .

where →R,in refers to a reduction in the arguments. There must be a root step eventually, because
if not, we would have an infinite reduction in an argument, contradicting their termination.

Let p be the smallest subterm of r such that pγ is non-terminating. We know that p exists, because
rγ is non-terminating.

We easily see: ℓ♯ → p♯ is a dependency pair! (Because if p is a variable, then pγ is a subterm of
some s′i and therefore terminatinng; and if p = f(p1, . . . , pn) with f a constructor, then any infinite
reduction starting in pγ induces an infinite reduction starting in some piγ, thus contradicting
minimality of p.)

11

Proving termination using dependency pairs
Rules:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)

quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

Dependency pairs:
minus♯(s(x), s(y)) → minus♯(x, y)
quot♯(s(x), s(y)) → minus♯(x, y), s(y)
quot♯(s(x), s(y)) → quot♯(minus(x, y), s(y))

Observation: In an infinite chain, if ever we encounter a root symbol minus♯ the root symbol never
becomes quot♯ again!

12

Modularity using dependency pairs
Idea:

Rquot is non-terminating

if and only if

there is an infinite minimal (DP(Rquot),Rquot)-chain

if and only if

there is an infinite minimal ({quot♯(s(x), s(y)) → quot♯(minus(x, y), s(y))},Rquot)-chain
or

there is an infinite minimal ({minus♯(s(x), s(y)) → minus♯(x, y)},Rquot)-chain

13

Exercises

1. Identify the dependency pairs of:

ack(0, y) → s(y)
ack(s(x), 0) → ack(x, s(0))

ack(s(x), s(y)) → ack(x, ack(s(x), y))
inc(0) → s(inc(s(0)))

fexp(0, y) → y
fexp(s(x), y) → double(x, y, 0)

double(x, 0, z) → fexp(x, z)
double(x, s(y), z) → double(x, y, s(s(z)))

2. Can you split up the resulting problem whether an infinite minimal (DP(R),R)-chain exists?

3. This should result in multiple problems “is there an infinite minimal (P,R)-chain?” Can you prove
for some of them that the answer is no (such a chain does not exist)?

3. Higher-order

14

Higher-order challenges
Discussion: what should be the dependency pairs of Rmap?

map(F , []) → []
map(F , cons(x, l)) → cons(F · x, map(F , l))

When we consider function calls, should we include collapsing calls F · t?

This is not a trivial question! There are different ways to answer this question, and they lead to different
methodologies:

Two approaches:

• dynamic dependency pairs: include collapsing DPs like map♯(F , cons(x, l)) → F · x
Arguably this is the most general approach. A function is called, even if we do not know a priori
which function it is. Using this approach allows us to define a sound and complete method for
higher-order termination: if a system is terminating, this can in principle be proved using dynamic
dependency pairs.

• static dependency pairs: only include non-collapsing DPs like map♯(F , cons(x, l)) → map♯(F , l).
As we will see, this approach is less general: it comes with restrrictions, and we cannot always
find a termination proof using static dependency pairs even for a terminating system. However,
the methods from the first-order setting extend much more naturally. And most importantly, this
approach seems to be much more usable for modular proofs.

Underlying proof idea:

• dynamic DPs: in a DP f♯(ℓ1, . . . , ℓk) → r, all (instances of each) ℓi are assumed to be terminating.

• static DPs: in a DP f♯(ℓ1, . . . , ℓk) → r, all (instances of each) ℓi are assumed to be compuable.

Recall that in the soundness proof of the first-order dependency pair approach, we considered minimal
non-terminating terms – and as a result, dependency pairs f♯(ℓ1, . . . , ℓk) → g♯(r1, . . . , rn) were built from
terms f(ℓ1, . . . , ℓk)γ, g(r1, . . . , rn)γ whose immediate subterms ℓiγ and rjγ were terminating. In the
higher-order setting, we could use the same proof strategy – but we can either use termination directly,
or use computability, which is arguably its higher-order counterpart. However, if we choose the latter,
we also need to prove computability of all terms – which, considered per term, is a stronger property.

In this talk, we will use the static approach.

15

Higher-order challenges
Discussion: what should be the dependency pairs of:

up(l) → map(λx.double(x), l)

(Rules for double are also assumed to be given.)

Likely answer:
up♯(l) → map♯(λx.double(x), l)

up♯(l) → double♯(x) ⇐ fresh variable x

But: we may assume x is computable. (That is, it will only be instantiated by computable terms.)

When we use the static DP approach, minimal non-computability of f(s⃗) implies the existence of an infinite
chain. Then, on the right-hand side of rules, we identify subterms that may lead to non-computability
rather than merely non-termination. This includes λx.double(x): while this term is clearly terminating
(as it does not reduce), for computability we must see that double(s) is computable for all computable
s. This is why we include a dependency pair up♯(l) → double♯(x) where x may be instantiated by any
computable term.

16

Higher-order challenges
Discussion: what should be the dependency pairs of:

up(l) → map(double, l)

Likely answer:
up♯(l) → map♯(double, l)

up♯(l) → double♯(x)

Again: we may assume that x is computable.

This holds by the same reasoning as before: for double to be computable, its application to an arbitrary
computable term must be computable.

17

Higher-order challenges
Discussion: what should be the dependency pairs of:

up → map(double)

Likely answer:
up♯(l) → map♯(double, l)

up♯(l) → double♯(x)

Since this rule is basically a shorter version of up(l) → map(double, l), it seems wise to treat them the
same. Essentially, we can expand a rule into a maximally applied one before computing dependency
pairs, to avoid needlessly introducing fresh variables.

18

Higher-order challenges
Discussion: what should be the dependency pairs of:

f(F , x) → F · x

Likely answer: this should not have any dependency pairs!

Discussion: what should be the dependency pairs of:

app(lam(F), x) → F · x

Likely answer: This should not be allowed!

In this case, computability of lam(F) does not imply computability of F . So we have two choices:
limit the static DP framework to systems where this does not occur, or include some collapsing DPs
app♯(lam(F), x) → F · x after all. We choose the former, as it would be much harder to define what
exactly is a chain in the latter case.

19

Plain function passing

Definition

A HTRS is plain function passing if:
for all rules f(ℓ1, . . . , ℓk) → r:

if ℓi � F with F a variable of higher type
then ℓi = F or F does not occur in r

20

Plain function passing

[] :: list
cons :: nat ⇒ list ⇒ list

double :: nat ⇒ nat
map :: (nat ⇒ nat) ⇒ list ⇒ list
up :: list ⇒ list

map(F , []) → []
map(F , cons(x, l)) → cons(F · x, map(F , l))

up(l) → map(λx.double(x), l)

✓

21

Plain function passing

app :: term ⇒ term ⇒ term
lam :: (term ⇒ term) ⇒ term

app(lam(F)) → F

✗

22

Plain function passing

[] :: list
cons :: (nat ⇒ nat) ⇒ list ⇒ list
map :: ((nat ⇒ nat) ⇒ nat ⇒ nat) ⇒ list ⇒ list
up :: list ⇒ list

map(F , []) → []
map(F , cons(x, l)) → cons(F · x, map(F , l))

up(l) → map(λx.x, l)

✗

So this definition does not allow us to handle lists of functions. However, that is only because I did
not want to make things too complex for this presentation; there are extensions of the method (using a
different definition of computability) where systems like this are admitted.

23

Plain function passing

I(x) → x
minus(x, 0) → x

minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
ack(0, y) → s(y)

ack(s(x), 0) → ack(x, s(0))
ack(s(x), s(y)) → ack(x, ack(s(x), y))

inc(0) → s(inc(s(0)))
fexp(0, y) → y

fexp(s(x), y) → double(x, y, 0)
double(x, 0, z) → fexp(x, z)

double(x, s(y), z) → double(x, y, s(s(z)))
hd(cons(x, l)) → x

len([]) → 0

len(cons(x, l)) → s(len(l))
map(F , []) → []

map(F , cons(x, l)) → cons(F · x, map(F , l))
fold(F , x, []) → x

fold(F , x, cons(y, l)) → fold(F , F · x · y, l)
mkbig(l, x) → map(ack(x), l)
mkdiv(l, x) → map(λy.quot(y, x), l)
sma(b, F , 0) → 0

sma(true, F , s(x)) → s(x)
sma(false, F , s(x)) → sma(F · x, F , quot(x, s (s 0)))

twice(F , x) → F · (F · x)
H(s(x)) → H(twice(I, x))

✓

24

Definition

Definition
For a term s the candidates of s are given by:

Cand(f(s1, . . . , sn)) = {f(s1, . . . , sn)} ∪
⋃n

i=1Cand(si) (if f is a defined symbol)
Cand(c(s1, . . . , sn)) =

⋃n
i=1Cand(si) (if c is a constructor symbol)

Cand(x · s1 · · · sn) =
⋃n

i=1Cand(si)
Cand(λx.s) = Cand(s[x := y]) (some fresh y)

Cand((λx.t) · s0 · · · sn = Cand(t[x := s1] · s1 · · · sn) ∪ Cand(s1)

Dependency pairs of a rule f(ℓ1, . . . , ℓk) → r:

• if r :: σ1 ⇒ . . . ⇒ σm ⇒ ι (with ι a base type)

• and g(t1, . . . , tn) ∈ Cand(r · x1 · · ·xm) (fresh x⃗)

• and g(t1, . . . , tn) :: τ1 ⇒ . . . ⇒ τp ⇒ κ (with κ a base type)

• then f♯(ℓ1, . . . , ℓk, x1, . . . , xm) → g♯(t1, . . . , tn, y1, . . . , yp) is in a dependency pair of this rule (for
fresh y⃗)

25

Exercise
Compute the dependency pairs of:

0 :: nat
s :: nat ⇒ nat
a :: o
c :: o ⇒ o

rec :: nat ⇒ nat ⇒ (nat ⇒ nat ⇒ nat) ⇒ nat
add :: nat ⇒ nat ⇒ nat
mul :: nat ⇒ nat ⇒ nat

f :: o ⇒ o

rec(0, F , y) → y
rec(s(x), F , y) → F · x · rec(x, F , y)

add(x) → rec(x, λz.s)
mul(x) → rec(x, λz.add(z))

f(b) → c((λx.f(x)) · a)
f(a) → c((λx.a) · f(b))

26

Higher-order-order dependency pair chain
(Changes compared to the first-order definition are highlighted in red.)

Definition: a computable DP chain over (P,R) is a reduction chain:

s1 →P t1 →∗
R s2 →P t2 →∗

R . . .

Such that:

• each reduction si →P ti is at the root

• each reduction si →∗
R ti occurs below the root

• each ti is computable with respect to →R

Claim:

there is an infinite computable (DP(R),R)-chain
if →R is non-terminating

if there is an infinite computable (DP(R),R)-chain
using only dependency pairs ℓ → r with FV (r) ⊆ FV (ℓ)

then →R is non-terminating

(Here, FV (s) denotes the free variables of s.)

27

Dependency chain claim: proof sketch
Claim:

there is an infinite computable (DP(R),R)-chain
if →R is non-terminating

Proof sketch:

• If →R is non-terminating, there is a non-terminating base-type term s whose strict subterms
are comptable.

• Consider an infinite reduction

s →∗
R,in f(s′1, . . . , s

′
k) = ℓγ →R rγ →R . . .

• Identify a smallest subterm p of r such that pγ is non-computable.

• Then r · y1 · · · yp is a candidate.

28

Discussion:

Plain-function passingness:

• admits most (terminating) common examples

• performs poorly with polymorphism (e.g., cons :: α ⇒ list(α) ⇒ list(α))

• but: requirement can be weakened to avoid this problem!

Polymorphism overall:

• forcing rules into base-type before computing dependency pairs is not so practical when we consider
polymorphic systems, where an output type α may be instantiated both by a base type and an arrow
type. . .

• can be done with slightly different definitions (but I’ll leave this out of the course)

29

Dependency Pair
Processors

So now, our goal is to prove that no infinite computable (DP(R),R)-chain exists. We will consider a few
methods to split up DP problems (P,R), and perhaps prove their harmlessness altogether.

4. Graph

30

Splitting by root symbol
Recall:

minus♯(s(x), s(y)) → minus♯(x, y)
quot♯(s(x), s(y)) → minus♯(x, y), s(y)
quot♯(s(x), s(y)) → quot♯(minus(x, y), s(y))

Observation: In an infinite chain, if ever we encounter a root symbol minus♯ the root symbol never
becomes quot♯ again!

More general:

• Consider: which pairs can follow each other in a chain?

• Split the DPs into groups that may follow each other!

31

Splitting call groups method
Idea:

• Given: a set of dependency pairs

• Create: blue and red subsets A1, . . . , An such that:

– a pair in Ai can only be followed in a chain by a pair in A0, A1, . . . , Ai

– if Ai is red, then it cannot be followed by a pair in Ai either

• Then: it suffices to prove that there is no chain over each blue subset!

32

Running example
The following are the dependency pairs of the running example.

minus♯(s(x), s(y)) → minus♯(x, y)
quot♯(s(x), s(y)) → minus♯(x, y)
quot♯(s(x), s(y)) → quot♯(minus(x, y), s(y))

ack♯(s(x), 0) → ack♯(x, s(0))
ack♯(s(x), s(y)) → ack♯(s(x), y)
ack♯(s(x), s(y)) → ack♯(x, ack(s(x), y))

inc♯(0) → inc♯(s(0))
fexp♯(s(x), y) → double♯(x, y, 0)

double♯(x, 0, z) → fexp♯(x, z)
double♯(x, s(y), z) → double♯(x, y, s(s(z)))

len♯(cons(x, l)) → len♯(l)
map♯(F , cons(x, l)) → map♯(F , l)

fold♯(F , x, cons(y, l)) → fold♯(F , F · x · y, l)
mkbig♯(l, x) → ack♯(x, y)
mkbig♯(l, x) → map♯(ack(x), l)
mkdiv♯(l, x) → quot♯(y, x)
mkdiv♯(l, x) → map♯(λy.quot(y, x), l)

sma♯(false, F , s(x)) → quot♯(x, s (s 0))
sma♯(false, F , s(x)) → sma♯(F · x, F , quot(x, s (s 0)))

H♯(s(x)) → I♯(y)
H♯(s(x)) → twice♯(I, x)
H♯(s(x)) → H♯(twice(I, x))

This HTRS was already written in such a way that all rules only called function symbols that were defined
above it, or that were mutually recursive with the same symbol. Hence, we can very naturally divide it
as follows. Note that the split below was made only by looking at head symbols, and in the case of A5,
by the observation that s(0) is a ground constructor term that does not reduce to 0.

A1 minus♯(s(x), s(y)) → minus♯(x, y)
A2 quot♯(s(x), s(y)) → minus♯(x, y)
A3 quot♯(s(x), s(y)) → quot♯(minus(x, y), s(y))
A4 ack♯(s(x), 0) → ack♯(x, s(0))

ack♯(s(x), s(y)) → ack♯(s(x), y)
ack♯(s(x), s(y)) → ack♯(x, ack(s(x), y))

A5 inc♯(0) → inc♯(s(0))
A6 fexp♯(s(x), y) → double♯(x, y, 0)

double♯(x, 0, z) → fexp♯(x, z)
double♯(x, s(y), z) → double♯(x, y, s(s(z)))

A7 len♯(cons(x, l)) → len♯(l)
A8 map♯(F , cons(x, l)) → map♯(F , l)
A9 fold♯(F , x, cons(y, l)) → fold♯(F , F · x · y, l)
A10 mkbig♯(l, x) → ack♯(x, y)

mkbig♯(l, x) → map♯(ack(x), l)
mkdiv♯(l, x) → quot♯(y, x)
mkdiv♯(l, x) → map♯(λy.quot(y, x), l)

sma♯(false, F , s(x)) → quot♯(x, s (s 0))
A11 sma♯(false, F , s(x)) → sma♯(F · x, F , quot(x, s (s 0)))
A12 H♯(s(x)) → I♯(y)

H♯(s(x)) → twice♯(I, x)
A13 H♯(s(x)) → H♯(twice(I, x))

Now, as there are only finitely many groups, any infinite chain must have a tail that only uses DPs in
one of the groups – which, moreover, must be a blue group. Hence, the DPs in the red groups (which

can be used at most once in any infinite chain) may be removed altogether, while we can split up the
DP problem into the subproblems defined by the blue groups. In this case, our large initial problem is
split up into 8 subproblems defined by much smaller sets of dependency pairs. This is quite typical when
using the DP framework, and is of course great for our goal of modularity.

33

Alternative formulation: DP graph

• Make a graph whose vertices are the elements of P

• Place an edge from ρ1 to ρ2 if ρ2 may follow ρ1 in a graph

• Split up P into the strongly connected components of the graph

Claim: This is the same method.

• The graph is natural for automation since there are some very efficient graph algorithms for finding
SCCs.

• The groups approach is natural for certification since the person who wants to certify a proof can
just specify the groups, and a tool like Isabelle or Coq does not have to consider how the groups
were found; only that they satisfy the requirement on subsequent DPs.

34

Example

(1) map♯(F , cons(x, l)) → map♯(F , l)
(2) double♯(l) → map♯(λx.add(x, x), l)
(3) double♯(l) → add♯(x, x)
(4) add♯(s(x), y) → add♯(x, s(y))

1 2 3 4

Result: the DP problem (DP(R),R) is finite if:

• the DP problem ({(1)},R) is finite;

• the DP problem ({(4)},R) is finite.

35

Exercises:

1. Compute the dependency pairs of the following HTRS, and divide them into call groups. (You may
use a graph. Types are as expected, with sorts nat and bool.)

comp2(0, s(y)) → false

comp2(s(0), s(y)) → false

comp2(x, 0) → true

comp2(s(s(x)), s(y)) → comp2(x, y)
find(F , x, false) → end(x)
find(F , x, true) → find(F , s(x), comp2(F · x, x))

double(0) → 0

double(s(x)) → s(s(double(x)))

2. Compute the dependency pairs, and call groups, for the HTRS consisting only of Toyama’s example
(with a, b :: o):

f(a, b, x) → f(x, x, x)

5. Subterms

36

The subterm criterion: intuition
Recall: one of our tasks is to prove that there is no infinite computable chain over (A8,R) where A8 is
given by:

A8 map♯(F , cons(x, l)) → map♯(F , l)

Question: what does an infinite chain over A8 look like?

map♯(u1, cons(v1, w1)) →A8 map♯(u1, w1)
→∗

R map♯(u2, cons(v2, w2))
→A8 map♯(u2, w2)
→∗

R . . .

Idea: look at the second argument of map (which is computable by assumption).

cons(v1, w1))� w1 →∗
R cons(v2, w2)� w2 →∗

R . . .

Observation: this contradicts termination, and therefore computability!

37

The subterm criterion: definition
Given: (P,R) with marked symbols f♯1, . . . , f

♯
n

Choose: for each f
♯
i, one argument position ν(f♯i)

Show: for every DP f
♯
i(ℓ1, . . . , ℓk) → f

♯
j(r1, . . . , rn):

• either ℓ
ν(f♯i)

� r
ν(f♯j)

• or ℓ
ν(f♯i)

= r
ν(f♯j)

Then: remove from P all the DPs where we used �.

Soundness proof: in any infinite computable chain, only finitely many � steps can be done (since
→R ∪� is wellfounded on computable terms). Hence, any such chain must have an infinite tail without
� steps.

38

Examples
Let’s consider all of our remaining DP problems!

A1 minus♯(s(x), s(y)) → minus♯(x, y)

A3 quot♯(s(x), s(y)) → quot♯(minus(x, y), s(y))

A4 ack♯(s(x), 0) → ack♯(x, s(0))
ack♯(s(x), s(y)) → ack♯(s(x), y)
ack♯(s(x), s(y)) → ack♯(x, ack(s(x), y))

A6 fexp♯(s(x), y) → double♯(x, y, 0)
double♯(x, 0, z) → fexp♯(x, z)

double♯(x, s(y), z) → double♯(x, y, s(s(z)))

A7 len♯(cons(x, l)) → len♯(l)

A8 map♯(F , cons(x, l)) → map♯(F , l)

A9 fold♯(F , x, cons(y, l)) → fold♯(F , F · x · y, l)
A11 sma♯(false, F , s(x)) → sma♯(F · x, F , quot(x, s (s 0)))

A13 H♯(s(x)) → H♯(twice(I, x))

39

Examples: A1

A1 minus♯(s(x), s(y)) → minus♯(x, y)

Argument position: ν(minus♯) = 2

This allows us to remove the only DP, so the problem (P,R) is clearly finite.

40

Examples: A3

A3 quot♯(s(x), s(y)) → quot♯(minus(x, y), s(y))

Argument position: method does not apply (we could choose position 2, but it does not allow us to
remove anything)

41

Examples: A4

A4 ack♯(s(x), 0) → ack♯(x, s(0))

ack♯(s(x), s(y)) → ack♯(s(x), y)

ack♯(s(x), s(y)) → ack♯(x, ack(s(x), y))

Argument position: ν(ack♯) = 1

This allows us to remove the first and third dependency pairs, leaving us with:

Remaining:
ack♯(s(x), s(y)) → ack♯(s(x), y)

Having fewer dependency pairs, we can apply the method again, now on a different argument!

Argument position: ν(ack♯) = 2

This removes the only remaining dependency pair in this set. Hence, also (A4,R) is finite.

42

Examples: A6

A6 fexp♯(s(x), y) → double♯(x, y, 0)

double♯(x, 0, z) → fexp♯(x, z)
double♯(x, s(y), z) → double♯(x, y, s(s(z)))

Argument positions:

• ν(fexp♯) = 1

• ν(double♯) = 1

(There is nothing that compels us to select the same argument index in all marked symbols; however,
that is just how this example ends up.)

This choice allows us to remove the first dependency pair, leaving us with:

Remaining:
double♯(x, 0, z) → fexp♯(x, z)

double♯(x, s(y), z) → double♯(x, y, s(s(z)))

The subterm criterion doesn’t apply again. But we can use the group splitting (graph) processor: the
first dependency pair cannot be followed by either the first or the second, so can be removed, since it
cannot occur in an infinite chain. This leaves us with just:

double♯(x, s(y), z) → double♯(x, y, s(s(z)))

Now we can apply the subterm criterion again, this time with ν(double♯) = 2. This allows us to remove
the last remaining dependency pair in A6.

43

Running example
We have already seen A8 and A7 and A9 are easily handled, while A11 and A12 cannot be handled using
the subterm criterion. Hence, of our running example we only have three sets P left where we have to
prove the absence of an infinite computable chain:

A3 = {quot♯(s(x), s(y)) → quot♯(minus(x, y), s(y))}

A11 = {sma♯(false, F , s(x)) → sma♯(F · x, F , quot(x, s (s 0)))}

A13 = {H♯(s(x)) → H♯(twice(I, x))}

6. argument filters

44

First-order example
Consider:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)

quot(0, s(y)) → 0

quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))

quot♯(s(x), s(y)) → quot♯(minus(x, y), s(y))

Idea: look only at the first argument of each function symbol

This gives:
minus(x) → x

minus(s(x)) → minus(x)
quot(0) → 0

quot(s(x)) → s(quot(minus(x)))

quot♯(s(x)) → quot♯(minus(x))

Observation: we can orient all rules and DPs together with LPO now!

45

Argument filtering
Suppose:

• Left-hand sides of rules have no subterm x · s1 · · · sn or (λx.s0) · s1 · · · sn with n > 0

• Each occurrence of f in R,P has at least Nf arguments.

Choose:

• a sequence 1 ≤ i1, i2, . . . , ik ≤ Nf for each f

Define:

• ν(f(s1, . . . , sn)) = f′(ν(si1), . . . , ν(sik), ν(sNf+1), . . . , ν(sn))
if n ≥ Nf and ν(f(s1, . . . , sn)) = λxn+1 . . . xNf .f

′(ν(si1), . . . , ν(sik)) otherwise, where we let sj := xj
for n < j ≤ Nf and f′ be a fresh symbol of appropriate type

• ν(x · s1 · · · sn) = x · ν(s1) · · · ν(sn)

• ν((λx.s0) · s1 · · · sn) = (λx.ν(s0)) · ν(s1) · · · ν(sn)

Find: a reduction ordering such that: ν(ℓ) ≻ ν(r) or ν(ℓ) = ν(r) for all ℓ → r ∈ P ∪R

Then: remove all ℓ → r from P that were oriented with ≻

Proof idea: We can do this because it is not so hard to prove that:

• If all occurrences of each f in s have at least Nf arguments, then ν(s)γν →∗
β ν(sγ), where γν maps

each x to ν(γ(x))

• If all occurrences of each f in s have at least Nf arguments, and s has no subterm t0 · t1 · · · tn with
n > 0 and t0 a variable or abstraction, then ν(s)γν = ν(sγ).

• Hence, since a reduction ordering includes →β by definition and is stable, if s = ℓγ and t = rγ for
ℓ → r ∈ P ∪R, then ν(s) ⪰ ν(t) (and even ν(s) ≻ ν(t) if ℓ → r ∈ P was oriented with ≻).

• By monotonicity of ≻ we see: if s →R t then ν(s) = ν(t) or ν(s) ≻ ν(t).

• Hence, an infinite →P · →∗
R chain with the →P step at the root, yields an infinite number of

⪰ or ≻ steps. Due to wellfoundedness of ≻, at most finitely many steps can use a DP that was
oriented with ≻, so an infinite (P,R)-chain has an infinite tail that uses only dependency pairs
where ν(ℓ) = ν(r).

46

Exercise
Prove finiteness of the following DP problem using argument filterings and HORPO.

minus(x) → x
minus(s(x)) → minus(x)

quot(0) → 0

quot(s(x)) → s(quot(minus(x)))
sma(b, F , 0) → 0

sma(true, F , s(x)) → s(x)
sma(false, F , s(x)) → sma(F · x, F , quot(x, s (s 0)))

sma♯(false, F , s(x)) → sma♯(F · x, F , quot(x, s (s 0)))

47

Most important missing steps
Because this course is already getting quite long, I did not get around to several parts of the DP framework
that are often quite useful important in proofs – including some that are needed to finish the running
example. These are:

• Using fully first-order techniques on first-order subsets of (P,R)

• Reduction pairs in general (such as weakly monotonic algebras)

• Usable rules (with respect to an argument filtering)

• Narrowing

