1
Handout for part 5:

Complexity:
tuple interpretations

1. Monotonic algebras

2
Derivation height

A measure of the “cost” of reducing a term to normal form (worst-case).

add(z,0) — =z

add(x,s(y)) — s(add(z,v))
mul(z,0) — O

mul(z,s(y)) — add(z,mul(z,y))

Derivation height:
e add(0,s(0)): 2 (add(0,s(0)) — s(add(0,0)) — s(0)).

e mul(mul(s(s(0)),s(s(s(0)))), 0): 15

3
Traditional interpretations (first-order)
Idea:

e map every term s to [s] € N
e make sure that s — ¢ implies [s] > [t]
Then: [s] > derivationheight(s)!
Approach:
e map every function that takes k arguments to a monotonic function in N¥ — N

e make sure that [¢] > [r] for all rules £ — r

4
Bounding derivation height with interpretations to N

add(0,y) — vy
add(s(z),y) — s(add(z,v))

Let:
e [0] =0
o [s(x))]=2+1

o [add(z,y)]=14+y+2x*x

We might initially be inclined to choose [add(x,y)] = = + vy — but then we do not have that [¢] > [r] for
the rules. Hence, the interpretation cannot exactly match the “meaning” of the rules:

Then:

[2dd(0, y)] 1+y > [v]
[add(s(z),y)] = 3+y+2*xzx > 24y+2xz
= [s(add(z,y))]

Hence: [add(s™(0), s™(0))] =1+ m + 2 xn: linear!

)

Monotonic algebras: definition

Given: a set A with a well-founded ordering > (for example: N)
Choose: a function [f] from A¥ to A for every f of arity &

Define: for a given o mapping variables to A:
o [2] = a(x)
d [[f(sla SER) Sk)]] = [f]([[sl]]’ SRR [[Skﬂ)

Prove: [{] > [r] for all rules ¢ — r, all «

In practice, since we quantify over «, we essentially view both sides as functions over a given set of
variables. This is why we for instance write [add(0,y)] = 1 + v instead of 1 + a(y).

Then: [s] > [t] whenever s = t.

The most common example is to choose the set of natural numbers for A, but we could also for instance
choose the rational numbers (with > y if > y + 1), or pairs of numbers as we will see later.

Consequence: if tonat(a) > tonat(b) whenever a > b then tonat([s]) > derivationheight(s). (Here,
we let tonat be a function that maps each element of A to a natural number. If A = N this is just the
identity; if A = Q this could for instance be rounding down.)

6
Higher-order interpretations to N: problems

Let’s extend this idea to higher-order rewriting. Here, we quickly run into the problem: what to do with
partial applications? For example:

Suppose: [s(z)]=z+1

Question: What is [s]?

Problem: behaviour matters!

fold(F,x,]])
fold(F,x, cons(y,l))
add(z, 0)

add(z, s(y))

I
fold(F, (F -z -y),1)

%
N
-
— s(add(z,y))

e What is the derivation height if ' := Az, y.minimum(z,y)?

e What if: /' := Az, y.add(z,y)?

e What if: ' := Az, y.add(r,s(0))?
e What if: F':= Az, y.add(z,s(s(0)))?

e What if: F':= Az, y.add(z,z)?

All in all, the consequences of using different functions for F' cannot really be captured by a number.

7
Proposal

Let’s interpret terms of function type as functions!

More than that: for each type we have a possibly different interpretation domain. We only fix that
function types are interpreted as monotonic functions:

Type interpretations:
e For every base type ¢: a set A,, ordering >, and quasi-ordering >,

o Define:
() = A
(0 =7) = “monotonic functions from (o)) to (7)”
F>,..G if F(a)>; G(a) for all a € (o]
F>,..G if F(a)>; G(a) for all a € (o)

8
Higher-order monotonic algebras: definition

(Difference to the first-order definition are indicated in red.)
Given: a a type interpretation function as on the previous slide
Choose: a function [f] in (o for every £ of type o

Define: for a given a mapping variables to A:
o [4] = afx)
o [£] = [£]
o [s-t] = [s]([tD)
(We're ignoring abstractions for now. We will get back to that later!)

Prove: [{] > [r] for all rules £ — r, all «

In practice, since we quantify over «, we essentially view both sides as functions over a given set of
variables.

Then: [s] > [t] whenver s —x t.
Consequence: if tonat(a) > tonat(b) whenever a > b then tonat([s]) > derivationheight(s).

Note that of course, this is also a termination technique: if we have a bound on the number of steps,
clearly this number is not infinite.

Example:
[= list
cons : nat = list = list
map : (nat = nat) = list = list

map(F,[]) — |
map([', cons(z,l)) — cons(F - x,map(F,l))

Choose: A, = N for all ¢

[l =0
[cons](z,y) = xz+y+1
map|(F,z) = (z+1)xF(x)

Monotonicity: holds. (We can easily see that, for example, if z > y then [map|(F,z) > [map|(F,y), and
if F(x) > G(x) for all z then [map]|(F,z) > [map](G,x).)

10
Example
] =0
[cons](z,y) = xz+y+1
[map|(Fyz) = (x+1)*xF(z)+1
Goal 1:
[map(F, ()] > [[I]
That is:

0+ 1) F(0)+1>0
Which is certainly true because 1 > 0.
Goal 2:
[map(F', cons(z,1))] > [cons(F - z,map(F,[))]
That is:

(x+l+D)+)« Flz+l+1)+1 >
Fa)+(+1)«F()+1)+1

Simplifying the arithmetic, this is:

rxFle+l+ 1)+« Flz+l+ 1)+ Fla+l+1)+Fla+i+1)+1 >
Fz)+1xF()+ F(l)+1

Let’s reorganise that a bit!

rx Fle+14+1) HlxFlx+1+1) +F(x+1+1) +F(x+1+1) +1
> +1x F(1) +F(x) +F(1) +1

Now observe that I is monotonic. So for instance F'(x 4+ 1+ 1) > F(x). Hence we quickly see that this
inequality indeed holds.

11
Exercise
Given:
[« list
cons :: nat = list = list
filter : (nat = bool) = list = list
helper : bool = nat = list = list

filter(F,[]) — ||
filter(F,cons(x,l)) — helper(F -z, z,filter(F,1))
helper(true,z,l) — cons(z,l)
helper(false,z,l) — [

Task: show that the following interpretation suffices:

m =0 ftrue] = 1
[cons|(z,y) = z4+y+1 [false] = 0
[helper|(b,z,y) = b+z+y+1
[filter](F,z) = (z+1)x(F(x)+1)
12
Bonus exercise
Given:
[= list
cons :: nat = list = list
zip = (nat = nat) = list = list
zip(F,[],1) = 1
zip(F,L[]) = 1
zip(F, cons(z,l),cons(y,q)) = cons(F -z -y,zip(F,l,q))

Task: find an interpretation that orients these rules!

13

Abstraction

Discussion: what should be the interpretation of \z.s?
Naive choice: = — [s]

Problem: the naive interpretation for for A\xz.s is not monotonic if 2 does not occur in s! For example,
this choice would let [Az.0] be the constant function mapping everything to 0 — and thus, it would not
be an element of (nat = nat).

Solution: for each o, 7, a function makesm, ,:
e Input: a monotonic or constant function from (o) to (7

e Output: a monotonic function from (o) to (7)

e makesm, r should itself be monotonic!

e we need to have [(Az.s) - t] > s[z =]

The use of makesm functions may be confusing at first — but essentially, all that this means is that we
choose a systematic way of turning a given abstraction into a monotonic function. And in practice, we
can usually find a way to define a class of makesm functions that allows us to almost map Ax.s to = +— [s]
if © € FV(s) — just adding a cost for the S-reduction. This is demonstrated for Apat = N below.

Example: (for o,7 = nat and Anae = N):
e if F' is constant, then makesm, ,(F) =z — F(z) + 2 +1

e otherwise makesm, (F) =z — F(z) +1

This definition works very nicely in practice. The only difficulty is to prove that the above makesm
function is indeed monotonic; in particular, if F' is monotonic in z and G is constant, we must show that
that F' >nat—nat G implies that also makesm(F') >pat—nat makesm(G). To see that this holds, we make
the observation that in the natural numbers, if F' is a monotonic function, then F(x + 1) > F(z), so
F(z+1) > F(z) + 1; by induction, we see that F'(n) > F(0) + n. In a constant function, G(n) = G(0).
Thus we see: for all n: F(n) > F(0) +n > G(0) +n = G(n) + n.

This idea can be generalised to all types, but it takes a bit more definition effort; for example, if c = 7 =
nat = nat we let makesm, ,(F') = (G,z) — F(G,z) + 1 if F' is monotonic in its first argument (G), and
(G,z) — F(G,z) + G(0) + 1 if F is constant in its first argument.

2. Tuple interpretations

14
An observation

Consider:

e [add(s™(0), s™(0))]=1+m+2x*n
e actual cost of reduction: n + 1
e size of normal form: n +m

e This does raise the question: are we actually giving a bound to the sum of cost and size by using
interpretations to N?
Idea: separate cost and size already in the interpretation!
Mechanism: map to N? instead of N.
We let (z,y) > (2/,y/) if 2 > 2’ and y > ¢/.
Note: we can choose tonat((z,y)) = z. That is, if @ > b in N? then tonat(a) > tonat(b) — so if we can

express [s] as an element (z,y) of N2, then = gives a bound on the derivation height of s. We will refer
to the first element of the tuple as the cost component of the tuple.

15
Separating cost and size

add(0,y) — y
add(s(z),y) — s(add(z,v))
Let:
cost size
[o] = 0 , 0)
[[S(J/)]] = < L cost s Tsize + 1 >
[[add(.r, y)]] = < Teost + Yecost + Tsize > Tsize T Ysize >
Then:
[add(0,y)] = (1+y1,92)
> (y1,v2) = [y]
[add(s(z),y)] = (2+z1+y1+ 22,1+ 22 +72)
> (14 a1+ +a2,1+224+y2) = [s(add(z,y))]

Hence: [add(s"(0), s™(0))] = (1 +n,n + m): precise! (And also intuitive.)

16
When interpretations to N are Not Great

a(b(x)) — bla(z))

Let:

o [a(x)]=2x*x
o [b(x)]=2+1
e [e]=0

Then:
[a(b(z))] = 2+42x2>1+2x2 = [b(a(z))]

Hence: [a"(b™(e€))] = 2™ * m: exponentiall

17
Separating cost and size

Let:

cost size
[[a(T)]] = < Teost + Tsize Lsize >
[b(z)] = ¢ T cost , Tsize+ 1)
[=t o . 0)

Then:
[a(b(2))] = (r1+z2+ 1,204+ 1) > (21 + 22,20 +1) = [b(a(z))]
Hence: [a™(b™(¢))] = (n * m,m): precise!

Of course, we can’t always get precision. But we invariably get tighter interpretations by using tuples
than single numbers.

18
Tuple interpretations

Definition: monotonic algebras with A, = NXU for all © (where K[i] is a positive integer for all ¢).

= both for first- and higher-order!

This is a specific implementation of a well-known method (monotonic algebras), that adds a surprising
amount of power over other variations. In the bigger picture, tuple interpretations can be seen as a
generalisation of the method of matriz interpretations: this method also considers tuples over N as the
interpretation domain, but restrict the shape of the interpretation functions [£].

Of course, there is no reason to stop here. We could have tuples over other sets than N — for example, using
the set of integers Z as the second set in the component (as only the first needs to admit a wellfounded
ordering), a set such as NU {oo}, or even some impromptu set {a,b, c} with a > b and a > ¢ but b, ¢ not
comparable. There are uses for all these examples. We could also use tuples only for some base types,
and still allow, for instance, a base type list(IN = N) to be mapped to a function space such as (N = NJ.
However, for this lecture, we will limit interest to tuples of the form N¥.

Example sort interpretations:
e {nat} = N2 (cost, size of normal form)

e {list} = N3 (cost, list length, size of greatest element)

e {bool} = N! (cost)

19
Example: interpreting list functions

append([],l) —
append(cons(z,l),q) — cons(x,append(l,q))
sum([[) — O
sum(cons(z,l)) — add(z,sum(l))

Interpretations:
{list} = N3 (cost, list length, maximum element)
[[] = 0,0,0)

[[COHS(ZL'; l)]] = <5L'cost + l008t7 llen + 17 max(wsizw lmaac))

[append(l, ¢)] = (cost, length, maximum), where:

— maximum = max(lmaz, ¢maz)
— length = ljen, + Qlen
— cost = leost + Geost + lien +1

[sum(l)] = (cost, size), where:

— size = ey, * linaz

— o8t = leost + 2% ljen + lien * ljpaz + 1

20
Higher-order tuple interpretations: an example

[= list
cons :: N = list = list
map : (N = N) = list = list

map(F,[]) — |
map(F, cons(z,l)) — cons(F - xz,map(F,l))

Let:
e [[]1 =<0,0,0)
i [[COIIS(QJ, l)]] = <5L'cost + leosty lien + 1, max(wsizw lmaw))
e [map(F,1)] = (cost, length, maximum), where:

— length: [,
— maximum: F((lcost, lmaz))s

— cost: (Zlen + 1) * (F(<lCOSt7 lma$>)cost + 1)

21
Exercise

1. Find an interpretation, with (nat) = N2, for the following system:

minus(z,0) — =
minus(s(x),s(y)) — minus(z,y)
quot (O, sgy)) - 0

quot(s(:l;),sgz/)) — s(quot(minus(z,y),s(y)))

Warning: do not take g, — ysize for the size of minus(z,y)! Doing this would break the
monotonicity requirement: we must have [minus(a,b)] > [minus(a,c)] if b > ¢, which implies
[minus(a,b)]size > [minus(a,c)]> if beost > Ceost AN bgize > Csize-

Side note: the fact that we can do this at all illustrates the power of tuple interpretations. This was a
motivating example for dependency pairs, since it cannot be handled with any well-founded ordering
that has minus(z,y) = y. Thus, termination cannot be proved using RPO or interpretations to N,
nor can it be proved with a method like matrix interpretations due to the duplication of x in the
last rule. Yet, here we do not only prove its termination, but also find a bound to its complexity.

2. Find an interpretation for the following HTRS, where zip :: (nat = nat) = list = list.

zip(F,[,1) = 1
Zip(FLL[) = |
zip(F, cons(z,l),cons(y,q)) = cons(F -x-y,zip(F,l,q))

22
A more challenging higher-order tuple interpretation

fold(F,xz,[]) — |
fold(F,x,cons(y,l)) — fold(F,(F-x-y),l)
Interpretation:
[fold(F,z,l)] = (cost, size)
Where:

e cost =1+ lcost + F(<07 0>)cost + Help@T[F7 <lcost7 lmax>]llen (ZL')cost
o size = Helper[F, (I cost, Lmaz)] () size

e And Helper[F,y| = x +— (F(2,9) cost, MaX(Lgize, F (T, Y) size))-

23
A more challenging higher-order tuple interpretation

Y

add(z, s(y))

I

f01d(F7 (F “T /!/)7 l)
fold(Az.\y.add(z,v),0,1)

y)
add(s(z),v)
fold(F,x,])
fold(F,z,cons(y,l))
)

U AN

Method: Plug [Az.\y.add(z,y)] into the interpretation for fold.

Interpreting \: use makesm, 5,=. =g, =x =

(Fax7y17-"7ym) = (F(xag)l_'_l"i_xlaF(x?g)Qa7F(x7g)K[n]) if F' is constant
(Fyz,y1, .. ym) — (F(x,9)1+1 E(2,9)2, -, F(2,9) k) if F is monotonic

3. Complexity notions

2
Derivational and runtime complexity (first-order)

Derivational complexity:
n — “maximum derivation height for a term of size n”

Downside: can easily get large; e.g.: mul(mul(mul(mul(s(s(0)),s(s(0))),s(s(0))),s(s(0))),s(s(0)))

Runtime complexity:
n — “maximum derivation height for a basic term of size n”

Basic term: function(data,...,data)

Example: mul(s(s(s(s(s(0))))), s(s(s(s(s(s(s(0))))))))

Connection with computational complexity: depends

25
Termination (and complexity) competition

In the annual termination competition, there are categories for both runtime and derivational complexity
of first-order term rewriting (both with a general reduction strategy, and focused on innermost reduction).

Complexity Analysis

Derivational _Complexity: TRS 41498

I 1. AProVE (UB:ra2, KeJRJE, TIME:Sd 14:51:28)

— 2. tet-trs_v3.2.0_2020-06-28 (UP:645, LOW:0, JIJIsKEERRERL)

Derivational Complexity: TRS Innermost 450
messsssssss 1. AProVE (UP:1530, [Xe)Fiy, TIME 8d 10:19:16)
— 2. tet-trs_v3.2.0_2020-06-28 (UP:636, LOW:0, IILISEEIIEIEE)

Runtime_Complexity: TRS 41508

R L G R OW 1 /B2 TIME: 1d 07:43:25)
s 2. tet-trs_v3.2.0_2020-06-28 (UP:380, LOW:1103, TIVE:2d 00:28:55)

Runtime Complexity: TRS Innermost 41507

L R A T ROV 1 238RTIME: 1d 03:51:23)
s 1 2. tet-trs v3.2.0 2020-06-28 (UP:444, LOW:777, TIME:1d D8:04:34)

Runtime_Complexity: TRS Innermost Certified 4509
| 1. tet-irs_v3.2.0 2020-06-28 (WP@19, LOW-0, TIME: 1d 01:02:42, Certification:00:00:39)
— 2. AProVE (UP:400, LOW:0, JINIREEWEN). Certification:00:00:57)

26
Complexity of higher-order term rewriting

Open question: do derivational and runtime complexity even make sense for higher-order rewriting?

fold(F,z,[]) — |
fold(F,z,cons(y,l)) — fold(F,(F -xz-y),l)

Recall:
e What if: F':= Az, y.minimum(z,y)?
e What if: /' := Az, y.add(z,y)?

e What if: F':= Az, y.add(z,z)?

27
Higher-order derivational complexity?
Idea: naively extend the definition of derivational complexity

Result:
add(z, 0)
add(z,s(y))

T

_>
— s(add(z,y))

(Az.add(z,x)) - (s(s(0)))

(Az.add(z,x)) - ((Azx.add(x, z)) - (s(s(0))))

(Az.add(z,z)) - (Az.add(z,x)) - ((Az.add(z, z)) - (s(s(0)))))

Conclusion: exponential complexity at a minimum, even for very simple systems.

28
Runtime complexity: a simple extension

Runtime complexity:
n — “maximum derivation height for a basic term of size n”
Basic term: function(data,...,data)

Question: is it interesting to look at A-functions over constructors?
e map(Az.s(z),some Ist)?
e maketree(ATnat, Ytree-node(z, v, y), some natural number)

A notion of runtime complexity like this would be well-defined, and give reasonable bounds. However,
where runtime complexity makes sense in first-order rewriting if we are interested in “start terms” for a
program, the concept of instantiating higher-order functions by constructors or functions that are built
from constructors doesn’t seem to have much practical relevance.

Choice: data must be a first-order term.

Thus, we let the start terms for higher-order runtime complexity analysis be ezxactly the same as those
for runtime analysis of first-order term rewriting. Yet, higher-order function calls may arise during the
evaluation of the start terms, so their analysis is still needed. This actually seems representative of full

program analysis.

29

Higher-order runtime complexity example

add(0,y) — vy
add(s(z),y) — add(z,s(y))
fold(F,z,[]) — |
fold(F,z,cons(y,l)) — fold(F,(F-x-y),l)
sum(l) — fold(A\x.\y.add(z,v),0,!)

Basic terms:

e add(s(s(s(s(s(0))))), s(s(s(s(s(s(s(0))))))))
e sum(cons(s(s(0)), cons(0, cons(s(s(s(0))),[]))))

Runtime complexity: n+— O(n?) (actually: length * max)

30
Exercises

1. Compute a bound on the runtime complexity of the following system.

map(F,[]) —]
map(F, cons(z,l)) — cons(F - x,map(F,l))
doublemap(l) — map(double,l)
double(0) — O
double(s(z)) — s(s(double(x)))

2. Compute a bound on the runtime complexity of the following system.

add(z,0) — =z
add(z,s(y)) — s(add(z,v))
2ip(F, 1) = |
2ip(FL]) = 1
zip(F, cons(z,l),cons(y,q)) = cons(F -z-y,zip(F,l,q))

1

zipadd(l,) zip(Ar.\y.add(y,), 1, q)

31
A higher-order complexity notion?

Extending the first-order runtime complexity notion to higher-order rewriting is a good start, but it
doesn’t really capture the higher-order nature. And indeed, tuple interpretations give us much more

information, that we could use for both time and space bounds. Even just sticking to time (or: compu-
tation cost) bounds, it would be nice if we could express the complexity of functions, rather than full
programs; for example:

Idea:

e complexity of map is O(n * F(n))?
e complexity of fold is O(F™(n))?

However, this is speculative; there is no clear definition of what it would mean. We could likely define
something, but would it be useful?

32

Basic Feasible Functions

But there is a higher-order version of PTIME! This is defined in terms of Turing Machines.
Idea:

Oracle Turing Machines: these take n functions, k binary words

to compute function i:

— copy input to tape ¢
— go to special state

— output is written on tape n + 1

e — function cost is assumed zero, but function output size is important

Question: is the execution time limited by a higher-order polynomial over Fi, ..., F,,,w1,...,wg?

Relevance: this is exactly determined by the existence of a higher-order polynomially-bounded tuple
interpretation, provided we impose some restrictions on the interpretation of binary words.

